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Abstract
ESG criteria are becoming increasingly important for institutional and retail investors with a
consequent growing demand of reliable and transparent ESG data to support their decisions.
Several ESG rating agencies assess companies providing ratings and rankings. However,
their rating methodologies are subject to some criticisms. One of the main weaknesses is the
determination of the relative importance of the ESG criteria involved in the rating process.
In this work, we propose the use of a MCDM rating and ranking approach with which the
decision maker can rank firms based on their ESG global performance without the elicitation
of aggregation weights. The approach, UW-TOPSIS, provides three outputs: the global ESG
rating of the firms, a ranking based on the ratings and, for each alternative, a vector of weights
describing the discriminatory power of the ESG criteria on the alternative, thus overcoming
one of the criticisms to the methodologies of ESG rating agencies. However, UW-TOPSIS
has a limitation as it does not provide a global vector of weights valid for all the alternatives
in the ranking, expressing the overall role or contribution of each criteria to the componsition
of the ranking. The acknowledge and analysis of this situation and the proposal of a solution,
is the main objective of this paper.

Keywords MCDA · UW-TOPSIS · ESG criteria · Weighting schemes

1 Introduction

Environmental, Social and Governance (ESG) factors are becoming increasingly important
in investment decisionmaking, not only due to new regulatory frameworks, but also due to the
change on the priorities of both, institutional and retail investors. Firms have started to respond
to the change on investors’ priorities and they have started to redesign their business models.
The COVID-19 pandemic has shown us that those business models which incorporate ESG
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factors are often better prepared for crisis management, being less exposed to the negative
effects of technological or regulatory disruptions (Reteurs, 2020).

The availability of transparent and reliable ESG data allowing the assessment of the
different investment alternatives is crucial. Investors, asset managers, financial institutions
and other stakeholders are increasingly relying on the ESG ratings and rankings provided by
ESG rating agencies.

ESG rating agencies try to measure how well a company has performed highlighting
areas that need improvement. They are usually used by firms to identify opportunities in
terms of weaknesses or strenghs. However, as stated by Deloitte (2022) “there is no one-
fits-all methodology to analyse ESG data used by rating agencies”. In order to get an overall
ESG score, each pillar is evaluated individually according to several criteria grouped into
several categories. ESG data from the companies is the first required input in any ESG rating
process. However, it is not the only one. Other important inputs are the relative importance of
the ESG criteria and the comparison method used in the aggregation process. The individual
scores are aggregated into an overall or global score that represents the ESG rating of the
firm. This aggregation is usually carried out by using a weighted average and by usually
considering equal weights. Larker et al. (2022) point out the fact that, surprisingly, several
recent studies find low correlations across ESG ratings frommain rating agencies. Berg et al.
(2022) go one step further, pointing out that main reasons behind these low correlations are
the selection of the decision criteria, the assessment method and the weights representing the
relative importance of the criteria in the aggregation process.

In this work, we focus on the problem related to the criteria weighting, using a method
based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a
distance-based Multiple Criteria Decision Making (MCDM) method, widely used to assist
decision makers in analysis, comparisons, and rankings of decision alternatives (Hwang &
Yoon, 1981).

In the context of the problem addressed in this paper, TOPSIS needs only two main
inputs for its evaluation: weights on criteria and the ratings of the firms on the ESG criteria.
Contrary to what happens with other methods, TOPSIS relies more on the data rather than on
an exhaustive analysis of the decisionmakers’ preferences. This is probably one of the reasons
why TOPSIS is such a widely used analysis, comparison and ranking method compared to
other methods (Shih & Olson, 2022).

The implication on the results of different choices of weights is an issue that, within the
framework of TOPSIS, has not been sufficiently discussed (Olson, 2004).Aswewill see in the
next section, several methods have been applied in the TOPSIS framework to elicit weights
objectively or subjective, depending on the context of the addressed problem. Nevertheless,
in many real decision situations, the decision maker is not able or does not want to elicitate,
objectively or subjectively, those weights. This is the situation addressed by UW-TOPSIS.

Un-weighted TOPSIS (UW-TOPSIS) proposed by Liern and Pérez-Gladish (2022)
addresses this problem obtaining global ratings based on the best and worst possible sit-
uation of each firm without the elicitation of a vector of weights. However, UW-TOPSIS has
a drawback: the decision maker does not have decisional information on the relative impor-
tance of each criterion in the determining of the obtained ranking. The contribution of this
work lies in the identification and description of this problem and its managerial implications.

The rest of the paper is organized as follows. In the following section we carry out a review
of the literature describing themain positive and negative features of TOPSIS, focusing on the
problematic around the elicitation of weights. Next, in Sect. 3, we describe the UW-TOPSIS
algorithm drawing attention to an important managerial limitation of the method: obtaining
decisional weights. In this section we deepen on this limitation analizing its consequences
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from a managerial point of view. In Sect. 4, we propose a solution and in Sect. 5, to illustrate
both, the applicability of the proposed approach and themanagerial problematic around it and
wepresent a real case studywherewe rate and rank a set of firmsbased onEnvironment, Social
and Governance (ESG) and financial criteria. The last section presents the main conclusions
of the work.

2 Literature revision

TOPSIS allows the selection of those alternatives that have the shortest distance from the
positive ideal solution (PIS) and the farther distance from the negative-ideal solution (NIS).
The positive ideal solutionmaximizes criteria of the type “themore, the better” andminimizes
criteria of the type “the less, the better”, whereas the negative ideal solution maximizes “the
less, the better” criteria and minimizes “the more, the better” criteria. Based on this and
making full use of the attribute information, TOPSIS provides a cardinal ranking of the
decision alternatives without requiring independency of the attribute preferences (Chen &
Hwang, 1992; Yoon&Hwang, 1995). Due to its popularity, several developments, extensions
and applications of the classical TOPSIS method have been proposed in the last decades
(Behzadian et al., 2012). The different new approaches depend on the type of the data in
the decision matrix, the data normalization process, the type of decision criteria weighting
schemes and the selection of distance functions to measure the proximity to the PIS and NIS.

Among the reasons behind the high popularity of TOPSIS, researchers highlight that it is a
logic technique able to easily express the rationale of human choice (Corrente&Tasiou, 2023;
Huang & Li, 2012; Okul et al., 2014; Olson, 2004; Parkan &Wu, 1997; Roszkowska, 2011).
It is also a simple computation process that provides, in its classical formulation a scalar
value which quickly measures the relative performance of each alternative considering the
best and worst alternatives, simultaneously (Huang & Li, 2012; Kaliszewski & Podkopaev,
2016; Kim et al., 1997; Olson, 2004; Parkan & Wu, 1997; Roszkowska, 2011; Zavadskas
et al., 2016).

Several authors have compared the performance of TOPSIS with other techniques such
as AHP (Saaty, 1980), ELECTRE (Benayoun et al., 1966) or PROMETHEE (Brans et al.,
1984),. Zanakis et al. (1998) conclude that TOPSIS presents few rank reversals compared to
ELECTRE, the Multiplicative Exponential Weighting (MEW), the Simple Additive Weight-
ing (SAW), and four versions of AHP problems. Zavadskas et al. (2016) conclude that when
compared to AHP, ELECTRE and PROMETHEE the performance of TOPSIS is slightly
modified by the number of alternatives and “rank discrepancies are amplified to a lesser
extent for increasing values of the number of alternatives and the number of criteria” (Zavad-
skas et al., 2016). Table 1 summarizes some of the main advantages of classical TOPSIS and
its extensions.

However, TOPSIS presents some disadvantages. Table 2 displays some of the main crit-
icisms to this method and its extensions, which are mostly related to the lack of a unified
normalization process, the absence of a scheme for weight elicitation and the consequences
related to the use of different distance functions. It can also present rank reversal problems.
Different extensions of the classical TOPSIS approach have tried to overcome some of these
limitations. The choice of the normalization process can alter the results in terms of the
ranking. Normalization can give rise to a narrow difference among the data making difficult
to reflect the true dominance of alternatives. Liern et al. (2020) delven into this question
considering both, precise and imprecise data given by intervals and provide a solution based
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Table 1 Main advantages TOPSIS. Source: Shih and Olson (2022)

Authors Main Advantages

Parkan and Wu (1997), Olson (2004), Roszkowska
(2011), Huang and Li (2012), Okul et al. (2014),
Corrente and Tasiou (2023)

A compromise can be efficiently obtained

Kim et al. (1997), Olson (2004), Roszkowska
(2011), Huang and Li (2012), Zavadskas et al.
(2016), Kaliszewski and Podkopaev (2016)

It uses logical thinking that represents the rationale
of human choice

Kim et al. (1997), Olson (2004), Roszkowska
(2011), Huang and Li (2012), Zavadskas et al.
(2016)

It has a scalar value that expresses both the best and
worst alternatives simultaneously

Kim et al. (1997), Parkan and Wu (1997), Olson
(2004), Roszkowska (2011), Huang and Li (2012),
Zavadskas et al. (2016), Kaliszewski and
Podkopaev (2016)

It uses a comprehensible computation process that
can be easily programmed into a spreadsheet

Zanakis et al. (1998) Few rank reversals compared to similar methods

Table 2 Main disadvantages of TOPSIS. Source: Shih and Olson (2022)

Authors Disadvantages

Huang and Li (2012), Okul et al. (2014), Kaliszewski
and Podkopaev (2016), Corrente and Tasiou (2023)

It does not provide a scheme for weight
elicitation

Opricovic and Tzeng (2004), Milani et al. (2005),
Huang and Li (2012), Çelen (2014), Chatterjee and
Chakraborty (2014), Zavadskas et al. (2016),
Acuña-Soto et al. (2021), Vafaei et al. (2018),
Corrente and Tasiou (2023)

There is not a unified normalization processes

Huang and Li (2012), Kuo (2017) Few discussions around the components of an
measurement of the relative closeness

Corrente and Tasiou (2023) Very few contributions to TOPSIS deal with
non-monotonic direction of preference

Opricovic and Tzeng (2004), Milani et al. (2005), Çelen
(2014), Chatterjee and Chakraborty (2014), Vafaei
et al. (2018), Acuña-Soto et al. (2021), Corrente and
Tasiou (2023)

The use of different distance functions of each
alternative from the PIS and NIS can alter the
results

García-Cascales and Lamata (2012), Zavadskas et al.
(2016)

Under certain conditions, possibility of rank
reversal

on the use of membership functions. Discussion around judgment rules for the decision on
the components of relative closeness has been addressed by Behavioral TOPSIS (see Shih &
Olson, 2022 for a very good description).

Authors as Huang and Li (2012), Okul et al. (2014), Kaliszewski and Podkopaev (2016)
and Corrente and Tasiou (2023) point out, as a disadvantage of TOPSIS, a lack of a frame-
work forweights elicitation. In the classicalTOPSIS approachpreferentialweights are usually
introduced as inputs in the third step of the algorithm, after normalization of the decision
matrix. The weights are generally directly given by the decision maker or the analyst in the
beginning of the assessment process and, as in other compensatory MCDM models, they
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express the relative importance of each criterion reflecting decision maker’s relative prefer-
ence (Yoon & Hwang, 1995). The choice of the weights representing the relative importance
of the decision criteria, is an important step in the application of TOPSIS, because different
vectors of weights could provide different results (Olson, 2004). However, as pointed out by
Shih and Olson (2022), “the meanings of weights involve more than just the interpretation
of importance. For instance, the weight could reflect the rate of substitution among criteria,
scaling factors used to convert measures into commensurate overall value, discriminating
power of the criteria on the alternatives, and vote values in binary choices” (Shih & Olson,
2022, p. 38).

In this work, we are interested in finding up the discriminating power of the criteria on
the alternatives for a certain ranking. That is, instead of elicitating weights for the criteria as
inputs (objectively or subjectively, see Shih & Olson, 2022 for a review of usual elicitation
techniques), weights become an output of themodel, informing us, once a ranking is obtained,
about the contribution of each criterion in the composition of the ranking.

Liern and Pérez Gladish (2022) developed Unweighted TOPSIS (UW-TOPSIS) for those
situations in which the decision maker is not able or does not want to elicitate precise weights
(subjective weights) or does not want to rely on objective weights based on the study of data
nature. In UW-TOPSIS, similarly to what happens in some efficiency models (see Kao &
Liu, 2000), decision criteria weights are the decision variables in two optimization problems
where the objective is to minimize and to maximize the relative proximity of the decision
alternatives to the ideal solution. These optimization problems provide for each alternative
a relative proximity interval. Each of the extremes of the intervals has an associated matrix
of weights reflecting the relative importance of each decision criterion for each alternative.
Thus, in the UW-TOPSIS framework, the criteria weights will express, for each alternative,
howmuch each criteria has contributed to the position of that alternative in the ranking. Let us
notice that these weights would be probably different for each alternative. This can constitute
a limitation of the method, as it does not allow knowing the role that each criterion has played
in the ranking, in global terms. In this work, we address and discuss this limitation proposing
of a method able to provide these weights, which will be called decisional weights. These
decisional weights will be now an output of the model instead of an input and they do not
have a preferential meaning.

3 Un-weighted TOPSIS

In what follows we will present the steps of the algorithm proposed by Liern and Pérez-
Gladish (2022), Unweighthed TOPSIS (UW-TOPSIS). Steps 1 and 2 remain the same than
in the classical TOPSIS framework (see Fig. 1). However, the PIS and NIS solutions are
determined now without taking into account the relative importance of the criteria. Weights
are introduced as unknowns in step 4 when separation measures from the PIS and NIS
are calculated. Their values are determined in step 5 solving two groups of mathematical
programing problems which maximize and minimize the separation of each alternative to
the PIS and NIS respectively, taking into account different constraints referred to the values
of the weights.

These constraints include the classical constraint in TOPSIS approaches which ensures
all the weights are positive and sum up one and other constraints imposing lower and upper
bounds on the weights. The resulting mathematical programming problems are, due to the
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Fig. 1 TOPSIS framework. Source: own elaboration

nature of their objective, fractional mathematical programming problems. In what follows
we describe the main steps of the UW-TOPSIS method in detail.

Inputs. Let us consider {Ai , 1 ≤ i ≤ n} alternatives, {C j , 1 ≤ j ≤ m
}
criteria, d a dis-

tance function in R
m and μ a normalization function.

Step 1. Determine the decision matrix
[
xi j

]
, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Step 2. Construct the normalized decision matrix μ
(
xi j

) = ri j ,
[
ri j

]
, ri j ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ m. (1)

Step 3. Determine the positive ideal A+ = (r+
1 , . . . , r+

m ) and the negative ideal solutions
A− = (r−

1 , . . . , r−
m ), being

r+
j =

⎧
⎨

⎩

max
1≤i≤n

ri j , j ∈ J

min
1≤i≤n

ri j , j ∈ J ′ 1 ≤ j ≤ m, r−
j =

⎧
⎨

⎩

min
1≤i≤n

ri j , j ∈ J

max
1≤i≤n

ri j , j ∈ J ′ 1 ≤ j ≤ m, (2)

where J is associated with “the more, the better” criteria and J’ is associated with “the less,
the better” criteria.

Step 4. Let us consider

� =
{
w = (w1, . . . , wm) ∈ R

m, w j ∈ [0, 1],
∑m

j=1
w j = 1, l j ≤ w j ≤ u j , 1 ≤ j ≤ m

}
�= ∅,

(3)
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being l j , u j ≥ 0 lower and upper bounds for each criterion’s weight.
Given A+, A−, we define two separation functions,

D+
i : � × R

m → [0, 1], D−
i : � × R

m → [0, 1], 1 ≤ i ≤ n,

Given by

D+
i (w) = d

(
(w1r i1, . . . , wmrim),

(
w1r

+
1 , . . . , wmr

+
m

))
, 1 ≤ i ≤ n, (4)

D−
i (w) = d

(
(w1r i1, . . . , wmrim),

(
w1r

−
1 , . . . , wmr

−
m

))
, 1 ≤ i ≤ n. (5)

Step 5. Calculate the function of relative proximity to the ideal solution, Ri : � →
[0, 1], 1 ≤ i ≤ n, as

Ri (w) = D−
i (w)

D+
i (w) + D−

i (w)
, 1 ≤ i ≤ n. (6)

Step 6. For each i, 1 ≤ i ≤ n, we calculate the values Rmin
i (w), Rmax

i (w) solving the
two following mathematical programming problems where decision variables are the criteria
weights:

Rmin
i = min

w
{Ri (w),w ∈ �}, Rmax

i = max
w

{Ri (w),w ∈ �}, 1 ≤ i ≤ n. (7)

Then, we construct n relative proximity intervals,

RI
i = [

Rmin
i , Rmax

i

]
, 1 ≤ i ≤ n. (8)

Step 7.We rank the intervals RI
1 , R

I
2 , …, RI

n .
Output. We rank the alternatives {Ai , 1 ≤ i ≤ n} considering that Ai ≥ A j if and only

if RI
i ≥ RI

j .

To order intervals
{
RI
i , 1 ≤ i ≤ n

}
it is usual to select a real number, R∗

i , 1 ≤ i ≤ n,
representing the interval and to use each R∗

i as an auxiliar score in the UW-TOPSIS method.
For instance, in Liern and Pérez-Gladish (2022, 2023), the authors choose

R∗
i = (1 − α)Rmin

i + αRmax
i , 1 ≤ i ≤ n, α a constant in [0, 1], (9)

and they consider that RI
i ≥ RI

k if and only if R∗
i ≥ R∗

k .

As Rmin
i and Rmax

i represent the worst and best possible global scores for Ai , respectively,
the choice of α = 0 means that the decision maker considers the worst case scenario most
likely for Ai , and α = 1 means the decision maker considers the best scenario most likely
for alternative Ai .

Proposition 1. With previous notation, if in UW-TOPSIS we consider, d, the Manhattan
distance in R

m, d(x, y) = ∑m
j=1

∣∣x j − y j
∣∣, and normalization ri j = μ

(
xi j

)
given by

μ
(
xi j

) =

⎧
⎪⎪⎨

⎪⎪⎩

xi j−min
i
xi j

max
i

xi j−min
i
xi j

, j ∈ J

max
i

xi j−xi j

max
i

xi j−min
i
xi j

, j ∈ J ′
(10)
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Then,

Rmin
i = Min

⎧
⎨

⎩

m∑

j=1

ri jw j , w ∈ �

⎫
⎬

⎭
, Rmax

i = Max

⎧
⎨

⎩

m∑

j=1

ri jw j , w ∈ �

⎫
⎬

⎭
, 1 ≤ i ≤ n. (11)

Proof: With normalization given in (10), all the criteria are of the type “the more, the
better”. Considering that

∑m
j=1w j = 1, replacing in (4) and (5) and with the Manhatann

distance, we obtain

D+
i (w) =

m∑

j=1

w j
(
1 − ri j

) = 1 −
m∑

j=1

ri jw j , D
−
i (w) =

m∑

j=1

ri jw j , 1 ≤ i ≤ n.

Taking into account (6), Ri (w) = ∑m
j=1 ri jw j , 1 ≤ i ≤ n.

Definition 1. Given n alternatives, {Ai , 1 ≤ i ≤ n}, m criteria, a distance function d in R
m

and μ a normalization function, we say a ranking of alternatives

A j1 ≥ A j2 ≥ · · · ≥ A jn ,

is weigthed-generated, if a vector exists w ∈ �, such that with it we can obtain that ranking,
that is S = {

w ∈ �, R j1(w) ≥ R j2(w) ≥ · · · ≥ R jn (w)
} �= ∅. This vector, w ∈ �, will be

called vector of decisional weights.

Obviously, any ranking obtained with the classical TOPSIS or with any extension con-
sidering precise weights an input in the algorithm, is weigthed-generated. However, as we
will see later, it is possible to obtain rankings based on R∗

i in UW-TOPSIS which are not
weigthed-generated, that is, for which it is not possible to find a vector w ∈ �, which
generates that ranking.

For Ai , we obtain the relative proximity values Rmin
i and Rmax

i with two vectors wmin
i =

(wmin
i1 , wmin

i2 , . . . , wmin
im ) ∈ � and wmax

i = (wmax
i1 , wmax

i2 , . . . , wmax
im ) ∈ �, 1 ≤ i ≤ n,

respectively. The UW-TOPSIS method, does not directly provide a set of weights associated
to the value, R∗

i given by (9). If the amplitude of the intervals of weights is not very big,
l j ≤ w j ≤ u j , 1 ≤ j ≤ m, this will not represent an important problem, as for any
intermediate relative proximity value we will have an approximte idea of the relative weights
of each criterion. However, if the intervals have a big amplitude (for instance, 0 ≤ w j ≤
1, 1 ≤ j ≤ m), andwe are interested in R∗

i ∈ (Rmin
i , Rmax

i ),wewill have to solve a decisional
problem. Figure 2 illustrates this situation. Let us observe that for Rmin and Rmax we obtain
a matrix of weights in which each row containts the vector of the criteria weights of the
decision alternative i. That is, for each decision alternative, we know the relative importance
of each criterion determining the minimum and maximum relative proximity to the ideal
solution. However, the relative importance of each decision criterion may be different for
each alternative.

If the decision maker is looking for decisional weights (see Fig. 2), that is, for the weights
which contribute to make a particular decision about the relative proximity index expressing
the relative importance of each criterion globally, the previously described situation could be
even worse, as he/she will be looking for a vector of weights w = (w1, . . . , wm) ∈ � able
to generate all the relative proximity values R∗ = (

R∗
1 , R

∗
2 , . . . , R

∗
n

)
with a common set of

weights for all the alternatives. Let us illustrate this situation with an example.

Example 1 Let us consider a decision problem where we need to rank 10 firms from the
pharmaceutical industry based on 5 decision criterion (see Table 1). Three of these decision
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Fig. 2 Decisional weights. Source: own elaboration

criteria are ESG (Environment, Social, Governance) criteria and the two are financial criteria
(Return, Volatility). The forth first criteria are of the type “the more, the better” and the
last one is of the type “the less, the better”. Data in Table 1 has been provided by Refinitiv
(2021), which offers one of the most comprehensive ESG databases. Specifically, we adopt
the individual environmental, social and governance ratings. These metrics range from 0 to
100, with a higher value indicating a better ESG performance of the firm. For the financial
return we will use the year to data (YTD) return which is defined as the amount of profit
(or loss) realized by an investment since the first trading day of the current calendar year.
To calculate YTD, we subtract the starting year value from the current value and we divide
the result by the starting-year value. Then we multiply by 100 to convert to a percentage.
Volatility will be measure using the standard deviation.

The only information available regarding the relative weight of the decision criteria is that
at least two criteria should be taken into account in the decision, that is 0.05 ≤ w j ≤ 0.5, 1 ≤
j ≤ 5. In this case, the set of feasible weights (see Step 4 in the UW-TOPSIS algorithm) is

� =
{
w = (w1, . . . , w5) ∈ R

5, 0.05 ≤ w j ≤ 0.5, 1 ≤ j ≤ 5,
∑5

j=1
w j = 1

}

Applying UW-TOPSIS to the decision matrix in Table 3, with the Manhatann distance
and normalization given in (10) (see Proposition 1), in Table 4 we display the results for R∗

i
obtained as R∗

i = 0.6Rmin
i + 0.4Rmax

i , 1 ≤ i ≤ 10. The full reproducible code, developed
by the authors, is available in the Appendix.

In Table 5 we have displayed the weights with which each firm reaches the worst and best
relative proximity value Ri.

It is clear that from the information displayed in Table 5 we cannot obtain a unique vector
of weights w ∈ � with which we could obtain the results in Table 4.

F1 ≥ F4 ≥ F2 ≥ F3 ≥ F5 ≥ F9 ≥ F8 ≥ F6 ≥ F7 ≥ F10 (12)

Taking into account Definition 1, we wonder if S is an empty set, being S

S =
{

w ∈ �, R1(w) ≥ R4(w) ≥ R2(w) ≥ R3(w) ≥ R5(w) ≥
≥ R9(w) ≥ R8(w) ≥ R6(w) ≥ R7(w) ≥ R10

}
(13)
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Table 3 Decision matrix. Source: own elaboration based on Refinitiv (2021)

Firms Environment Social Governance Return Volatility

F1 92.19207 97.01846 95.77381 0.24010 0.01728

F2 86.39374 96.32963 95.36359 − 0.11701 0.01630

F3 93.46930 97.52688 87.81893 − 0.16073 0.01449

F4 82.50266 96.73020 86.95167 0.13612 0.02030

F5 91.19674 91.39787 88.29635 − 0.00539 0.01640

F6 91.21411 96.19961 70.53345 − 0.16689 0.02196

F7 63.17728 93.36397 90.61404 0.35213 0.03128

F8 86.02502 93.05279 71.52951 0.08668 0.02128

F9 85.00002 92.34255 73.21152 0.05154 0.01128

F10 76.74062 88.23728 83.80195 − 0.25737 0.01938

Table 4 Relative proximity
values. Source: own elaboration
using data from Refinitiv (2021)

Firm R∗
i Firm R∗

i

F1 0.8518690 F6 0.4160252

F2 0.6586368 F7 0.3928414

F3 0.6502236 F8 0.4230034

F4 0.6756216 F9 0.5134063

F5 0.5783486 F10 0.2486541

With the distance and normalization chosen for this example, we can apply Proposition
1, and thus Ri (w) = ∑5

j=1 ri jw j , 1 ≤ i ≤ 10. Then, the inequalities given in (19) are
linear and we can easily probe that S = ∅. That is, no vector of weights exist, w ∈ �, that
generates que ranking of firms given in (12). In what follows we will propose a solution for
this problem.

4 Obtaining decisional weights

Given a vector R∗ = (R∗
1 , R

∗
2 , . . . , R

∗
n) with R∗

i ∈ [
Rmin
i , Rmax

i

]
, 1 ≤ i ≤ n, we wonder if

the system of equations

D−
i (w)

D+
i (w) + D−

i (w)
= R∗

i , 1 ≤ i ≤ n, (14)

has solution for some w ∈ �.
Of course, if in (3) l j = u j , 1 ≤ j ≤ m, the system in (14) has a solution w that is the

vector of weights used in a classical TOPSIS approach (see Fig. 1). However, if the existence
of solution in (14) is not guaranteed, we will use an approximate solution. Specifically, if we
consider the function R : � → [0, 1]n, given by

R(w) = (R1(w), R2(w), . . . , Rn(w)), (15)
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we need to find a vector w∗ ∈ � such that R(w) is approximately equal to R∗. To find vector
w∗, we can solve an optimization problem

Min
{
d
(
R(w), R∗), w ∈ �

}
. (16)

The properties of � facilitate the existence of solution in (16) (see (3)). For example, (16)
can be easyly solved as follows

Min

⎧
⎨

⎩
1

n

n∑

i=1

(
D−
i (w)

D+
i (w) + D−

i (w)
− R∗

i

)2

, w ∈ �

⎫
⎬

⎭
. (17)

That is, if we suppose that R∗ is the vector with the true values, in (17) we obtain the vector
w∗ ∈ � which minimizes the mean-squared error (MSE), assuming R(w∗) as an estimation
of R∗.

The purpose of (17) is to be as close as possible to a set of given scores, R∗
i .

Nevertheless, this does not guaraantee that the rankings given by
{
R∗
i , 1 ≤ j ≤ m

}
and{

Ri (w
∗), 1 ≤ j ≤ m

}
are the same. If, in addition to the proximity among the scores, we

want to maintain the ranking R j1 ≥ R j2 ≥ · · · ≥ R jn given by
{
R∗
i , 1 ≤ j ≤ m

}
, as in

Definition 1, we should optimize in S = {
w ∈ �, R j1(w) ≥ R j2(w) ≥ · · · ≥ R jn (w)

}
, that

is

Min
{
d
(
R(w), R∗), w ∈ S

}
. (18)

Solving (18) means finding a vector of weights that reconciles two uses of TOPSIS: a
rating and a ranking generator. Nevertheless, as we will see in what follows, feasibility in
(18) is not guaranteed (19) and this is one of the questions addressed in this work.

In what follows, we will summarize the previous reasoning as a subrutine that we will use
in the overall scheme displayed in Fig. 3.

4.1 Subroutine ApW

Using previously notation, we can express the previous reasoning in algorithmic form.
Inputs. Let us consider a vector R∗ = (R∗

1 , R
∗
2 , . . . , R

∗
n) with R∗

i ∈ [
Rmin
i , Rmax

i

]
, 1 ≤

i ≤ n, and an associated ranking of alternativesA j1 ≥ A j2 ≥ · · · ≥ A jn .
Step 1.We construct the set S = {

w ∈ �, R j1(w) ≥ R j2(w) ≥ · · · ≥ R jn (w)
}

Step 2.We calculate

EMCS = Min

{
1

n

n∑

i=1

(
Ri (w) − R∗

i

)2
, w ∈ S

}

. (19)

• If EMCS is feasible, being its solution w∗ = (
w∗
1, w

∗
2, . . . , w

∗
m

)
, go to Step 4.

• If EMCS is infeasible, go to Step 3.

Step 3.We calculate

EMC� = Min

{
1

n

n∑

i=1

(
Ri (w) − R∗

i

)2
, w ∈ �

}

. (20)

and we obtain the optimum solution w∗ = (
w∗
1, w

∗
2, . . . , w

∗
m

)
.

Step 4. Using vector w∗ = (
w∗
1, w

∗
2, . . . , w

∗
m

)
obtained in (19) or (20), we apply the

classic TOPSIS approach to the original decision matrix
[
xi j

]
, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

obtaining the relative proximities R1(w
∗), R2(w

∗), …, Rn(w
∗).
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Fig. 3 Flowchart with the different options to obtain a ranking of the alternatives and to know the relative
weights of the criteria. Source: own elaboration
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Output. We rank the alternatives {Ai , 1 ≤ i ≤ n} considering Ai ≥ A j if and only if
Ri (w

∗) ≥ R j (w
∗).

As we can observe in Fig. 3, the decision maker will only need to know, at the beginning
of the process, the decision alternatives, the decision criteria and to decide about the nor-
malization and distance functions (this decision will be determined by the type of decisional
problem). If the criteria weights for the aggregating process can be elicitated by the decision
maker (objectively or subjectively), we will apply the classical TOPSIS approach to rank
the alternatives. However, in those situations in which the decision maker does not want or
is not able to elicitate the criteria weights, we will apply UW-TOPSIS. UW-TOPSIS will
consider the weights as unknowns in the optimization problems that search for the minimum
and maximum relative proximity of each alternative to the ideal solution. Therefore, after the
optimization process we will have, for each alternative, instead of a scalar representing the
relative proximity, an interval. The extremes of the intervals will represent the worst and best
situation for each alternatives in terms of the value of Ri and will have an associate vector
of weights, expressing, for each alternative, the contribution of each criterion in its possition
in the ranking. If the decision maker wants to rank the alternatives based on the obtained
global scores or rates, Ri, he/she only needs to choose any of the multiple available methods
to rank intervals on the real line. As commented before, in this work, we have chosen to
work with the convex linear combination of the extremes of the intervals, letting the decision
maker decide his/her risk aversion regarding the ranking scenario: if he/she feels pessimistic,
he/she will choose the lower extreme of the interval and rank the alternatives accordingly. If
he/she feels totally optimistic he/she will choose the upper extreme of the interval. For any
other intermediate situation, he/she will choose an intermediate value for the coefficient in
the linear combination, obtaining the associate ranking.

At this point of the process, is where the procedure propossed in this work starts. If the
ranking is weighted-generated then wewill have the decisional weights. If this is not the case,
then we will need to find a vector of weights that better aproximate the value of Ri. Once
these approximate decisional weights have been obtained they are included in a classical
TOPSIS as inputs and the corresponding ranking is obtained.

To show the usefulness of the proposed solution, let us go back to the previous example
(Example 1). If in this example, we apply the Subroutine ApW, we obtain the vector of
decisional weights

w∗ = (0.1046952, 0.1943971, 0.1768560, 0.2532284, 0.2708232)

The results applying the classical TOPSIS with this vector of weights w∗ are shown in
Table 6.

Figure 4 displays the relative proximity values R∗
i (Table 2) and Ri (w

∗) (Table 6) facili-
tating comparison and the goodness of fit.

Table 6 Relative proximity values
using classical TOPSIS with
decisional weights w∗. Source:
own elaboration based on
Refinitiv (2021)

Firm Ri (w
∗) Firm Ri (w

∗)

F1 0.8571948 F6 0.4272853

F2 0.6847303 F7 0.5012133

F3 0.6877042 F8 0.4650904

F4 0.6717830 F9 0.5792635

F5 0.5935877 F10 0.3010469
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Fig. 4 Comparison of relative proximity values. Source: own elaboration

In the next section we illustrate the proposed model with a real case study extending
Example 1.

Remark 2. If we repeat the reasoning with a degree of optimism α = 0.6, that is R∗
i =

0.4Rmin
i + 0.6Rmax

i , 1 ≤ i ≤ 10, the obtained ranking would be

R∗
1 = 0.887 ≥ R∗

3 = 0.745 ≥ R∗
2 = 0.734 ≥ R∗

4 = 0.709 ≥ R∗
5 = 0.651 ≥

≥ R∗
9 = 0.611 ≥ R∗

6 = 0.542 ≥ R∗
7 = 0.531 ≥ R∗

8 = 0.491 ≥ R∗
10 = 0.334

(21)

The vector of weights obtained with our method is

w∗ = (0.22923, 0.2184641, 0.1745323, 0.2011543, 0.1766192)

with error EMC = 0.0011255381 (see (19)). Vector w∗ does not generates the ranking
associated to (21), as it permutes firms F8 and F7, that is,

F1 ≥ F3 ≥ F2 ≥ F4 ≥ F5 ≥ F9 ≥ F6 ≥ F8 ≥ F7 ≥ F10.

Nevertheless, with vector

w∗ = (0.1988455, 0.2320587, 0.1923732, 0.1978837, 0.1788389)

we can obtain the ranking associated to (21) with an error EMC = 0.001248, slightly
higher than the one obtained with our method.

5 Real case study: ranking firms based on their environmental, social
and governance performance

Refinitiv measures a company’s relative Environmental, Social and Governance (ESG) per-
formance, commitment and effectiveness across 10 main themes, based on publicly available
and auditable data (see Fig. 5). To illustrate the proposed methodology with a real case, let
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Fig. 5 Refinitiv dimensions and main themes. Source: own elaboration based on Refinitiv

us rank the firms included by Refinitiv in the Top 100 EMEA companies in terms of their
Environmental, Social and Governance (ESG) Performance using data from august 2022.

The firms relative ESG performance is expressed by means of ESG scores ranging from
0 to 100, reflecting the commitment and effectiveness of the firms in each dimension, based
on company-reported data. Refinitive also provides an overall ESG combined (ESGC) score,
which takes into account significant ESG controversies affecting the firms. As the importance
of ESG factors is different across industries and countries, Refinitiv takes into account the
sector of the firms in the case of the environmental and social dimensions and the country in
the case of the governance dimension.

In this work we will use the Environmental, Social and Governance scores. In addition,
we will consider two financial criteria: return and risk. For the financial return we will use
the year to data (YTD) return which is defined as the amount of profit (or loss) realized by
an investment since the first trading day of the current calendar year. To calculate YTD, we
subtract the starting year value from the current value and we divide the result by the starting-
year value. Then we multiply by 100 to convert to a percentage. Volatility will be measure
using the standard deviation. All the data, ESG scores and financial data were provided by
Refinitiv on august 2022. Table 7 displays the main statistics of the dataset.

Table 7 Descriptive statistics

Dimension # Obs Mean St. Dev Median Min Max Skewness Kurtosis

Environment 100 83.67 9.87798 85.47 62.34 99.05 − 0.54918 − 0.5391

Social 100 87.34 7.34199 89.17 65.10 97.59 − 0.72982 − 0.2597

Governance 100 77.04 11.7311 78.80 41.08 95.77 − 0.86415 0.8614
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We have considered 5 different scenarios for the weights. In all scenarios the upper bound
is set at 0.5. With this we force the solution to take into account all the decision criteria. For
the lower bounds we have consider different situations ranging from 0 to 0.1 (see Table 8).
The obtained decisional weights are displayed in Table 8. Results are displayed by sectors.
We have used the Global Industry Classification Standard (GICS) which is a common global
classification standard used by Refinitiv. Last column shows the root-mean-squared errors
(RMSE). As mentioned in the previous section, the full reproducible code, developed by the
authors, is available in the Appendix.

Let us observe scenario 2. In this scenario the weights have, in the optimization problem,
a minimum bound equal to 0.025 and a maximum bound equal to 0.5. Figure 6 displays the
optimum decisional criteria weights by sectors. As we can observe, the financial return has
the same relative importance regardless the sector.

There is a small discrepancy among sectors in the relative importance of the social criterion
and the governance criterion. However, we can observe some important differences in the
relative importance of the environmental decision criterion. The sector with the hightest
environment relative importance is Communication Services with more than 40% of relative
importance. On the other hand, for the Information sector, the relative importance of the
environment criteria is less than 15%. The remaining sectors give this decision criteria a
similar importance.

It is interesting to observe, how the Information sector is the one giving more importance
to financial volatility and Communication Services sector is the sector for which financial
volatility has less importance.

The obtained results provide information to the decision maker regarding those criteria
which are not influencing the ranking of the firms given their sectors. In the previously
commented example, the financial return of the firms is not determining their position in the
ranking. The same is applicable to the social criterion. The focus in this case, would be on
the environmental and governance criteria and on the financial volatility.

6 Conclusions

Investors, consumers and goverments are increasingly demanding reliable ESG rating and
ranking of firms. These ratings can identified the weaknesses and strenghs in terms of ESG
performance of the companies, therefore representing an opportunity to improve. Several
rating agencies provide all around the world ESG global ratings. However, the methodology
behind the rating and ranking processes followed by these agencies has been widely critizied.
Among its main weaknesses we can find problems related to the reliability of the ESG
data provided by the companies but also related to the decision criteria selection and to the
determination of their relative importance in the aggregation process giving rise to the global
ESG rating.

TOPSIS is a well-known and widely applied MCDM distance-based method which has
a double possible use: the rating and ranking of a set of decision alternatives based on
different decision criteria. Classical TOPSIS approaches usually require two main inputs:
the individual scores of the alternatives with respect to the criteria and criteria weights. If
the decision maker is able to elicitate, objectively or subjective, the criteria weights then, the
classical TOPSIS approaches are useful. Otherwise, for those situations in which this is not
possible we propose the use of UW-TOPSIS.
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Table 8 Results in different scenarios. Source: own elaboration

Sector Environment Social Governance Return Volatility MSE

Scenario 1 wi ∈ [0, 0.5]

Communication
Services

0.46848 0.32565 0.17103 0.03272 0.00211 0.00067

Consumer
Staples

0.30296 0.34352 0.21542 0.03027 0.10783 0.00041

Health 0.32213 0.31106 0.27396 0.03415 0.05869 0.00153

Industrials 0.28737 0.31564 0.25857 0.03461 0.10380 0.00148

Information 0.12917 0.38181 0.27592 0.02101 0.19209 0.00035

Scenario 2 wi ∈ [ 0.025, 0.5]

Communication
Services

0.42792 0.26583 0.19535 0.04731 0.06359 0.00025

Consumer
Staples

0.25976 0.29053 0.24280 0.05207 0.15483 0.00051

Health 0.30442 0.26875 0.25862 0.05688 0.11132 0.00051

Industrials 0.25386 0.26794 0.29381 0.05368 0.13071 0.00092

Information 0.14075 0.32256 0.27536 0.03987 0.22146 0.00022

Scenario 3 wi ∈ [0.05, 0.5]

Communication
Services

0.40271 0.19713 0.22343 0.07109 0.10564 0.00022

Consumer
Staples

0.22140 0.23978 0.24562 0.07988 0.21332 0.00025

Health 0.26631 0.24695 0.24448 0.07904 0.16323 0.00024

Industrials 0.22239 0.20008 0.31442 0.08229 0.18082 0.00046

Information 0.15731 0.27630 0.26190 0.06116 0.24333 0.00010

Scenario 4 wi ∈ [0.075, 0.5]

Communication
Services

0.40099 0.10612 0.24942 0.09789 0.14558 0.00017

Consumer
Staples

0.23259 0.18833 0.22228 0.10529 0.25151 0.00016

Health 0.27654 0.09803 0.26257 0.12287 0.23998 0.00027

Industrials 0.17039 0.20175 0.30080 0.10747 0.21958 0.00027

Information 0.16787 0.24091 0.25381 0.08172 0.25569 0.00007

Scenario 5 wi ∈ [0.1, 0.5]

Communication
Services

0.37028 0.10000 0.24712 0.11467 0.16792 0.00013

Consumer
Staples

0.25604 0.18585 0.17524 0.12260 0.26027 0.00012

Health 0.22903 0.10252 0.23230 0.15541 0.28074 0.00027

Industrials 0.13963 0.22108 0.27203 0.12888 0.23838 0.00021

Information 0.17552 0.21131 0.25187 0.10288 0.25842 0.00003
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Fig. 6 Decisional weights by sectors in scenario 2. Source: own elaboration based on Refinitiv

In UW-TOPSIS the decision criteria weights are considered variables in two optimization
problems which determine and interval with the minimum and maximum relative proximity
to the positive ideal solution. In this method, two matrices of weights are obtained associated
to the extremes of the relative proximity intervals. However, if the decision maker looks for a
unique vector of weights with the relative importance of the criteria (decisional weights), as
in the classic TOPSIS, the UW-TOPSISmethod is not always able to direcly provide it. In this
paper, we discuss this situation and its managerial consequences proposing an approximate
method that solves the problem of the determination of those decision weights.

The proposed approach has been applied to the ranking of a set of firms based on ESG
and financial criteria. Using different lower and upper bounds we have generated several
scenarios which have provided us with decisional vectors of weights expressing the relative
importance of the decision criteria globally, that is, taking into account all the alternatives.
Following the spirit of Refinitiv, we have calculated the vectors of weights taking into account
the sector classification of the firms. The vectors with weights can be easily obtained taking
also into account the country of the firms. The obtained results inform us about the real
relevance of each decision criteria.

The full reproducible code, developed by the authors, available for all the readers, is
displayed in the Appendix.
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Appendix: Code

Lower and upper bounds for the weights have been taken from example 1.
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# Library import 

library(xlsx) 

library(readxl) 

library(nloptr) 

library(uwTOPSIS) 

# Function definition 

least_square_TOPSIS <- function(w, x, directions, R0){ 

# Function that fits the TOPSIS score 

# to a certain vector R0 by means of 

# the least squares method 

LST <- TOPSIS(w, x, directions) - R0

return( sum( LST^2 ) ) 

}

weight_constraint <- function(w, x, directions, R0) { 

# Constraint function to set the sum of weights equal to 1 

constraint <- c(sum(w) - 1, 1 - sum(w))

return(constraint)

}

# Data preparation 

df <- read_excel("path_to_data.xlsx") 

w0 <- rep(1 / (ncol(df) - 1), ncol(df) - 1) 

L <- rep(0.05, ncol(df) - 1) 

U <- rep(0.5, ncol(df) - 1)

directions <- c('max', 'max', 'max', 'max', 'min') 

norm.method <- 'minmax'

# uwTOPSIS algorithm 

X <- uwTOPSIS(x = df, 

directions, 

norm.method, 

L,

U,

p=1, 

makefigure = FALSE) 

# Save results in a xlsx file 

for (idx in seq_along(X)) { 

if(idx == 1){ 

write.xlsx(X[[idx]], 

file='ESG_uwTOPSIS.xlsx', 

sheetName = names(X)[idx], 

row.names = FALSE) 

}

else{ 

write.xlsx(X[[idx]], 

file='ESG_uwTOPSIS.xlsx', 

sheetName = names(X)[idx], 

append = TRUE) 

alpha=0.4,
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}

}

# Least squares method for fitting TOPSIS to the score sequence R0 

alpha <- 0.5 

R0 <- alpha*X$scores$Min + (1-alpha)*X$scores$Max 

sols <- nloptr(x0 = w0,

eval_f = least_square_TOPSIS, 

eval_g_ineq = weight_constraint,  

lb = L,

ub = U, 

opts = list(algorithm = "NLOPT_LN_COBYLA",  

xtol_rel = 1e-8,

xtol_abs = 1e-8,

maxeval = 2000),

x = df, 

directions = directions, 

R0 = R0)

# Save solution of least squares problem 

solution <- data.frame(weights = sols$solution, 

optimal = c(sols$objective, 

rep(0, length(sols$solution)-1)),

optimal_normalized = c(sols$objective/nrow(df), 

rep(0, length(sols$solution)-1)), 

) 

# Append the dataframe to the output xlsx file 

write.xlsx(t(df_solution), 

file='ESG_uwTOPSIS.xlsx', 

sheetName = 'least_square_TOPSIS', 

append=TRUE) 
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