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Abstract

General properties of convergence in distribution for fuzzy random variables are studied as regards its interplay with the structure 
of the space of fuzzy sets. In particular, its behaviour with respect to taking tuples of fuzzy random variables, adding, multiplying by 
a scalar, taking the union, preserving inclusion ordering, and subsuming convergence in distribution of random sets is established.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

By a result of Krätschmer (see Proposition 2.2 below), fuzzy random variables can be seen as random elements of 
a space formed by generalized fuzzy numbers and endowed with the separable Lp-type metric dp , for any p ∈ [1, ∞). 
That means that fuzzy random variables are amenable to the methods of probability in metric spaces [7,19] and in 
particular convergence in distribution can be defined via weak convergence of the induced probability measures. This 
definition does not rely on cumulative distribution functions (while being equivalent to the ordinary definition in Rd) 
and so can be applied in more general spaces.

In recent papers [1,2] we have studied some properties of fuzzy random variables under that kind of conver-
gence, like a Skorokhod theorem and several applications (continuous mapping theorem, Vitali convergence theorem, 
dominated convergence theorem, existence of extensions, perfect distributions). We have also shown that it behaves 
adequately with respect to some aspects of the structure of spaces of fuzzy sets [3], as will be described in Section 3.

In this paper, we undertake a more systematic study of its properties. First we will study ‘vectors’ or tuples of fuzzy 
random variables, which will be needed for the subsequent work. Indeed, if we want to study the joint convergence 
in distribution of two (or several) fuzzy random variables, the joint distribution is defined on a Cartesian product of 
spaces of fuzzy sets to which known results for fuzzy random variables cannot be immediately applied. We need 
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to establish that the joint object (X, Y) can meaningfully be identified with its (fuzzy) Cartesian product X × Y , 
that this defines a fuzzy random variable in a space of fuzzy sets of higher dimension, and that joint convergence 
(Xn, Yn) → (X, Y) is consistent with convergence Xn × Yn → X × Y in that larger space.

Then we will study the relationships between convergence in distribution and the operations of sum, product by 
a scalar, and union. The intersection of two fuzzy sets can be non-normal while the dp-metrics are only defined 
for normal fuzzy sets, whence we only consider the union. To mention a representative example, we will show that 
(Xn, Yn) → (X, Y) in distribution implies Xn + Yn → X + Y in distribution, with analogous results for the other two 
operations. From them, we will obtain a version of the Slutski theorem for fuzzy random variables. This is a basic 
convergence result which, loosely speaking, states that a slight perturbation of a convergent sequence still converges 
(it is used to prove, for instance, that Student’s t-statistic is asymptotically normal).

We will also study the relationships with the inclusion between fuzzy sets. For random variables, convergence in 
distribution is too weak to have nice order-preserving properties: if a sequence converges to a normal distribution X
with zero mean, since −X is identically distributed to X it will also be a limit in distribution of the sequence but the 
transformation x �→ −x reverses the order. The same happens with the inclusion order here. We will show though 
that Xn ⊆ U for all n, and Xn → X in distribution, imply X ⊆ U for a fixed fuzzy set U , and that convergence in 
probability is strong enough to let us replace U by a fuzzy random variable Y .

It will be established that convergence in distribution of random (compact convex) sets is consistent with that of 
their indicator functions when regarded as fuzzy random variables. Finally, we show that convergence in distribution 
can be characterized using dp-continuous transformations from fuzzy sets to fuzzy sets.

The structure of the paper is as follows. Sections 2 and 3 contain the preliminaries and recap prior results on 
convergence in distribution. In Section 4, the connection with Cartesian products is studied. Section 5 is devoted to the 
relationships with the operations between fuzzy sets, while the results about inclusion, random sets and dp-continuous 
mappings are in Section 6. The paper concludes with some final remarks in Section 8.

2. Preliminaries

Let E be a topological space. We denote by BE its Borel σ -algebra, i.e., the σ -algebra generated by its open sets. A 
Borel measurable mapping with values in E will be generally called a random element of E. We will denote (�, A, P)

the general probability space where the random elements are defined. The Lebesgue measure in [0, 1] will be denoted 
by �. The indicator function of a set K ⊆ Rd will be denoted by IK , and its closure by clK . Denote by B the closed 
unit ball in Rd .

Let Xn, X be random elements in a topological space E. Then {Xn}n converges weakly to X if E[f (Xn)] →
E[f (X)] for every continuous bounded function f :E → R (see [7, Chapter 1] for more details).

A topological space E is Polish if its topology is generated by some complete separable metric, Lusin if it is the 
continuous image of a Polish space by a bijective mapping and Suslin if it is the continuous image of a Polish space. 
A probability measure is Radon if P(A) = supK⊆A P (K) where K ranges over compact sets. Hence a topological 
space E is Radon if every probability measure P in E is a Radon measure.

Let K(Rd) be the space of all non-empty compact subsets of Rd and consider its subspace Kc(Rd), which contains 
all non-empty compact convex subsets of Rd .

The Hausdorff metric in K(Rd) is defined by

dH (K,L) = max{sup
x∈K

inf
y∈L

||x − y||, sup
y∈L′

inf
x∈K

||x − y||}
= inf{ε > 0 : K ⊆ L + εB,L ⊆ K + εB}.

The norm or magnitude of K is

‖K‖ = dH (K, {0}).
The Hausdorff metric has the following property in the space Kc(Rd).

Lemma 2.1. Let K ∈ Kc(Rd) and a, b ∈ R. Then

dH (aK,bK) ≤ |a − b| · ‖K‖.
2
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Proof. It is immediate if a = 0 or b = 0. Without loss of generality, assume a ≥ b. If b > 0,

dH (aK,bK) = dH ((a − b)K + bK,bK) ≤ dH ((a − b)K, {0}) = |a − b|‖K‖,
since dH is translation invariant in Kc(Rd). If both a and b are negative, we can apply the same reasoning. Next, if 
a > 0 and b < 0 we have

dH (aK,bK) ≤ dH (aK, {0}) + dH ({0}, bK)

= a‖K‖ + (−b)‖K‖ = (a − b)‖K‖ ≤ |a − b|‖K‖. �
A mapping X : � → Kc(Rd) is a random set (also a random compact convex set in the literature) if X is measurable 

with respect to the Borel σ -algebra BKc(Rd ) generated by the topology of the Hausdorff metric.
Denote by τF the Fell topology in the space of non-empty closed subsets of Rd . It is defined by its subbase formed 

by all sets of closed sets having the form {A : A ∩ K = ∅} or {A : A ∩ G �= ∅}, where K and G are respectively 
compact and open.

Let F(Rd) be the space of functions (fuzzy sets) U : Rd → [0, 1] whose α-cuts (α ∈ [0, 1]) are in K(Rd). Let 
Fc(Rd) be the space of fuzzy subsets of Rd , i.e., functions U : Rd → [0, 1] whose α-cuts (α ∈ [0, 1]) are in Kc(Rd).

Recall that the α-cuts of a fuzzy set U are

Uα = {x ∈ Rd : U(x) ≥ α}
for each α ∈ (0, 1], and U0 denotes the closure of its support.

Consider the space

F̂c,p(Rd) = {U :Rd → [0,1] : Uα ∈ Kc(R
d)∀α ∈ (0,1],

⎡⎢⎣ ∫
(0,1]

(dH (Uα, {0}))p dα

⎤⎥⎦
1/p

< ∞}.

For each p ∈ [1, ∞), the metric dp in F̂c,p(Rd) and F(Rd), is defined by

dp(U,V ) =
⎡⎢⎣ ∫
(0,1]

(dH (Uα,Vα))p dα

⎤⎥⎦
1/p

.

By [16, Corollary 3.3], (F̂c,p(Rd), dp) is complete and separable and is a completion of (Fc(Rd), dp).
The norm of a fuzzy set U ∈ (F̂c,p(Rd), dp) is

‖U‖p = dp(U, I{0}).

A mapping X : � → Fc(Rd) is called a fuzzy random variable if, for each α ∈ [0, 1], the α-cut mapping Xα :
� → Kc(Rd) defined by Xα(ω) = (X(ω))α for each ω ∈ � is a random set (see [20]). Within this paper, we will 
identify fuzzy random variables with random elements of Fc(Rd), using the following result [15, Theorem 6.6.(i), 
part (iii)⇔(iv)].1

Proposition 2.2. (Krätschmer) Let p ∈ [1, ∞). A mapping X : � →Fc(Rd) is a fuzzy random variable if and only if 
it is a random element of the space (Fc(Rd), dp).

We will denote by σL the natural σ -algebra in Fc(Rd) with which a mapping is a fuzzy random variable if and only 
if it is measurable, i.e., the smallest σ -algebra that makes the mappings U ∈ Fc(Rd) �→ Uα ∈ Kc(Rd) measurable. 
Thus σL is the Borel σ -algebra induced by the metric dp in Fc(Rd), for each p ∈ [1, ∞).

1 Notice that part (iv) of that result considers mappings with values in the larger space F(Rd ) instead of Fc(Rd ). Thus our definition demands 
measurability of each level mapping Xα as a random set with compact convex values while part (iv) considers just compact values. Both are well 
known to be equivalent since the space of compact convex sets is closed (in the Hausdorff metric) in the space of compact sets.
3
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A fuzzy random variable X is called integrably bounded if E[‖X0‖] < ∞. Then the expectation of X is the unique 
fuzzy set E[X] ∈Fc(Rd) such that

(E[X])α = EA[Xα]
for each α ∈ [0, 1] (see [20]), where

EA[Xα] = {E[f ] : f : � →R, f ∈ L1(�,A,P ), f ∈ Xα P -a.s.}
is the Aumann expectation of Xα , which is a compact convex set.

A sequence of probability measures {Pn}n on σL is said to converge weakly in dp to a probability measure P if∫
f dPn →

∫
f dP

for every f : Fc(Rd) → R which is dp-continuous and bounded. More generally, let (E, d) be a metric space and 
let Xn, X be random elements in E. Then Xn converges weakly to X if E[f (Xn)] → E[f (X)] for every continuous 
bounded function f : E → R.

Lemma 2.3. [7, Theorem 2.1] Let E be a metric space, P a probability measure and {Pn}n a sequence of probabilities 
in (E, BE). Then the following conditions are equivalent:

• Pn → P weakly,
• For every open set G we have lim infn→∞ Pn(G) ≥ P(G),
• For every closed set F we have lim supn→∞ Pn(F ) ≤ P(F).

A sequence {Xn}n of fuzzy random variables converges in distribution in dp to a fuzzy random variable X if their 
distributions PXn converge weakly to PX, or equivalently if Xn → X weakly as random elements of (Fc(Rd), dp). 
It converges almost surely in dp to X if P(dp(Xn, X) → 0) = 1. It converges in probability in dp if P(dp(Xn, X) <
ε) → 1 for each ε > 0.

A function f between metric spaces E and F is bounded if and only if f (E) is contained in a ball of F .
For any U ∈ Fc(Rd), denote by endU its endograph, i.e.,

endU = {(x,α) ∈Rd × [0,1] : U(x) ≥ α}.
In [11], the following results are proven in a more general setting including the space Fc(Rd), where we will 

enunciate them for simplicity.
Theorem 6.4, (i) ⇔ (ii) in [11] establishes a relationship between convergence of α-cuts of a sequence of fuzzy 

sets and convergence of their endographs.

Lemma 2.4. Let Un, U ∈ Fc(Rd) such that (Un)α, Uα are bounded sets for each α ∈ (0, 1]. Then dH (endU,

endUn) → 0 if and only if dH (Uα, (Un)α) → 0 for almost every α ∈ (0, 1).

Next, [11, Theorem 6.6] states that convergence in dp is stronger than convergence of endographs of fuzzy sets.

Lemma 2.5. Let Un, U ∈ Fc(Rd). If dp(Un, U) → 0, then dH (endUn, endU) → 0.

As a consequence, we establish the following result.

Corollary 2.6. Let Un, U ∈ Fc(Rd). If dp(Un, U) → 0, then dH ((Un)α, Uα) → 0 for almost every α ∈ (0, 1).

Finally, we will state some results related to the product of fuzzy sets and the operations that will be used in 
Section 4. Let U ∈ Fc(Rd) and V ∈Fc(Rd ′

) and denote by U × V ∈Fc(Rd+d ′
) the Cartesian product given by

U × V : (x, y) ∈ Rd+d ′ �→ (U × V )(x, y) = min{U(x),V (y)}.
4
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Lemma 2.7. Let U, V ∈Fc(Rd). Then

(U × V )α = Uα × Vα.

Lemma 2.8. [5, Theorem 1.12.15, p. 66] Let K, K ′, L, L′ ∈ Kc(Rd). Then

dH (K ∪ K ′,L ∪ L′) ≤ max{dH (K,L), dH (K ′,L′)}.

Let U, V ∈Fc(Rd). Then the union of U and V is defined as

(U ∪ V )(x) = max{U(x),V (x)}
for every x ∈ Rd .

Lemma 2.9. Let U, V ∈Fc(Rd). Then for every α ∈ [0, 1],
(U ∪ V )α = Uα ∪ Vα.

3. Previous results

For the reader’s benefit, this section collects the main results obtained so far about convergence in distribution in 
the dp-metrics, some of which will be used in the sequel. These results suggest that the definition of convergence in 
distribution via the general theory of weak convergence of probability measures in metric spaces is viable and suitable 
for fuzzy random variables, and justify the systematic study of its properties that we undertake here.

For completeness, we mention that some results exist for d∞ and the Skorokhod metric. Joo et al. [13] studied 
several characterizations of tightness under the Skorokhod metric, which is a standard way of proving convergence 
in distribution. Terán [27, Proposition 10] presented a Skorokhod theorem in the metric d∞ as an application of the 
Skorokhod theorem in metric spaces, while Alonso de la Fuente and Terán [2] proved Vitali convergence theorems 
and dominated convergence theorems under the assumption of weak convergence.

An analogous proof to that in [1, Theorem 5.1] yields the following form of the continuous mapping theorem, 
which will be used later on.

Lemma 3.1. Let (E, d) be a metric space. Let Xn and X be fuzzy random variables such that Xn → X in distribution 
in dp . If f : (Fc(Rd), dp) → E is a PX-almost surely continuous function, then f (Xn) → f (X) in distribution in d .

In [1, Theorem 3.5], we proved a version of the Skorokhod representation theorem for fuzzy random variables in 
(Fc(Rd), dp).

Lemma 3.2. Let p ∈ [1, ∞). Let Pn, P be probability measures on σL, such that Pn → P in distribution. Then there 
exist fuzzy random variables Xn, X : ([0, 1], B[0,1], �) → (Fc(Rd), dp), such that

(a) The distributions of Xn and X are Pn and P , respectively.
(b) Xn(t) → X(t) in dp for every t ∈ [0, 1].

The following dominated convergence theorem under the assumption of convergence in distribution appears in [1, 
Theorem 4.7]. More related results can be found in [2].

Lemma 3.3. Let Xn and X be integrably bounded fuzzy random variables. If Xn → X in distribution in dp and there 
exists g ∈ L1(�, A, P) such that dp(Xn, I{0}) ≤ g for all n ∈N , then E[Xn] → E[X] in dp .

Convergence in distribution can be studied by embedding the fuzzy sets into an Lp-type function space [3, Theorem 
1].

Theorem 3.4. Let p ∈ [1, ∞). Let Xn, X be fuzzy random variables. Then the following conditions are equivalent.
5
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1. Xn → X in distribution in (Fc(Rd), dp).
2. sXn → sX in distribution in Lp(Sd−1 × [0, 1], BSd−1 ⊗B[0,1], λ ⊗ �),

where λ denotes the uniform probability distribution in Sd−1.

In the case of random trapezoidal fuzzy sets T ra(ξ1, ξ2, ξ3, ξ4), defined as

X(ω)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < ξ1(ω)
x−ξ1(ω)

ξ2(ω)−ξ1(ω)
if ξ1(ω) ≤ x < ξ2(ω)

1 if ξ2(ω) ≤ x ≤ ξ3(ω)
ξ4(ω)−x

ξ4(ω)−ξ3(ω)
if ξ3(ω) < x ≤ ξ4(ω)

0 if x > ξ4(ω),

for random variables ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4, convergence in distribution is equivalent to convergence in distribution of 
(ξ1, ξ2, ξ3, ξ4) as a random vector in R4.

Theorem 3.5. [3, Theorem 2] Let p ∈ [1, ∞). Let Xn be T ra(ξn,1, ξn,2, ξn,3, ξn,4) where ξn,1 ≤ ξn,2 ≤ ξn,3 ≤ ξn,4
are random variables, and analogously X = T ra(ξ1, ξ2, ξ3, ξ4). Then Xn → X in distribution in dp if and only if, as 
random vectors in R4, (ξn,1, ξn,2, ξn,3, ξn,4) → (ξ1, ξ2, ξ3, ξ4) in distribution.

That theorem relies on the following lemma ([3, Lemma 5]) whose proof is presented here (due to space reasons, 
it was omitted in [3]).

Lemma 3.6. Let {Un}n be a sequence of trapezoidal fuzzy numbers converging to some U ∈ F̂c,1(R) in d1. Then 
{‖(Un)0‖}n is bounded.

Proof. Reasoning by contradiction, assume {‖(Un)0‖}n is not bounded. Since

‖(Un)0‖ = max{| inf(Un)0|, | sup(Un)0|}
we may assume without loss of generality, that {| sup(Un)0|}n is not bounded, otherwise, replace Un by −Un. Then 
there exists a subsequence {Un′ }n such that for every M > 0 there exists some N ∈ N such that sup(Un′)0 > M

whenever n′ > N . Moreover,

‖Un‖1 = d1(Un, I{0}) =
∫

[0,1]
dH ((Un)α, {0})dα ≥

∫
[0,1]

| sup(Un)α|dα

=
∫

[0,1]
|α sup(Un)1 + (1 − α) sup(Un)0|dα ≥

∫
[0,1]

(α sup(Un)1 + (1 − α) sup(Un)0)dα

= 1

2
(sup(Un)1 + sup(Un)0).

Now, for V ∈ F̂c,1(R) we have

‖Un‖1 = d1(Un, I{0}) ≤ d1(Un,V ) + d1(V , I{0}) = d1(Un,U) + ‖V ‖1.

Then

‖V ‖1 ≥ ‖Un‖1 − d1(Un,V ) ≥ 1

2
(sup(Un)1 + sup(Un)0) − d1(Un,V ).

Set

M = max{1,2‖U‖1 − inf
n′ (sup(Un′)1) + 4)}.

Then there exists some N1 ∈ N such that sup(Un′)0 > M for all n > N1. Moreover, there exist N2 ∈ N such that 
d1(Un, U) < 1 for all n > N2. Let N = max{N1, N2}. Then for some n′ > N ,
6
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‖U‖1 ≥ 1

2
(sup(Un′)1 + sup(Un′)0) − d1(Un′ ,U) ≥ 1

2
(sup(Un′)1 + M) − 1

≥ 1

2
(sup(Un′)1 + 2‖U‖1 − inf

n
(sup(Un′)1) + 4) − 1 ≥ 1

2
(+2‖U‖1 + 4) − 1 = ‖U‖1 + 1,

where the last inequality uses the fact that

sup(Un′)1 − inf
n′ sup((Un′)1) ≥ 0.

Since ‖U‖1 ≥ ‖U‖1 + 1 is a contradiction, we conclude that {(Un)0}n is bounded. �
Remark 3.1. Since the space (F̂c,p(Rd), dp) is complete, it is possible to assume that the limit of the sequence of 
trapezoidal fuzzy numbers belongs to F̂c,p(Rd).

As an application of Theorem 3.5, we obtained the following result relating convergence in distribution of ran-
dom variables to convergence in distribution of their indicator functions ([3, Corollary 1]). It will be subsumed by 
Proposition 6.3 below which applies more generally to random sets.

Corollary 3.7. Let ξn, ξ be random variables. Then ξn → ξ in distribution if and only if I{ξn} → I{ξ} in distribution in 
dp .

Lastly, we have [3, Proposition 1], which shows that convergence in distribution behaves nicely with respect to the 
arithmetic operations of fuzzy sets. More general results will be established in Section 5.

Proposition 3.8. Let Xn, X be fuzzy random variables such that Xn → X in distribution in dp . Then

1. For every U ∈Fc(Rd), we have Xn + U → X + U in distribution in dp .
2. For every a ∈ R, we have aXn → aX in distribution in dp .

4. k-Tuples of fuzzy random variables

Since fuzzy random variables can take as values fuzzy subsets of Rd for d > 1, usually a clear distinction between 
a fuzzy random variable in Rd and a d-tuple of fuzzy random variables in R is not made. By this, we mean that a 
fuzzy random variable in Rd may just be called a fuzzy random vector (e.g., [9]).

In the non-fuzzy case, the space Rd and the Cartesian product of d copies of R are the same thing. But clearly, 
Fc(R2) is not the same thing as Fc(R) ×Fc(R). At the intuitive level, each random element (X, Y) of Fc(R) ×Fc(R)

can be identified canonically with an element of Fc(R2) by taking the Cartesian product X × Y . That is done, for 
instance, in [25, Section 5] where pairs of trapezoidal one-dimensional fuzzy data are modelled and graphically 
represented by using their 2-dimensional Cartesian product.

For a finite data sample, that raises no questions. For random elements, which may take infinitely many values, 
one can and should ask for a rigorous proof that the measurability of (X, Y) is the same thing as the measurability 
of X × Y . And when convergence enters the picture, further questions need to be addressed as it is not self-evident 
that convergence of (Xn, Yn) is the same thing as convergence of Xn × Yn. The aim of this section is to settle those 
questions satisfactorily.

To improve proof clarity, we will state the results in the way we will need to use them (for pairs of multi-
dimensional fuzzy sets) but they clearly apply in the general case of k-tuples. We will merely state the case of k-tuples 
of one-dimensional fuzzy random variables which is not used in the sequel.

We will need the following theorem from the theory of standard probability spaces [19, Corollary 3.3, p. 22].

Lemma 4.1. If B is a Borel subset of a complete separable metric space E and ϕ is an injective measurable map from 
B into a separable metric space F , then ϕ(B) is a Borel subset of F , and ϕ is an isomorphism between the measurable 
spaces B and ϕ(B) endowed with their Borel σ -algebras.

The following lemma on the Hausdorff metric between products will be useful.
7
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Lemma 4.2. For every K, K ′, L ∈ Kc(Rd) we have

dH (K × L,K ′ × L) = dH (K,K ′).

Proof. Let K, K ′, L ∈ Kc(Rd). Then

dH (K × L,K ′ × L)

= max{ sup
(x,y)∈(K,L)

inf
(x′,y′)∈(K ′,L)

‖(x, y) − (x′, y′)‖, sup
(x′,y′)∈(K ′,L)

inf
(x,y)∈(K,L)

‖(x, y) − (x′, y′)‖}

= max{ sup
x∈K,y∈L

inf
x′∈K ′,y′∈L

‖(x, y) − (x′, y′)‖, sup
x′∈K ′,y′∈L

inf
x∈K,y∈L

‖(x, y) − (x′, y′)‖}

= max{ sup
x∈K,y∈L

inf
x′∈K ′,y′∈L

‖(x − x′, y − y′)‖, sup
x′∈K ′,y′∈L

inf
x∈K,y∈L

‖(x − x′, y − y′)‖}

= max{ sup
x∈K,y∈L

inf
x′∈K ′,y′∈L

‖x − x′‖, sup
x′∈K ′,y′∈L

inf
x∈K,y∈L

‖x − x′‖}

= max{ sup
x∈K,

inf
x′∈K ′ ‖x − x′‖, sup

x′∈K ′
inf
x∈K

‖x − x′‖} = dH (K,K ′). �
Consider the mapping

ϕ× : (Fc(R
d) ×Fc(R

d ′
), dmax) → (Fc(R

d+d ′
), dp)

(U,V ) → U × V

where dmax(U ×V, U ′ ×V ′) = max{dp(U, U ′), dp(V, V ′)}. Recall that the metric dmax induces the product topology 
in Fc(Rd) ×Fc(Rd ′

). The fact that dmax is chosen plays no role (any other equivalent metric generating the product 
topology would do) but the specifics of dmax will be used in the proofs.

Theorem 4.3. The mapping ϕ× is an homeomorphism onto its image and ϕ×(Fc(Rd) × Fc(Rd ′
)) is a measurable 

subset of Fc(Rd+d ′
).

Proof. (1) First, we have to see that ϕ× is well defined. Let U, V ∈ Fc(Rd). For every x = (x1, x2) ∈ Rd+d ′
(where 

x1 has d components and x2 has d ′ components),

(ϕ×(U,V ))(x) = (U × V )(x) = min{U(x1),V (x2)} ∈ [0,1].
By Lemma 2.7,

(ϕ×(U,V ))α = (U × V )α = Uα × Vα

for each α ∈ [0, 1]. Since Uα is non-empty, Uα × Vα is not-empty for any α ∈ [0, 1]. Next, the product of compact 
convex sets in compact and convex.

(2) Let us show that ϕ× is continuous. Let (Un, Vn) → (U, V ) in dmax. First,

dp(ϕ×(Un,Vn),ϕ×(U,V )) ≤ dp(ϕ×(Un,Vn),ϕ×(U,Vn)) + dp(ϕ×(U,Vn),ϕ×(U,V )).

Next, by Lemma 2.7 and Lemma 4.2,

ϕ×(Un,Vn)α = (Un)α × (Vn)α.

Analogously, ϕ×(U, Vn)α = Uα × (Vn)α . Therefore, with Lemma 2.7,

dH (ϕ×(Un,Vn)α,ϕ×(U,Vn)α) = dH ((Un)α × (Vn)α,Uα × (Vn)α) = dH ((Un)α,Uα).

Thus

dp(ϕ×(Un,Vn),ϕ×(U,Vn)) =
⎛⎜⎝ ∫

[0,1]
dH ((Un)α,Uα)pdα

⎞⎟⎠
1/p

= dp(Un,U).
8
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Analogously, dp(ϕ×(U, Vn), ϕ×(U, V )) = dp(Vn, V ). Then

dp(ϕ×(Un,Vn),ϕ×(U,V )) ≤ dp(Un,U) + dp(Vn,V ) ≤ 2dmax((Un,Vn), (U,V )) → 0.

(3) We need to show that ϕ× is an injective function. Let W, W ′ ∈ Fc(Rd) × Fc(Rd ′
), that is, W = (U, V ) and 

W ′ = (U ′, V ′). Consequently, ϕ×(W)α = Uα × Vα and ϕ×(W ′)α = U ′
α × V ′

α for every α ∈ [0, 1]. Provided ϕ×(W) =
ϕ×(W ′), then Uα = U ′

α and Vα = V ′
α for every α, hence W = W ′.

(4) Denote by φ× the inverse function of ϕ× defined by

φ× : ϕ×(Fc(R
d+d ′

)) → Fc(R
d) ×Fc(R

d ′
)

W = U × V → (U,V )

Let {Wn}n = {Un × Vn}n ⊆ ϕ×(Fc(Rd+d ′
)) be a convergent sequence converging to W = U × V .

dmax(φ×(Wn),φ×(W)) = dmax((Un,Vn), (U,V )) = max{dp(Un,U), dp(Vn,V )}
with

dp(Un,U) =
⎛⎜⎝ ∫

[0,1]
[dH ((Un)α,Uα)]p dα

⎞⎟⎠
1/p

.

Then

dH ((Wn)α,Wα) =
max{ sup

(x,y)∈(Un)α×(Vn)α

inf
(x′,y′)∈Uα×Vα

‖(x, y) − (x′, y′)‖,

sup
(x′,y′)∈Uα×Vα

inf
(x,y)∈(Un)α×(Vn)α

‖(x, y) − (x′, y′)‖}.

Since all norms in a finite dimensional space are equivalent, there exists some constant C > 0 such that

‖(x, y) − (x′, y′)‖ ≥ C · max{‖x − x′‖,‖y − y′‖} ≥ C · ‖x − x′‖
we have

dH ((Wn)α,Wα)

≥ C · max( sup
(x,y)∈(Un)α×(Vn)α

inf
(x′,y′)∈Uα×Vα

‖x − x′‖, sup
(x′,y′)∈Uα×Vα

inf
(x,y)∈(Un)α×(Vn)α

‖x − x′‖)

= C · dH ((Un)α,Uα)

Therefore dp(Un, U) ≤ C−1 · dp(Wn, W). Analogously, dp(Vn, V ) ≤ C−1 · dp(Wn, W). In conclusion,

dmax(φ×(Wn),φ×(W)) ≤ C−1 · dp(Wn,W) → 0.

(5) The measurability of ϕ×(Fc(Rd) ×Fc(Rd ′
)) is a consequence of Lemma 4.1. �

Remark 4.1. From the proof of Theorem 4.3, the inequalities

C · dmax(W,W ′) ≤ dp(ϕ×(W),ϕ×(W ′)) ≤ 2 · dmax(W,W ′)

hold for all W, W ′ ∈ Fc(Rd) ×Fc(Rd ′
). Hence ϕ× is a bi-Lipschitz function.

With Theorem 4.3 to hand, it is not hard to answer the questions at the beginning of this section.

Proposition 4.4. Let X, Y be mappings from a measurable space (�, A) to Fc(Rd) and Fc(Rd ′
), respectively. Then 

the following are equivalent.
9
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(i) X and Y are fuzzy random variables,
(ii) (X, Y) is a random element of the product space (Fc(Rd) ×Fc(Rd ′

), dmax),
(iii) X × Y is a fuzzy random variable in Rd+d ′

.

Proof. For (i) ⇒ (ii), (Fc(Rd), dp) is a separable metric space, hence the product σ -algebra in Fc(Rd) ×Fc(Rd) is 
Bdp ⊗Bdp . Therefore (X, Y) is measurable. For (ii) ⇒ (i), let π1 :Fc(Rd) ×Fc(Rd ′

) → Fc(Rd) be the projection over 

the first component of the product space. Then X = π1 ◦ (X, Y). Since Fc(Rd) ×Fc(Rd ′
) is endowed with the product 

topology, π1 is (dmax, dp)-continuous. Then, by Lemma 2.2, X is a fuzzy random variable in Rd . Analogously, Y is 
a fuzzy random variable in Rd ′

. Next, by Theorem 4.3, ϕ× is an homeomorphism, therefore the mapping X × Y =
ϕ× ◦ (X, Y) is Borel measurable, giving (ii) ⇒ (iii). For (iii)⇒(ii), recall that φ× is also an homeomorphism by 
Theorem 4.3, hence (X, Y) = φ× ◦ (X × Y) is Borel measurable. �

An alternative form of the same ideas is as follows.

Proposition 4.5. Let X1, . . . , Xk be mappings from a measurable space (�, A) to Fc(R). Then the following are 
equivalent.

(i) X1, . . . , Xk are fuzzy random variables,
(ii) (X1, . . . , Xk) is a random element of the product space (Fc(R) × . . . ×Fc(R), dmax), where

dmax((U1, . . . ,Un), (V1, . . . , Vn)) = max
i∈{1,...,n}dp(Ui,Vi),

(iii) X1 × . . . × Xk is a fuzzy random variable in Rk .

As regards convergence in distribution, notice that (Xn, Yn) → (X, Y) is not equivalent to Xn and Yn converging 
separately to X and Y .

Proposition 4.6. Let Xn, X, Yn, Y be fuzzy random variables. Then (Xn, Yn) → (X, Y) in distribution in dmax if and 
only if Xn × Yn → X × Y in distribution in dp .

Proof. Assume (Xn, Yn) → (X, Y) in distribution in dmax. Let h : Fc(Rd) ×Fc(Rd ′
) → R be a continuous bounded 

mapping. Then

E[h(Xn × Yn)] = E[(h ◦ ϕ×)(Xn,Yn)] → E[(h ◦ ϕ×)(X,Y )] = E[h(X × Y)],
since h ◦ ϕ× : Fc(Rd+d ′

) → R is continuous and bounded in dp (by Theorem 4.3). Therefore Xn × Yn → X × Y in 
distribution in dmax.

For the converse, assume Xn × Yn → X × Y in distribution in dp and let G be an open set of Fc(Rd) ×Fc(Rd ′
). 

By Theorem 4.3, there exists an open set G of Fc(Rd+d ′
) such that ϕ×(G) = G ∩ ϕ×(Fc(Rd+d ′

)). Then

lim inf
n→∞ P(Xn,Yn)(G) = lim inf

n→∞ (PXn×Yn ◦ ϕ×)(G) = lim inf
n→∞ PXn×Yn(ϕ×(G))

= lim inf
n→∞ PXn×Yn(G ∩ ϕ×(Fc(R

d+d ′
))) = lim inf

n→∞ PXn×Yn(G).

By Lemma 2.3,

lim inf
n→∞ PXn×Yn(G) ≥ PX×Y (G) = PX×Y (G ∩ ϕ×(Fc(R

d+d ′
)))

= PX×Y (ϕ×(G)) = (PX×Y ◦ ϕ×)(G) = P(X,Y )(G). �
The analogous result in the context of Proposition 4.4 is as follows.

Proposition 4.7. Let Xn,1, . . . , Xn,k, X1, . . . , Xk be fuzzy random variables in R. Then (Xn,1, . . . , Xn,k) → (X1, . . . ,
Xk) in distribution in the product topology of 

∏k
i=1(Fc(R), dp) if and only if Xn,1 × . . . × Xn,k → X1 × . . . × Xk in 

distribution in (Fc(Rk), dp).
10
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In the sequel, we will use Proposition 4.6 to recast joint convergence in distribution of fuzzy random variables (i.e., 
convergence of random elements of the product space Fc(Rd) ×Fc(Rd)) as a convergence of fuzzy random variables 
taking on values in Fc(R2d) to which known results can directly be applied.

5. Slutski theorem

In this section, we will study the behaviour of convergence in distribution with respect to the operations of sum, 
product by a scalar and union (modelled using the maximum t-conorm). The union of two elements of Fc(Rd) need 
not be in Fc(Rd) but that will not be a problem since it is still in the sup-semilattice F(Rd), where the dp-metric is 
defined. There would actually be an essential problem to consider the intersection: its 1-cut can be empty whence the 
result can be out of the domain of the metric dp.

We will prove results under joint convergence of the fuzzy random variables. In combination with a general result 
in [6] which states that separately convergent random elements do converge jointly provided one of the limits is 
degenerate, a generalization for fuzzy random variables of the Slutski theorem will follow. In this version we will 
consider the sum and product by scalars, but also the union operation which makes no sense for ordinary random 
variables.

Proposition 5.1. Let {Xn}n and {Yn}n be sequences of fuzzy random variables in Rd such that {(Xn, Yn)}n converges 
in distribution to (X, Y) in dmax. Then Xn + Yn converges in distribution in dp to X + Y .

Proof. Let ϕ× be the embedding of Fc(Rd) × Fc(Rd) into Fc(R2d). By Proposition 4.6, Xn × Yn → X × Y in 
distribution in dp . Next, define

s : (ϕ×(Fc(R
d) ×Fc(R

d)), dp) → (Fc(R
d), dp)

U × V �→ U + V

and

+ : (Fc(R
d) ×Fc(R

d), dmax) → (Fc(R
d), dp)

(U,V ) �→ U + V

Then s is (dp, dp)-continuous if and only if + is (dmax, dp)-continuous. Let us check that s is a continuous function. 
Let Z, T : ({0, 1}, {{0, 1}, {0}, {1}, ∅}, Q) → Fc(Rd) be simple fuzzy random variables such that Z(0) = A1, Z(1) =
A2, T (0) = B1 and T (1) = B2, with Q being the uniform distribution in {0, 1}. By [1, Lemma 4.4],

dp(
1

2
A1 + 1

2
A2,

1

2
B1 + 1

2
B2) ≤ E[dp(Z,T )]

=
∫

{0,1}
dp(Z(ω),T (ω))dQ(ω) = 1

2
· [dp(A1,B1) + dp(A2,B2)].

Then

dp(s(A1 × A2), s(B1 × B2)) = dp(A1 + A2,B1 + B2) ≤ dp(A1,B1) + dp(A2,B2).

Therefore s is a continuous function. By Lemma 3.1, the sequence {Xn + Yn}n = {s(Xn, Yn)}n converges in distribu-
tion to X + Y in dp . �

It is clear that the assumption of separate convergence of each sequence is not sufficient, as this is already the case 
for ordinary random variables and, by Corollary 3.7, one can identify a random variable ξ with the fuzzy random 
variable I{ξ}.

We will consider the product by a scalar now. The proofs for the sum and union are similar and rely on identifying 
Fc(Rd) ×Fc(Rd) with a subset of Fc(R2d). In this case we need to consider R ×Fc(Rd). Although the problem can 
be handled to fit the same scheme (like in Proposition 6.5 below), we will take the opportunity to use a different proof 
method based on the Skorokhod theorem.
11
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Theorem 5.2. Let {Xn}n be a sequence of fuzzy random variables and let {ξn}n be a sequence of random variables 
such that {(ξn, Xn)}n converges in distribution to (ξ, X). Then ξn · Xn converges in distribution in dp to ξ · X.

Proof. Let Yn = I{ξn}. Let ϕ× be the embedding of Fc(R) × Fc(Rd) into Fc(Rd+1). By Proposition 4.6 we have 
Yn × Xn → Y × X in distribution in dp . By Lemma 3.2, there exist Zn, Z : ([0, 1], B[0,1], �) → (Fc(Rd+1), dp)

distributed like Yn × Xn and Y × X, respectively, such that Zn → Z almost sure. Furthermore, by Theorem 4.3, the 
set ϕ×(Fc(R) ×Fc(Rd)) is measurable. Then

�(Zn ∈ ϕ×(Fc(R) ×Fc(R
d))) = P(ϕ× ◦ (Xn,Yn) ∈ ϕ×(Fc(R) ×Fc(R

d))) = 1.

Analogously,

�(Z ∈ ϕ×(Fc(R) ×Fc(R
d))) = 1.

Now, let N be a null measurable set which contains 
⋃

n∈N{Zn /∈ ϕ×(Fc(R) ×Fc(Rd))} ∪{Z /∈ ϕ×(Fc(R) ×Fc(Rd))}. 
Denote by π1 the projection over the first component and π2 the projection over the last d components. Next, define 
the following mappings:

Y ′
n(t) =

{
(π1 ◦ ϕ−1× ◦ Zn)(t) if t /∈ N

I{0} if t ∈ N

X′
n(t) =

{
(π2 ◦ ϕ−1× ◦ Zn)(t) if t /∈ N

I{0} if t ∈ N

Y ′(t) =
{

(π1 ◦ ϕ−1× ◦ Z)(t) if t /∈ N

I{0} if t ∈ N

X′(t) =
{

(π2 ◦ ϕ−1× ◦ Z)(t) if t /∈ N

I{0} if t ∈ N

Let us check that X′ is a fuzzy random variable. For any B ∈ BFc(Rd ),

(X′)−1(B) = (N ∩ (X′)−1(B)) ∪ (Nc ∩ (X′)−1(B))

=
{

N ∪ (Nc ∩ (Z−1 ◦ ϕ× ◦ π−1
2 )(B)) ∈ B[0,1] if I{0} ∈ B

∅ ∪ (Nc ∩ (Z−1 ◦ ϕ× ◦ π−1
2 )(B)) ∈ B[0,1] if I{0} /∈ B.

Analogously, X′
n, Y

′ and Y ′
n are fuzzy random variables. Next, if t ∈ N , X′

n(t) = I{0} = X′(t). If t /∈ N , X′
n(t) =

(π1 ◦ ϕ−1× ◦ Zn)(t), X′(t) = (π1 ◦ ϕ−1× ◦ Zn)(t). By the continuity of π1 ◦ ϕ−1× and

dp(X′
n(t),X

′(t)) = dp((π1 ◦ ϕ−1× ◦ Zn)(t), (π1 ◦ ϕ−1× ◦ Z)(t)),

we have X′
n(t) → X′(t) for every t /∈ N . Analogously, Y ′

n(t) → Y ′(t) for every t /∈ N . Then (X′
n, Y

′
n) converges 

almost surely to (X, Y) in dmax.
Let us show that (Y ′

n, X
′
n) and (Yn, Xn) have the same distribution. Let (A1, A2) ∈ BFc(R) ⊗ BFc(Rd ) =

B(Fc(R)×Fc(Rd ),dmax)
.

�({t ∈ [0,1] : (Y ′
n,X

′
n)(t) ∈ (A1,A2)}) = �({t ∈ Nc : (Y ′

n,X
′
n)(t) ∈ (A1,A2)})

�({t ∈ Nc : (ϕ−1× ◦ Zn)(t) ∈ (A1,A2)}) = �({t ∈ [0,1] : (ϕ−1× ◦ Zn)(t) ∈ (A1,A2)})
�({t ∈ [0,1] : Zn(t) ∈ ϕ×(A1,A2)}) = P({ω ∈ � : (Yn,Xn)(ω) ∈ (A1,A2)})

Then, by Proposition 4.4, (Y ′
n, X

′
n), (Y

′, X′) : ([0, 1], B[0,1], �) → Fc(R) × Fc(Rd) are fuzzy random variables 
such that (Y ′

n, X
′
n) → (Y ′, X′) almost surely, �(Y ′

n,X′
n) = P(Yn,Xn) and �(Y ′,X′) = P(Y,X).

Next, let us show that Y ′
n is an indicator function almost surely. Let

i : R→ Fc(R)

a �→ I{a}
By Lemma 4.1, i(R) is Borel measurable. Then
12
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�(Y ′ ∈ i(R)) = P(Y ∈R) = 1.

Analogously, �(Y ′
n ∈ i(R)) = 1. Then let M be a null set containing 

⋃
n∈N{Y ′

n /∈ i(R)} ∪ {Y ′ /∈ i(R)}. Consider the 
mappings

ηn(t) =
{

a if Y ′
n(t) = I{a} /∈ M

0 if t ∈ M

η(t) =
{

a if Y ′(t) = I{a} /∈ M

0 if t ∈ M

Let us show that (ηn, X′
n) has the same distribution as (ξn, Xn). Let A ∈ BR×Fc(Rd ). Denote by Id the identity mapping 

in Fc(Rd). Then

�({t ∈ [0,1] : (ηn,X
′
n)(t) ∈ A}) = �({t ∈ Nc ∩ Mc : (ηn,X

′
n)(t) ∈ A})

= �({t ∈ Nc ∩ Mc : (i, Id)(ηn,X
′
n)(t) ∈ (i, Id)(A)})

= �({t ∈ Nc ∩ Mc : (Y ′
n,X

′
n)(t) ∈ (i, Id)(A)})

= �({t ∈ [0,1] : (Y ′
n,X

′
n)(t) ∈ (i, Id)(A)}) = P({ω ∈ � : (Yn,Xn)(ω) ∈ (i, Id)(A)})

= P({ω ∈ � : (ξn,Xn)(ω) ∈ A}).
Finally, let us show that {ηn · X′

n}n converges almost sure to η · X′, that is, dp(ηn · X′
n(t), η · X′(t)) → 0 for every 

t /∈ N ∪ M .

dp((ηn · X′
n)(t), (η · X′)(t)) ≤ dp((ηn · X′

n)(t), (ηn · X′)(t)) + dp((ηn · X′)(t), (η · X′)(t)).

On the one hand,

dp((ηn · X′
n)(t), (ηn · X′)(t)) = |ηn(t)|dp(X′

n(t),X
′(t)) → 0,

since |ηn(t)| is bounded, being a convergent sequence to |η(t)|. On the other hand, by Lemma 2.1 we have

dp(ηn · Y,η · Y)(t) =
⎛⎜⎝ ∫

[0,1]
[dH ([ηn · Y ]α, [η · Y ]α)]p dα

⎞⎟⎠
1/p

(t) =

=
⎛⎜⎝ ∫

[0,1]
[dH ([ηn(t) · Y(t)]α, [η(t) · Y(t)]α)]p dα

⎞⎟⎠
1/p

≤ |ηn(t) − η(t)|
⎛⎜⎝ ∫

[0,1]
‖Yα(t)‖p

⎞⎟⎠
1/p

= |ηn(t) − η(t)|‖Y(t)‖p → 0,

since the ηn(t) converges to η(t) and ‖Y(t)‖p < ∞.
Then dp(ηn(t) · X′

n(t), η(t) · X′(t)) → 0 for each t /∈ N ∪ M . This proves that the function φ given by

φ : (R×Fc(R
d), dmax) → (Fc(R

d), dp)

(a,U) �→ aU.

is continuous. Finally, it remains to show that PξnXn = �ηnX′
n
. Let A ∈ BFc(Rd ). Then

P({ω ∈ � : ξn(ω) · Xn(ω) ∈ A}) = P({ω ∈ � : (ξn,Xn)(ω) ∈ φ−1(A)})
= �({t ∈ [0,1] : (ηn,X

′
n)(t) ∈ φ−1(A)}) = �({t ∈ [0,1] : ηn(t) · X′

n(t) ∈ A}).
Analogously, Pξ ·X = �η·Y . Since ηn · X′

n → η · X′ almost surely, by the identical distribution we have ξn · Xn → ξ · X
in distribution in dp . �
13
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As regards the union operation, we begin by establishing its continuity with respect to the relevant metrics.
Set

φ∪ : (Fc(R
d) ×Fc(R

d), dmax) → (F(Rd), dp)

(U,V ) �→ U ∪ V.

Lemma 5.3. The function φ∪ is continuous.

Proof. Let {Un}n, {Vn}n be sequences of fuzzy sets which converge to U and V respectively in dp .

dp(Un ∪ Vn,U ∪ Vn) =
⎛⎜⎝ ∫

[0,1]
[dH ((Un ∪ Vn)α, (U ∪ Vn)α)]p dα

⎞⎟⎠
1/p

.

By Lemma 2.8, for each α ∈ [0, 1]
dH ((Un ∪ Vn)α, (U ∪ Vn)α) = dH ((Un)α ∪ (Vn)α), (Uα ∪ (Vn)α)) ≤ dH ((Un)α,Uα).

Then

dp(Un ∪ Vn,U ∪ Vn) =
⎛⎜⎝ ∫

[0,1]
[dH ((Un)α,Uα)]p dα

⎞⎟⎠
1/p

= dp(Un,U).

Analogously,

dp(U ∪ Vn,U ∪ V ) =
⎛⎜⎝ ∫

[0,1]
[dH ((U ∪ Vn)α, (U ∪ V )α)]p dα

⎞⎟⎠
1/p

.

For each α ∈ [0, 1],
dH ((U ∪ Vn)α, (U ∪ V )α) = dH ((Uα ∪ (Vn)α), (Uα ∪ Vα)) ≤ dH ((Vn)α,Vα).

Then

dp(U ∪ Vn,U ∪ V ) ≤
⎛⎜⎝ ∫

[0,1]
[dH ((Vn)α,Vα)]p dα

⎞⎟⎠
1/p

= dp(Vn,V ).

With the triangle inequality,

dp(Un ∪ Vn,U ∪ V ) ≤ dp(Un,U) + dp(Vn,V ) → 0. �
Like for the sum, we deduce that taking unions preserves convergence of sequences, provided the terms in the 

union converge jointly.

Proposition 5.4. Let {Xn}n and {Yn}n be sequences of fuzzy random variables in Rd such that {(Xn, Yn)}n converges 
in distribution to (X, Y) in dmax. Then Xn ∪ Yn converges in distribution in dp to X ∪ Y .

Proof. First, U ∪ V = φ∪(U, V ) = (φ∪ ◦ φ×)(U × V ). Since both φ∪ and φ× are continuous (Lemma 5.3 and Theo-
rem 4.3), their composition is continuous. Moreover, Xn × Yn converges in distribution to X × Y in dp (Lemma 4.6). 
Hence, by Lemma 3.1, the sequence {Xn ∪Yn}n = {(φ∪ ◦φ×)(Xn, Yn)}n converges in distribution to X ∪Y in dp . �

To derive the Slutski theorem, we use a general result from [6, Exercise 3.10, pp. 49–50] (see also [21]).
14
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Lemma 5.5. Let {Pn}n∈N be a sequence of Radon probability measures on the product �1 × �2 of two Hausdorff 
spaces and denote by {μn}n∈N , respectively {νn}n∈N the marginal distribution of Pn on �1, respectively �2. If 
{μn}n∈N converges weakly to μ and {νn}n∈N converges weakly to some one-point measure c, then {Pn}n∈N converges 
weakly to μ ⊗ c.

Its application to our setting is as follows.

Lemma 5.6. Let {Xn}n and {Yn}n be sequences of fuzzy random variables, let X be a fuzzy random variable and 
U ∈ Fc(Rd). If Xn → X and Yn → U in distribution in dp , then (Xn, Yn) → (X, U) as random elements of Fc(Rd) ×
Fc(Rd).

Proof. Since every Suslin space is Radon [23, Theorem 10, p. 122] and (Fc(Rd), dp) is a Lusin space for every 
p ∈ [1, ∞) (see [1, Proposition 5.4]), which is a stronger condition that being a Suslin space, every probability measure 
in (Fc(Rd), dp) is a Radon measure. By Proposition 2.2, those probability measures are exactly those induced by 
fuzzy random variables. Then Lemma 5.5 can be applied with �1 = �2 = Fc(Rd), μn = PXn and ηn = PYn , whence 
(Xn, Yn) → (X, U) in distribution in dp . �

We finally obtain the Slutski theorem for fuzzy random variables under the dp metrics.

Corollary 5.7. Let {Xn}n be a sequence of fuzzy random variables which converges in distribution to X in dp , let 
{Yn}n be a sequence of fuzzy random variables converging in distribution to a constant U and let {ξn}n be a sequence 
of random variables converging in distribution to ξ .

(a) If ξ is a degenerate random variable which takes on the value c, then ξn · Xn converges in distribution in dp to 
c · X.

(b) If X is a degenerate fuzzy random variable which takes on the value U , then ξn · Xn converges in distribution in 
dp to ξ · U .

(c) Xn + Yn converges in distribution in dp to X + U .
(d) Xn ∪ Yn converges in distribution in dp to X ∪ U .

Proof. For part (a), replacing �1 by Fc(Rd), �2 by Rd , μn by PXn and ηn by Pξn in Lemma 5.5, we have (ξn, Xn) →
(c, X) in distribution and by Theorem 5.2 it holds that ξn · Xn → c · X in distribution in dp . Part (b) is analogous. 
For part (c), we have to apply Lemma 5.6 and Proposition 5.1, giving Xn + Yn → X + U . Similarly, part (d) is a 
combination of Proposition 5.4 and Lemma 5.6. �
6. Further properties

This section collects a brief study of other properties of convergence in distribution, concerning the inclusion 
ordering, random sets, and dp-continuous transformations in Fc(Rd).

We will first show that if all possible values taken by a convergence sequence are ‘covered’ by a fixed element of 
Fc(Rd) then the same property holds for its limit in distribution. Notice that the result is stated for d1 because it is 
weaker than any other dp-metric.

Let K ∈Kc(Rd) and let x ∈Rd . Denote by d the distance function

d(x,K) = inf
y∈K

‖x − y‖.

Proposition 6.1. Let {Xn}n be a sequence of fuzzy random variables which converges in distribution in d1 to X. If 
Xn ⊆ U for some U ∈Fc(Rd) and for each n ∈N , then X ⊆ U almost surely.

Proof. Set

A = {V ∈Fc(R
d) : V ⊆ U}.
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Let us show that A is closed in (Fc(Rd), d1). Let {Vn}n ⊆ A be a sequence of fuzzy sets which converges to some 
V in d1, that is, d1(Vn, V ) → 0. By Corollary 2.6 there exists some N ⊆ [0, 1] such that �(N) = 1 and (Vn)α → Vα

for all α ∈ N . We claim that Vα ⊆ Uα . For, if x0 /∈ Uα for some x0 ∈ Vα , then there would exist ε > 0 such that 
d(x0, Uα) > ε, and then

dH (Vα, (Vn)α) ≥ sup
x∈Vα

d(x, (Vn)α) ≥ d(x0, (Vn)α) ≥ d(x0,Uα) > ε,

a contradiction. In order to extend the inclusion Vα ⊆ Uα to α /∈ N , consider now any α ∈ (0, 1] \ N . Let us show 
Vα = ⋂

N∩{β<α} Vβ .
(⊆) Vα = ⋂

{β<α} Vβ ⊆ ⋂
N∩{β<α} Vβ .

(⊇) Let x /∈ ⋂
{β<α} Vβ . Then there exists β∗ < α such that x /∈ Vα for all α > β∗. Since �(N) = 1, N is a dense 

subset of [0, 1]. Therefore there exists α∗ ∈ N ∩ (β∗, α) such that x /∈ Vα∗ . Then x /∈ ⋂
N∩{β<α} Vβ . Analogously, 

Uα = ⋂
N∩{β<α} Uβ . Therefore

Vα =
⋂

N∩{β<α}
Vβ ⊆

⋂
N∩{β<α}

Uβ = Uα.

There only remains the case α = 0 /∈ N , that is, dH (V0, (Vn)0) does not converge to 0. Let us show V0 =
cl

⋃
{β>0}∩N Vβ .

(⊆) Suppose that there exists x ∈ V0 such that x /∈ cl
⋃

{β>0}∩N Vβ . Then for every β ∈ N , β > 0 we have x /∈ Vβ . 
Therefore x ∈ Vβ∗ with β∗ > 0, β∗ /∈ N . This contradicts the fact that Vβ∗ = ⋂

N∩{β<β∗} Vβ .
(⊇) By definition, V0 = cl

⋃
{β>0} Vβ ⊇ cl

⋃
{β>0}∩N Vβ .

Then

V0 = cl
⋃

{β>0}∩N

Vβ ⊆ cl
⋃

{β>0}∩N

Uβ ⊆ U0.

Since Vα ⊆ Uα for all α ∈ [0, 1], we have V ⊆ U proving that A is closed. By the portmanteau theorem (Lemma 2.3),

1 = P(Xn ⊆ U) = P(Xn ∈ A) ≤ lim sup
n

PXn(A) ≤ PX(A) = P(X ∈ A) = P(X ⊆ U)

whence X ⊆ U almost surely. �
Example 6.1. The previous result is not true if we replace U with a fuzzy random variable Y . Suppose that Z ∼
N(0, 1) and Xn, Y = I{Z}, X = I{−Z}. Then Xn ⊆ Y for each n ∈ N and Xn → X in distribution in d1, but P(X ⊆
Y) = P(Z = 0) = 0.

Proposition 6.1 raises the question whether the deterministic fuzzy set U can be replaced by a random Y provided 
the convergence is suitably strengthened. The answer is positive, using convergence in probability.

Proposition 6.2. Let Xn, Yn, X, Y be fuzzy random variables such that Xn → X and Yn → Y in probability in d1. 
Suppose that Xn ⊆ Yn for all n ∈N . Then X ⊆ Y almost surely.

Proof. Since Xn → X in probability, by [14, Lemma 3.2] there exists a subsequence {Xn′ }n of {Xn}n which converges 
to X almost surely in d1. By the same reasoning, there exists a further subsequence {Yn′′ }n of {Yn′ }n which converges 
to Y almost surely in d1. Then also Xn′′ → X almost sure in d1.

Let ω ∈ � be such that Xn(ω) → X(ω) and Yn(ω) → Y(ω). Then, by Corollary 2.6 there exists a subset N1 of 
[0, 1] with �(N1) = 1 such that Xn(ω)α → X(ω)α in dH for every α ∈ N1. Analogously, there exists a set N2 ⊆ [0, 1]
with �(N2) = 1 such that Yn(ω)α → Y(ω)α in dH for every α ∈ N2. Then for every α ∈ N = N1 ∩ N2 we have 
dH (Xn(ω)α, X(ω)α) → 0 and dH (Yn(ω)α, Y(ω)α) → 0.

Let α ∈ N . Although N depends on ω, this will not be an obstacle for the proof. For any fixed ε > 0, there exists 
n1 ∈ N such that X(ω)α ⊆ Xn(ω)α + εB and Xn(ω)α ⊆ X(ω)α + εB for every n ≥ n1. Analogously, there exists 
n2 ∈ N such that Y(ω)α ⊆ Yn(ω)α +εB and Yn(ω)α ⊆ Y(ω)α +εB for every n ≥ n2. Furthermore, Xn(ω)α ⊆ Yn(ω)α
for all n ∈N . Let n∗ = max{n1, n2}. Then
16
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X(ω)α ⊆ Xn(ω)α + εB ⊆ Yn(ω)α + εB ⊆ Y(ω)α + εB + εB

for every n ≥ n∗. By the arbitariness of ε, Xα(ω) ⊆ Yα(ω) for every α ∈ N1 ∩ N2. Reasoning like in the proof of 
Proposition 6.1, we obtain Xα(ω) ⊆ Yα(ω) for every α ∈ [0, 1]. Therefore X(ω) ⊆ Y(ω). In conclusion, X ⊆ Y

almost surely. �
Another natural question is whether the identification of a set with its indicator function is respected by convergence 

in distribution. The first part of the answer is as follows.

Proposition 6.3. Let Xn, X : (�, A, P) → (Kc(Rd), dH ) be random sets. Then Xn → X in distribution in dH if and 
only if IXn → IX in distribution in dp for any p ∈ [1, ∞).

Proof. (⇒) Suppose that Xn → X in distribution in dH and let p ∈ [1, ∞). By the Skorokhod representation theorem 
[26], there exist random sets Yn, Y : ([0, 1], B[0,1], �) → (Kc(Rd), dH ) such that �Yn = PXn , �Y = PX and Yn(t) →
Y(t) for each t ∈ [0, 1]. Since

dp(IYn(t), IY (t)) = dH (Yn(t), Y (t)),

it follows that IYn(t) → IY (t) in dp for each t . Let

i : (Kc(R
d), dH ) → (Fc(R

d), dp)

U �→ IU .

For any A ∈ B(Fc(Rd ),dp),

�IYn
(A) = �({t ∈ [0,1] : IYn(t) ∈ A}) = �({t ∈ [0,1] : Yn(t) ∈ i−1(A)})

= P({ω ∈ � : Xn(ω) ∈ i−1(A)}) = P({ω ∈ � : IXn(ω) ∈ A}) = PIXn
(A).

Analogously, �IY
= PIX

. Since IXn , IX are identically distributed as IYn , IY , therefore IXn → IX in distribution in dp .
(⇐) Suppose that IXn → IX in distribution in dp . By Theorem 3.2, there exist fuzzy random variables Yn, Y :

([0, 1], B[0,1], �) → (Fc(Rd), dp) such that �Yn = PIXn
, �Y = PIX

and Yn(t) → Y(t) for each t ∈ [0, 1]. For any 
A ∈ B(Kc(Rd ),dH ),

P({ω ∈ � : Xn(ω) ∈ A}) = P({ω ∈ � : IXn(ω) ∈ i(A)})
= �({t ∈ [0,1] : Yn(t) ∈ i(A)}) = �({t ∈ [0,1] : i−1 ◦ Yn(t) ∈ A}).

Since i is an isometry, dp((i−1 ◦ Yn)(t), (i−1 ◦ Y)(t)) = dH (Yn(t), Y(t)). In conclusion, Xn → X in distribution in 
dH . �

Proposition 6.3 falls short of answering the question satisfactorily: in the literature of random sets, it is much more 
common to define convergence in distribution using the weaker Fell topology than the Hausdorff metric (see, e.g., 
[17, Definition 6.1, p. 84–85]). Let us reason that both are equivalent in our context.

Corollary 6.4. Let Xn, X : (�, A, P) → Kc(Rd) be random sets. Then Xn → X in distribution in the Fell topology if 
and only if IXn → IX in distribution in dp for every p ∈ [1, ∞).

Proof. By [22, Corollary 3A], convergence of compact convex sets in dH is equivalent to their convergence in the Fell 
topology. Since the latter is metrizable (see Theorem 2.2 in [29], where Fell topology is called hit-or-miss topology), 
the equivalence of the convergences implies that the topologies are identical. Since the definition of weak convergence 
depends on the topology only, convergence in distribution with respect to dH is the same thing as convergence in 
distribution with respect to τF , for random sets with compact convex values. Thus Proposition 6.3 yields the result. �

Lastly, let us show that the role of R as the codomain of the mappings in the definition of convergence in distribution 
can be played also by Fc(Rd) itself, resulting in an equivalent definition.
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Proposition 6.5. Let Xn, X be fuzzy random variables. Then Xn → X in distribution in dp if and only if for every 
continuous and bounded function ϕ : (Fc(Rd), dp) → (Fc(Rd), dp) we have E[ϕ(Xn)] → E[ϕ(X)].

Proof. Necessity: By the continuous mapping theorem (Lemma 3.1), ϕ(Xn) → ϕ(X) in distribution in dp . Since ϕ is 
bounded, there exists R > 0 such that

dp(ϕ(Xn), I{0}) < R,

hence there exists an integrable function g : � → R (given by g(ω) = R for each ω) such that dp(ϕ(Xn), I{0}) ≤ g. 
Finally, by the dominated convergence theorem (Lemma 3.3), E[ϕ(Xn)] → E[ϕ(X)].

Sufficiency: Let us show that E[f (Xn)] → E[f (X)] for every continuous bounded function f : (Fc(Rd), dp) →
R. Let f : (Fc(Rd), dp) → R be any continuous bounded function. Let Un, U ∈Fc(Rd) such that Un → U . Then

dp(I{(f (Un),0,...,0)}, I{(f (U),0,...,0)}) = dH ({(f (Un),0, . . . ,0)}, {(f (U),0, . . . ,0)})
= |f (Un) − f (U)|,

hence I{(f (·),0,...,0)} : (Fc(Rd), dp) → R is dp-continuous and bounded. Then E[I{f (Xn),0,...,0}] → E[I{f (X),0,...,0}] in 
dp . Since

dp(E[I{(f (Xn),0,...,0)}],E[I{(f (X),0,...,0)}]) = dp(IEA[{(f (Xn),0,...,0)}], IEA[{(f (X),0,...,0)}])
= dH (EA[{(f (Xn),0, . . . ,0)}],EA[{(f (X),0, . . . ,0)}])
= dH ({(E[f (Xn)],0 . . . ,0)}, {(E[f (X)],0 . . . ,0)})
= ‖(E[f (Xn)],0 . . . ,0) − (E[f (Xn)],0 . . . ,0)‖ = ‖(E[f (Xn)] − E[f (X)],0 . . . ,0)‖
= |E[f (Xn)] − E[f (X)]|,

indeed E[f (Xn)] → E[f (X)]. �
7. A statistical application

This section is based on the fact that the cumulative distribution function of a bounded random variable can be 
identified with an element of Fc(R). It has been repeatedly observed that the left and right slopes of a fuzzy interval 
can be easily transformed into cumulative distribution functions (see, e.g., the Goetschel–Voxman representation 
theorem [10, Theorem 1.1]). This has sometimes been used to try to give fuzzy intervals a probabilistic interpretation. 
The novelty in this section is that we will show how to use results about Fc(R) in order to obtain results about 
probability distributions via their cumulative distribution functions. This is applied to illustrate the results in the 
preceeding sections but other applications are possible.

Fix an interval [a, b]. Let P[a,b] be the set of all probability distributions whose support is contained in [a, b]. For 
any p ∈ [1, ∞), the Lp-Wasserstein distance (see, e.g., [18]) between probability distributions P, Q ∈P[a,b] is

wp(P,Q) = inf
X,Y

‖X − Y‖p

where X and Y respectively have distribution P and Q.
For any α ∈ (0, 1], the α-quantile of P is

q(P,α) = inf{x ∈R | P((−∞, x]) ≥ α}.
Since P has bounded support, q(P, 1) is finite.

Vincentiles [28] were developed in the context of quantile estimation from samples from several groups. It was 
observed that pooling all the data from the different groups typically led to a multimodal distribution and it was 
preferred to estimate a quantile by averaging the quantiles of the different groups rather than by the corresponding 
quantile of the pooled data. This is often used in response time studies (e.g., [12,4]).

Let us present an abstract description of vincentiles. The vincentized distribution Vin(P, Q) of any P and Q is 
defined by the identities
18
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q(Vin(P,Q),α) = q(P,α) + q(Q,α)

2

for α ∈ (0, 1], yielding the cumulative distribution function

FVin(x) = sup{α ∈ (0,1] | q(Vin(P,Q),α) ≥ x}.
When P and Q are empirical distributions, we obtain the definition of the sample vincentile. Therefore, an α-
vincentile is just the α-quantile of the vincentized distribution. While an extension to more subsamples is obvious, for 
notational simplicity we will develop the two-sample case.

Let P be the true probability distribution to be estimated. An estimator P̂n : ω ∈ � �→ P̂n(ω) ∈ P[a,b] of P is a 
random element of P[a,b] which is based on the information of a sample of size n. Hence it has the form Tn(ξ1, . . . , ξn)

where Tn : Rn →P[a,b] and {ξn}n is a sequence of random variables with distribution P (independent or otherwise).
While this description of estimation is nonparametric in nature, parametric problems can be rewritten in this form 

provided the dependence of the distribution on the parameter is measurable. It is also important to note that P[a,b] is 
compact with the weak topology of probability measures and the Lp-Wasserstein metrics [18, Corollary 2.2.5]. They 
all generate the same topology and Borel σ -algebra, making the expression ‘a random element of P[a,b]’ univocal in 
meaning.

An estimator is weakly consistent if P̂n → P in probability, equivalently if it converges weakly (since the limit is a 
deterministic element of P[a,b]).

We define a generalized vincentile function by

vn,·(α) = q(Vin(P̂n, Q̂n),α), α ∈ (0,1]
where P̂n, Q̂n are estimators of P . The vincentized distribution Vin(P̂n, Q̂n) will be called the vincentized estimator.

We will connect all this to fuzzy intervals using the following results.

Lemma 7.1. (See [18, p. 48–49]) Let P, Q be probability distributions in R. Then

wp(P,Q) = ‖q(P, ·) − q(Q, ·)‖p.

Theorem 7.2. Let p ∈ [1, ∞). The mapping � : (P[a,b], wp) → (Fc(R), dp) given by

�(P )(x) =
{

P((−∞, x]), x ≤ b

0, x > b

is an isometry.

Proof. Fix arbitrary α ∈ (0, 1] and P ∈P[a,b]. From the definition of �,

�(P )α = {x ∈ R | P((−∞, x]) ≥ α} ∩ (−∞, b].
The infimum of �(P )α is therefore q(P, α). Since the cumulative distribution function is right continuous, whenever 
xn → q(P, α)+

P((−∞, q(P,α)]) = lim
n

P ((−∞, xn]) ≥ α

so the infimum is attained. Thus

�(P )α = [q(P,α),∞) ∩ (−∞, b] = [q(P,α), b].
Since the α-cuts of �(P ) are non-empty compact intervals, to show �(P ) ∈Fc(R) we just need to check that �(P )0
is bounded. But

�(P )0 = cl
⋃

α∈(0,1]
[q(P,α), b] = cl( inf

α∈(0,1]q(P,α), b] ⊆ [a, b].

Therefore � is well defined. To prove it is an isometry, take P, Q ∈P[a,b]. Then
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dp(�(P ),�(Q)) = (

1∫
0

dH ([q(P,α), b], [q(Q,α), b])pdα)1/p

= (

1∫
0

max{|q(P,α) − q(Q,α)|, |b − b|}pdα)1/p = ‖q(P, ·) − q(Q, ·)‖p = wp(P,Q)

by Lemma 7.1. �
Proposition 7.3. For any P, Q ∈P[a,b],

�(Vin(P,Q)) = 2−1(�(P ) + �(Q))

where the addition and product by a scalar are the ordinary operations in Fc(R).

Proof. Let α ∈ (0, 1]. From the proof of Theorem 7.2,

�(Vin(P,Q))α = [q(Vin(P,Q),α), b] = [2−1(q(P,α) + q(Q,α)), b]
= 2−1([q(P,α), b] + [q(Q,α), b]) = 2−1(�(P )α + �(Q)α) = (2−1(�(P ) + �(Q)))α. �

Then we have the following consistency result for generalized vincentiles.

Theorem 7.4. Let P ∈ P[a,b] and let P̂n and Q̂n be weakly consistent estimators of P in wp . Then, for all p ∈
[1, ∞), the vincentized estimator is weakly wp-consistent. In particular, the generalized vincentile function is a weakly 
consistent estimator of the quantile function of P in the Lp-norm.

Proof. Notice �(P̂n) and �(Q̂n) are fuzzy random variables. That is so because P̂n is a random element of the 
compact metric space (P[a,b], wp). Since �(P[a,b]) is then dp-compact, it is Borel measurable in Fc(R). Thus �(P̂n)

is measurable with respect to the Borel σ -algebra of dp , i.e., it is a fuzzy random variable (Proposition 2.2). By the 
assumption of weak consistency and the isometry,

�(P̂n) → �(P ), �(Q̂n) → �(P )

in distribution in dp . By parts (a) and (c) of Corollary 5.7,

2−1(�(P̂n) + �(Q̂n)) → 2−1(�(P ) + �(P )) = �(P )

in distribution in dp , or equivalently in probability since the limit is a non-random element of Fc(R).
By Theorem 7.2 and Proposition 7.3,

wp(Vin(P̂n, Q̂n),P ) = dp(�(Vin(P̂n, Q̂n)),�(P ))

= dp(2−1(�(P̂n) + �(Q̂n)),�(P )) → 0

in probability.
The second part follows from Lemma 7.1. �

Remark 7.1. If P̂n and Q̂n are the empirical distributions generated from two i.i.d. samples from a common distribu-
tion P , then they are weakly wp-consistent estimators of P (even strongly consistent, see [18, Proposition 2.2.6].)

Vincentization is based on splitting a sample of size 2n (or generally kn) into subsamples of equal size and averag-
ing their quantiles. From Corollary 5.7, Theorem 7.4 remains true if this procedure is replaced by randomly deciding 
the subsample to which each element of the sample is assigned, and weighing accordingly each estimator in the 
definition of the generalized vincentile.
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Remark 7.2. This section aims at illustrating both the Slutski theorem for fuzzy random variables and the fact that 
a random probability distribution in R can be identified with a fuzzy random variable via the mapping �. Moreover, 
ordinary averages of fuzzy sets correspond to averaging quantiles and match the statistical concept of vincentizing 
distributions.

In this connection, it can also be noticed that (in a different language) quantile averaging corresponds to the Fréchet 
mean [8] with respect to the w2-metric. A typical example of the nice properties of averaging distributions using the 
L2-Wasserstein metric observes that the Wasserstein average of two normals N (μ1, σ) and N (μ2, σ) is N ((μ1 +
μ2)/2, σ), whereas their setwise average is a (non-normal) mixture. In the end, this parallels the same reasoning that 
justified vincentiles (e.g., pooling unimodal data leads to losing unimodality).

The fact that adding the fuzzy sets �(Pξ) and �(Pη) does not yield �(Pξ+η) is not a flaw of the mapping �, since 
it yields a different operation between distributions, of the kind studied by Schweizer and Sklar [24, p. 99], which as 
we remark has a natural interpretation and positive features in more than one context (vincentization, Fréchet means, 
probabilistic metric spaces).

8. Concluding remarks

In this paper we have considered the maximum as the triangular conorm defining the union operation, and the defi-
nition of the fuzzy Cartesian product is also tied to using the minimum as the intersection. Similarly, the definitions of 
the arithmetics operations are consistent with Zadeh’s extension principle in which suprema of minima are calculated. 
The results in this paper can potentially be developed in the direction of studying alternative triangular norms and 
conorms, other than the pair minimum/maximum.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Research in this paper was partially funded by grants from Spain (PID2019-104486GB-I00), the Principality of 
Asturias (SV-PA-21-AYUD/2021/50897, PA-21-PF-BP20-112), and the University of Oviedo (PAPI-20-PF-21). Their 
contribution is gratefully acknowledged.

References

[1] M. Alonso de la Fuente, P. Terán, Some results on convergence and distributions of fuzzy random variables, Fuzzy Sets Syst. 435 (2022) 
149–163.

[2] M. Alonso de la Fuente, P. Terán, Convergence theorems for random elements in convex combination spaces, Fuzzy Sets Syst. 458 (2023) 
69–93.

[3] M. Alonso de la Fuente, P. Terán, On convergence in distribution of fuzzy random variables, in: L. García-Escudero, A. Gordaliza, A. Mayo, 
M.A. Lubiano, M.Á. Gil, P. Grzegorzewski, O. Hryniewicz (Eds.), Building Bridges Between Soft and Statistical Methodologies for Data 
Science, Springer, Cham, 2023, pp. 9–15.

[4] S. Ambrosi, M. Servant, A. Blaye, B. Burle, Conflict processing in kindergarten children: new evidence from distribution analyses reveals the 
dynamics of incorrect response activation and supression, J. Exp. Child Psychol. 177 (2019) 36–52.

[5] M.F. Barnsley, Superfractals, Cambridge University Press, Cambridge, 2006.
[6] C. van den Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer, 

New York, 1984.
[7] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[8] M. Fréchet, Les élements aléatoires de nature quelconque dans un espace distancié, Ann. Inst. Henri Poincaré 10 (1948) 215–310.
[9] T. Fukuda, Fuzzy random data obtained as vague perceptions of random phenomena, in: T. Katayama, S. Sugimoto (Eds.), Statistical Methods 

in Control and Signal Processing, Dekker, New York, 1997, pp. 299–326.
21

http://refhub.elsevier.com/S0165-0114(23)00298-1/bib534FEDF07A352040B188125CED1E5FE7s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib534FEDF07A352040B188125CED1E5FE7s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibE0F1A4AFDC30E0724BD9BE57355DE70Es1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibE0F1A4AFDC30E0724BD9BE57355DE70Es1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib321B42FACD95B473ED3711DFBB2CF6AAs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib321B42FACD95B473ED3711DFBB2CF6AAs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib321B42FACD95B473ED3711DFBB2CF6AAs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib030761A65265524C6A949BD533FEE37Fs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib030761A65265524C6A949BD533FEE37Fs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib2E6F5A2E0AAE871E659FB351D8657960s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib19C5284143464E91FDEC74A078005500s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib19C5284143464E91FDEC74A078005500s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib4A25A1E1D1EED1DC53481C7B0D8260C8s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib9E291B9CEB9681CEA3FBCBC46A2EEE7Ds1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibD6193496174042C6D956F95522B00F32s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibD6193496174042C6D956F95522B00F32s1


M. Alonso de la Fuente and P. Terán Fuzzy Sets and Systems 470 (2023) 108653
[10] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst. 18 (1986) 31–43.
[11] H. Huang, Characterizations of endograph metric and �-convergence of fuzzy sets, Fuzzy Sets Syst. 350 (2018) 55–84.
[12] Y. Jiang, J.N. Rouder, P.L. Speckman, A note on the sampling properties of the Vincentizing (quantile averaging) procedure, J. Math. Psychol. 

48 (2004) 186–195.
[13] S.Y. Joo, G.S. Choi, J.S. Kwon, Y.K. Kim, Some results on convergence in distribution for fuzzy random sets, J. Korean Math. Soc. 42 (2005) 

171–189.
[14] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997.
[15] V. Krätschmer, A unified approach to fuzzy random variables, Fuzzy Sets Syst. 123 (2001) 1–9.
[16] V. Krätschmer, Some complete metrics on spaces of fuzzy subsets, Fuzzy Sets Syst. 130 (2002) 357–365.
[17] I. Molchanov, Theory of Random Sets, Springer, London, 2005.
[18] V.M. Panaretos, Y. Zemel, An Invitation to Statistics in Wasserstein Space, Springer, Cham, 2020.
[19] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[20] M.L. Puri, D.A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409–422.
[21] P. Ressel, A topological version of Slutsky’s theorem, Proc. Am. Math. Soc. 85 (1982) 272–274.
[22] G. Salinetti, R. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979) 18–33.
[23] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, London, 1973.
[24] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.
[25] B. Sinova, S. van Aelst, P. Terán, M-estimators and trimmed means: from Hilbert-valued to fuzzy set-valued data, Adv. Data Anal. Classif. 15 

(2021) 267–288.
[26] A.V. Skorokhod, Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956) 261–290.
[27] P. Terán, On Borel measurability and large deviations for fuzzy random variables, Fuzzy Sets Syst. 157 (2006) 2558–2568.
[28] S.B. Vincent, The function of vibrissae in the behavior of the white rat, in: Behavioral Monographs I, 1912, pp. 1–82.
[29] G. Wei, Y. Wang, On the metrization of the hit-or-miss topology using Alexandroff compactification, Int. J. Approx. Reason. 46 (2007) 47–64.
22

http://refhub.elsevier.com/S0165-0114(23)00298-1/bibC2E785A4376E7CA8FED3AA69B93FD42Es1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib108E3C39E858B1210C2CE5E1A2751AC5s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib108E3C39E858B1210C2CE5E1A2751AC5s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibE1AC828FAC3483BADB7D49CC55D44683s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibE1AC828FAC3483BADB7D49CC55D44683s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib9A1CFBC2295EA75178DF95571C297099s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibA0DF54E46E2F3471AD8A22563340CE05s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibA6F43584671901C87FA64D30CA0FCA98s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib1227C290F0B4952CA74AFB8CF3312B4Ds1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib5FE39BDC4297829DE0DB64649D7E93CEs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibB2A4BEE3F460B72A8E71210AA7F108D2s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib0EEF43B844D177186CD07E1844C50C87s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib05C35FE8715BAA622BA34E48D36F7420s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibAD1A0C016DAA3CADB5D04BCC28A96BCCs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibC340F4803161A481703D1C8BF74156EEs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib12562C9BAB50F24AC1E2C74B28CA5643s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib018FC6D2A62700E4637AAACF064030F8s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bib018FC6D2A62700E4637AAACF064030F8s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibB984BA016CB3AE0BA861DBC7C3DCB361s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibEF67F63F5C5DB8D75B610C95125FA0D5s1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibCA021F370AC381DFB8650DA414BB9C4Cs1
http://refhub.elsevier.com/S0165-0114(23)00298-1/bibD69D8949E163FD84C2A5DA50138DF308s1

	Convergence in distribution of fuzzy random variables in Lp-type metrics
	1 Introduction
	2 Preliminaries
	3 Previous results
	4 k-Tuples of fuzzy random variables
	5 Slutski theorem
	6 Further properties
	7 A statistical application
	8 Concluding remarks
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


