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A B S T R A C T   

Microplastics (MPs) affect both marine and terrestrial biota worldwide for their harmful effects, which range 
from physical cell damage to physiological deterioration. In this research, microplastics were quantified from 
gills, liver and muscle of demersal Benguela hakes Merluccius polli (n = 94), caught by commercial trawling from 
northwest African waters. Plastic polymers were identified using Fourier Transformed-infraRed spectroscopy 
(FT-iR). Fulton’s k condition factor and the degree of DNA degradation in liver were measured. None of the 
individuals were free of MPs, whose concentration ranged from 0.18 particles/g in muscle to 0.6 in liver. Four 
hazardous polymers were identified: 2-ethoxyethylmethacrylate, polyester, polyethylene terephthalate, and 
poly-acrylics. MP concentration in liver was correlated negatively with the condition factor, suggesting physi-
ological damage. Positive association of MP concentration and liver DNA degradation was explained from cell 
breakage during trawl hauls during decompression, suggesting an additional way of MPs harm in organisms 
inhabiting at great depth. This is the first report of potential MPs-driven damage in this species; more studies are 
recommended to understand the impact of MP pollution on demersal species.   

1. Introduction 

Plastic polymers have been used worldwide for the last century, for 
their cheap manufacture, lightness, malleability, reusability, and resis-
tance (Andrady and Neal, 2009). The uncontrolled use and disposal of 
plastic has positioned it as a global problem of huge environmental 
impact, for the ubiquity of plastic polymers in all known ecosystems has 
been proven (Rochman, 2018). As it has been widely described (Zhang 
et al., 2021; Li et al., 2022), plastics suffer from physical-chemical 
degradations leading to the appearance of microplastics (MPs there-
after). Larger pieces of plastic are actively broken by many 
physic-chemical factors in the marine environment such as waves 
(Zhang et al., 2021), sunlight (Bao et al., 2022), or even the biotic 
pressure (Gallitelli et al., 2022). The resulting particles of this degra-
dation are called secondary MPs when < 5 mm length (Arthur et al., 
2008). MPs that are directly manufactured of this size or smaller are 
called primary MPs and are generally employed in personal care prod-
ucts and cleansers. MPs are found in different shapes, such as fibers, 
fragments, films, microbeads, or pellets (Ngo et al., 2019; 

Lorenzo-Navarro et al., 2021). Although the variety is enormous in 
different marine fish, blue and black fibers are the most abundant type 
(Hossain et al., 2019; Abidli et al., 2021; Menéndez et al., 2022). 

According to Ryan et al. (2019), Carpenter and Smith (1972) re-
ported the first evidence of MPs in an aquatic system in 1972. The 
occurrence of MPs in the marine environment as well as in hundreds of 
marine species has been widely studied all along the coasts and seas of 
Africa, Eurasia, Australia, and America (Kroon et al., 2018; Ita-Nagy 
et al., 2022; Masiá et al., 2022a and 2022b; Piyawardhana et al., 2022; 
Bilbao-Kareaga et al., 2023), and even in the polar regions (Morgana 
et al., 2018; Kögel et al., 2022). For the last 50 years, thousands of 
studies have reported potential effects of plastics in the marine envi-
ronment, many focusing on marine species ranging from plankton (Lima 
et al., 2015; Rodrigues et al., 2021) to big cetaceans (Fossi et al., 2012; 
Zhu et al., 2019a), including filter feeders (Naji et al., 2018; Expósito 
et al., 2022), fishes (Neves et al., 2015; Menéndez et al., 2022), or algae 
(Wu et al., 2019; Menendez et al., 2021), among others. MPs can be 
ingested by many species (Boerger et al., 2010; Nicastro et al., 2018; 
Markic et al., 2020; Collard and Ask, 2021). One of the dangers derived 
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from microplastic ingestion is chemical damage. Plastics categorised as 
“Group 7 plastics” such as epoxy resin or polycarbonates are manufac-
tured with Bisphenol-A (BPA) (Yang et al., 2011) which is an endocrine 
disruptor. Its consumption can lead to a wide range of diseases such as 
neonate malformations, infertility or even cancer (Vandenberg et al., 
2007). Also “Group 3 plastics” (PolyVinyl Chloride – PVC) are toxic, and 
their intake has been reported to induce cancer and to reduce the hepatic 
functioning (Wagoner, 1983) as well as DNA damage (Lei et al., 2004), 
among other effects. Harmful effects on both animals and environment 
have been also documented not only for the plastics themselves but also 
for the compounds attached to their surfaces (Brennecke et al., 2016; 
Ribeiro et al., 2017; Rehse et al., 2018; Yuan et al., 2020). Plastics can 
retain hydrophobic compounds such as heavy metals that are frequent 
pollutants of aquatic ecosystems (Rainbow, 1985; Copat et al., 2013; 
Makedonski et al., 2017; Tian et al., 2020; Javanshir Khoei, 2022). The 
exposure to these elements leads to the development of different dis-
eases and medical conditions such as mitochondrial dysfunction (Sun 
et al., 2022), kidney damage (Achparaki et al., 2012) or cancer (Jaish-
ankar et al., 2014), among others. Some heavy metals can actively cause 
DNA damage (Hengstler et al., 2003; Zocche et al., 2010; Ngo et al., 
2021). For the elements attached to MPs, or alone, Reactive Oxygen 
Species (ROS) metabolism modifications and even cell apoptosis (Xia 
et al., 2008; Thubagere and Reinhard, 2010; Chiu et al., 2015) have been 
reported to occur due to the presence of MPs (Avio et al., 2015; Ribeiro 
et al., 2017). 

Besides toxicity, another risk of the ingestion of MPs is physical 
damage caused mechanically. To give a few examples, the obstruction of 
cavities and ducts by MPs can be lethal (Roman et al., 2021). At a 
cellular level, MPs can induce cellular breakage (Espinosa et al., 2019), 
and cell injury and destruction have been reported (Wang et al., 2022a, 
2022b, 2022c; Manu et al., 2023). This can be due to modifications in 
the cellular membrane permeability and the induction of an inflamma-
tory reaction (Deng et al., 2017). Mechanical cell destruction due to MPs 
has been also reported (Fleury and Baulin, 2021; Wang et al., 2022a, 
2022b, 2022c). In addition, DNA damage can be induced when MPs are 
abundant in the tissue (Prokić́ et al., 2019; Masiá et al., 2021). 

Although the presence of MPs in marine organisms has been 
described from the Artic (Herzke et al., 2021) to tropical and subtropical 
marine ecosystems (Costa and Barletta, 2015), only a few studies have 
focused on MP pollution in the north-western coast of Africa (Kim et al., 
20188; Maaghloud et al., 2020, 2021; Wang et al., 2022a, 2022b, 
2022c). Masiá et al. (2022a, 2022b) alerted of the potential risk of MP 
pollution for African fishing resources. One of the important resources in 
Atlantic African waters is the Benguela hake (Merluccius polli Cadenat, 
1950), that is abundant in the north-west coast due to the accused 
seasonal upwelling (Mbaye et al., 2015). Its fisheries are also of great 
importance for the European fleet (Rey et al., 2012). Spanish trawlers 
have been fishing from Morocco, Senegal and Mauritania waters for the 
last 40 years (FAO, 2020; Soto et al., 2022). Hakes inhabiting Atlantic 
(Neves et al., 2015; Cabanilles et al., 2022) and Mediterranean (Mistri 
et al., 2022) waters may carry a considerable MP charge. However, to 
our knowledge, and despite the risk of MP pollution in west African 
coasts (Masiá et al., 2022a, 2022b), the content of MPs in Benguela hake 
has not been investigated yet. 

In this study, we have quantified and analysed the abundance of MPs 
in different tissues of Benguela hake adults: muscle, which is the edible 
tissue in hakes; gills, that are the first contact with MPs from the water 
column (Guilhermino et al., 2021), and liver. MP accumulation in liver 
may negatively affect the health of the organisms (Yu et al., 2018), 
something that in fish can be reflected in a worse condition factor 
(Amorim et al., 2020). The status of the sampled hakes was evaluated 
from Fulton’s k condition factor, and the possible damage to liver from 
the degree of DNA degradation (Masiá et al., 2021). From the negative 
association between MP charge and fish status, the starting hypothesis 
will be that the individuals with more MPs in liver would exhibit a worse 
condition factor and a higher level of DNA degradation. 

2. Materials and methods 

2.1. Species in study and samples analysed 

Merluccius polli is an Actinopterygii from the Merlucciidae family. Its 
natural distribution ranges from southern Morocco (NW Africa, 28◦N) 
(Manchih et al., 2018) to the Northern coast of Namibia (SW Africa, 
18.30◦S)(Lloris et al., 2005); according to the International Union for 
the Conservation of Nature (IUCN), it is catalogued as Least Concern 
(https://www.iucnredlist.org/es/species/15522226/15603610). It is 
sympatric to Senegalese hake (Merluccius senegalensis), although the 
Benguela hake can occupy a greater range of pressures and temperatures 
(Fernández-Peralta et al., 2011). Benguela hake preys upon small fishes, 
little squids, and shrimps (FAO, 1990), with some cannibalistic behav-
iour in adults, depending on the availability of food and resources 
(Kilongo and Mehl, 1997). Its exploitation has increased exponentially 
for the last 20 years. In 2006 approximately 9000 tonnes of Benguela 
hakes were caught, while in 2018 the amount rose to 20,000 tonnes 
according to FAO (2019). 

A total of 94 commercial individuals, in whole and fresh (kept in ice), 
were kindly provided by the Cádiz Fish Market (Lonja de Cádiz). The 
samples had been fished by trawling in the 34.1.3 FAO Fishing Area 
(Fig. 1), in the Western coast of Africa. Since they were caught by 
commercial fleet for selling, not sampled in purpose for this study, an 
ethic statement is not needed for this research. 

Individuals were measured (standard length was taken), weighted, 
and dissected for the recovery of muscle, liver, and gills. Samples were 
labelled and stored in the freezer until processing. For all the samples, 
approximately 20 g of dorsolateral muscle, 4 gill arches (the same side 
as the muscle) and 5 g of liver were processed. 

2.2. Molecular identification by PCR-RFLPs 

All individuals came labelled as Merluccius polli from the supplier. 
Additionally, the species assignation was checked with PCR-RFLPs, as 
this species is captured in mixed fisheries with its sympatric species 
(Merluccius senegalensis) and both species are often mislabelled (Blan-
co-Fernandez et al., 2022). DNA was extracted using Chelex®, following 
the protocol developed by Estoup et al. (1996). The mitochondrial 
control region was selected as target to discriminate between both 
species, since it is known to be a variable region with polymorphisms 
between the different species of the Merluccius genus (Machado--
Schiaffino et al., 2008). A fragment of control region (450pb) was 
amplified using the primers MmerHk01 and MmerHk02 developed by 
Lundy et al. (2000). Amplifications were performed in a final volume of 
40 µL using each primer in a final concentration of 0.5 µM, dNTPs at 
0.25 mM, MgCl2 at 1.5 mM, Green GoTaq® G2 Flexi Buffer 1x, and 
DNApol GoTaq® G2 Flexi DNA Polymerase at 0.0375 U/µL. PCR con-
ditions were set to an initial denaturing step of 5’ at 95 ◦C, followed by 
35 cycles consisting on denaturing for 30’’ at 95 ◦C, annealing for 30’’ at 
55 ◦C and extension for 30’’ at 72 ◦C, and then a final extension step at 
72 ◦C for 15’. 

The restriction enzyme BseGI (BTSCI) was selected to generate RFLPs 
after validation. The enzyme was choosen after searching for a poly-
morphism that would allow for a differential cut between M. polli and M. 
senegalensis. This search was carried out using in silico simulator NEB-
cutter v3 (https://nc3.neb.com/NEBcutter/) to locate the target se-
quences for commercial restriction enzymes. The enzyme BtsCI would 
digest the amplicon in two fragments of 216 bp and 226 bp respectively 
for M. polli, while amplicons from M. senegalensis remained undigested 
(442 bp fragment). For its in silico validation, 93 sequences corre-
sponding to haplotypes of 806 individuals of both species (60 sequences 
belonging to M. polli and 33 to M. senegalensis) were taken from Blan-
co-Fernandez et al. (2022) (GenBank accession numbers from 
MZ703314 to MZ703406). All sequences were aligned using MUSCLE in 
BioEdit and the target position was checked to see whether the 
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polymorphism was maintained along all samples of both species. Out of 
the 806, only one specimen of M. polli did not present the polymorphism 
that would allow for the digestion, setting an overall error of 0.12 %. 
After the in silico validation, a digestion was performed with known 
samples from M. polli and M. senegalensis. For the digestion, we added 
10 µL of the previous PCR as template, BseGI(BTSCI) at 0.67 U/µL, and 
Thermo Scientific™ 1x Buffer Tango in a final volume of 30 µL. The 
reaction was left incubating at 55 ◦C for 3 h. Then, results were visual-
ised in agarose gel 2 % stained with 2.5 µL SimpleSafe (Eurx) and run at 
120 V for 30 min. Once this methodology was established, the same 
procedure was applied to the samples of this study. Additionally, 30 
randomly chosen from the 94 samples were Sanger sequenced for 
further verification. 

2.3. Microplastic extraction and quantification 

First, tissues were digested using 10 % KOH (Thermo Fisher Scien-
tific®). The proportion of reagent per gram of tissue was 1:5 (w/v) for 
muscle, proportion 1:10 for gills, and 1:50 for liver. Tissue digestion was 
carried out at 40 ◦C for 48 h in glass jars covered with aluminium foil to 
avoid contamination. Blanks consisting of 100 mL of KOH were placed 
in every oven together with the samples to control for possible 
contamination during the lab work. 

After digestion, two phases were obtained from liver samples: the 
lower, which is the digested material, and the top one, which is non- 
digested fat. Jars were refilled with 100 mL of filtered neutral labora-
tory soap (Labbox, Spain) per 100 mL of digestion to disaggregate and 
dissolve the fat, for further filtration. This process takes between one and 
two hours with periodical manual shaking to detach the fat from jar 
walls. For gill and muscle samples, and blanks, 100 mL of filtered 
distilled water were added and the same process was followed (1–2 h, 
manual shaking) to homogenise the process across samples for the 
control of procedural contaminations. 

Finally, all digestions were filtered through 1.2 µm pore size glass 
microfiber filters (Whatman GF/C, 47 mm diameter) that were allowed 
to dry in glass petri dishes for 48 h before MP counting. Once dried, 
filters’ surfaces were observed individually under the microscope and all 
potential plastic particles were counted following Hidalgo-Ruz et al. 
(2012). Due to the colour and morphology of the glass microfiber filters, 
special attention was paid to white and transparent particles. A heated 

needle was approached to potential particles to confirm they were of 
plastic (plastic bends when heated while organic matter and glass do 
not). Counting and visual identification were carried out under a Leica 
2000 stereomicroscope at 40x magnification (Masiá et al., 2019; 
Menéndez et al., 2022). Only < 5 mm particles were considered for 
further analysis. 

MPs were first classed by shape as in previous studies (Kumar et al., 
2018; Hossain et al., 2019; Wang et al., 2022a, 2022b, 2022c). Three 
main groups were identified: fibers (elongated, uniform colouration and 
mostly cylindrical), fragments (irregular shapes, generally with sharp 
angles), and microbeads (plastic spheres, after checking for possible 
misidentification with small eggs) (Neves et al., 2015; Güven et al., 
2017; Yin et al., 2022). Colour was also recorded (Zhu et al., 2019b; 
Guilhermino et al., 2021). 

A 16 % of putative plastic particles (n = 120), roughly representative 
of all the shapes and colours found in the samples, were analysed by 
Fourier Transformed infrared spectroscopy (FT-iR) (Uurasjärvi et al., 
2021) in the Autonomous University of Madrid. They were picked from 
the petri dishes under laminar flow cabin to prevent airborne contami-
nation. The analyses were performed using a wavelength between 4000 
and 500 cmˉ1 and a germanium glass, Varian 620-IR and Varian 670-IR. 
Results with a bibliographic search score over 60 % were used. The 
potential toxicity of the compounds for the aquatic life and/or for 
humans was checked in the European Chemicals Agency (ECHA; 
https://echa.europa.eu/es/home, accessed March 2023). 

2.4. Contamination control 

To control for potential contamination from airborne particles, all 
procedures were performed into a semi-closed laminar flow cabinet. A 
cotton white lab coat was constantly worn by the researchers as well as 
nitrile gloves. All materials in contact with the samples (scissors, twee-
zers, glass jars…) and implicated in the filtering (vacuum pump) were 
previously rinsed with filtered distilled water. Distilled water was 
filtered through 0.22 µm pore size PES filters (PALL Corporation®, 
47 mm diameter). Also, the laboratory soap was filtered in the same 
conditions, while KOH was filtered through 1.2 µm pore size glass mi-
crofiber filters (Whatman GF/C, 47 mm diameter). Filters were stored in 
clean petri dishes which remained closed until the particle’s selection for 
the chemical analysis. 

Fig. 1. Fishing area where the individuals analysed in this study were caught from commercial trawling.  
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2.5. Genomic DNA extraction and DNA degradation analyses 

DNA was extracted from the liver of 46 individuals (48.9 % of the 
total sample) representing all the range of MPs concentrations found in 
this study. A small piece of tissue (≤ 25 mg) was disaggregated me-
chanically, and the genomic DNA was extracted with a commercial kit 
(DNeasy Blood & Tissue kit, Qiagen, Hilden, Germany), following the 
manufacturer’s instructions. Extractions were quantified using a Qubit 4 
Fluorimeter (Thermo Fisher Scientific, Inc). The electrophoresis was 
performed based on Mičić et al. (2002) and Masiá et al. (2021): 30 ng of 
DNA (variable µL of each extraction) was run in a 1.3 % agarose gel for 
2 h at 90 mV. The level of DNA degradation was categorised in four 
groups (G1-G4) following Masiá et al. (2021) (Supplementary Figure 1). 

2.6. Condition factor 

Fulton’s k condition factor of each individual (Fulton, 1904) was 
calculated following the equation: 

K = 100x
W
L3 

Being W the full body weight in grams and L the standard length in 
cm (Froese, 2006). 

2.7. Statistical analysis 

Differences between groups of samples for variables distributed in 
discrete categories (for example proportion of MPs of different colours 
or shapes) were tested using contingency chi-square analysis. 

Quantitative data like MPs/g were compared between groups of 
samples (e.g., tissues) using one-way ANOVA, after checking normality 
from Shapiro-Wilk test and homoscedasticity from Breusch-Pagan test. 
Post-hoc Tukey’s pairwise tests were performed after significant 
ANOVAs. 

Multiple linear regression analysis was applied for condition factor 
as dependent variable and MP concentration in the different tissues as 
independent variables, to infer if any tissue pollution could be a pre-
dictor of the hake condition. Pairwise Pearson’s correlation tests were 
run to check for associations between variables, e.g., MP concentration 
and DNA degradation. 

Statistical results were interpreted under a 95 % confidence interval 
(standard significance threshold p < 0.05), applying Bonferroni 
correction for multiple comparison when needed. Statistical analysis 
was done in PAST free Software V.2.17 (Hammer et al., 2001). 

3. Results 

3.1. Microplastics content in Benguela hake tissues 

BseGI PCR-RFLPs successfully assigned all individuals as Merluccius 
polli, as had been reported. A total of 747 particles identified visually as 
putative MPs were obtained from the 94 Benguela hakes analysed 
(Supplementary Table 1). All the individuals had at least one tissue with 
MPs, from 80 % of gill to 94 % of muscle samples; for the shape, the 
majority of particles were fibers, a few fragments, and only one 
microbead in gills (Table 1). 

Blanks run all over the experimental work showed a concentration of 
0.003 MPs/g, which is two orders of magnitude lower than the tissue 

samples (see Table 1). Thus, significant procedural contamination could 
be discarded. 

The relative MP load was higher in livers and gills than in muscle 
(Table 1). The difference among tissues was highly significant (ANOVA 
with F(2279) = 25.81, p < 0.0001). Post-hoc Tukey’s test showed sig-
nificant difference between muscle and liver (t = 6.68, p < 0.0001) as 
well as between muscle and gills (t = 7.67, p < 0.0001). 

From the relative frequency of different types of particles, MPs were 
classed for analysis in six groups: blue, black, transparent, and other 
(including reddish, green, orange, and purple) fibers, blue fragments, 
and transparent microbeads. Fig. 2 shows the profile of the particles 
recovered from the three tissues. The majority of MPs were black, fol-
lowed by blue, transparent fibers, fibers of other colours, blue fragments 
and one transparent microbead in a gill. The global contingency chi- 
square was statistically significant (χ2=28.87, d.f.=10, p = 0.016; 
Cramer’s V = 0.12) due to the difference between muscle and liver 
(χ2=14.01, d.f.=4, p = 0.007; Cramer’s V = 0.16); the rest of compari-
sons between tissues were not significant (data not shown). Livers 
contained more black and fewer blue fibers than muscle samples (Fig. 2). 

FT-iR analysis was done on 53 particles recovered from muscle, 39 
from liver and 28 from gill tissues. Seven different compounds were 
identified (Fig. 3): Rayon (55 %), PEI – Polyethyleneimine cellulose 
(9.17 %), PET-Polyethylene terephthalate (7.5 %), Polyester (5.83 %), 
PAN/PAA – Polyacrylenitrile/Polyacrylic acid (2.5%) and 2-ethoxyethyl 
methacrylate (0.83 %). The remaining 19.18 % particles were of natural 
compounds such as cellulose. Excluding cellulose, contingency chi- 
square analysis did not show significant differences between tissues 
(χ2=12.461, d.f.=10, p = 0.255). 

From the ECHA, four of those compounds are harmful for living 
beings (Table 2); therefore, Benguela hake is expected to be affected by 
those MPs. 

3.2. Condition factor 

Fulton’s ‘k’ condition factor varied widely in the samples analysed, 
ranging between 0.401 and 1.114 g/cm3 with an average of 0.886 (SD 
0.094). The modal class was the group with k [0.839–0.912] (Fig. 4). 

From multiple linear regression, with the condition factor as 
dependent and the concentration of MPs/g in different tissues as inde-
pendent variables, only the MPs concentration in liver significantly 
predicted the condition factor (Table 3). The regression slope was 
significantly negative (r = − 0.234, p = 0.024). 

3.3. DNA degradation in liver 

The individual results obtained for liver DNA quantification and the 
assigned degree of degradation (Masiá et al., 2021) are in the Supple-
mentary Table 2. Mean DNA concentration of the 46 liver samples 
analysed was 18.7 (SD 12.6) ng/µL. The average level of DNA degra-
dation was 2.65 (SD 0.90) over a maximum of four, implying that quite 
fragmented DNA was found for many individuals (Fig. 5). Only six in-
dividuals exhibited a clear band of large genomic DNA (group G1, not 
degraded), while seven individuals yielded very small DNA fragments 
(group G4) (Fig. 5). 

As expected, a positive significant correlation was found between the 
estimated DNA degradation and the concentration of MPs/g in liver 
(r = 0.35, p = 0.015; see blue trend line of MPs/g in Fig. 5), suggesting 
that MPs may contribute to degrade DNA. To explore this effect further, 

Table 1 
Overview of MPs identified from each tissue. N: number of particles identified.  

Tissue % individuals affected Mean MPs/g (variance) Fibers Fragments Microbeads N 

Gills 80 % 0.517 (0.168) 95.4 % 4 % 0.6 % 175 
Liver 83 % 0.599 (0.355) 98.2 % 1.8 % 0 % 224 
Muscle 94 % 0.181 (0.012) 96.55 % 3.45 % 0 % 348  
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we divided the samples in three groups: one with no MPs found in liver 
(n = 13; mean DNA degradation 2.0, SD=0.82), another with MP con-
centrations up to 1 MPs/g (n = 20; mean DNA degradation 2.95, SD =
0.67), and another with ≥ 1 MPs/g (n = 13; mean DNA degradation 
2.85, SD =0.99). One-way ANOVA for DNA degradation was highly 
significant (F2,45 = 5.85, p = 0.005), and the post-hoc Tukey’s test 
showed that the group of hakes without MPs in liver had significantly 
less degraded DNA than the group with between 0 and 1 MPs/g 
(t = 4.47, p = 0.01), and also less than the group with more than 1 MPs/ 
g (t = 3.98, p = 0.02). The difference between the two groups with MPs 
in liver was not significant (t = 0.49, p = 0.9 n.s.). 

While the correlation between the condition factor and the 

concentration of MPs in liver in this subsample was significantly nega-
tive (r = − 0.32, p = 0.03), as it was in the whole sample of 94 hakes (see 
results in 3.2 above), the correlation between the condition factor and 
liver DNA degradation was not significant (r = − 0.23, p = 0.118); a 
quite flat brown trend line can be observed in Fig. 5. This suggests that, 
unlike liver MPs content, the level of DNA degradation found in this 
assay is not related with the physiological condition of hakes (see 
below). 

4. Discussion 

To the best of our knowledge, this is the first study that evidences the 
occurrence of MPs in Benguela Hake (100 % prevalence), some of 
compounds identified as harmful to aquatic life. From these results, we 
could expect the most MP-polluted hakes exhibit a poorer physiological 
condition, as found in other fish (Amorim et al., 2020), especially if MPs 

Fig. 2. Colour and shape of the microparticles analysed from muscle, gills and liver. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. Proportion of particles of different compounds in the Benguela hake 
tissues analysed. 

Table 2 
Potential hazard of the compounds identified in this study, according to the 
European Chemical Agency. Rayon and PET are under research.  

Compound Harmful to 
aquatic life 

Harmful if 
swallowed 

Irritative Affects fertility 
and unborn 
child 

Rayon Pre-registered, no information available 
PEI X X   
PET Pre-registered, no information available 
Polyester X    
PAN/PAA X  X  
2- Ethoxyethyl 

methacrylate   
X X  
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are in liver (Yu et al., 2018). This was confirmed from a significant 
negative association between MP content in liver and hake condition 
factor and would suggest that MP pollution is endangering this impor-
tant fishing resource. In our study, the MPs in muscle were statistically 
different from those found in liver and gills. This may suggest that the 
MPs that reach the liver and the gills are similar; more studies should be 
carried out to confirm this relationship. As in other fish (Guilhermino 
et al., 2021), liver exhibited the highest MP concentration, supporting its 
suggested role of bioaccumulation of these pollutants (Lu et al., 2016; 
Collard et al., 2017; Yu et al., 2018). The accumulation of plastic 

particles in the liver may affect the health status of the organism, which 
is suggested in our study by negative correlation between MPs content 
and condition factor. Table 3 

The mechanisms linking MPs in liver and worse physiological con-
ditions are probably a combination of chemical and mechanical damage. 
Harmful polymers (Table 2) surely interfere with tissue functioning. 
DNA damage is known as an effective indicator of environmental eco-
toxicity (Dimitriadi et al., 2021), and a higher amount of MPs may lead 
to higher DNA damage (Shen et al., 2022). Moreover, the association 
between MP content and DNA degradation, found here for the first time 
in fish, would suggest a higher level of cell breakage in liver in the in-
dividuals with MPs. It can be interpreted as a signal of broken cells 
where DNA is no longer protected inside the nucleus wall, because the 
presence of MPs in soft tissues might lead to the cell and/or DNA 
breakdown (Wright et al., 2013; Espinosa et al., 2019; Masiá et al., 2021; 
Sobhani et al., 2021). Indeed, highly degraded liver DNA in our study 
does not mean that there were no integer cells when the hakes were alive 
(they could not survive without functional liver cells); it could be 
attributed to a higher cell breakage in livers with MPs during the fishing 
process instead. For that, the level of DNA degradation found in this 

Fig. 4. Distribution of the analysed Benguela hakes by Fulton’s k condition factor.  

Table 3 
Linear regression results with Fulton’s k Condition Factor as dependent variable 
and the concentration of MPs in different tissues as independent variables. SE, 
standard error.   

Coefficient SE t p r2 

Constant 0.92  0.023  39.767  0.000   
Muscle MP -0.045  0.088  0.515  0.608  0.003 
Liver MP -0.037  0.016  22.926  0.024  0.055 
Gills MP -0.006  0.021  0.244  0.807  0.001  

Fig. 5. Relation between the concentration of MPs/g (blue irregular line and blue trend line), Fulton’s k Condition Factor (orange irregular line and brown trend 
line) and DNA Degradation Degree (grey columns, scores 1–4). The equation of trend lines is shown. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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assay is not related with the physiological condition of hakes. Merluccius 
polli is a demersal/bathydemersal fish, so its body is naturally subjected 
to high pressures (depth down to 1000 m), and the samples here ana-
lysed were obtained from commercial trawling. Fish internal organs are 
often damaged during haul backs for rapid decompression (Suuronen, 
2005); likely the presence of MPs contributed to mechanical damage of 
the organs under decompression, facilitating cell breakage (Espinosa 
et al., 2019; Wang et al., 2022a, 2022b, 2022c) and subsequent DNA 
degradation (Masiá et al., 2021). Therefore, as it was showed in the 
results section, the level of DNA degradation found in this assay is not 
related to the physiological condition of the hake. 

Regarding the prevalence and quantity of MPs, the results showed 
that all the hakes analysed contained MPs at least in one of the three 
tissues; which is relatively high if compared with other Merluccius hakes 
from Gulf of Cadiz (Bellas et al., 2016) or the South Pacific (Pozo et al., 
2019), with the exception of a few M. merluccius individuals from the 
Cantabrian Sea that were highly contaminated with MPs (Cabanilles 
et al., 2022). MPs concentrations were also higher than those reported 
for hakes in Portugal (Neves et al., 2015), in the Mediterranean (Anas-
tasopoulou et al., 2013; Giani et al., 2019; Mancuso et al., 2019; 
Bošković et al., 2022; Mistri et al., 2022) or in Newfoundland (Liboiron 
et al., 2018); similar or slightly higher than those found in South African 
hakes (Sparks and Immelman, 2020), and lower than MP content in 
Pacific M. productus from Monterey Bay (Hamilton et al., 2021). In 
general we could say that these hakes are relatively very polluted, at 
least in comparison with hakes from other regions; however, it should be 
noted that the comparison is not straightforward because the majority of 
studies on hakes have analysed MPs in the gastrointestinal tract, while in 
our study we analysed individual’s tissues. 

Compared with other marine fish of Northwest African waters, our 
data on hake would be also relatively higher than those reported for 
pelagic species (Maaghloud et al., 2020, 2021; Sánchez-Almeida et al., 
2022), except for chub mackerel Scomber colias from Canary Islands 
(Herrera et al., 2019); to be noted again that these data are from the 
gastrointestinal tract. Murphy et al. (2017) found more MPs in demersal 
than in pelagic fish; perhaps pelagic fish are less exposed to plastic 
debris that accumulates near shores, flocculates and deposits over the 
seafloor. According with the type of MPs, our results were in concor-
dance with previous data of MPs in marine species that are principally 
black and blue fibers (Hossain et al., 2019; Abidli et al., 2021; Menéndez 
et al., 2022). In this study, we found a majority of the same MP types. 
Fibers are, due to their morphology and typology, the least retained in 
wastewater treatment plants WWTPs (Ngo et al., 2019; Masiá et al., 
2020) and are the most likely type of particle obtained from the 
degradation of fishing gears and nets (Montarsolo et al., 2018; Wright 
et al., 2021) or released from clothes (De Falco et al., 2019). Also, dark 
particles tend to be more consumed by fishes for their confusion with 
plankton (Ma et al., 2020). It is worth noting that hakes are carnivorous 
so many MPs might have reached the animal by trophic transfer (Au 
et al., 2017; Carbery et al., 2018). 

Masiá et al. (2022, 2022b) found in their meta-analysis that fish from 
Northwest Africa were relatively little polluted with MPs, but these new 
data on hakes would reveal more contamination than expected. As 
explained above, the majority of studies from this area were on pelagic 
fish, while Benguela hake is demersal and would be more exposed to 
MPs (Murphy et al., 2017). Another explanation could be a recent 
accumulation of MPs transported by currents, as it happens in Japanese 
waters (Iwasaki et al., 2017). According to NOAA (https://nowcoast. 
noaa.gov/ Last accessed February, 2023) the main currents that run 
through the sampling area have their origin in the Strait of Gibraltar and 
have North-south directionality. High MP pollution in fish has been 
reported from different areas of the Mediterranean Sea (Akhbarizadeh 
et al., 2019; Masiá et al., 2022a, 2022b). Recent studies (Akarsu et al., 
2020; Fytianos et al., 2021; Pedrotti et al., 2021) have revealed a large 
amount of MPs reaching the Mediterranean Sea after escaping the 
retention systems of WWTPs that are sources of MPs in the aquatic 

environment (Sun et al., 2019; Liu et al., 2021). Therefore, it is not 
unreasonable to consider the Mediterranean Sea as a potential source of 
pollution for the waters of northwest Africa. This does not exclude other 
MP sources like rivers (Jiang et al., 2019; Kataoka et al., 2019), or 
airborne plastic particles (Allen et al., 2021). 

As a final remark, the results found in this study suggest MPs pose an 
additional threat to demersal fish. According to the OECD, about 6.1 
Mega Tonnes of MPs were released to the aquatic environments in 2019, 
leading to an historical accumulation of 30 Mt in the oceans (OECD, 
https://www.oecd-ilibrary.org/sites/de747aef-en/index.html?item-
Id=/content/publication/de747aef-en). The only way to stop the dete-
rioration of these valued fishing resources is to reduce the human 
dependence on plastic while improving plastic management. 

5. Conclusions 

The Benguela Hake was used here as a representative of the marine 
top-predators from the North-West coast of Africa. Multiple plastic 
polymers were found from all the individuals studied in, at least, one 
tissue analysed (showing a high prevalence of black and blue fibers). 
While most of the particles have not been reported as dangerous for the 
aquatic life or the human consumer (rayon was the mostly found poly-
mer), a few compounds (in minor quantities) recognised as hazardous, 
were also identified. 

The gills and the liver, as a direct entrance for MPs in the organisms, 
showed a high and similar number of particles per gram of tissue. 
Otherwise, the muscle, studied as an edible tissue by the potential 
human consumer, showed a lower but still warning presence of plastics. 
Once the presence and abundance of MPs was studied, their biological 
harmful effect has been proven in the liver, which acts as an active bio- 
accumulator of MPs. In the liver, the increase on the number of MPs per 
gram of tissue is translated into a negative effect in both the physio-
logical condition and the DNA integrity (the higher MP concentration, 
the lower Condition Factor, and the higher DNA degradation, 
respectively). 

The Benguela hake is now included in a long list of species affected 
by microplastics in the African coast, but a short list when we focus on 
the northwest coast, where not enough studies have been carried out yet. 
Their demersal distribution as well as their environmental importance 
might be taken as a wake-up call for further analyses. The identification 
of the preys, the potential trophic transfer as well as the study of the 
waters where the Benguela hake inhabits might be enough for the cor-
rect implementation of management measurements that avoid or, at 
least, limit the arrival of a large number of pollutants in the area. 

New policies aimed at responsible waste management (land and 
water waste) as well as the exhaustive limitation of the distribution of 
single-use plastics should be a priority to preserve a balanced health 
status of the seas. These actions together with a proper public warning 
and population education must be carried out in an efficient manner to 
protect marine ecosystems and, therefore, human health. 
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