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Abstract

Quantification (or prevalence estimation) algorithms aim at
predicting the class distribution of unseen sets (or bags) of ex-
amples. These methods are useful for two main tasks: 1) quan-
tification applications, for instance when we need to track the
proportions of several groups of interest over time, and 2) do-
main adaptation problems, in which we usually need to adapt
a previously trained classifier to a different –albeit related– tar-
get distribution according to the estimated prevalences. This
paper analyzes several binary quantification algorithms show-
ing that not only do they share a common framework but are,
in fact, equivalent. Inspired by this study, we propose a new
method that extends one of the approaches analyzed. After an
empirical evaluation of all these methods using synthetic and
benchmark datasets, the paper concludes recommending three
of them due to their precision, efficiency, and diversity.

Introduction
Let x ∈ X = Rd and y ∈ Y = {−1,+1} be the features and
the class variable of a binary supervised learning problem,
respectively. We use S and T to denote the source/training
and target/testing distributions defined on X × Y . Given a
training set, Dtr = {(xtr

i , y
tr
i )}ni=1, drawn from S, the goal

of binary quantification algorithms is to induce a model able
to predict the proportion of positive and negative examples
in any unlabeled testing bag Dte = {xte

j }mj=1. Due to the
fact that both proportions are complementary, the models just
return the estimated prevalence of the positives, p̂ ∈ [0, 1].

To the best of our knowledge, prevalence estimation or
quantification methods (González et al. 2017) have been
applied to two kinds of tasks. The first group is composed
of actual quantification problems, such as quantifying the
number of damaged cells in tissue samples (Alaiz-Rodrı́guez
et al. 2008), monitoring the proportion of species over time
(González et al. 2019), estimating the credit risk of portfolios
(Tasche 2014) and tracking consumers’ sentiment on products
and services (Gao and Sebastiani 2015) To these tasks, each
individual example’s class is usually not relevant, but an
aggregate estimate of each class is (González et al. 2016).

The other application of prevalence estimation algorithms
is the task known as domain adaptation in machine learning
literature, see (Jiang 2008; Pan and Yang 2009) for a survey
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on this topic. The aim is to accurately classify the examples
from the target domain T when it differs from the source
domain S. This approach usually has two steps: 1) to detect
and estimate the shift between S and T and 2) to correct or
modify the classifier learned with the training data using the
estimates from the previous step, for instance reweighting
the training data to reproduce the target distribution (Zhang
et al. 2013). The final goal is to improve the performance of
the classifier over the target domain T .

It is noteworthy that both tasks belong to those real world
problems in which the source and target distributions differ,
i.e., PS(x, y) 6= PT (x, y). The shift between S and T can
not be arbitrary, otherwise the learning task would be unfea-
sible. We need to make some assumptions on the expected
shift to learn a useful model using the training data. These
assumptions may be based on some prior knowledge of the
data generating process, since it usually determines how the
data distribution changes. In this sense, two causal systems
can be distinguished: X → Y and Y → X (Schölkopf et al.
2012; Kull and Flach 2014), representing the relationship be-
tween the cause and the effect in the data generating process.
In the former, the class labels are causally determined by the
covariates. In the latter, which is the focus of this study, the
class labels causally determines the covariates. Despite how
unnatural this may seem, this causal system occurs in many
applications. In Y → X problems we can factorize P (x, y)
as P (x|y)P (y) to better express our main learning assump-
tion. All quantification algorithms studied below assume that:

PS(y) 6= PT (y) and PS(x|y) = PT (x|y). (1)
The first part of this learning assumption is evidently met
since these methods are designed for quantification tasks in
which the class distribution is expected to change. The second
part, the invariance of P (x|y) with respect to the change
in P (y), is one of the characteristics of the causal system
Y →X , see (Woodward 2005). Notice that the assumption in
Eq 1 implies that the difference between S and T is caused
solely by a change in the classes distribution. This learning
setting has been labeled under different names, including
prior probability shift (Storkey 2009) target shift (Zhang et al.
2013) and label shift (Lipton, Wang, and Smola 2018).

Several approaches have been proposed to design quantifi-
cation algorithms. Among them, one of the most interesting
is based on matching a modified version of the source dis-
tribution, S, with the target distribution, T . Focusing just
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on binary quantification, this approach follows these steps:
First, during the training phase, the distributions of the pos-
itive class and the negative class are only estimated using
the training data Dtr applying a particular density estimation
method. Once a new unseen testing bag Dte arrives, its dis-
tribution is estimated using the same method. Finally, and
taking into account the assumption in Eq. 1, the distribution
of Dte is approximated using a weighted mixture of both
positive and negative class distributions computed using Dtr,
with weights p̂ and 1− p̂ respectively. The estimated predic-
tion is the value of p̂ that minimizes the distance between this
mixture and the testing distribution.

This paper analyzes several quantification algorithms
based on this approach that use an underlying binary classifier
to represent and estimate data distributions. This approach is
interesting due to several reasons. First, it reduces the dimen-
sionality, performing well even when X is high dimensional.
It is well-known that estimating distributions in high dimen-
sional spaces is problematic (Ramdas et al. 2015). It may be
noted that, by using the predictions of a classifier, we need to
estimate only one-dimensional distributions for binary quan-
tification. Second, this approach performs well even when
the classifier is not particularly accurate or it is biased. As we
will show, these methods are Fisher consistent by construc-
tion, meaning that, theoretically, their error converges to zero:
p̂→ p as n,m→∞. This holds even if the Bayes error of
the corresponding classification problem is� 0.

The contributions of the present paper are threefold: 1)
A theoretical analysis of several quantification algorithms
proving that some of them are equivalent, 2) this helps to
unify and greatly simplify the work that has been carried out
in binary quantification so far, and, 3) we recommend three
of the studied methods as the best approaches in terms of
precision, computational efficiency and diversity.

Analyzed Algorithms
The first step to be taken with the group of algorithms based
on distribution matching is to train a binary classifier, f , us-
ing Dtr. The type of classifier to be used depends on the
quantification algorithm. Some require a probabilistic clas-
sifier, while for others a crisp one is enough. In order to
guarantee that results are comparable and the performance of
the algorithms does not depend on the underlying classifier,
all of them will be trained using a probabilistic classifier,
f : X → [0, 1], that returns the probability that a given ex-
ample belongs to the positive class: f(x) = P (y = +1|x).

Adjusted Count (AC)
Forman (2008) introduced the algorithm AC and also coined
the term quantification. However, this method has a long
history and it may have been devised earlier by Gart and
Buck (1966) to estimate the true prevalence of diseases in
epidemiologic studies. The idea behind AC is to adjust the
estimate returned by the ”Classify and Count” approach (CC)
taking into account the characteristics of the classifier, i.e.,
its true positive rate (tpr) and false positive rate (fpr). AC
formulation derives from the relation:

p̂CC = tpr · p+ fpr · (1− p). (2)

This relation shows that the prevalence computed after
classifying and counting the examples in Dte, p̂CC =
1
m

∑
xte

j
I(f(xte

j ) > 0.5), is a function of the true preva-
lence, p: the tpr of the positives (p) will be classified as
positives as well as the fpr of the negatives (1− p). This rela-
tion is true if PS(x|y) = PT (x|y) because this assumption
implies that the tpr and fpr of the classifier are invariant. In
such case, we can estimate the true prevalence as:

p̂AC =
p̂CC − fpr

tpr− fpr
. (3)

Thus, AC has two steps in addition to training f : 1) to esti-
mate tpr and fpr in the training phase, and 2) to apply the
CC approach over the testing set and adjust p̂CC using Eq. 3.
Notice that p̂AC may be > 1 or < 0 in some cases, this oc-
curs when p̂CC> tpr and p̂CC< fpr, respectively. Forman
proposes clipping back such values to 1 and 0.

Several authors have rediscovered this same method,
see (Levy and Kass 1970; McLachlan and Basford 1988;
McLachlan 2004). This has been motivated not only due to
the different contexts or applications in which these methods
have been proposed, but also because quantification is still an
under-explored topic. For instance, Lipton, Wang, and Smola
(2018) introduce a method called Black Box Shift Estimation
to estimate the ratios PT (y)/PS(y) for all y ∈ Y using this
derivation:
PT (ŷ) =

∑
y∈Y

PT (ŷ|y)PT (y) =
∑
y∈Y

PS(ŷ|y)PT (y)

=
∑
y∈Y

PS(ŷ, y)
PT (y)

PS(y)
. (4)

The second equality is obtained because if Eq. 1 holds, then
PS(ŷ|y) = PT (ŷ|y), (5)

is also true, see (Lipton, Wang, and Smola 2018). Notice that
PT (ŷ) =

∑
y∈Y PS(ŷ|y)PT (y) is equal to Eq. 2. In general,

any method that uses the confusion matrix, PS(ŷ|y), to esti-
mate the prevalences is likely to be equivalent to AC. Some
authors, see (McLachlan 2004; Saerens, Latinne, and De-
caestecker 2002), named AC as ”confusion matrix method”.

Probabilisitic Adjusted Count (PAC)
Bella et al. (2010) propose a probabilistic version of the AC
method in which f must be a probabilistic classifier. Instead
of computing tpr and fpr, PAC estimates the average proba-
bility returned by f of the positive and the negative training
instances. The average probability of the testing instances is
then scaled between these two values to estimate the preva-
lence of the positive class in the testing set. The notion behind
this being that if Dte contains only positive instances, their
average probability should be similar to that of the positive
training instances. Similarly, if Dte contains only negatives,
the probability should tend towards the average probability
of the negatives in Dtr. Consequently, PAC predicts:

p̂PAC =

1
m

∑
xte

j ∈Dte

f(xte
j )− 1

n−

∑
xtr

i ∈Dtr−
f(xtr

i )

1
n+

∑
xtr

i ∈Dtr+

f(xtr
i )− 1

n−

∑
xtr

i ∈Dtr−
f(xtr

i )
, (6)
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Figure 1: Example of the distributions used by HDy (b = 8).
We can see the distributions of the positives (blue) and neg-
atives (red) in the training set and also the mixture distribu-
tion (orange) that better approximates the testing distribution
(black). HDy returns p̂ = 0.740 in this example, the true
prevalence being p = 0.748.

Dtr+ and Dtr− being the sets of positive and negative exam-
ples in Dtr respectively, and n+, n− their sizes.

In (Hassan, Maletzke, and Batista 2020) the authors pro-
pose an algorithm called Sample Mean Matching (SMM).
SMM is equivalent to PAC but, instead of using a probabilis-
tic classifier, it uses a scoring classifier, f : X → R, for
estimating the mean scores of Dtr+, Dtr− and Dte.

HDy: PDFs and Hellinger Distance
González-Castro, Alaiz-Rodrı́guez, and Alegre (2013)
presents HDy that combines histograms to estimate the
source and target distributions, as well as the Hellinger Dis-
tance (HD) to compare those distributions. The letter “y”
indicates that HDy uses the predictions from a classifier to
estimate the distributions (like all the methods in this section).

The strategy of HDy is illustrated in Figure 1. In the train-
ing phase, HDy estimates the distributions of the predictions
returned by f for both positive and negative examples of Dtr

using histograms with a predefined number of bins, b. The al-
gorithm applies the same procedure to Dte. If the assumption
in Eq. 1 is true, the testing distribution should result from
combining the positive and negative distributions varying
the prevalence of both classes. HDy returns the value of p̂
that minimizes the HD between that mixture and the testing
distribution. Formally,

min
p̂∈[0,1]

√√√√ b∑
k=1

(√
|Dtr−

k |
n−

(1−p̂)+
|Dtr+

k |
n+

p̂−
√
|Dte

k |
m

)2

, (7)

in which |Dte
k |, |D

tr+
k | and |Dtr−

k | are the number of in-
stances in Dte, Dtr+ and Dtr− that belong to the k-th bin
after discretizing the predictions of f in b bins. The authors
use a linear search to solve Eq. 7, varying p̂ in the interval
[0, 1]. However, the solution can be found analytically with
more precision and less computational cost by exploiting the

equivalence between the HD and the Bhattacharyya Coeffi-
cient, HD(S, T ) =

√
1−BC(S, T ) (Firat 2016).

ORD: PDFs and the Earth Mover’ Distance
Maletzke et al. (2019) present a method, named as ORD, that
replaces the HD of HDy with the Earth Mover’s Distance
(EMD) (Rubner, Tomasi, and Guibas 2000). The EMD is a
measure of the distance between two probability distributions
which has been drawing a lot of attention lately. It computes
the minimum cost to transform one distribution into another.
In the case of ORD, in which we deal with one-dimensional
arrays of bins that have equal mass, the EMD can be com-
puted efficiently as a special case of the Hungarian method.
The formulation of ORD is:

min
p̂∈[0,1]

b−1∑
k=1

∣∣∣∣∣
k∑

l=1

((
|Dtr−

l |
n−

(1−p̂) +
|Dtr+

l |
n+

p̂

)
−|D

te
l |
m

)∣∣∣∣∣. (8)

The authors employ Ternary Search to compute p̂.

SORD: ORD with Infinite Number of Bins
Sample ORD (SORD) is also introduced by Maletzke et al.
(2019) and is equivalent to ORD when b→∞. SORD does
not compute the PDFs as ORD does, but it stores all the
predictions of both distributions. Like ORD, SORD is based
on Ternary Search but replacing the EMD in Eq. 8 with an
algorithm to calculate the distance between the mixture and
the testing distribution, given a value for p̂. Such algorithm
has a complexity O(n log n).

Mixture Model: Using CDFs
The Mixture Model algorithm (MM) was proposed by For-
man (2005, 2006). The idea again is to approximate the test-
ing distribution using a mixture of the positives and negatives,
although in this case the author proposes to use CDFs (cumu-
lative distribution functions) and a metric called PP-area to
compare both distributions. According to its original formu-
lation, MM works as follows: First, it records the predictions
for the instances in Dtr+ and Dtr− via many-folds CV dur-
ing the training phase. Once Dte arrives, MM records also
all its predictions using f . Then, a linear search is applied
to compute the optimal value of p̂ in [0, 1] comparing the
CDF of the mixture given p̂ and the CDF of Dte. The CDFs
are compared ”on-the-fly” each time: varying their input
threshold we obtain a pair of cumulative probabilities, one
for each distribution. Plotting these pairs using a Probability-
Probability plot we assess how similar they are. We would
obtain a perfect 45o line if the two CDFs yielded the same
probability for all thresholds. The PP-area is the area between
the PP curve and the 45o line.

Analysis of Equivalence
In addition to the use of classifiers to represent data distri-
butions, these methods share a common framework as well.
Despite it not being so obvious in certain cases, all of them try
to obtain a value of p̂ that satisfies p̂ ·S+ + (1− p̂) ·S− = T .
In the methods that use simple representations for the dis-
tributions (AC and PAC), solving this expression is almost
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always possible except in some rare cases discussed before.
However, the other methods can only approximate both dis-
tributions selecting the value of p̂ that minimizes the distance
between them:

min
p̂∈[0,1]

∆(p̂ · S+ + (1− p̂) · S− , T ), (9)

in which ∆ is a suitable measure to compare distributions. In
general, we could use several metrics for a given strategy to
represent the distributions, like in the case of HDY and ORD:
both employ PDFs but ∆ is different (HD vs. EMD).

The importance of the framework defined by Eq. 9 is
that the algorithms derived from it are Fisher consistent, see
(Tasche 2019). As discussed by Tasche (2017), an estimator
is Fisher consistent if it would obtain the true value of the
estimated parameter when the estimator was calculated using
the entire population (S, T ) rather than a sample (Dtr, Dte).
All quantifications algorithms derived from this framework
are Fisher consistent by construction. The proof is simple. If
the assumption in Eq. 1 holds, distribution T in Eq. 9 can be
expressed as a weighted combination of the distributions of
its positive and negative examples given its true prevalence,
p,

min
p̂∈[0,1]

∆( p̂ ·S++(1− p̂) ·S−, p ·T++(1−p) ·T−). (10)

Moreover, if distributions S+, S−, T+ and T− could be
estimated using their entire populations instead of Dtr+,
Dtr−, Dte+ and Dte−, then T+=S+ and T−=S−, so

min
p̂∈[0,1]

∆(p̂ ·S++ (1− p̂) ·S−, p ·S++ (1−p) ·S−). (11)

The only requirement is ∆ being a metric: the unique mini-
mizer of Eq. 11 will be p, the ground truth prevalence. This
proof is also true for all the methods analyzed in Section
thanks to Eq. 5, since it extends the assumption in Eq. 1 over
x to the predictions ŷ given by a classifier.

The rest of this section studies the connections between
the algorithms discussed in Section showing that some of
them are equivalent. We divide the analysis into three parts,
depending on the method used to represent the distributions.

Methods Using PDFs
The first equivalence is found between two methods that use
PDFs, namely AC and HDy. Although AC at first glance
does not seem to use PDFs, maybe due to its mathematical
derivation from Eq. 2, the truth is that AC employs histograms
with 2 symmetric bins. The cut point is 0.5 when f is a
probabilistic classifier. Then, the two bins for the positive
class are defined by the pair (fnr, tpr) and for the negative
class by (tnr, fpr). Only the second bin is used in Eq. 3 due
to the symmetry.
Lemma 1. AC is equivalent to HDy with b = 2 for binary
quantification problems.

Proof. We are going to show that minimizer of Eq. 7 is p̂AC

and the minimum is 0. When b = 2, Eq. 7 can be written as:

min
p̂∈[0,1]

[ (√
tnr · (1− p̂) + fnr · p̂−

√
1− p̂CC

)2
+
(√

fpr · (1− p̂) + tpr · p̂−
√
p̂CC

)2 ]1/2
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Figure 2: Distributions used by QUANTy (20 quantiles). Data
come from the same example used in Figure 1 and the esti-
mate of QUANTy was 0.74.

Both terms are zero when:

1− p̂CC = tnr · (1− p̂) + fnr · p̂
p̂CC = fpr · (1− p̂) + tpr · p̂

Notice that the second equality matches Eq. 2, so p̂ =
p̂CC−fpr
tpr−fpr = p̂AC , and for the first equality we have that

1− p̂CC = tnr · (1− p̂) + fnr · p̂
1− p̂CC = (1− fpr) · (1− p̂) + (1− tpr) · p̂
−p̂CC = −fpr · (1− p̂)− tpr · p̂.

Thus, the minimizer is again p̂ = p̂AC . Note that p̂AC is the
unique minimum except when tpr=fpr=tnr=fnr. In that
case, Eq. 7 has infinite solutions.

This lemma can be easily extended to any method based
on PDFs whenever ∆ is a metric obeying the identity axiom,
∆(S, T ) = 0⇔ S = T . This occurs because the minimizer
p̂AC makes both distributions exactly equal regardless of ∆.

Methods Using Average Posterior Probabilities
PAC is not equivalent to any other method, in fact it is rather
different. Instead of using CDFs or PDFs, which are common
tools for representing probability distributions, PAC employs
average probabilities. The other main feature is that PAC,
much like AC, employs a simplistic representation. Using
a single number to represent a whole distribution reduces
the ability to properly characterize the distributions and to
capture meaningful differences between them. Inspired by
the equivalence AC-HDy, we propose to extend PAC using
several average probabilities to represent each distribution.
The general idea is to sort all the posterior probabilities re-
turned by f for a given set of examples and divide them into
q groups defined by the corresponding quantiles. For each
group we compute the average posterior probability, see Fig-
ure 2. This approach is called QUANTy, using the root of the
word ”quantiles”. PAC corresponds to QUANTy when q = 1.

Regarding the implementation of QUANTy, there are two
important remarks to be made. First, we use Golden Section
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Algorithm 1: Mixture function used by QUANTy

1: Input: f,Dtr, p̂, q
2: v = {f(xtri ) : xtri ∈ Dtr+} ∪ {f(xtri ) : xtri ∈ Dtr−}
3: for i = 1 to n+ do w[i] = p̂ ∗ n/n+

4: for i = 1 to n− do w[n+ + i] = (1− p̂) ∗ n/n−
5: quantilweight = n/q
6: indxs = argsort(v)
7: v = v[indxs]; w = w[indxs]
8: j = 1; avgprob[1] = 0; weight = 0
9: for i = 1 to n do

10: weight = weight+ w[i]
11: if weight < quantilweight then
12: avgprob[j]+ = v[i] ∗ w[i]
13: else
14: weight = weight− quantilweight
15: avgprob[j]+ = v[i] ∗ (w[i]− weight)
16: j+ = 1; avgprob[j] = v[i] ∗ weight
17: end if
18: end for
19: return avgprob/quantilweight

Search (GSS) instead of Ternary Search because it is more
efficient. And second, the key element of the algorithm is
the method to combine the distributions of the positives and
the negatives given a value of p̂. The reason is that here the
average probability of each group in the mixture is not a
weighted combination of the corresponding groups of the
positives and negatives, like it occurs when we use PDFs and
CDFs. This is due to the order. For instance, in the example
of Figure 2, if p̂ is 0.5 the first quantiles of the mixture
contain mostly negative examples because their posterior
probabilities are lower than the posteriors of the positives.

Algorithm 1 contains the mixture function used by
QUANTy. First, we assign a different weight, which depends
on p̂, to the examples of each class, ensuring that the total
sum of vectorw is n (lines 3-4). This way, the weight that cor-
responds to each quantile must be n/q. Then, vectors v (with
the posteriors) and w are jointly sorted in ascending order
according to the values of v. The rest of the algorithm com-
putes the mean probabilities for each quantile as a weighted
average (using w) of the values of v from the examples that
belong to that quantile. The time complexity is O(n log n),
but an efficient implementation of QUANTy can reduce it
to O(n) if the sorting operation of v (lines 6-7) is computed
once, just before GSS starts. The algorithm controls when
the weight for the current quantile is reached.

Methods Using CDFs
Despite ORD and SORD are defined using PDFs, our claim
is that both approaches are equivalent to the MM method.
We establish this connection because all these algorithms
minimize the L1 norm between two CDFs. We prove it in the
following lemma.

Lemma 2. ORD and SORD are equivalent to MM for binary
quantification problems.

Proof. Let us start with MM. As it was pointed out by (Firat

Dtr+ Positives 
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Dte Testing distr.

P(
y=

+1
| x
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Dtr+ Positives 
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Figure 3: Examples of the distributions used by SORD (top)
and CDF (bottom). Despite they may look different, they are
in fact very similar. Notice the differences in the X-axis: In
the case of SORD the examples are sorted according to their
posteriors and for CDFy, we have the number of each bin in
the X-axis. Thus, the distributions are inverted. The predic-
tion of each method was 0.7378 and 0.7383 respectively.

2016), computing the PP-area of two CDFs is equivalent to
calculating their L1 norm. The PP-area is computed using the
distances of each point of the PP curve to the 45o line. Given
a point (a, b) of the PP curve (a and b are the probabilities of
both CDFs at that threshold), its distance to the corresponding
point in the 45o line, (a, a), is |a− b|, the L1-norm between
the probabilities of both CDFs.

Regarding ORD (and its extension SORD), the original
expression using PDFs in Eq. 8 can be expressed as:

b−1∑
k=1

∣∣∣∣∣
k∑

l=1

(
|Dtr−

l |
n−

(1−p̂) +
|Dtr+

l |
n+

p̂

)
︸ ︷︷ ︸
kth bin of CDF(pDtr++(1−p)Dtr−)

−
k∑

l=1

|Dte
l |
m︸ ︷︷ ︸

kth bin of CDF(Dte)

∣∣∣∣∣.
Thus, the EMD between two PDFs coincides with the L1
norm of the corresponding CDFs.

According to this discussion and following (Firat 2016),
we implement MM computing the CDFs using a value for
the number of bins, b, and minimizing the L1 norm. In order
to maintain a certain consistency in the method names, we
shall refer to MM as CDFy from now on. Figure 3 depicts an
example of the distributions computed by CDFy.
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Empirical Study
This study1 compares six of the quantification algorithms
previously discussed: AC, HDy, PAC, QUANTy, SORD, and
MM (renamed as CDFy) and has two goals. First, to ana-
lyze the behavior of these methods in several aspects: 1) the
robustness regarding the choices of hyperparameters, 2) the
rate of convergence when the sizes of both the training set (n)
and the testing set (m) increase, and 3) the time complexity
to compute a prediction for a testing set. The second goal is
to compare the performance of those methods that are related
according to the equivalence analysis, studying whether the
method that uses a richer representation of the distributions
attains better results. That is, we focus on the comparisons
HDy with b > 2 versus AC, QUANTy with q > 1 versus
PAC, and SORD versus CDFy with b < n or b < m.

Following Sebastiani (2020), the performance measure
used in this experimental study is the absolute error (AE),
AE = |p̂ − p|. Such paper proposes eight desirable prop-
erties for quantification performance measures. The author
concludes that AE and RAE (Relative AE) stand out as the
most satisfactory ones. We selected AE because it is easy to
interpret for practitioners, and is well suited to analyze the
results statistically (see Table 4).

Synthetic Data
In order to study the general behavior of these algorithms, we
employed a synthetic dataset generated using normal distribu-
tions: Dtr−v N (−1, σ) and Dtr+vN (+1, σ), with σ = 1.
The Bayes error of the classification problem is 15.9%. All
the methods were tested over the same training and testing
sets. To guarantee that assumption in Eq. 1 holds, we ap-
plied the following procedure to generate these sets: 1) both
classes had always the same number of examples in Dtr,
varying n+, n− in {50, 100, 500, 1000, 2000}, 2) for each
training set, 50 testing bags were generated from the same
distributions selecting the true prevalence p uniformly from
[.05, .95], 3) the number of testing examples of each test-
ing bag, m, also varies in {50, 100, 500, 1000, 2000}. This
procedure was repeated 40 times for each combination of
[(n+, n−),m], obtaining the average of 2000 quantification
tasks. Logistic Regression with C=1 was employed to train
the binary classifiers. Its classification errors ranged between
0.157 and 0.161, very close to the Bayes error, thus this se-
lection was appropriate. Following (Forman 2008), 50-fold
CV was used to estimate the training distributions.

Regarding the hyperparameters of the quantification algo-
rithms, some methods (AC, PAC and SORD) do not have
any, and the rest have two: the loss function ∆ in the frame-
work defined by Eq. 9 and the number of elements (bins or
quantiles) to represent the distributions. The loss function ∆
is already fixed for HDy, and CDFy must use the L1 norm
to compare its results with SORD. In the case of QUANTy,
after some preliminary runs comparing L1 and L2, we found
that QUANTy with L2 performs better. Just out of curiosity,
we also tested CDFy with L2 and the results were slightly
worse than those using L1. Figure 4 shows how HDy, CDFy
and QUANTy behave when b and q vary. As we can observe,

1github.com/bertocast/binary-quantification-equivalence
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Figure 4: AE scores varying b and q over synthetic dataset.

n+, n− AC HDy PAC QUANTy SORD CDFy
b=32 q=40 b=64

50 0.08 8.60 0.07 8.92 157.61 6.09
100 0.08 8.33 0.07 11.11 165.30 6.07
500 0.08 7.35 0.07 28.61 225.80 6.04
1000 0.08 7.33 0.07 48.71 300.72 6.03
2000 0.08 7.15 0.07 87.69 439.66 5.89

Table 1: Average prediction time/testing bag (m = 2000)
using the largest values of b and q (worst-case scenario).

QUANTy and CDFy are very robust, improving as q and b in-
crease as expected, although the differences are rather small.
HDy is more sensitive and its results tend to be worse when b
becomes large. In fact, the best results of HDy were obtained
with b = 8. Regarding the comparisons of interest to us, the
biggest difference lies between AC and HDy, in favor of the
latter. The difference between PAC and QUANTy (q = 40)
is much smaller, but still in favor of QUANTy. The results of
SORD and CDFy (b = 64) are practically indistinguishable.

Table 1 contains the average prediction time in millisec-
onds for each algorithm.The slowest method is SORD, with
QUANTy the second slowest, while the methods that compute
p̂ solving optimization problems (HDy and CDFy), instead
of using searching algorithms (like SORD and QUANTy),
are faster. They scale well because the dimension of such
optimization problems does not depend on n and m.

According to the results in Figure 4 and Table 1, for all the
experiments devoted to analyze quantification accuracy we
selected: 1) HDy with b = 8 because its results are similar to
those with b = 4 and parameter b differs wider between HDy
and AC (b = 8 vs. b = 2), 2) QUANTy using q = 20, similar
performance than q = 40 but faster predictions, and 3) CDFy
with b = 64, best results and not worse prediction times.

Using such a selection, Table 2 reports all the MAE scores
for each combination of the number of testing examples (m)
and training examples (n+, n−) over the synthetic dataset.
Analyzing each group of algorithms, it is remarkable that
HDy and QUANTy outperform their counterparts, AC and
PAC in all cases but one. The differences between HDy and
AC are larger, but it is mostly due to the bad performance of
AC with respect to PAC. In fact, PAC outperforms AC in all
cases. On the other hand, the differences between SORD and
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m n+, n− AC HDy PAC QUANTy SORD CDFy

50

50 .0718 .0623 .0622 .0606 .0614 .0612
100 .0686 .0567 .0568 .0570 .0575 .0577
500 .0622 .0520 .0532 .0527 .0534 .0535

1000 .0602 .0493 .0502 .0496 .0507 .0507
2000 .0607 .0496 .0505 .0497 .0506 .0506

100

50 .0655 .0497 .0539 .0524 .0538 .0537
100 .0565 .0462 .0499 .0483 .0495 .0497
500 .0467 .0369 .0385 .0381 .0390 .0391

1000 .0429 .0340 .0359 .0352 .0360 .0360
2000 .0431 .0349 .0360 .0358 .0364 .0365

500

50 .0530 .0421 .0458 .0428 .0441 .0441
100 .0412 .0357 .0362 .0356 .0356 .0356
500 .0226 .0177 .0194 .0186 .0190 .0190

1000 .0219 .0183 .0192 .0188 .0191 .0191
2000 .0208 .0161 .0171 .0169 .0172 .0173

1000

50 .0540 .0394 .0437 .0422 .0431 .0431
100 .0333 .0271 .0281 .0272 .0276 .0276
500 .0209 .0166 .0188 .0178 .0182 .0183
1000 .0172 .0138 .0150 .0144 .0148 .0148
2000 .0156 .0124 .0134 .0129 .0133 .0133

2000

50 .0475 .0378 .0383 .0366 .0367 .0368
100 .0311 .0258 .0283 .0272 .0277 .0278
500 .0179 .0133 .0151 .0146 .0145 .0145

1000 .0138 .0110 .0121 .0117 .0119 .0119
2000 .0125 .0098 .0106 .0105 .0106 .0106

Table 2: Mean AE scores over the synthetic dataset. The best
performer of each group is presented in bold font.

CDFy are almost negligible, the differences are lower than
0.00015 except in three cases (0.00016, 0.00017, 0.00024).

Finally, Figure 5 illustrates the rate of convergence when
n+, n− and m increase. As theoretically expected because
all the methods are Fisher consistent, AE decreases when
the sizes increase. However, the rate of convergence is faster
when m increases. The reason for this is that quantification
estimates are more accurate over large testing sets, as it usu-
ally occurs in any estimation task. The size of the training set
seems less important despite it could affect the accuracy of
the classifier. Notice that the mean scores are close to 0.01
showing that this kind of quantifiers may work well even
when the accuracy of the classifier is not high (< .85).

Benchmark Datasets
The second group of experiments was carried out using bench-
mark datasets. The base learner was Random Forest (RF) to
obtain non linear classifiers. The RF hyperparameters (depth,
number of trees and minimum number of examples for the leaf
nodes) were automatically adjusted using a grid search and 3-
fold cross-validation optimizing the geometric mean to obtain
adequate classifiers even when classes were unbalanced. All
the quantifiers were trained over the same partitions, 70% for
training and 30% for testing, with 40 repetitions. Like before,
50 testing bags were generated for each test partition and
the true prevalence p was uniformly selected from [.05, .95].
However, in this case the examples for each bag were chosen
using random sampling with replacement, trying to ensure
that the assumption in Eq. 1 holds.
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Figure 5: AE scores using the synthetic dataset when the
number of training examples (n+, n−) and testing examples
(m) change. All methods show that they are Fisher consistent.

Table 3 shows the AE scores of this experiment. In essence,
these results confirm those obtained with synthetic data. HDy
and QUANTy perform better than AC and PAC, respectively,
but the difference is usually larger in the case of HDy vs.
AC. We can see that most of the wins of AC over HDy occur
in the five datasets with the lowest classification error (in
the second column of the table). It seems that using richer
representations in these cases is useless. We do not observe
this pattern or any other in the comparison between PAC
vs. QUANTy. Notice that the differences favoring PAC are
usually small (the largest one is 0.00146). Finally, SORD
and CDFy obtain very similar results once again. The advan-
tage of SORDy over CDFy is greater than 0.0005 in only 4
cases, in 22 cases it is less than 0.00015 and the largest noted
difference is 0.00259 (coil dataset).

In order to analyze these results statistically we employed
the Bayesian hypothesis test proposed by (Benavoli et al.
2017). In this type of analysis, we need to define the rope,
which is the region where two methods are considered practi-
cally equivalent. Table 4 contains the comparison of each pair
of methods for two rope values: 0.01 and 0.005. If we focus
first on the comparison between equivalent algorithms, shown
in the diagonal of the table, we can observe two remarkable
results: 1) QUANTy never significantly loses against PAC
and obtains 14 significant wins, and 2) the rope significantly
wins in all the comparisons between SORD and CDFy. When
all the algorithms are compared, the method presenting more
significant wins is QUANTy (60 wins, 3 losses), followed by
SORD (51W, 2L) and CDFy (49W, 3L).

Discussion
Our theoretical study proves that AC is a simplified version of
HDy for binary quantification. These experiments show that
HDy converges faster to the optimal predictions, outperform-
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Dataset Err. AC HDy PAC QUANTy SORD CDFy
acute.a .00 .0044 .0205 .0391 .0230 .0178 .0182
acute.b .00 .0059 .0270 .0335 .0145 .0117 .0118
balance.1 .10 .0398 .0247 .0311 .0256 .0273 .0276
balance.3 .10 .0383 .0247 .0307 .0255 .0274 .0275
breast-c. .03 .0165 .0158 .0168 .0139 .0141 .0143
cmc.1 .30 .0737 .0534 .0548 .0559 .0557 .0559
cmc.2 .33 .1079 .0781 .0740 .0750 .0773 .0774
cmc.3 .36 .1125 .0799 .0830 .0813 .0840 .0843
coil .32 .0570 .0554 .0498 .0488 .0501 .0527
ctg.1 .07 .0189 .0126 .0174 .0150 .0149 .0148
ctg.2 .11 .0223 .0190 .0206 .0188 .0185 .0186
ctg.3 .07 .0284 .0164 .0211 .0165 .0159 .0158
default.cr. .28 .0186 .0147 .0149 .0158 .0157 .0158
diabetes .26 .0789 .0593 .0617 .0608 .0626 .0628
german .28 .0760 .0709 .0705 .0679 .0695 .0698
haberman .36 .1720 .1888 .1638 .1600 .1594 .1603
ionosphere .08 .0443 .0383 .0405 .0377 .0382 .0383
iris.1 .00 .0000 .0104 .0099 .0034 .0000 .0000
iris.2 .06 .0535 .0445 .0481 .0495 .0497 .0497
iris.3 .06 .0538 .0533 .0473 .0446 .0448 .0448
lettersH .06 .0124 .0066 .0086 .0069 .0065 .0065
mammogr. .17 .0482 .0370 .0403 .0385 .0396 .0397
pageblks.5 .08 .0366 .0186 .0274 .0216 .0215 .0218
phoneme .12 .0150 .0104 .0119 .0109 .0112 .0112
semeion.8 .11 .0500 .0301 .0353 .0286 .0266 .0266
sonar .18 .0962 .0775 .0769 .0700 .0708 .0714
spambase .05 .0083 .0065 .0075 .0068 .0070 .0070
spectf .25 .1225 .0908 .0935 .0830 .0838 .0845
tictactoe .04 .0211 .0140 .0195 .0146 .0150 .0151
transfusion .32 .1147 .1075 .1091 .1055 .1063 .1064
wdbc .05 .0264 .0202 .0212 .0196 .0200 .0201
wine.q.rd .20 .0393 .0311 .0308 .0309 .0314 .0315
wine.q.wh .21 .0258 .0197 .0215 .0204 .0211 .0211
wine.1 .02 .0219 .0277 .0299 .0184 .0184 .0185
wine.2 .02 .0299 .0274 .0324 .0218 .0232 .0234
wine.3 .02 .0234 .0306 .0335 .0217 .0225 .0225
yeast .28 .0637 .0498 .0526 .0509 .0535 .0536

Table 3: Mean AE scores over UCI datasets. The first column
includes the number of examples of the dataset. The error of
the base classifier is in the second column. The best performer
of each group is presented in bold font.

ing AC especially when the accuracy of the classifier is not
very high and training/testing sets are limited (notice that test
sets are given and may be small in some tasks). The reason
is that AC uses just a number to represent the distributions.
Using PDFs with several bins, as HDy does, helps to better
represent data distributions and improves the final match-
ing step. The same discussion applies to PAC vs QUANTy.
PAC uses just the average of the posterior probabilities for
representing each distribution. QUANTy extends said repre-
sentation providing better performance and convergence.

EMD has sparked a lot of interest lately in relation to sev-
eral learning problems. In the context of binary quantification,
minimizing the EMD distance between two PDFs (ORD/-
SORD) is equivalent to minimizing L1 between the corre-
sponding CDFs (CDFy). But the latter algorithm is much
faster (see Table 1). This equivalence was also corroborated
empirically, see the statistical analysis in Table 4.

rope HDy PAC QUANTy SORD CDFy
AC .010 3/18/12 2/22/7 1/19/12 1/21/10 1/21/10

.005 5/7/20 5/9/15 2/9/24 1/10/21 2/10/20
HDy .010 1/34/1 0/31/2 0/32/2 0/32/2

.005 4/19/1 0/26/8 0/24/6 0/25/6
PAC .010 0/31/4 0/30/3 0/31/3

.005 0/21/10 0/24/9 0/24/8
QUANTy .010 0/37/0 0/37/0

.005 0/36/0 0/36/0
SORD .010 0/37/0

.005 0/37/0

Table 4: Number of datasets for which the Bayesian test
decides that there is a significant difference (≥ 95%). For
each pair of methods the table shows the # significant wins
for the method in the row / for the rope / and for the method
in the column. The rest of datasets were datasets with no
decision (37 minus the sum of significant wins).

The main interest of our equivalence analysis is that it help
to better understand all these methods. The key difference is
the way to represent data distributions. The three alternatives
provide similar performance when appropriate parameters
are selected, mainly because they use the same information
(the posterior probabilities returned by a classifier) under
the same learning framework (matching-based algorithms).
Using PDFs (HDy) gives sometimes better results but has the
disadvantage that it is more difficult to correctly adjust the
optimal number of bins. The hyperparameters of QUANTy
(q) and CDFy (b) are very easy to select because their perfor-
mance is almost equal for any large value of them.

After analyzing all the experiments, our recommendation
for future studies is to employ HDy, QUANTy and CDFy
because they: 1) perform well, 2) are efficient enough, and 3)
cover all types of representation techniques.

Conclusions
This study completes and simplifies the state-of-the-art of
binary quantification methods based on using the predictions
returned by a classifier. We have shown that this approach is
theoretically well-founded because the algorithms are Fisher
consistent. These methods are a good alternative to other
algorithms that are based on using the data defined by the
input space directly (Du Plessis and Sugiyama 2014).

We have proposed a new algorithm, called QUANTy, based
on average probabilities, that is at least competitive according
to our experiments. The idea behind devising QUANTy was
to propose an extended version of PAC that allows us to show
how AC/PAC are outperformed by their counterpart versions.
In this sense, the present paper can be seen as a criticism of
AC, PAC, and Mean Matching because their representation
techniques are extremely simple. The final takeaway message
is to use richer representations for the distributions whatever
representation is chosen and avoid more simple methods. The
way to improve the performance of this kind of methods is
to design new algorithms for estimating data distributions
because it is the key ingredient of this framework.
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V.; and Sánchez, L. 2008. Quantifying the proportion of
damaged sperm cells based on image analysis and neural
networks. In Proceedings of SMO’08, 383–388.
Bella, A.; Ferri, C.; Hernández-Orallo, J.; and Ramirez-
Quintana, M. J. 2010. Quantification via probability esti-
mators. In IEEE ICDM, 737–742.
Benavoli, A.; Corani, G.; Demšar, J.; and Zaffalon, M. 2017.
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González-Castro, V.; Alaiz-Rodrı́guez, R.; and Alegre, E.
2013. Class Distribution Estimation based on the Hellinger
Distance. Information Sciences, 218: 146–164.
Hassan, W.; Maletzke, A.; and Batista, G. 2020. Accurately
quantifying a billion instances per second. In IEEE DSAA,
1–10.

Jiang, J. 2008. A literature survey on domain adaptation
of statistical classifiers. http://www.mysmu.edu/faculty/
jingjiang/papers/da survey.pdf. Accessed: 2023-03-08.
Kull, M.; and Flach, P. 2014. Patterns of dataset shift. In First
International Workshop on Learning over Multiple Contexts
(LMCE) at ECML-PKDD.
Levy, P. S.; and Kass, E. H. 1970. A three-population model
for sequential screening for bacteriuria. American Journal of
Epidemiology, 91(2): 148–154.
Lipton, Z. C.; Wang, Y.-X.; and Smola, A. 2018. Detecting
and Correcting for Label Shift with Black Box Predictors. In
Proceedings of the ICML, 3122–3130.
Maletzke, A.; dos Reis, D.; Cherman, E.; and Batista, G. 2019.
DyS: A Framework for Mixture Models in Quantification. In
Proceedings of the AAAI, volume 33, 4552–4560.
McLachlan, G. J. 2004. Discriminant analysis and statistical
pattern recognition, volume 544. John Wiley & Sons.
McLachlan, G. J.; and Basford, K. E. 1988. Mixture models:
Inference and applications to clustering, volume 38. M.
Dekker New York.
Pan, S. J.; and Yang, Q. 2009. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering,
22(10): 1345–1359.
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