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Abstract: Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry.
This residual biomass could be an interesting source of nutrients and bioactive compounds due to its
high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed
as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials.
Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive
in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the
research on obtaining and characterising different compounds of interest from CBS, some works
have focused on the employment of novel sustainable extraction methods and others on the possible
use of the whole CBS or some derived products. This review provides insight into the different
alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the
biotechnological application of this interesting and underused by-product.

Keywords: cocoa bean shell; cocoa by-products; bioactive compounds; antioxidants; phenolic
compounds; methylxanthines

1. Introduction

Large amounts of waste generated from food processing are discarded every year,
which has become an increasing social, environmental and economic concern. In particular,
14% of food produced globally is lost from harvest up to retail, and 17% more is wasted
at the retail and consumer levels [1,2]. The need to optimize the food chain in terms
of sustainability and efficiency has emerged in recent years. In addition, the reduction
and valorization of agri-food coproducts is one of the Sustainable Development Goals
established by the Agenda 2030 [3–5]. In this context, there is a growing interest in wastes
generated by the primary sector due to their high content of bioactive compounds, their
low toxicity and great consumer acceptance [6].

Cocoa (Theobroma cacao L.) is one of the most important crops at the global level,
with an annual worldwide production of around 5 million tons of dry cocoa beans. The
main cocoa varieties are classified into four categories: Criollo, Trinitario, Forastero and
Nacional, based on geographical origin and bean morphology. Forastero type is the variety
most employed in commercial agricultural holdings (around 70% of total production in
economic terms) [7,8]. In addition, the cocoa industry generates large amounts of residues;
specifically, almost 20 tons of waste are produced for each ton of dry cocoa bean obtained.
Admittedly, approximately 90% of total cocoa fruit weight is discarded as residue, whereas
just 10% is marketed. This entails not only environmental but also economic impacts
derived from waste management [8–10]. Figure 1 shows the cocoa steps processing and the
by-products obtained.
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Figure 1. Cocoa processing and derived wastes/by-products. Adapted from [11]. 
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Figure 1. Cocoa processing and derived wastes/by-products. Adapted from [11].

The residual biomass derived from cocoa production and processing mainly consists
of cocoa pod husk (CPH), cocoa mucilage (also known as the pulp) and cocoa bean shell
(CBS). Cocoa pod husk is the residual pod material of the matured fruit once cocoa beans
and placenta have been removed, and it represents between 70 and 80% of the whole
fruit. It is composed of four layers: epicarp, mesocarp, sclerotic and endocarp, and it is
an important source of bioactive compounds and fibrous material [12–14]. The mucilage
is a white mass covering the cocoa beans that releases a turbid liquid (sweating) during
post-harvest processing by means of microorganisms, such as yeasts, present in the cocoa
fruit. The mucilage is rich in sugars and minerals, so it has great potential to be employed
as a medium for the growth of interesting microorganisms at the industrial level [15,16].
CBS is the outer part surrounding the cocoa bean and represents between 10 and 20% of
the total cocoa bean weight. This by-product contains carbohydrates, dietary fibres, fats,
phenolic compounds, antioxidants, and vitamins. CBS is commonly considered to be a
residue, being discarded or employed in low-value applications (animal feed or fertilizer).
CBS is the main by-product of chocolate industries, separated from the cotyledons during
the pre-roasting process or after the roasting process [17]. In recent years, there has been
a growing interest in obtaining value-added products from CBS, with applications in the
food, cosmetic, pharmaceutical or biofuel sectors not only due to its specific characteristics
but also because its exploitation can be economically attractive [18–21]. Previous reviews
related to CBS have been specifically focused on particular aspects of this by-product,
namely, its role in human health [7], its use as a source of bioactive compounds [11,16] or
its utilization in food products. The present work addresses the potential alternatives to
valorize CBS with the aim of providing an update on this interesting topic from a global
perspective, i.e., including from its use as animal foodstuff to employing it as a substrate
for bioplastic production.
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2. Chemical and Nutritional Composition of CBS

CBS is the fibrous external tegument and constitutes about 10–20% of the total co-
coa bean weight [10,22,23]. CBS is recovered during the cocoa bean roasting process at
the chocolate factory, i.e., for every kg of chocolate produced, almost 100 g of CBS is ob-
tained [24–26]. It is estimated that each year, between 700 and 900 thousand tons of CBS are
produced worldwide, approximately 300 of which are generated in Europe. The accumula-
tion of this by-product represents an important disposal problem in terms of economic and
environmental issues, which is further accentuated by new legal regulations [26].

Although CBS is generally considered and treated as a residue, it has been reported
that its nutritional composition does not differ too much from that of cocoa beans. CBS
nutritional composition has been deeply investigated in different research works with the
aim of extracting carbohydrates, dietary fibres, phenolic compounds (mainly epicatechin
and catechin) and methylxanthines, such as theobromine. Table 1 summarizes the compo-
sition of CBS according to literature data, which varies depending on the origin and the
processing of cocoa fruit.

Table 1. Chemical and nutritional composition of CBS, all data, except moisture, expressed on a dry
weight basis.

Content References

Moisture 4–13.1 g/100 g [25,27–29]

Ash 6.0–9.1 g/100 g [27,28,30]

Carbohydrates 13.2–70.3 g/100 g [25,29,31–33]

Proteins 18.2–27.4 g/100 g [27,29,33–35]

Lipids 2.3–6.5 g/100 g [25,27,36,37]

Dietary fibres 13.8–65.6 g/100 g [25,27,29]

Total phenolic content 22–100 mg GAE/g [28,30,38–40]

Total flavonoid content 7.5–21.8 mg RU/g1.6–43.9 mg CE/g [39–43]

Total tannin content 2.3–25.3 mg CE/g [39,40]

Flavanols

Catechin 0.8–5.7 mg/g [25,44–46]

Epicatechin 0.6–30 mg/g [25,44–47]

Procyanidin B1 0.5–0.8 mg/g [48]

Procyanidin B2 0.2–1.4 mg/g [48,49]

Methylxanthines

Theobromine 0.6–13.5 mg/g [25,30,49,50]

Caffeine 0.1–1.1 mg/g [30,51]

Theophylline 0.1–0.3 mg/g [51]
GAE: gallic acid equivalent; RU: rutin equivalent; CE: catechin equivalent.

It has been reported that the moisture content of CBS, which is determined by the
roasting process, normally ranges from 4 to 8 g/100 g, values considered acceptable for CBS
storage. However, in some cases, moisture levels can reach up to 13 g/100 g [29]. In this
sense, CBS has been described as a considerably hygroscopic material; therefore, storage at
moisture levels over 15% could lead to mould growth [27]. According to the literature, the
ash content is in the range of 6 to 9 g/100 g of CBS, which is a parameter also influenced
by the roasting process and is relatively similar among varieties. CBS contains a higher
ash content than other fruit residues, such as apple pomace (0.5 g/100 g) and orange peel
(2.6 g/100 g) [52,53]. Osundahunsi et al., 2007 [54] reported that sodium and potassium are
the main components of CBS ash.
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The fat content is quite low in CBS compared to cocoa beans, which accounts for almost
50% (dry weight). It has been reported that the content of lipids in CBS can be reduced
by 40% after the roasting process [29]. The chemical and physical characteristics of CBS
lipids are similar to cocoa butter fat, except for the acidity levels, which are higher in CBS
(9% oleic acid) than in cocoa butter (1.7% oleic acid) due to the hydrolysis of triacylglyc-
erols [49]. The saponifiable fraction of CBS is mainly formed by oleic, capric, palmitic
and stearic fatty acids, whereas the unsaponifiable fraction is composed of phytosterols,
specifically stigmasterol [20]. From a health perspective, it has been demonstrated that
the consumption of cocoa increases high-density cholesterol and reduces low-density
cholesterol because of its fatty acid content [55].

The carbohydrate content in CBS varies between 13.2 and 70.3 g/100 g (Table 1), mainly
constituting glucose (17%), galactose (3%), mannose (3%), xylose (1.2%) and arabinose
(1.7%) [10,30]. Carbohydrates are one of the most important macronutrients in cocoa
beans since these compounds are responsible for the flavour during the fermentation and
roasting processes. Additionally, it has been demonstrated that roasted CBS contains
more carbohydrates than unroasted CBS, which is associated with the transfer of sugars
toward the outer shell during roasting [29]. Furthermore, it has been reported that some
CBS carbohydrates, such as feruloylated oligosaccharides, could improve the intestinal
microbiota due to their prebiotic characteristics [53]. With respect to the protein content,
during fermentation, an increase of up to 30% can be achieved in CBS. However, roasting
processes result in a reduction in the protein content of CBS. According to the literature,
proteins constitute between 18.2 and 27.4% of CBS. Furthermore, it is known that just
approximately 1% of the total protein in CBS remains in a free condition, while 90% is
firmly bound to oxidized polyphenols found in the shell [49,56].

CBS has been reported to be an important source of dietary fibre (13.8–65.6 g/100 g)
with a small fat content (2–7 g/100 g). The amount of dietary fibre in CBS also depends on
the roasting process. Certainly, it has been proved that, in roasted cocoa shells, Maillard
reaction compounds and tannin or protein complexes are responsible for an increment
in fibre content [57]. Insoluble dietary fibre accounts for 80% of the total dietary fibre of
CBS extracts and almost half of the total dry weight. According to the literature, the main
components of this CBS insoluble fibre are uronic acid and glucose, followed by galactose,
xylose, mannose and arabinose to a lesser extent. This composition indicates that the cell
wall mainly consists of cellulose with lower amounts of hemicellulose and pectin [17]. It
has been reported that cocoa fibre has physicochemical and antioxidant properties, which
make it an interesting alternative for the preparation of low-calorie and high-fibre cocoa
products [57].

Along with dietary fibre, CBS polyphenols are the most studied and interesting com-
pounds since they are responsible for biofunctional properties attributed to this by-product,
such as its antidiabetic, anticarcinogenic and anti-inflammatory effects [58]. Flavonoids,
one of the most remarkable groups of phenolic compounds, have been widely investigated
due to their extensive bioactive properties, including cardio-protective, anti-oxidation and
anti-inflammatory activities [59]. The reviewed literature describes that the total phenolic
content (TPC), total flavonoid content (TFC) and total tannin content (TTC) in CBS range
between 22 and 100 mg GAE/g CBS, 1.6 and 44 mg CE/g CBS and 2.3 and 25.3 CE/g
CBS, respectively. The number of phenolic compounds in CBS extracts varies depend-
ing on several factors, such as origin, variety, extraction procedure (technologies, condi-
tions, solvents . . . ) and the presence of other bioactive compounds [40,60,61]. Flavanols
have been identified as the major class of flavonoids in CBS, mainly including catechin
(0.8–5.7 mg/g CBS), epicatechin (0.6–30 mg/g CBS) and procyanidin B2 (0.2–1.4 mg/g CBS).
These polyphenols are not essential for short-term well-being, but it has been suggested
that a long-term intake of them could contribute to health benefits, such as those related
to cognitive function [62]. Other flavonoids also detected in CBS include kaempferol,
quercetin and anthocyanins [26,40,58].
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Theobromine and caffeine are the main methylxanthines, also known as alkaloids,
found in CBS in quantities that fluctuate from 0.6 to 2.7 mg/g of CBS and 0.1 to
0.1–1.1 mg/g of CBS, respectively. Both alkaloids are related to physiological effects
on the cardiovascular, gastrointestinal, respiratory, renal and central nervous systems
in addition to their anticarcinogen and diuretic properties [20,61]. However, it is well
known that excessive consumption of methylxanthines, particularly caffeine, is related
to tachycardia, kidney dysfunction and other disorders. In addition to theobromine and
caffeine, theophylline is another methylxanthine detected in CBS extracts, but at lower
concentrations (0.1–0.3 mg/g CBS) or even at trace levels [51,60]. Methylxanthines, along
with polyphenols, contribute to the characteristic bitter taste of cocoa and its derivatives,
such as chocolate [63].

CBS can also contain some toxic compounds and/or antinutrients, such as biogenic
amines, trypsin inhibitors and phytic acid. However, they are at concentrations so low (for
example, the amount of phytic acid is below 0.6 g/100 g CBS) that this does not affect the
use of CBS as a potential source of nutrition [53,64].

3. CBS Valorization

Recently, CBS valorization has been investigated to find novel applications for this
by-product, including its use in food formulation, the obtention of biofuels, the extraction
of bioactive compounds and employment as an adsorbent. Figure 2 shows an overview of
different potential applications of CBS.
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3.1. Bioactive Compounds

Research on bioactive compounds has received great interest due to the essential role
of these substances in reducing the risk of several diseases. Specifically, it has been reported
that the intake of specific bioactive compounds is related to reducing the risk of cancer,
degenerative diseases or cardiovascular disorders [65].
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CBS extracts contain bioactive fractions that include carbohydrates, dietary fibre,
proteins, lipids and secondary metabolites. For example, it has been suggested that cocoa
cell wall fibre possesses health-promoting properties, such as decreasing total cholesterol,
insulin and triglyceride levels [66]. Furthermore, CBS contains bioactive peptide fractions,
specifically albumin (12%) and vicilin (4%), with antioxidant, anti-obesogenic and anti-
diabetic attributes [67]. In addition, phytosterols, such as stigmasterol or campsterol,
identified in CBS, show anti-inflammatory, anti-tumoral, anti-bacterial, and anti-fungal
activities and also reduce blood cholesterol levels [53]. For these reasons, the use of this
by-product as a source of bioactive compounds has attracted strong interest in recent years.

Among the bioactive compounds present in CBS, antioxidant, antimicrobial and
antiviral compounds are the most interesting groups; therefore, they are commented on in
detail in the sections below.

3.1.1. Antioxidant Compounds

Antioxidant compounds are well-known for their crucial role in providing protection
against oxidative damage, which is closely linked to the development of human chronic
and degenerative diseases [2,68]. Their mechanism of action consists of the scavenging
of reactive oxygen species of cellular metabolism and preventing damage to biologically
relevant molecules, such as DNA, proteins and membrane lipids and cells [69]. For exam-
ple, Ávila-Gálvez et al., 2019 [70] studied the metabolic profile of different polyphenols
in vivo in normal and tumoral breast tissues from patients that consumed capsules with
CBS extracts. These authors determined that these extracts exhibited anticancer and an-
tiproliferative activities compared to control patients. Moreover, Aranaz et al., 2019 [44]
investigated the favorable effects of cocoa extracts (containing epicatechin, catechin and
procyanidin B2) on lipid metabolism and disorders such as obesity and metabolic syn-
drome. The former authors also reported beneficial results in terms of insulin resistance,
liver steatosis and glucose intolerance in study groups supplemented with cocoa extract in
contrast to non-supplemented study groups. Phenolic compounds are the most relevant
antioxidants present in CBS. As a result of processing steps such as fermentation and
roasting, phenolic compounds migrate from cocoa seed cotyledons to the CBS, generating
polyphenol-enriched cocoa shells. Additionally, Rossin et al., 2021 [71] reported the capacity
of CBS-enriched ice cream to protect the intestinal cell layer from the damage associated
with inflammatory and oxidative reactions.

As previously mentioned, phenolic compounds are the main group of secondary metabo-
lites in CBS, playing an essential role in preventing several diseases due to their antioxidant
properties. The main polyphenols found in CBS are flavonoids, in particular flavanols, which
include epicatechin, catechin and procyanidins [49]. Cocoa flavanols act as chemopreventive
agents against neurodegenerative diseases, cancer, heart disorders and ageing. Among the
mechanisms involved in these preventive effects, the stimulation of tumor suppressor genes
and the activation of the insulin pathway are remarkable [72–74]. It has been confirmed that
CBS flavanols, specifically procyanidins, are implicated in the regulation of the cancer-signal
transduction pathways associated with differentiation, apoptosis, inflammation, cell prolif-
eration, angiogenesis, or metastasis [72]. In addition, some studies have revealed that cocoa
polyphenols can prevent the progression of prostate, colon, liver, breast or lung cancer, among
others [75–77].

The amount and type of phenolic compounds in CBS are usually linked to the origin
and variety of cocoa. For example, Barbosa-Pereira et al., 2021 [78] studied the chemical and
nutritional composition of ten different samples of CBS from different areas of Venezuela and
two varieties (Criollo and Trinitario) and obtained an amount of TPC and TFC in the range of
5.8 to 7.5 mg GAE per g of CBS and 1.8 to 3.6 mg CE per g of CBS, respectively. In addition,
Martínez et al., 2012 [32] evaluated the antioxidant properties of CBS from two different
locations in Ecuador (Cone and Taura) and obtained 2.5 µM Trolox equivalent (TE)/g of CBS
from Cone, almost half the amount obtained from Taura CBS (4.5 µM TE/g CBS).
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Moreover, the extraction methodology employed is also determinant in relation to the
number of antioxidant compounds recovered from CBS. In this sense, traditional extraction
techniques using organic solvents are the most employed for CBS. For instance, Nsor
et al., 2012 [39] evaluated the TPC and antimicrobial activity of CBS extracts obtained
with different solvents (water, ethanol, methanol and acetone). They reported that the
highest number of phenolic compounds (41.8 mg GAE/g) were observed when acetone
was employed, whereas when using the most polar solvent (water), they obtained the
minimum TPC value (17.2 mg GAE/g). For ethanolic and methanolic extracts, similar
values were achieved (23.3 and 25.1 mg GAE/g, respectively). However, Rossin et al.,
2019 [79] also tested different extraction solvents (water, methanol/water (50:50 (v/v)),
methanol and acetone) with CBS powder at 25 ◦C stirring for 1 h, and obtained the
highest concentration of methylxanthines and TPC in the aqueous extract (8 mg/mL and
546.7 mg GAE/l, respectively). In a similar way, Manzano et al., 2017 [80] obtained a
maximum amount of TPC of 7 mg GAE/g CBS employing water as solvent by stirring for
5 min. On the other hand, Papillo et al., 2019 [48] investigated the extraction of phenolic
compounds from CBS through stirring and an ultrasound treatment for 30 min. They
obtained in ethanolic extracts approximately twice as much antioxidant activity (215 mg
TE/CBS) than that obtained in water extracts. In addition, Hernández-Hernández et al.,
2019 [61] compared the effectiveness of five different methods of polyphenol extraction
from CBS. Methanol (80% (v/v)) and water, with methanol (80% (v/v)) at pH 3 and water
at pH 3, were employed as solvents when stirring the samples for 1 h at 70 ◦C. In addition,
CBS was treated with ethanol/acetone (70:30 (v/v)) when stirring the samples for 2 h
at room temperature. Acidified methanol and ethanol/acetone were the most effective
solvents for the extraction of TPC from CBS (11 and 13 mg GAE/g CBS, respectively).

Conventional extraction methods conducted to recover phenolic compounds from
plant-based matrices are normally time-consuming and require a high consumption of
solvents and energy. In addition, they can lead to the oxidation and denaturation of
polyphenols [2,28,65,81,82]. Therefore, in recent years, environmentally friendly extraction
methods, which are capable of recovering high amounts of bioactive compounds with
short extraction times and low solvent consumption, are gaining interest [17]. Specif-
ically, green technologies, such as ultrasonic-assisted extraction (UAE), pulsed electric
fields (PEF), microwave-assisted extraction (MAE) or supercritical fluid extraction (SFE),
have been employed to obtain different compounds of interest from CBS. For example,
Grillo et al., 2019 [30] used ultrasonic-assisted extraction to obtain CBS extracts with
an amount of 51 mg GAE/g and 8 mg/g of TPC and methylxanthines, respectively.
Agudelo et al., 2021 [83] subjected CBS to the UAE methodology and recovered a maximum
amount of 8.3 mg/g of theobromine, 0.17 mg/g of catechin and 3.8 mg/g of epicatechin.
Jokić et al., 2018 [60] employed subcritical water extraction (SWE), obtaining a maximum of
130 mg GAE/g CBS, and reported the detection of alkaloids (theobromine, theophylline
and caffeine), catechin, epicatechin and chlorogenic acid in the resulting broths. A recent
study using PEF for the extraction of CBS antioxidants reported an increase of 20% in
the phenolic compounds and antioxidant activity compared to conventional extraction
methods [39]. Carpentieri et al., 2022 [84] also employed PEF to obtain CBS ethanolic
extracts with a maximum concentration of theobromine of 2 mg/g CBS. In addition,
Mellinas et al., 2020 [83] obtained extracts from CBS by means of MAE (5 min, 97 ◦C)
with an amount of TPC of 35.5 mg GAE/g and an antioxidant activity of 33.6 mg TE/g,
values 50–62% higher than those obtained through conventional heating. Jensch et al.,
2022 [85] recovered a maximum of 5 mg/g of catechin and epicatechin from CBS submit-
ted to pressurized hot water extraction (PHWE) at 140 ◦C. Table 2 summarizes different
phenolic compounds obtained from CBS as well as the extraction techniques employed for
this purpose.
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Table 2. Bioactive compounds obtained from CBS using different extraction methods, all data,
expressed on a dry weight basis.

Extraction Method Value References

Antioxidant activity Ethanol, methanol–acetone, water,
UAE, MAE 2.5–218 µM TE/g CBS [28,30,39,48]

Total phenolic content
Ethanol, methanol–acetone, water,

methanol, acetone, UAE, SWE,
PEF, MAE

5.8–154.4 mg GAE/g CBS [30,32,40,61,63,79,80]

Total flavonoid content Ethanol, acetone, methanol, PEF 1.6–43.9 mg CE/g CBS [39,40]

Total tannin content Ethanol, acetone, methanol, PEF 0.8–25.3 mg CE/g CBS [39,40]

Total dietary fibre Ethanol, acetone, methanol 51.8–56.7 g/100 g CBS [32]

Soluble dietary fibre Ethanol, acetone, methanol 14.5–16.2 g/100 g CBS [32]

Insoluble dietary fibre Ethanol, acetone, methanol 35.6–42.1 g/100 g CBS [32]

Theobromine Ethanol, methanol, water, UAE, SWE,
PEF, MAE 1.3–11.6 mg/g CBS [28,30,40,42,79,80,83]

Caffeine UAE, SWE, PEF, MAE 0.1–4.2 mg/g CBS [30,40,42,50]

Theophylline SWE Traces-0.2 mg/g CBS [42]

Catechin Ethanol, water, methanol, PHWE 0.2–6.1 mg/g CBS [49,61,83,85]

Epicatechin Ethanol, methanol, water, PEF,
MAE, PHWE 0.3–17.7 mg/g CBS [28,40,48,61,83]

Procyanidin B1 Ethanol, water 0.5–0.8 mg/g CBS [48]

Procyanidin B2 Ethanol, water 0.2–0.9 mg/g CBS [48]

Protocatechuic acid Ethanol, water, MAE 0.9–2.1 mg/g CBS [28,48]

Caffeic acid Ethanol, water, methanol, MAE Traces-0.9 mg/g CBS [28,61]

Ferulic acid MAE 0.3–0.5 mg/g CBS [28]

MAE: Microwave-assisted extraction; PEF: Pulsed-electric-field-assisted extraction; PHWE: Pressurized hot water
extraction; SWE: Subcritical water extraction; UAE: Ultrasound-assisted extraction.

3.1.2. Antimicrobial Compounds

Antimicrobial compounds could be defined as natural substances with the capacity
to inhibit the development of microorganisms by means of altering their metabolism [2].
Recently, a rising interest in natural compounds that inhibit the growth of microorganisms
involved in food deterioration and foodborne illness has arisen. Moreover, the increasing
resistance of some bacteria to drugs has led to the urgent need to obtain new compounds
that can replace conventional antibiotics [86,87]. In this context, in recent years, the poten-
tial antimicrobial activity of plant-derived substances in terms of antimicrobial, antioxidant
and anti-inflammatory functions has been studied. The antimicrobial capacity of phe-
nolic compounds is based on the disruption of the cell wall, which increases membrane
permeability, leading to the release of cell constituents.

It has been published that CBS extracts are an interesting source of antimicrobial com-
pounds. Nsor-Atindana et al., 2012 [39] evaluated the antibacterial activity of CBS ex-
tracts (employing water, acetone, ethanol and methanol as solvents) against Escherichia coli,
Salmonella sp., Staphylococcus aureus and Bacillus cereus. Minimal inhibitory concentrations
(MICs) of the extracts ranged between 0.5 and 3.7 mg dry extract/mL. The results showed
that all of the extracts exhibited antimicrobial power against all of the strains tested, with the
acetone extract presenting the highest inhibition effect. The aqueous extract exhibited a lower
antimicrobial effect, whereas the ethanolic and methanolic extracts achieved similar inhibition
values. These results are in accordance with those obtained by Kayaputri et al., 2020 [88],
who reported the inhibitory effects of CBS extracts against Salmonella sp., S. aureus and E.coli,
allowing for a reduction in the total bacteria count of 6%, 7% and 20% for E. coli, S. aureus
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and Salmonella sp., respectively. Tamrin et al., 2020 [89] reported similar antibacterial activities
related to CBS extracts (aqueous, ethanolic, methanolic and acetone) against E. coli, B. cereus
and S. aureus (approximately 7 mm inhibition zone). Moreover, Rojo-Poveda et al., 2021 [90]
tested the antimicrobial capacity of CBS extracts at different concentrations (0.004 to 0.5 mg of
dry extract per ml) in eight bacterial and fungal strains. These authors found that inhibition
was only detected at the maximum concentration (0.5 mg/mL) against E. coli, Pseudomonas
aeruginosa, Saccharomyces cerevisiae, Candida albicans, methicillin-resistant S. aureus (MRSA)
and methicillin-sensitive S. aureus (MSSA). Only Streptococcus mutans showed inhibition at
pharmacologically interesting concentrations (below 0.5 mg/mL). In the case of S. cerevisiae,
not only did it not show any inhibition, but an increase in growth was observed in this specie
when CBS concentrations increased, which is in accordance with the natural presence of this
yeast in the cocoa bean fermentation process.

Additionally, some works have revealed the antibacterial properties of CBS against
S. mutans, a bacterial strain responsible for dental caries. Babu et al., 2011 [91] compared the
potential antimicrobial activity of chlorohexidine (CHX) and CBS-based mouth rinse against
S. mutants. They reported similar results for both rinses with respect to S. mutans counts in
saliva at all of the intervals analyzed. Thus, these authors concluded that CBS extract could
be an alternative to CHX mouth rinse, avoiding the side effects of CHX, such as a burning
sensation or unpleasant taste. The anti-caries activity of polyphenols obtained from plants
is based on the inhibition of S. mutans and the inhibition of glucosyltransferases (GTFs), an
enzyme associated with the formation of dental plaque glucans on the tooth surface [92].
Percival et al., 2006 [93] observed the anticariogenic effect of CBS acetone extracts on the
dental biofilms of S. mutans and Steptococcus sanguinis. In addition, Osawa et al., 2001 [94]
described the antibacterial effect of ethanolic extracts obtained from CBS on S. mutans and
Streptococcus sobrinus and their anti-GTF activity. Matsumoto et al., 2004 [95] analyzed the
inhibitory effects of CBS extracts on dental plaque formation in vitro and in vivo studies.
The results indicated that CBS ethanolic extracts could reduce the adherence of S. mutans to
saliva-coated hydroxyapatite, an artificial dental plaque, and its amount in plaque in vitro.
In addition, when CBS extracts were used as a mouth rinse in an in vivo study, inhibited
plaque deposition on the tooth surface was observed.

3.1.3. Antiviral Compounds

The lignin–carbohydrate complexes (LCCs) formed in the cell walls of CBS have been
reported to be related to antiviral effects. For example, it has been found that LCCs inhibit
the cytopathic effect of immunodeficiency virus (HIV) in cell culture [96]. Furthermore,
Sakagami and Matsuta (2013) [97] confirmed that LCCs from CBS have higher anti-HIV
activity (selective index (SI) = 30–10,000) than flavonoids (SI = 1), tannins (SI = 1–10) and
natural lignin from other plant-based matrices (SI = 10–100). Unten et al. observed that
when CBS extracts were added to the cells at the HIV virus adsorption step, maximum
antiviral activity was achieved. In addition, cocoa procyanidins have also exhibited antiviral
properties against influenza A virus and herpes simplex virus (HSV), with a selective index
of approximately 155. The mechanism of action is believed to consist of avoiding the entry
of the virus into the host cell, a critical step in virus infection [98].

3.2. Biomaterials

Preservation and food lifetime extension are some of the main priorities in terms of
reducing food waste; thus, plastic food packaging seems to be essential for the preservation
of comestibles. Synthetic plastics, such as polyamides, polyolefins and polyesters, are
usually employed in food packaging [99,100]. However, environmental pollution risks
are commonly associated with these petroleum-derived materials. In this context, natural
polymers from renewable resources have emerged as a sustainable alternative due to their
high biocompatibility, low environmental effects and rapid degradation [101]. One of the
bioplastics most used in packaging is poly-(lactic acid) (PLA), an aliphatic biodegradable
and thermoplastic polymer derived from renewable sources [102,103].
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In recent years, CBS has been investigated in terms of food packaging applications
due to its flexural and tensile mechanical properties, reduced density and low cost. For
example, Papadopoulou et al., 2019 [104] developed biocomposites from a mixture of PLA
and CBS powder. The results showed an improvement in the physical properties of the
resulting composites, as well as in their biodegradability in aqueous media because of
the inclusion of CBS. The use of this by-product also conferred antioxidant characteristics
to the PLA/CBS composites. Puglia et al., 2016 [105] proposed the introduction of CBS
into a biodegradable matrix as polycaprolactone (PCL), which successfully enhanced the
material properties in terms of a strong interface and the rigidity of the polymer. In addition,
García-Brand et al., 2021 [106] evaluated the use of CBS-based composites in biomaterial
formulation. These authors reported that PLA/CBS composites are highly biocompatible
in terms of hemocompatibility, cytotoxicity and antioxidant properties, which leads to the
possible use of CBS in bioactive material production for application in the biomedical field.

Other biodegradable polymers used as an alternative to synthetic polypropylene are
polyhydroxyalkanoates (PHAs) [107,108]. They are produced through bacterial fermenta-
tion when the external conditions are unstable. Poly(3-hydroxybutyrate) (PHB), which is
the most common PHA, is usually produced through the action of microorganisms such
as Bacillus, Pseudomonas and Cupriavidus when the external supply is scarce as an energy
reserve [109,110]. The main limitation regarding the industrial production of PHB is related
to carbon source costs. Thus, it is essential to find novel and sustainable carbon source al-
ternatives, such as lignocellulosic residual biomass. In this context, Sánchez et al., 2023 [10]
studied, for the first time, the use of CBS hydrothermally treated as feedstock to obtain
PHB employing Bacillus firmus. Two different broths, non-centrifuged (with CBS solids)
and centrifuged, were employed as fermentation media. A maximum PHB concentration
of 20 g/L was achieved in the non-centrifuged medium, whereas very low PHB production
(0.6 g/L) was obtained in the centrifuged medium. These results highlight the fundamental
role of CBS solids in microorganism metabolism, being essential for PHB production.

3.3. Adsorbent

Emerging pollutants, including heavy metal ions, industrial dyes, microplastics and
pharmaceutical compounds, imply environmental concerns, which are mainly related to
water pollution. Several technologies have been employed to remove emerging pollutants
from wastewater, such as ozonation, chlorination, biodegradation and adsorption [111–115].
Among them, adsorption with activated carbons has been extensively applied due to several
advantages, including ease of operation, lower operating costs compared to other methods and
high removal efficiency [116,117]. Nevertheless, researchers continue to explore alternatives
to commercial activated carbons in order to reduce the material cost associated with treatment
processes [118]. In this context, agri-food wastes, such as CBS, have been widely investigated
as novel adsorbents [119,120].

Al-Yousef et al., 2021 [118] evaluated the application of CBS as an adsorbent to elim-
inate ibuprofen (IBP) from water, and the results showed that the adsorption capacity
of CBS in removing IBP was significantly higher than other materials, such as biochar,
zeolites or even activated carbon. Moreover, Rodriguez-Arellano et al., 2021 [121] assessed
the properties of dried CBS powder as an adsorbent for Congo red dye removal in water,
achieving a maximum percentage of adsorption of 96% under optimal conditions (40 mg/L
of dye concentration, pH 3, 0.11 g of adsorbent/L and 36 h). These authors indicated that
the dye attached to the CBS surface, particularly, it was associated with the OH group of
phenolic compounds. Additionally, Ribas et al., 2014 [122], who employed activated carbon
obtained from CBS as an adsorbent for a commercial textile dye, reported removal values of
95% in aqueous media. El Achaby et al., 2018 [123] extracted cellulose microfibrils (CMFs)
from CBS and employed them as adsorbents for the removal of dyes, such as methylene
blue, from wastewater, achieving a maximum adsorption capacity of 382 mg/g.

Additionally, Kalaivani et al., 2015 [124] found that CBS activated carbon obtained at
different temperatures presented interesting adsorbent properties for the elimination of
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Ni (II) ions from an aqueous medium. These authors remarked that carbon prepared at a
higher temperature (350 ◦C) showed an adsorbent efficiency in terms of Ni (II) ion removal
that was 62% higher with respect to the carbon obtained at 30 ◦C due to its small particle
size and high surface area as a result of the heat treatment.

3.4. Biofuels

Environmental and economic concerns deriving from fossil fuel depletion have led to
the development of new energy alternatives, namely, biofuels, leading to a transition away
from fossil fuel use [125]. Lignocellulosic residues are interesting substrates for obtaining
biofuels due to their high carbohydrate content [2]. Awolu and Oyeyemi (2015) [126]
investigated the use of CBS hydrolyzed under different time and temperature conditions
to obtain ethanol by employing S. cerevisiae. In addition, they optimized the fermentation
process using three different variables: pH, yeast concentration and fermentation time. The
results showed that using a neutral pH had a notable positive effect on ethanol production
(9%) within 144 h when using a microbial load of 0.05 mg/L. Shet et al., 2018 [127] also
studied the optimization of bioethanol production using CBS subjected to acid hydrol-
ysis with 10% H2SO4 and obtained a maximum of 3.2 g/L of bioethanol under optimal
conditions (6% solid/liquid ratio (v/v), acid treatment for 8 min, (2% (v/v) inoculum of
Pichia stipitis and 72 h of fermentation). In addition, Mancini et al., 2016 [128] studied the
use of CBS pretreated with N-methylmorpholine-N-oxide (NMMO) to obtain methane
and reported an increase of 14% in terms of biomethane yield in the pretreated CBS
(226 mL CH4/g VS) compared to the untreated samples (199 mL CH4/g VS).

Thompson and Rough (2021) [129] evaluated the use of CBS as an alternative bioenergy
source when used as a pellet. They evaluated different parameters, such as CBS particle
size, compaction speed, compaction stress and binder addition (water, bentonite clay and
magnesium stearate), in order to obtain a quality pellet. The results showed that pellets
with bentonite clay as a binder achieved a calorific value (16 MJ/kg) above the value
required by ISO 17225-6 standards (14.5 MJ/kg).

3.5. Corrosion Inhibitor

One of the main aspects that the carbon steel industry focuses on is low corrosion
resistance. Therefore, new processes need to be implemented in order to provide better
protection against corrosion, and the use of inhibitors is one of the most suitable op-
tions [130,131]. Corrosion inhibitors could be defined as substances that, when added in
low concentrations to a corrosive environment, are able to minimize the reaction between
the metal and the medium, adsorbing organic molecules and ions on the metal’s surface
and generating a protective layer [132]. However, many synthetic inhibitors employed
in industry are toxic and expensive. For these reasons, recently, research on alternative
natural inhibitors, which are environmentally friendly and low-cost, has notably increased.

It has been reported that the inhibitory properties of “green” inhibitors are linked to the
presence of bioactive compounds, such as flavonoids, tannins, or alkaloids [133,134]. Conse-
quently, CBS can be an excellent alternative to synthetic inhibitors because of its composition,
which is rich in phenolic and bioactive compounds. De Carvalho et al., 2021 [135] tested dif-
ferent concentrations of CBS powder and hydroalcoholic CBS extract (80% (v/v)) as corrosion
inhibitors for SAE 1008 carbon steel in a sodium chloride solution. The results showed that the
corrosion rates of the steel decreased when the inhibitor concentration increased. In addition,
the authors reported that for all of the concentrations tested, CBS powder did not show
efficient corrosion, while hydroalcoholic extract presented a good performance at the lowest
concentration (0.4 g/L). The same authors [136] evaluated the corrosion-inhibitory properties
of CBS powder with the same steel but, in this case, in an acidic medium (HCl 0.5 mol/L).
An excellent corrosion inhibition efficiency (96%) was achieved at the lowest concentration of
inhibitor tested (0.4 g/L), revealing the potential of CBS as an efficient corrosion inhibitor for
carbon steel.
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3.6. Food Ingredient

Due to its nutritional and nutraceutical properties provided by its high content of
dietary fibre and polyphenols, CBS has been largely proposed as an ideal ingredient or
additive in food production.

For example, soluble dietary fibre from CBS has been employed to replace 50–70%
of vegetable oil in muffin production. The results showed decreased hardening dur-
ing storage, higher moisture, good texture and pleasant colour and acceptance of the
muffins containing CBS [137,138]. In addition, the presence of volatile organic compounds
(10–20%) in CBS composition, some of them related to chocolate-specific flavour, makes
CBS an excellent and low-cost material to obtain a cocoa aroma. In this context, CBS has
been widely used in bakery products, such as wheat bread, biscuits or cakes, providing
a softening effect and increasing their fibre content and antioxidant properties [39,139].
Rinaldi et al., 2020 [140] studied three ranges of particle size of CBS for the develop-
ment of improved gluten-free bread formulations and concluded that this by-product
could be a promising functional ingredient. Additionally, Kãrklina et al., 2012 [141] eval-
uated the application of CBS powder as a substitute for wheat flour in butter biscuit
production, increasing their nutritional value (5% proteins, 46% dietary fibre and 14%
fats with respect to the control biscuits). Moreover, Nogueira et al., 2022 [142] proposed
the elaboration of chocolate cake with different percentages of CBS powder (25–100%)
replacing wheat flour. Cakes obtained employing 75% CBS powder presented satisfac-
tory sensorial and nutritional properties (100 g TE/g CBS, 92 mg GAE/100 g CBS and
7.8 mg anthocyanins/100 g CBS). Bariŝić et al., 2021 [143] employed untreated and treated
CBS with high-voltage electrical discharge (HVED) at different proportions (0–15%) to
produce enriched chocolate. They reported that milk chocolate with 5% and dark chocolate
with 15% of CBS, both untreated and treated, obtained a positive acceptance of consumers
mainly due to the softness and darkness of the final products.

Several vegetable grains, such as wheat grains, contain high numbers of polyphe-
nols [144]. However, these compounds are mainly confined in the cell wall, being little
accessible for use by the human body during the digestive process. In this context, en-
zymatic treatments of these plant-based matrices enhance the bioavailability of phenolic
compounds. Among processes for enzyme production, solid-state fermentation (SSF) has
been receiving attention due to its sustainable characteristics, namely, low cost, use of
agri-food wastes and high process yield. It has been reported that the use of CBS as a
substrate to obtain enzymes through SSF using Aspergillus awamori as a microorganism and
the successful application of the obtained enzymes in bread [145].

Encapsulation approaches for CBS extracts have been investigated in order to maintain
the stability of its antioxidant compounds and, thus, obtain polyphenol-enriched food
products with antioxidant properties. Papillo et al., 2019 [48] proposed spray-drying as
a technique for CBS extract encapsulation employing maltodextrins as stabilizing agents
for its use in bakery products. The biscuits containing encapsulated CBS presented a high
content in terms of phenolic compounds that remained after the baking process and storage
(up to 90 days). Similarly, Grassia et al., 2021 [146] obtained microcapsules of enriched
CBS extracts (16 mg GAE/g for TPC) using a spray dryer and incorporated them for the
preparation of chocolate bars. In addition, Altin et al., 2018 [147] encapsulated CBS extract
into chitosan-coated liposomes, which ensured the stability of the content of TPC, TFC and
antioxidant activity in drinking yogurt preparation during storage.

CBS has also been proposed as a raw material to obtain beverages such as homemade
functional beverages, carbonated soft drinks or dairy drinks. For example, Quijano-Aviles
et al., 2016 [148] optimized the use of CBS, coffee silverskin and orange peel as ingredients
to formulate a dairy drink. They reported an optimal formulation containing 74% CBS,
25% coffee silverskin and 2% orange peel that yielded a final product with great antioxidant
activity (82% inhibition) and maintained acceptable sensorial attributes (taste, colour and
appearance). Additionally, Rojo-Poveda et al., 2019 [27] investigated different parameters
(CBS particle size and extraction methods) for the production of a functional beverage
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from CBS. The results showed that the smallest grinding degree (250–500 µm particle size),
along with percolation techniques, allowed the obtainment of beverages with the highest
functional character, i.e., with the maximum TPC content (1803 mg GAE/l) and antidiabetic
properties (52% α-glucosidase inhibition).

Siow et al., 2022 [149] studied the use of CBS from different kinds of cocoa beans (Criollo
and Trinitario) from Malaysia, Vietnam and Venezuela roasted at different temperatures (100,
120 and 150 ◦C) to obtain cocoa tea. They reported that the antioxidant properties decreased
as the roasting temperature increased, also affecting the flavour of the final tea product.
Malaysia cocoa tea showed the highest amount of TPC and antioxidant activity (19.4 mg
GAE/g and 23.1 mg ascorbic acid (AA)/g, respectively), whereas the Venezuelan cocoa tea
presented the maximum concentration of methylxanthines (165 µg/mL). Likewise, Dos
Anjos et al., 2021 [150] formulated a cocoa-based ice tea with different concentrations of
CBS powder (20,30 and 40 g/L water). The final ice tea that employed 30 g of CBS per liter
received the highest organoleptic acceptance, and it was able to retain a maximum of 85%
of phenolic compounds from CBS. Moreover, Bernaert and Rysscher (2016) [151] patented
the preparation of beverages with alkalized CBS with a high content of dietary fibres.

Despite the great potential of CBS as an additive and/or ingredient in food production,
it is necessary to ensure that some of the unacceptable compounds that may be present
are at acceptable levels. For example, it has been reported that mycotoxins produced by
fungi species such as Aspergillus, Penicillum, Absidia and Eurotium concentrate in cocoa
shell. Ochratoxin A, aflatoxins B1, B2, G1 and G2 are some examples of the mycotoxins
found in CBS [19,152,153]. In addition, genotoxic carcinogens, such as polycyclic aromatic
hydrocarbons (PAHs), have also been detected in CBS as a result of an inappropriate drying
method or the use of too-low temperatures during the roasting of the beans [154]. In
addition, CBS could be contaminated with heavy metals, such as nickel (Ni), chromium (Cr)
or cadmium (Cd), from the uncontrolled use of fertilizers, insecticides and pesticides is one
of the main reasons for the large contamination of cocoa crops. In fact, the high adsorption
capacity of CBS can promote the retention of these harmful compounds [155,156].

3.7. Animal Feed

The potential of CBS as an ingredient for animal feed has always been studied in
order to reduce the environmental impacts derived from waste disposal, diet costs at the
farm level and food–feed competition [56,157]. For example, Emiola et al., 2011 [158]
evaluated the effect of CBS feeding on laying hens. The results showed that diets with
15, 20, 25 and 30% CBS resulted in a reduction in egg production compared to control
diets and, in addition, spleen, kidney and ovary weights decreased as the percentage of
CBS in diets increased. The weights of several internal organs as a percentage of final
body weight can be useful as an indicator of the animals’ health [159]. Additionally,
Olubaniwa et al., 2006 [160] evaluated the use of CBS boiled during different times (15, 20,
45 and min) to replace maize in 32-weeks old laying hens’ diets. Among the diets evaluated,
only the 15-min boiled CBS at 20% maize replacement showed similar egg production
and feed conversion as the control diet. CBS was also assessed as feed in monogastric
herbivores. Ayinde et al., 2010 [161] analyzed the economic aspects of including CBS as a
supplement in rabbit diets. Data showed that the addition of 0.1–0.2 g of CBS per each g of
diet improves rabbit growth performance.

Regarding ruminants, Hikmah et al., 2020 [162] studied the effect of diets supple-
mented with different percentages of CBS (0, 3, 6 and 9%) on cattle bulls, and they con-
cluded that diets with 6 and 9% of CBS showed an increase in liver and kidney compared
between 0 and 3%. Renna et al., 2022 [157] investigated the appropriateness of CBS as
a feed ingredient in dairy goat diets and evaluated the possible effect on milk yield and
composition. These authors reported that milk from goats with CBS-supplemented diets
showed a reduction in urea levels and higher concentration of total branched-chain fatty
acids compared to those groups without CBS diets. Similarly, Campione et al., 2021 [163],
using CBS as a partial substitute for cereal grains in the diet of dairy sheep, observed a
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decrease in milk urea levels of ewe groups with CBS included in the diet, probably due to
the phenolic content of this by-product.

4. Conclusions

Due to the economic and environmental issues arising from the accumulation of
organic wastes, there is a growing interest in the development of valorization alternatives
for these residues. CBS, one of the main by-products, usually managed as waste, which
is derived from the chocolate industry, can be used as a raw material in the production of
different bioactive compounds that show great interest from a biotechnological point of
view due to their potential applications in the food, cosmetic or pharmaceutical sectors.
Different extraction techniques (such as extraction with organic solvents), paying special
attention to sustainable and environmentally friendly techniques, have been investigated
with the aim of maximizing the number of polyphenols obtained from CBS. The obtained
extracts have been reported to present beneficial effects on human health since they contain
flavanols, particularly catechin and epicatechin, which have antioxidant, antihypertensive,
antiatherogenic, anti-inflammatory, hypoglycemic and hypocholesterolemic properties.
Additionally, this by-product has been employed in several applications, such as being used
as adsorbents to remove emerging contaminants from wastewater, a substrate for biopolymer
production, corrosion inhibitors or food ingredients. However, it is worth mentioning that
CBS may contain some undesirable pollutants, such as heavy metals or mycotoxins, which
could complicate the incorporation of this by-product into food formulations.

According to the literature reviewed in this work regarding CBS valorization, future
research should be focused on three approaches: (i) studying the characteristics and proper-
ties of the compounds of interest obtained in-depth, (ii) widening the potential applications
of this by-product in different fields and (iii) implementing “green” practices that are
viable from an economic and technological point of view at an industrial scale to obtain
value-added products.
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