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Abstract: Usually, after an abnormal level of serum prostate-specific antigen (PSA) or digital rectal
exam, men undergo a prostate needle biopsy. However, the traditional sextant technique misses
15–46% of cancers. At present, there are problems regarding disease diagnosis/prognosis, especially
in patients’ classification, because the information to be handled is complex and challenging to
process. Matrix metalloproteases (MMPs) have high expression by prostate cancer (PCa) compared
with benign prostate tissues. To assess the possible contribution to the diagnosis of PCa, we evaluated
the expression of several MMPs in prostate tissues before and after PCa diagnosis using machine
learning, classifiers, and supervised algorithms. A retrospective study was conducted on 29 patients
diagnosed with PCa with previous benign needle biopsies, 45 patients with benign prostatic hy-
perplasia (BHP), and 18 patients with high-grade prostatic intraepithelial neoplasia (HGPIN). An
immunohistochemical study was performed on tissue samples from tumor and non-tumor areas
using specific antibodies against MMP -2, 9, 11, and 13, and the tissue inhibitor of MMPs -3 (TIMP-3),
and the protein expression by different cell types was analyzed to which several automatic learning
techniques have been applied. Compared with BHP or HGPIN specimens, epithelial cells (ECs)
and fibroblasts from benign prostate biopsies before the diagnosis of PCa showed a significantly
higher expression of MMPs and TIMP-3. Machine learning techniques provide a differentiable
classification between these patients, with greater than 95% accuracy, considering ECs, being slightly
lower when considering fibroblasts. In addition, evolutionary changes were found in paired tissues
from benign biopsy to prostatectomy specimens in the same patient. Thus, ECs from the tumor
zone from prostatectomy showed higher expressions of MMPs and TIMP-3 compared to ECs of
the corresponding zone from the benign biopsy. Similar differences were found for expressions of
MMP-9 and TIMP-3, between fibroblasts from these zones. The classifiers have determined that
patients with benign prostate biopsies before the diagnosis of PCa showed a high MMPs/TIMP-3
expression by ECs, so in the zone without future cancer development as in the zone with future
tumor, compared with biopsy samples from patients with BPH or HGPIN. Expression of MMP -2, 9,
11, and 13, and TIMP-3 phenotypically define ECs associated with future tumor development. Also,
the results suggest that MMPs/TIMPs expression in biopsy tissues may reflect evolutionary changes
from prostate benign tissues to PCa. Thus, these findings in combination with other parameters
might contribute to improving the suspicion of PCa diagnosis.
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1. Introduction

Prostate cancer (PCa) is the most common cancer in men; approximately 75% of the
diagnosed patients are 65 or older. Therefore, considering the progressive increase in the
age of the population and that the mortality rates of PCa are increasing with age, a dramatic
increase in PCa incidence and mortality is expected. For all of this, an early diagnosis is
key [1,2].

Despite the controversy, prostate-specific antigen (PSA) screening is generally consid-
ered for detecting PCa [3]. PSA is a serine proteolytic enzyme produced by both normal
and tumoral prostatic epithelium. A serum PSA level exceeding 4 ng/mL is considered
abnormal. The use of serum PSA permits the early detection of PCa and the optimization of
an effective biopsy technique. Prostate needle biopsy is systematic transrectal ultrasound-
guided, during which a urologist uses an ultrasound probe placed in the rectum and
obtains 12 or more needle core biopsies from standard locations in the gland. If a prostate
biopsy is positive for cancer, open, laparoscopic, or robotic radical prostatectomy is the
definitive treatment of localized PCa.

PCa is the only solid organ malignancy that is diagnosed by such random systematic
biopsies. However, the specificity of this method is limited because an elevated serum
PSA concentration is not specific to carcinomas but may be due to benign conditions,
such as benign prostatic hyperplasia (BPH), prostatitis, trauma, infarction, or manipula-
tions. This standard approach is associated with disturbingly high rates of false negative
diagnosis, overdiagnosis, and underdiagnosis [4–6]. Concerning this latter issue, the tradi-
tional sextant technique misses 15–46% of cancers [7]. Although some progress has been
made in terms of improvement, such as the multiparametric MRI targeted biopsy of the
prostate [6,8–12], which is now the recommended standard, the ideal strategy for PCa
diagnosis is still to be completely defined.

Matrix metalloproteases (MMPs) have reached an extraordinary interest in cancer
research due to their role in tumor invasion and metastasis, by degrading basal membrane
and extracellular matrix degradation [13]. In addition, MMPs are able to impact other basic
processes of tumor progression, such as inhibiting apoptosis, stimulating proliferation, or
regulating cancer/related angiogenesis (for review: [14]). On the other hand, it is assumed
that tissue inhibitors of MMPs (TIMPs) are multifactorial proteins also involved in the
induction of cell proliferation and the inhibition of apoptosis [15]. The expression of several
MMPs and TIMPs, such as MMP -2, -7, -9, -11, -13 or -14, TIMP-1, -2 or -3, has been
reported and associated with the development of tumor aggressiveness and poor prognosis
in PCa [16–27]. It has been also suggested that the high expression of MMPs/TIMPs by
PCa compared with benign tissues could contribute to diagnosis [28].

The objective of the present work was to explore the evolutionary behavior of the
expression of MMP -2, 9, 11, and 13 and TIMP-3, from benign prostate tissues to cancer, and
their possible contribution to predicting PCa development. For this purpose, we analyzed
especially benign biopsies from patients previous to PCa diagnosis compared with tissue
samples from benign prostatic hyperplasia (BHP) and high-grade intraepithelial neoplasia
(HGPIN), using machine learning techniques, and thus obtained intelligent classifiers able
to predict the diagnosis of PCa.

2. Results

In the group of patients with PCa, the average number of biopsies before cancer
diagnoses was 1.23 (range, 1–7: 14 patients underwent two biopsies, 4 underwent three
biopsies, and 1 underwent seven biopsies).

Figure 1 shows some examples of immunostaining for each protein evaluated in
different prostate tissues in benign or malignant prostate tissues. Immunostaining for all
the proteins studied was localized predominantly in tumor cells and epithelial cells, but
also in a significant percentage of stromal fibroblasts. Figures 2 and 3 show the percentages
of positive cases for each protein in different tissue samples.
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2.1. Comparative Study of the Expression of Factors among Different Benign Tissues Accuracy

We found a significantly higher expression of factors by ECs and fibroblasts from
benign prostate biopsies before the diagnosis of PCa, so these expressions in zones without
future cancer development (C1) as in zones with future tumor (C2), compared with prostate
biopsy samples from patients with BPH (C5) or HGPIN (C6) (Figures 2–5). These findings
suggest the existence of biological changes in prostate tissues preceding PCa diagnosis.

The results regarding ECs are confirmed by the classifiers. As can be seen in Table 1,
ECs provide very relevant information that can be used to differentiate C1 or C2 patients
concerning C5 and C6, respectively, since the accuracy is high. Indeed, C1 vs. C5 has a hit
of 97.2% in FURIA and SVM and C2 vs. C6 has a hit of 98% in FURIA, for example.

Regarding fibroblasts, it can be determined that the information is also remarkable but
to a lesser extent than concerning ECs. As can be seen in Table 2, C1 vs. C5 had an accuracy
of 84.2% and C2 vs. C6 had an accuracy of 81.7% in FURIA, for example.
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Figure 1. Immunohistochemical staining of MMP-2, -9, -11, -13, and TIMP-3 in benign (benign
prostatic hyperplasia (BHP), high-grade prostatic intraepithelial neoplasia (HGPIN)) and malignant
prostate tissues, before (Pre-CaP) and after prostate cancer (PCa) diagnosis. Magnification: ×200.

2.2. Evolutionary Changes in Paired Prostate Tissues from Benign Tissues to Cancer Diagnosis

To investigate the evolutionary changes of prostate tissues from benign tissue biopsies
to PCa, we compared the expression of factors in biopsies before cancer diagnosis and in
the prostatectomy specimen, from the same patients. For this purpose, we analyzed the
sextant zones of the prostate before cancer diagnosis in two major zones: the zone without
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future cancer development and the zone with future cancer development. In addition,
prostate zones corresponding to prostatectomy specimens were analyzed in two zones: the
zone containing the tumor (tumor zone) and the zone distant to the tumor at least 1 cm
(non-tumor zone) (Figure 6).
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Figure 2. Expression of MMPs and TIMP-3 by epithelial cells from benign prostatic hyperplasia
(BHP), high-grade prostatic intraepithelial neoplasia (HGPIN), benign prostate biopsies before the
diagnosis of prostate cancer (non-tumor zones and zones with future tumor), and from paired zones
from prostatectomies by prostate cancer (non-tumor zone and zone with tumor). The values represent
the percentages of cases. Columns represent the number of cases of each series.
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Figure 3. Expression of MMPs and TIMP-3 by fibroblasts from benign prostatic hyperplasia (BHP), 
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Figure 3. Expression of MMPs and TIMP-3 by fibroblasts from benign prostatic hyperplasia (BHP),
high-grade prostatic intraepithelial neoplasia (HGPIN), benign prostate biopsies before the diagnosis
of prostate cancer (non-tumor zones and zones with future tumor), and from paired zones from
prostatectomies by prostate cancer (non-tumor zone and zone with tumor). The values represent the
percentages of cases. Columns represent the number of cases of each series.
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Figure 4. Schematic comparative study of the expression of MMPs and TIMP-3 by epithelial cells and
by fibroblasts from benign prostatic hyperplasia (BHP), benign prostate biopsies before the diagnosis
of prostate cancer (non-tumor zones and zones with future tumor), and from paired zones from
prostatectomies by prostate cancer (non-tumor zone and zone with tumor). +: lower expression; +++:
higher expression.

Figures 2 and 3 show the expression of the studied factors in the differentiated tissues,
and Figure 6 the significant differences from the several comparisons. Firstly, in benign
biopsies before PCa diagnosis, we found no significant differences in MMPs/TIMP-3
expression by ECs or fibroblasts, between zones either without (C1) or with future tumor
(C2). This data is confirmed by the intelligent algorithms since they obtain a hit rate
of less than 75% in the C1 vs. C2 experimentation in the different study factors, ECs,
and fibroblasts. Therefore, this finding suggests that the expression of these factors does
not provide information about in which prostate area a subsequent cancer diagnosis will
be made.

Comparing the expression of MMPs/TIMP-3 in tissue from biopsies before cancer
diagnosis and in the tumor zone of the prostatectomy specimen revealed several significant
differences. Malignant epithelial cells from the prostatectomy tumor site (C4) showed
higher expression of MMP-2, -9, and -11, and TIMP-3 than ECs from the benign biopsy
site with future cancer development (C2). Likewise, similar differences were found for the
expression of MMP-9 and TIMP-3 by fibroblasts from these two zones. Thus, these differ-
ences in MMPs/TIMP-3 expression seem to correspond to molecular changes associated
with the onset of cancer biology or tumor progression.
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Figure 5. Schematic comparative study of the expression of MMPs and TIMP-3 by epithelial cells and
by fibroblasts from high-grade prostatic intraepithelial neoplasia (HGPIN), benign prostate biopsies
before the diagnosis of prostate cancer (non-tumor zones and zones with future tumor), and from
paired zones from prostatectomies by prostate cancer (non-tumor zone and zone with tumor). +:
lower expression; +++: higher expression.

Table 1. Percentage of accuracy for the different algorithms considering MMPs/TIMP-3 expression
by epithelial cells.

Epithelial Cells SVM LR DeepL xbgoost FURIA

C1 vs. C5 97.2% 95.9% 71.6% 95.9% 97.2%
C2 vs. C5 95.9% 91.8% 78.3% 93.2% 96.0%
C1 vs. C6 95.7% 93.6% 72.3% 95.7% 97.6%
C2 vs. C6 93.6% 87.2% 61.7% 82.9% 98.0%

Table 2. Percentage of accuracy for the different algorithms considering MMPs/TIMP-3 expression
by fibroblasts.

Fibroblasts SVM LR DeepL xbgoost FURIA

C1 vs. C5 67.5% 71.6% 62.1% 78.3% 84.2%
C2 vs. C5 83.7% 77.0% 64.8% 85.1% 87.8%
C1 vs. C6 78.7% 80.8% 57.4% 85.1% 88.5%
C2 vs. C6 78.7% 68.0% 55.3% 74.4% 81.7%
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Figure 6. Schematic comparative study of the expression of MMPs and TIMP-3 by epithelial cells
and by fibroblasts from benign prostate biopsies before the diagnosis of prostate cancer (non-tumor
zones and zones with future tumor), and from paired zones from prostatectomies by prostate
cancer (non-tumor zone and zone with tumor). +: lower expression; ++: middle expression; +++:
higher expression.

The analyses carried out with the intelligent algorithms determined that C2 and C4 can
be classified/differentiated by considering the expressions of MMP-2, -9, -11, and -13, and
TIMP-3 by the ECs. The FURIA algorithm showed a 91.1% accuracy. Nevertheless, when
analyzing only the expressions of MMP-2, -9 and -11, and TIMP-3 in ECs, a hit of 86.2%
was obtained with the FURIA algorithm implying that the relevant MMP13 expression for
the discrimination between C2 and C4 samples.

However, considering MMP-9 and TIMP-3 expression by fibroblast, C2 vs. C4 has less
than 75% accuracy with FURIA. If all the variables, MMPS/TIMP3, are considered, the
difference between C2 and C4 samples is still unsatisfactory by intelligent algorithms, only
reaching a 76.3% accuracy with FURIA.

It was also of note that our finding indicated that ECs from the non-tumor zone from
prostatectomy specimens (C3) showed higher expressions of MMP-9 -11, and TIMP-3 than
ECs from the zone without future cancer development from biopsy (C1). These data seem
to indicate changes in the whole microenvironment from prostate associated to cancer
development. This information is corroborated by the classification algorithms. Indeed,
FURIA can classify samples in group C1 y C3 using the MMP-9, -11, and TIMP-3 by ECs
with an accuracy of 90.8%.

Nevertheless, fibroblasts from tumor areas (C4) show higher expression of MMP-
2 and TIMP-3, compared with fibroblasts from non-tumor areas from prostatectomies
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(C3), which indicate that more pronounced dramatic changes occur in the most intimate
tumor microenvironment. Although the intelligent systems do not obtain an optimal
behavior between MMP-2 and TIMP-3 expressions by fibroblasts, the data and variables
are susceptible to study since the differentiation between samples C3 and C4 was 85%.

3. Discussion

Our results are in accordance with previous reports showing that MMPs are over-
expressed in PCa in comparison with prostate benign tissues [21,28]. MMPs have a key
role in cancer progression by positively affecting several basic processes, such as invasion
metastasis, angiogenesis, or proliferation (for review: [14,29]). Consequently, MMP ex-
pression was also associated with tumor progression and poor prognostic in PCa [21,23].
The present study suggests an alteration in the expression of these factors in situations
previous to the diagnosis of PCa. Thus, these findings led us to consider that these changes
may be in relation to the presence of the cancer microenvironment, although the result
of the biopsy was negative, or as a consequence of microenvironment changes related to
malignant transformation of the prostate epithelium.

These early changes can be expected to occur in HGPIN. It is generally accepted that
HGPIN is a preneoplastic lesion which initiates organ-confined prostate adenocarcinoma.
It is assumed that HGPIN initiates a combination of cellular events that trigger a cascade of
genomic instability [30]. In addition, HGPIN shows histological changes such as nuclear
atypia, loss of cellular polarity, focal dysplasia [31], loss of neuroendocrine and secretory
differentiation, nuclear and nucleolar abnormalities, neovascularity, increased proliferative
potential and genetic instability with the variation of DNA content [32]. However, the
basal lamina remains intact during PIN, which alteration is caused by the involvement
of MMPs. Therefore, our data seems to indicate that overexpression of MMPs may be
a more definitive event associated with tumor development. It is also noteworthy that
these findings related to tumors are affected not only by epithelial cell phenotype but also
that of stromal fibroblasts, which is in line with the importance assigned to this tissue
compartment in prostate development [33–35]. Thus, our data indicate that changes in ECs
and reactive stroma, which are composed mainly of carcinoma-associated fibroblasts, are
initiated during early PCa development.

In the present study, we also evaluated the evolutionary changes in the expression of
MMPs/TIMP-3, both in the area where the tumor arose and in those far away from them in
the previous benign biopsy and the prostatectomy specimen (Figure 6). Most factors were
overexpressed by epithelial malignant cells compared with the benign epithelial cells from
the corresponding zone with a benign previous biopsy. Nevertheless, higher expressions
of some factors were observed by stromal cancer-associated fibroblasts compared with
fibroblasts from previous biopsy (MMP-9 and TIMP-3) or to fibroblasts from non-tumor
zones of prostatectomy (MMP-2 and TIMP-3). On the other hand, it was also remarkable
that we found high expressions of several factors by ECs from non-tumor areas from
prostatectomies (MMP-9 and 11, and TIMP-3) compared with these same cell types from
previous benign biopsies in the zone where the tumor arose. Thus, the latter data suggest
that possible tumor-derived microenvironment alterations may involve the whole prostate
gland. This may be a differential fact of PCa due to its development in an organ-confined
gland, which might have importance to better diagnose PCa.

We chose these MMPs and TIMP-3 for their importance in tumor progression. MMP-2
(gelatinase A) and MMP-9 (gelatinase B) are related to tumor invasion and metastasis by
their special capacity to degrade the type IV collagen found in basement membranes [36,37].
Previously, MMP-9 has been found overexpressed in stromal cells from PCa and MMP-9
with biochemical recurrence [23]. MMP-11 (also known as stromelysin-3) has relatively
weak proteolytic potential compared with other MMPs [36]. However, whereas most MMPs
are secreted as proenzymes that need extracellular activation, MMP-11 is processed intra-
cellularly and secreted as an active enzyme, suggesting that MMP-11 may have a unique
role in tumor development and progression [38–40]. In addition, it has been proposed that,
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although in tumorigenesis induced by MMP-11 cancer cell proliferation was not increased,
cancer cell death through apoptosis and necrosis was decreased, indicating that the function
of MMP-11 is to promote cancer cell survival in the stromal environment [41]. Interestingly,
MMP-11 expression was associated with tumor progression [21,35] and castration resis-
tance in PCa [35]. Regarding TIMP-3, its expression by fibroblasts was associated with a
higher Gleason score [22]. Although TIMPs inhibit MMPs, the multifactorial proteins are
also involved in the proliferation and the inhibition of apoptosis [42].

On the other hand, we used machine learning techniques to improve a differentiable
classification among the patient populations and prostate tissues. Diagnostic prediction
of diseases, including cancer, is a field addressed by machine learning and artificial in-
telligence [43–49]. The importance of classifying cancer patients and the detection of key
features from complex datasets, especially those that depend on complex proteomic and
genomic measurements, led to the development of machine learning techniques aiming
to model the progression of cancers [50]. A variety of these techniques, including Fuzzy
Rule-Based Systems (FRBS) [51], have been widely applied in cancer research for the
development of predictive models, resulting in effective and accurate decision-making.

Machine learning is a branch of artificial intelligence that employs a variety of statisti-
cal, probabilistic, and optimization techniques that allows computers to “learn” from past
examples and to detect hard-to-discern patterns from large, noisy, or complex datasets [50].
As a result, machine learning is frequently used in cancer diagnosis and detection. A recent
study evidenced that by using the same clinical parameters, machine learning techniques
performed better than the European Randomized Study of Screening for Prostate Cancer
(ERSPC) risk calculator (ERSPC-RC) or PSA density in clinically significant PCa predictions
and could avoid up to 50% unnecessary biopsies [52]. In the present study, we achieved
greater than 95% accuracy, considering ECs, being slightly lower when considering fibrob-
lasts, to classify patients as at risk of PCa diagnosis.

There are some limitations in the present study. The study is retrospective but it was
necessary to be so to obtain these promising data, which will allow a future prospective
study to be planned. Another limitation is that the size of the cylinder analyzed is much
smaller than the prostatic sextant, although the impact was minimized by choosing a
non-tumor area away from the tumor site.

In summary, our data suggested that the expression of MMPs/TIMPs in prostate
biopsies, and in combination with other parameters, might contribute to improving the
suspicion of PCa diagnosis. This is because there is a percentage of false negatives in needle
biopsies in PCa in which cancer cells are not detected. Thus, the possible presence of benign
ECs or fibroblasts showing positive immunostaining for several MMPs/TIMPs may add
useful information for the early detection of a phenotype that can be classified as high risk
of PCa development. Even though it is evident that the use of machine learning methods
can improve our understanding of cancer progression, an appropriate level of validation is
needed for these methods to be considered in everyday clinical practice.

4. Materials and Methods
4.1. Patients

A retrospective study was conducted enrolling patients at Hospital de Jove (Gijón,
Spain) and Hospital San Agustin (Avilés, Spain), both from Spain. The main group of
patients included in the present study was 29 patients (age range, 54–73 years) with
PCa diagnosis after at least one initial negative biopsy. All patients underwent prostate
biopsies due to abnormal serum PSA levels (>4 ng/mL), abnormal findings on digital rectal
examination (DRE), and abnormal findings by transrectal ultrasound (TRUS).

The PSA serum levels were determined using the ‘Elecys’ immune-assay tests (Roche
Diagnostic GmbH, Mannheim, Germany). Transrectal prostate biopsies were guided by
ultrasonography (Type 2202, BK medical, Herlev, Denmark; in two-dimensional planes
(sagittal and axial)). Twelve cores were obtained in each patient, identified according
to their location: base, mid, and apex, from the left and right side. In patients with
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a benign result, PSA concentrations were evaluated at months 3 and 6 and then every
6 months or 1 year. A transrectal prostate biopsy was performed in patients with a PSA
concentration > 4.0 ng/mL or a biopsy finding of an atypical prostatic gland. After the
diagnosis of PCa, patients underwent radical retropubic prostatectomy, the specimen was
identified according to the location: base, mid, and apex, from the left and right side.
Tumors were staged according to the 1992 TNM classification [53].

In the present study, two other patient populations were included corresponding to
45 patients with histological diagnosis of BPH (age range, 44–85 years) and 18 patients
with HGPIN (age range, 54–70 years), some of which were previously included in our
preliminary studies on the expression of MMPs and TIMPs in prostate benign tissues [21,28].

All patients were treated according to the guidelines used in our institutions. The
study adhered to national regulations and was approved by our institution’s Ethics and
Investigation Committee.

4.2. Immunohistochemical Analysis

The histological material used in this study was obtained from samples of needle
biopsy and also from radical retropubic prostatectomy specimens from patients who
developed PCa, and from adenomectomy specimens from patients with BPH and HGPIN.

All prostate specimens were routinely formalin-fixed paraffin-embedded (FFPE).
Histopathological representative (tumor/no tumor) areas were defined on hematoxylin
and eosin-stained sections by an expert pathologist (L.O.G). Immunohistochemistry was
carried out on a 5 µm tissue section using a TechMate TM50 autostainer (Dako, Glostrup,
Denmark). Antibodies for MMPs and TIMPs were obtained from ThermoFisher Scientific
(Waltham, MA, USA). The dilution for each antibody was 1/25 for MMP-13 (MA5-14238);
1/100 for MMP-2 (MS-806P1), MMP-9 (MA1-12894) and TIMP-3 (PA1-38778 and 1/500
for MMP-11 (MA5-32285). All the dilutions were made in Antibody Diluent (Dako) and
incubated for 1 h (MMP-9), 2 h (MMP-2, MMP-11, and MMP-13), or overnight (TIMP-3) at
room temperature. Tissue sections were deparaffinized in xylene, and then rehydrated in
graded concentrations of ethyl alcohol (100, 96, 80, 70%, then water). To enhance antigen
retrieval only for some antibodies, tissue sections were treated in a PT-Link® (Dako) at
97 ◦C for 20 min, in citrate buffer pH 6. 1 for MMP-9 and TIMP-3, or Tris-EDTA buffer pH 9
for MMP-2 and MMP-13, and then washed in phosphate-buffered saline (PBS). Endogenous
peroxidase activity was blocked by incubating the slides in a peroxidase-blocking solution
(Dako) for 5 min. The EnVision Detection Kit (Dako) was used as the staining detection
system. Sections were counterstained with hematoxylin, dehydrated with ethanol, and
permanently coverslipped.

For each antibody preparation studied, immunoreactivity for epithelial cells, tumor
cells, and fibroblast stromal cells was determined. A case was considered as positive for
each cell type if at least 10% of considered cells showed immunostaining for a specific
antibody. Due to their small size, stromal cells were considered negative (−/0) or positive
(+/1) for each protein immunostaining. However, epithelial and cancer cells were classified
as having weak (+/1), moderate (++/2), or strong (+++/3) immunostaining. Each evaluated
field (×40 objective lens, 5 fields evaluated) contained at least ten evaluated cells, as it
was established in previous studies [54,55]. Stromal cells were distinguished from cancer
cells based on cell size (the latter cells are larger). Stromal cell subsets were distinguished
primarily by morphology (fibroblast-like cells are spindle-shaped cells, whereas MICs are
small round cells). Additionally, whereas cancer cells are arranged forming either acinar or
trabecular patterns, stromal cells are scattered throughout the tissue. To confirm that the
morphology described was in accordance with the cell type, specific markers were used in
some tissue sections to distinguish cancer cells (Cytokeratin AE1/AE3), cancer-associated
fibroblasts (α-SMA), and mononuclear inflammatory cells (CD45Ro).
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4.3. Description of Data Sets

Artificial intelligence can perform classification tasks through intelligent systems
where the expert’s knowledge will be necessary and will be determined by data. In this
case, the data are the values of positive or negative expression of MMP-2, -9, -11, and -13,
and TIMP-3 by each studied cell type (epithelial/tumor cells and fibroblasts) from the
different patients included in the study. Machine learning techniques, a branch of artificial
intelligence, comprise supervised and unsupervised learning [56]. In supervised learning,
a labeled set of training data is used and in unsupervised no labeled examples are provided.
In this study, we are faced with supervised learning and, therefore, with a classification
problem since each data set (MMPS and TIMP-3 values for each patient) is classified in a
specific class, see Table 3 and Figure 7.

Table 3. Patient groups.

Benign prostate biopsy before the diagnosis of PCa
Class 1: Zone without future cancer development (C1)
Class 2: Zone with future tumor (C2)

Positive biopsy: PCa
Class 3: Non-tumor area from prostatectomy (C3)
Class 4: Tumor area from prostatectomy (C4)

Class 5: Benign prostatic hyperplasia (BPH) (C5)

Class 6: High-grade prostate intraepithelial neoplasia (HGPIN) (C6)
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Figure 7. Schematic representation of the studied areas of the samples of patients with PCa.

Protein expression (MMP-2, -9, -11, and -13, and TIMP-3 expression) were collected
and grouped into different datasets depending on the analysis to be carried out. For
example, pooled data from BPH (C5) or HGPIN (C6) patients with data from patients with
a benign prostate biopsy before PCa diagnosis (C2), allowed to predict whether a patient
would be diagnosed as C5, C6, or C2 and, therefore, whether or not they would have PCa.
In addition, each of these groups of datasets was grouped according to the target classes
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(Table 3) and the cell types to be studied. Therefore, for each cell type, there was a dataset
of the patients in the different classes.

In the pre-experimentation phase, the datasets undergo a division into two differ-
ent sets:

(a) Training dataset: the data were used to train the algorithm to obtain the relevant and
coherent knowledge and information capable of discriminating the input breaking
down data (MMP-2, -9, -11, -13, and TIMP-3 expression);

(b) Test dataset: the data were used to determine whether the behavior and knowledge
provided by the intelligent system are adequate, through the corresponding evalu-
ation by the degree of success or accuracy, and thus verify the effectiveness of the
said algorithm.

The experimentation on each dataset uses the bootstrap sampling technique [57],
which consists of breaking down the dataset or experiment into 100 training sets and
100 test sets. This way, each experiment is executed 100 times to study the behavior.

4.4. Data Analysis and Intelligent Algorithms: Description and Evaluation

Differences in percentages were calculated with the χ2-test. The SPSS 25.0 software
was used for all calculations (SPSS Inc., Chicago, IL, USA).

The classification algorithms selected in this study are FURIA (Fuzzy Unordered Rule
Induction Algorithm) [58,59], XGboost [60], SVM (Support vector machine) [61], Deep
Learning [62], and Logistic Regression [63].

In the field of artificial intelligence, the confusion matrix, obtained in the classification
of a dataset, is determined by rows and columns. Each column represents the number
of predictions for each class, and the rows determine the actual class for each of the data.
In two-class problems, the confusion matrix divides the result of a classification problem
into four different categories, see Table 4: true positives (TP), true negatives (TN), false
negatives (FN), and false positives (FP).

Table 4. Confusion matrix.

Prediction

Positives Negatives

True
Positives VN FN

Negatives FP VN

The training and test dataset is defined and evaluated in terms of accuracy (Acc) [49,50]

Acc = 1 − Err (1)

where
Err =

FP + FN
VP + VN + FP + FN

(2)
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