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A B S T R A C T   

Due to the increasing global population and the serious environmental pollution, human beings face increased 
demand for high-quality nutritious food and are showing increased willingness to adopt green materials. Edible 
insects are considered to be a core source of nutrition for the future. Insect ingredients as edible food packaging 
will be a help to solve human nutritional needs and augment green environmental protection. Insect-derived 
films are basically at the level of small-scale research in the laboratory, and the order Orthoptera are the cur-
rent research focus. Chitin extracted from insects to make packaging films has natural antibacterial advantages. 
In terms of mechanical properties, the chitin films can have a tensile stress of up to 89.6 MPa. In terms of light 
transmittance, insect protein films have a greater shading rate, 6.168 %. Generally, insect-derived food pack-
aging films still need more exploration and research to enrich the basis of practical operation and theoretical 
research.   

1. Introduction 

It is undeniable that traditional plastic packaging is functionally 
successful; however, the production of petroleum-based plastics and the 
incineration degradation process both increase carbon emissions due to 
a lack of collection or proper disposal (Ncube, Ude, Ogunmuyiwa, Zul-
kifli, & Beas, 2021). Plastic is usually buried in landfills and geological 
processes can lead to it eventually polluting the oceans. At least 14 
million tons of plastic finds its way into the ocean every year. Plastic 
debris is currently the most abundant type of litter in the ocean, making 
up 80 % of all marine debris found from surface waters to deep-sea 
sediments (2021), and one of the main sources of this class of pollu-
tion has been identified as food and beverage packaging (Ncube, Ude, 
Ogunmuyiwa, Zulkifli, & Beas, 2021). The manufacture of traditional 
plastic packaging is mainly based on the use of fossil fuels as the raw 
material, and in 2018, 4–8 % of global oil production was used for 
plastic production (Organisation for Economic Co-operation and, 2018). 
40 % of this is used to make single-use plastics, whose use is primarily 
driven by increasing food and beverage consumption. Most food pack-
aging plastics create a waste stream shortly after purchase, especially in 
single-use packaging applications for short-lived goods (Sundqvis-
t-Andberg & Åkerman, 2021). In addition, due to the impact of the 
COVID-19 epidemic, the growth of the global takeaway industry has 
increased the consumption of foam takeaway containers such as food 
wrapping paper and food bags (Oliveira, Azeredo, Neri-Numa, & 

Pastore, 2021). The accumulation of microplastics (MPs) and their 
contamination of food has become a global threat to the environment 
and human health. It is estimated that human consumption of micro-
plastics through takeaway food is about 2977 microplastics per person 
per year (Jadhav, Sankhla, Bhat, & Bhagat, 2021). Food packaging 
manufacturers and the food industry have been working to replace 
traditional, non-renewable petroleum sources with abundant, low-cost, 
renewable and biodegradable alternatives (Chaudhary, Bangar, Thaku, 
& Trif, 2022). Growing public awareness of the environmental chal-
lenges associated with traditional plastic materials, and consumer 
pressure to improve sustainability, has led to the development of 
bio-based, biodegradable, edible food packaging materials (Sundqvis-
t-Andberg & Åkerman, 2021). Although some researchers currently 
predict that biodegradable or edible films will not completely replace 
traditional packaging materials, they can prolong the stability of food 
and improve the efficiency of food packaging by reducing the exchange 
of moisture, lipids, volatiles and gases between the food and the sur-
rounding environment (Ivanković, Zeljko, Talić, Martinović Bevanda, & 
Lasić, 2017), which reduces the need for petroleum-derived polymers. 

These bioplastics are commonly considered for use as primary 
packaging materials, some of which may be consumed together with the 
food they contain. In addition to increasing the shelf life of food by 
physically preventing contact between the food and environmental 
microorganisms and contaminants, these films can play an active role, 
since many are capable of carrying antimicrobial agents, nutrients, anti- 
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browning compounds, and colouring agents, which can prevent patho-
genic microorganisms from growing on food surfaces (Das, Panesar, 
Saini, & Kennedy, 2022). Although some of these bioplastics can be 
prepared using non-edible polyesters, such as polylactic acid or poly-
hydroxyalkanoates, others can be prepared using edible biopolymers, 
such as carbohydrates, lipids and proteins (Han, 2013), and these 
compounds can be extracted from many different natural sources. One of 
these possible sources of edible biopolymers, insects, have attracted the 
interest of the research community in recent years, since insects can be 
eaten directly, which is very convenient considering the growing world 
population. Moreover, their biopolymers can be extracted and used to 
prepare bioplastics that may also be edible. 

1.1. Insects as food 

At present, the most common system of protein production for 
human consumption is the intensive raising of livestock, although pro-
tein production from animal husbandry generates important ecological 
concerns because of its environmental impact, as it requires large 
quantities of water, energy and land (Godfray et al., 2018). As human 
food production becomes a major driver of global environmental 
change, there is growing recognition of the importance of shifting to 
more sustainable dietary patterns (Cottrell et al., 2021). At the same 
time, combined with the current population pressure and 
socio-economic growth trends, it is necessary to introduce alternatives 
to traditional animal protein (Fasolin et al., 2019). 

In this sense, insects have received attention as an alternative protein 
source due to their favourable environmental impact (Churchward-V-
enne et al., 2017). Insects are considered one of the most environmen-
tally friendly sources of animal protein because of their very low carbon 
footprint and high protein content (Van Huis & Oonincx, 2017; Ros-Baró 
et al., 2022). Edible insects are still a novelty in Western culture, and 
they also represent a challenging concept for many people around the 
world. Regulations allowing insects to be sold commercially for use and 
consumption in the EU only came into effect in 2018 (Halloran, Flore, 
Vantomme, & Roos, 2018), but in some African, Asian and South 
America countries edible insects already have a high market value, 
sometimes similar to that of traditional livestock, or even higher 
(Raheem et al., 2019; Abril, Pinzón, Hernández-Carrión, & 
Sánchez-Camargo, 2022). Therefore, insects are a commodity with an 
existing market. The global edible insect market is expected to grow to 
USD 9.6 billion by 2030 (Wood, 2022). In addition to the consumption 
of insects as potential providers of protein nutrients, natural active 
products derived from insects for antimicrobial, antifungal, antiviral, 
anticancer, antioxidant, anti-inflammatory and immunomodulatory ef-
fects (e.g. chitin, antimicrobial peptides or specific fatty acids) also have 
excellent prospects (Wang, Qian, & Ding, 2018; Kaya et al., 2019). 

1.2. Insects as a source of biopolymers for preparing edible films and 
coatings 

As insects are a source of valuable biopolymers, such as proteins and 
carbohydrates, they can be processed to produce not only foodstuffs but 
also bioplastics (Barbi, Messori, Manfredini, Pini, & Montorsi, 2019). 
The use of insects or their derivatives as raw materials to allow the 
substitution of petroleum packaging materials, whilst simultaneously 
taking advantage of their protein content as a nutrient source, is a 
biotechnological solution presented a few years ago. Several insect 
species feed naturally on organic waste, and by digesting organic matter 
within their bodies, they make it possible to reduce the amount of waste 
while producing more homogeneous and valuable biomass for a variety 
of purposes (e.g., for feed/food ingredients, cosmetics, pharmaceuticals, 
bioplastics, etc.) (Franco et al., 2022). Caligiani et al., 2018 were the 
first to propose the potential feasibility of producing bioplastics from 
insect proteins. In particular, the protein obtained by alkaline extraction 
from Hermetia illucens has been proposed for the production of 

bioplastics because the protein is of low quality and is not suitable for 
nutritional requirements (Leni, Caligiani, & Sforza, 2021). These 
insect-derived films are a promising source for some types of bio-
compostable plastics, with the added value of using proteins produced 
by insects digesting waste, and thus contributing to the prospect of a 
circular economy. Sanandiya, Vijay, Dimopoulou, Dritsas, & Fernandez, 
2018 extracted chitin from Hermetia illucens, deacetylated it and mixed 
cellulose to produce packaging materials. The introduction of 
insect-based materials for the production of bioplastics not only repre-
sents a way to add value to food waste and by-products that are used as 
growth substrates for insects, but is also an effective alternative to un-
sustainable plastic packaging. Fig. 1 shows an abstracted process of 
forming a simple edible insect-derived food packaging film. The first 
step is to obtain insects by natural capture or artificial breeding. Then, 
the edible insects with high nutritional value undergo an extraction 
process by means of physical separation and chemical extraction to 
obtain biological organic macromolecular materials such as proteins, 
polysaccharides, and lipids. Among these, the first two are the most 
widely used to prepare environmentally friendly food packaging 
materials. 

Therefore, considering that the use of biopolymers extracted from 
insects to create edible films and coatings for food packaging is a topic of 
increasing interest, this review aims to summarize recent scientific 
research on this subject, describing the current state of development and 
future trends in this field. 

2. Insects as a source of biopolymers to prepare bioplastics 

The main biopolymers found in insects that can be used to prepare 
edible films and coatings are proteins, carbohydrates and lipids. Table 1 
shows the basic nutritional composition of some edible insects that can 
be consumed by humans or livestock as food or feed, including crude 
protein, fat, carbohydrates and other nutrients found in relevant studies 
in recent years. 

Protein is the main macromolecule found in insects and the reason 
why these insects have attracted the attention of the international 
community of food researchers. Protein content in insects has been re-
ported to be as high as 21–76 % of dry biomass in different insect types 
(Kouřimská & Adámková, 2016). Because insects have considerable 
differences in the expression of their internal structures between species, 
generally related to their behaviour and ecology, the sources and 

Fig. 1. Scheme of the preparation of edible insects packaging films.  
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structures of insect proteins vary widely. There are also differences be-
tween species in terms of the distribution of proteins of different mo-
lecular weights, and of many other components such as fats and 
carbohydrates (Mishyna, Keppler, & Chen, 2021). Furthermore, pro-
duction techniques and feed composition in larval rearing also affect 
protein quality (Tschirner & Simon, 2015). In terms of amino acid 
content, Coleoptera, Hymenoptera, Lepidoptera and Orthoptera aver-
aged or exceeded the IAA (indispensable amino acid) requirement for 
human adults (Churchward-Venne et al., 2017). The first limiting amino 
acid, methionine, is present in relatively low quantities in insects in 
general. In addition, in the study of Shikha Ojha, Bekhit, Grune, & 
Schlüter, 2021, the BV value is the biological value of the protein, which 
is used to indicate the degree to which the protein is utilized by the 
organism. Insects such as crickets (G. assimilis) have higher BV values 
(85.49–93.02 %) than casein (73.45 %). In a nutritional study of the 
epidermis and meat of Clanis bilineata tsingtauica larvae by Ying Su et al. 
(2021), four proteins were identified, including albumin, globulin, 
glutenin, and prolamin, which had different concentrations in larval 
flesh and epidermis. In Table 1, the proportion of protein to total mass of 
Lepidoptera and Orthoptera is seen to be higher than that of Hemiptera 
and Blattella and, furthermore, in the column of Coleoptera, we find that 
the protein ratio of aquatic insects is nearly half that of terrestrial 
species. 

After proteins, the second bulk component of insects is lipids. The 
lipid content of insects varies with individual species, but also with their 
growth stage, environmental conditions and dietary specifications 
(Lorrette & Sanchez, 2022). Lipids can typically represent 10–25 % of 
insect dry matter, similar to the data presented in Table 1. Some species 
such as Odontotermes and Ruspolia differens shown in Table 1 can even 
approach 50 %. Therefore, lipids have also become one of the main 
by-products of the insect industry. The composition of insect fat may 
vary in the quantity and composition of the fatty acid distribution 
(Lorrette & Sanchez, 2022). Insect species, growth stage and extraction 
technique are some of the parameters that affect fat quality. Insect lipids 
are mainly composed of triacylglycerols. Other types of lipids present in 
small amounts include cholesterol, partial glycerides, free fatty acids 
(FFAs), phospholipids and wax esters. (D.A. Tzompa-Sosa, Yi, van 
Valenberg, & Lakemond, 2019) As insect lipids for human consumption, 
this raw material may be an alternative to the resource-intensive and 
more expensive soybean oil, palm kernel oil, coconut oil, and fish oil 
(Franco et al., 2021). Although some studies suggest that insect lipids 
function well in food, crude fats and oils have an aftertaste that requires 
refining to improve their organoleptic properties (Lorrette & Sanchez, 
2022). 

In addition, in the data collected in Table 1, the proportion of fat in 
cockroaches is significantly better than that of insects of other orders, 
while the proportion of fat in Odontotermes even accounts for half of the 
dry weight. 

Regarding insect carbohydrates, the insect exoskeleton contains a lot 
of fibre. For example, in Oecophylla smaragdina (Kim, Yong, Kim, Kim, & 
Choi, 2019), the research data showed that about 19.84 % of the dry 
matter is fibre, which contains functional dietary fibre and this has ef-
fects related to regulating host intestinal health and improving glucose 
and lipid metabolism disorders (Cronin, Joyce, O’toole, & O’connor, 
2021). Measured as crude fibre, acid detergent fibre, or neutral deter-
gent fibre, the composition of these fibre fractions is unknown (Finke, 
2007), but includes hardened proteins, minerals and other compounds 
that bind to chitin. Chitin, an N-acetyl-β-D-glucosamine polymer, pro-
vides rigidity to the insect’s exoskeleton (Doucet & Retnakaran, 2012). 
It is present in the epidermis of the insect exoskeleton, the two innermost 
layers of the epidermis, and its content depends on the insect species and 
developmental stage (Oonincx & Finke, 2021). The chitin content of 
some insects listed in Table 1 ranges from the 4.72 % of Tenebrio molitor 
to 7.34 % of Crickets to the highest content, 14.1 %, of black soldier fly 
larvae. Another polysaccharide substance is called chitosan, with the 
chemical name polyglucosamine (1− 4)− 2-amino-B-D glucose, which 

can be obtained by deacetylation of chitin. The extracted chitosan has 
antibacterial, antioxidant, anti-cancer, anti-inflammatory properties 
and wastewater treatment capacity (Cronin, Joyce, O’toole, & O’connor, 
2021), and is a valuable research direction. It is a new research trend to 
develop high value-added products such as chitosan by means of 
comprehensive utilization of insect resources. 

3. Characterization of insect-derived packaging films 

It can be seen from Table 2 that most of the studies are in the early 
stages of research, using laboratory-scale fabrication and solvent casting 
methods, with only one case involving hot-press and cold-press fabri-
cation. The main reason is most likely that insect-derived materials are 
currently a new direction in edible packaging. Researchers mainly focus 
on research into the properties of the materials themselves and have not 
yet become involved in the development of industrial production and 
large-scale manufacturing processes. Therefore, solution casting is the 
most popular low-cost film-forming method in the laboratory. In recent 
years, researchers have been investigating the extraction of protein and 
chitin from insects to make edible films. The chitin or chitosan materials 
derived from insects have been reported to have advantages over those 
from marine crustaceans (Triunfo et al., 2022). For example, chitosan 
extracted from cicada slough, silkworm pupae, mealworms and grass-
hopper species showed higher potential water-holding capacity 
(594–795 %) and fat-binding capacity (275–645 %) compared to shrimp 
shell chitosan (Mohan et al., 2020). This is a promising property for food 
applications. Scientists today generally regard environmental protection 
as a major consideration and one of the main purposes of making 
biopolymer materials is to reduce the carbon footprint (Chandran et al., 
2021). For example, Hermetia illucens is used as a farmed insect which 
can use organic waste (food waste) to complete low-carbon consump-
tion. This concept unites the issues of organic waste management and 
insect rearing as well as alternative sources of protein and chitin. 

The studies in Table 2 suggest that insects of the order Orthoptera are 
popular experimental subjects, probably because Orthoptera insects, 
such as grasshoppers, crickets, and locusts, are widely distributed 
around the world, most of them being considered as herbivorous agri-
cultural pests. These insects are eaten in many parts of the world. They 
have a short life cycle (4–8 weeks for adulthood), a fast reproduction 
rate, a protein content of up to 76 %, and the shells of Orthoptera are 
also a good source of chitin (Blásquez, Moreno, & Camacho, 2012; Paul 
et al., 2016). On the other hand, in order to develop treatment methods 
for pests, the harm done by the American cockroach (Chen et al., 2021) 
to the public environment and the destruction of forests by weevil (Kaya 
et al., 2019) are the main reasons why scientists use them as research 
subjects. Table 2 also shows that the current research into insect re-
sources for food packaging is more directly using insects to produce 
source materials, and there is less research conducted on insect metab-
olites as source materials. In the preparation process, in addition to the 
addition of active substances with functional purposes, the film-forming 
liquid is additivated with plasticizers such as glycerin to help the film 
attain better structural characteristics. Unfortunately, researchers are 
more inclined to study the proportion of insect extracts contained in the 
film-forming fluid, and there is not much research into the impact of 
additives such as plasticizers. After the film form is made, the physical 
performance properties of the film, such as the optical properties, sol-
ubility, mechanical strength, and other properties of the film, are 
measured to provide the numerical data necessary for an objective 
evaluation of the degree of excellence of the film, and to judge whether it 
is suitable for food packaging. 

3.1. Optical and colour properties 

The optical properties (colour and clarity) of food packaging play a 
crucial role in the appearance and acceptance of packaging by con-
sumers (Khalid & Arif, 2022). Sensory evaluation of biopolymer-based 

S. Weng et al.                                                                                                                                                                                                                                    



FoodPackagingandShelfLife38(2023)101097

4

Table 1 
Major nutrient composition of Insects (g/100 g of dried sample).  

Insect Protein Fats Carbohydrate Reference 

Orthoptera Grasshopper 
(Arphia fallax S., Sphenarium 
histrio G., Sphenarium 
purpurascens Ch. Ruspolia 
differens. etc.) 

43.9 ± 1.5–77.1 ± 2.8 4.22 ± 0.5–34.2 ± 1.9 0.001 ± 0.100–22.64 ± 2.90 (Siulapwa, Mwambungu, Lungu, & Sichilima, 2014; Blásquez, Moreno, 
& Camacho, 2012; Paul et al., 2016; Montowska, Kowalczewski, 
Rybicka, & Fornal, 2019; Rodríguez-Miranda, Alcántar-Vázquez, 
Zúñiga-Marroquín, & Juárez-Barrientos, 2019) 

Fibre:3.00 ± 0.90–12.17 ± 2.80 

Cricket 
(Acheta domesticus, Teleogryllus 
emma，Gryllus bimaculatus， 
Gryllodes sigillatus.etc.) 

55.65 ± 0.28–72.45 ± 1.30 11.88 ± 0.21–25.14 ± 0.11 0.1 ± 0.0–6.64 ± 0.15 (Blásquez, Moreno, & Camacho, 2012; Brogan, Park, Matak, & 
Jaczynski, 2021; Psarianos et al., 2022) Chitin:7.34 ± 0.73 

Locust 
(Locusta migratoria, Schistocerca 
gregaria etc.) 

53.80 ± 0.50–76.0 ± 0.9 11.42 ± 1.11–35.66 ± 2.15 0.018 ± 0.004–2.08 ± 0.31 (Khalil, 2013; Ochiai, Inada, & Horiguchi, 2020; Brogan, Park, Matak, & 
Jaczynski, 2021) 

Diptera Black Soldier Fly（Hermetia 
illucens） 

29.9 ± 0.75–45.7 ± 0.07 9.50 ± 0.36–49.0 ± 0.22 Chitin: 2.9–14.1 (Caligiani et al., 2018;Huang et al., 2019; Abd El-Hack et al., 2020;  
Bessa, Pieterse, Marais, & Hoffman, 2020) 

Coleoptera Scarabs 
(Allomyrina dichotoma larvae, 
Protaetia brevitarsis larvae, 
Zophobas morio larvae) 

44.23 ± 0.25–54.18 ± 1.50 15.36 ± 0.40–20.24 ± 0.25 Chitin:4.60 ± 0.05–10.53 ± 0.75 (Ghosh, Lee, Jung, & Meyer-Rochow, 2017; Kim, Yong, Kim, Kim, & 
Choi, 2019; Shin, Kim, & Shin, 2019; Hahn et al., 2020; Kulma et al., 
2020;Meyer-Rochow, Gahukar, Ghosh, & Jung, 2021;Oonincx & Finke, 
2021) 

Tenebrio molitor larvae & adult 52.35 ± 1.1–53.22 ± 0.32 24.7 ± 1.5–34.54 ± 0.87 2.2 ± 0.3–11.45 ± 0.38 (Zielińska, Baraniak, Karaś, Rybczyńska, & Jakubczyk, 2015; Shin, Kim, 
& Shin, 2019; Son, Hwang, Nho, Kim, & Kim, 2021) Chitin:4.72 ± 0.21 

Water beetle (Hydrophilus 
olilivaceous, Cybister 
tripunctatus) 

22.64 ± 0.17 –25.08 ± 0.09 6.94 ± 0.70–21.57 ± 1.61 1.67 ± 0.33–2.39 ± 0.38 (Shantibala, Lokeshwari, & Debaraj, 2014) 
Fibre:14.25 ± 0.46 to15.13 
± 0.57 

Hemiptera Lethocerus indicus 22.67 ± 0.36 13.75 ± 0.09 15.40 ± 0.20 (Shantibala, Lokeshwari, & Debaraj, 2014; Meyer-Rochow, Gahukar, 
Ghosh, & Jung, 2021) Fibre: 11.71 ± 0.25 

Lepidoptera Caterpillars (Gonimbrasia belina, 
Gynanisa maja and Clanis 
bilineata tsingtauica) 

55.92 ± 0.04–71.85 ± 3.18 10.0 ± 0.2– 12.1 ± 0.2 8.4 ± 0.4–10.7 ± 0.3 (Siulapwa, Mwambungu, Lungu, & Sichilima, 2014; Churchward-Venne 
et al., 2017; Hahn et al., 2020;Gao, Zhao, Xu, & Shi, 2021;  
Meyer-Rochow, Gahukar, Ghosh, & Jung, 2021; Oonincx & Finke, 2021;  
Su et al., 2021) 

Silkworm 
(Bombyx mori, pupae of muga 
and eri silkworm) 

53.07 ± 0.10–72.48 16.66–33.30 ± 16.00 1.24–1.62 (Churchward-Venne et al., 2017; Brogan, Park, Matak, & Jaczynski, 
2021;Sharma, Gupta, Sharma, & Attri, 2022) Fibre: 3.06–3.25 

Blattaria Odontotermes 33.672 ± 0.329 50.930 ± 1.097 Fibre: 6.298 ± 0.088 (Chakravorty, Ghosh, Megu, Jung, & Meyer-Rochow, 2016) 
Macrotermes 
falciger 

43.26 ± 0.03 43.0 ± 0.2 32.8 ± 0.6 (Siulapwa, Mwambungu, Lungu, & Sichilima, 2014) 

Hymenoptera Oecophylla smaragdina 55.279 ± 1.024 14.993 ± 0.136 Fibre: 19.840 ± 0.259 (Chakravorty, Ghosh, Megu, Jung, & Meyer-Rochow, 2016) 
Laccotrephes maculatus 41.56 ± 0.52 5.16 ± 0.57 0.06 ± 0.01 (Shantibala, Lokeshwari, & Debaraj, 2014) 

Fibre: 7.31 ± 0.28 
Odonata Crocothemis servilia 70.48 ± 0.43 4.93 ± 0.17 1.18 ± 0.09 (Shantibala, Lokeshwari, & Debaraj, 2014) 

Fibre: 9.62 ± 0.24  
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films is critical to success in the market and it is well known that the 
addition of bioactive compounds to foods can significantly alter sensory 
acceptance (Trajkovska Petkoska, Daniloski, D’Cunha, Naumovski, & 
Broach, 2021). The colorimeter test is the most common test method in 
the laboratory and the test gives the results "L*" for brightness, "a*" and 
"b*" for: "red/green" and "blue/ yellow" respectively. Table 3 below 
summarizes the results of the CIELAB colour space test and the light 
transmittance of the food packaging film made from insect-derived 
materials. 

In a study using locust protein powder as film material, researchers 
(Zhang, Fang, et al., 2022) found that the pigmentation increased with 
increasing protein content, giving the film a dark brown colour, and that 
the increase in glycerol content resulted in an increase in the a* and 
b* values. Interactions between plasticizer molecules and water 

molecules can alter the refractive index of the LP (locust protein) 
component and thus the transparency of the resulting film. Similarly, in 
research on insect protein mixed with chitin, as the mixing ratio of Black 
Soldier Fly protein powder was reduced, the degree of browning of the 
film lessened (Chandran et al., 2021). Two research articles using chitin 
extracted from crickets as food packaging films showed that these films 
were relatively dark. Researchers (Malm et al., 2021) found that the 
brightness values of cricket chitin films were lower than those of con-
ventional commercial shrimp chitin films at the same degree of deace-
tylation, as shown by the L* values in Table 3. This is attributed to the 
absence of dark (brown/yellow) pigments in shrimp chitin/chitosan, 
which is different from that of crickets in Orthoptera, a result of the 
different mechanisms that crustaceans use during the production of their 
exoskeletons. In addition, some researchers have observed that the 

Table 2 
Extraction and preparation of packaging films from insects.  

Species of insects Material 
extracted 

Extraction method Preparation method Film formation 
& PH setting 

Reference 

Grasshoppers Protein 
(gelatin) 

Freeze-dried, degreased by hexane, 
alkaline dispersion and acid 
precipitation 

5 %, 10 %, 15 %, 20 % (w/v) gelatin 
powder was stirred at 50 ◦C for 0.5 H, 
+ 10 % glycerol 

Casting 
45 ℃ 

(Qoirinisa, 
Arnamalia, Permata, 
& Ramdani, 2022) 

Protein + Glycerol 45 % (w/weight of protein 
powders) + Xylose (5 %, 10 %, and 15 
% (w/w) 

Casting 
40 ℃ 
pH 10 

(Zhang, Zhou, Fang, 
& Wang, 2022) 

Migratory Locust Protein ~ 6 % (w/v) GP/SPI blends 
(Proportion 8/2, 7/3, 6/4) were 
dissolved in deionized water 
+ Glycerol 45 % (w/w) of protein 
powders + Xylose 5, 10, 15 % (w/w) 
of protein powders. 

Casting 
50 ℃ 
pH 9/10/11 

(Zhang, Fang, et al., 
2022) 

Cricket (Acheta 
domesticus， 
Gryllodes sigillatus 
and Gryllus 
bimaculatus) 

Chitin and 
Chitosan 

At 90 ◦C remove endogenous 
enzymes, at 55 ◦C protein was 
hydrolysed, centrifuge at 4 ◦C to 
obtain chitin, add 67 % w/v NaOH to 
vary the degree of deacetylation 

Different degrees of deacetylation: 72 
%, 76 % and 80 %. Chitosan solution 
(1 % w/v) by dissolving cricket 
chitosan in 1 % acetic acid (v/v) 
solution 
+glycerol 37.5 % (w/w chitosan) as 
plasticizer 

Casting 
50 ℃ 

(Malm, 2021) 

Chitosan Sodium hydroxide to remove protein, 
sodium hypochlorite to decolorize, 
oxalic acid to demineralize 

8 – 12 ml of film-forming solution 
containing 1:2 glycerol: chitosan (w/ 
w) per petri dish, 8.5 cm diameter 

Casting 
Room temperature 

(Jarolimkova, 2015) 

Protein Full-fat or low-fat conditioning of 
insect powder with ethanol 

SPI and full/low CF were formulated 
in mass ratios of 100:0 (standard), 
85:15, 70:30, and 55:45 on dry matter 
basis. 

HMEC 
Fed rate at 0.4 kg/hr and screw 
speed at 150 rpm 

(Kiiru et al., 2020) 

Maggot (Fly Larvae 
and Mealworm) 

Chitin Purification by Soxhlet extraction with 
hexane, positive pressure filtration 
with PVDF membrane. Sodium 
chloride removes protein, sodium 
hypochlorite decolorizes 

Films (30 g/m2) were produced using 
a positive pressure filtration unit with 
a 0.45 µm PVDF membrane. 

Hot-pressed at 
100 ◦C + 70 bar for 30 mins or 
cold-pressed under a load of 
0.012 bar and dried at room 
temperature. 
pH 3 or 7 

(Pasquier et al., 
2021) 

Black Soldier Fly 
(Hermetia illucens) 

Protein Freeze-dried and milled, defatted with 
n-hexane. 

Insect powder solution 4 % (w/w) and 
chitosan solution 1 % (w/w) were 
prepared in the ratio of (0:100, 70:30, 
50:50 and 30:70) to film-forming 
solution, + a constant amount of 
Glycerin (0.5 ml) 

Casting 
25 ℃ 

(Chandran et al., 
2021) 

Large pine weevil 
(Hylobius abietis L.) 

Chitosan Oven dried and milled, 0.5 % NaOCl 
bleached, 2 M HCL demineralized, 
2 M NaOH demineralized, 
deacetylated in hot NaOH 

10 mg chitosan and 50 µl glycerol 
were mixed in 1 % acetic acid solution 
(10 ml) for 2 days, the experimental 
group was supplemented with 0.1 mg 
β-carotene 

Casting 
35 ℃ 

(Kaya et al., 2019) 

Tenebrio molitor Chitosan Freeze-dried and milled, 
demineralization and 
deproteinization, and deacetylation to 
obtain chitin. 

Chitosan (1 %, w/w) dissolved in 
acetic acid solution (1 %; v/v), 
+ 30 % glycerol (w/w; based on 
chitosan content) 

Casting 
Room temperature 

(Saenz-Mendoza 
et al., 2020) 

Periplaneta americana Chitosan Degreased with n-hexane, 
deproteinized in a hot alkaline bath, 
and desalted, bleached and 
deacetylated 

Chitosan (1 g) was dissolved in 50 ml 
of 1 % acetic acid solution at room 
temperature, + 1 g glycerol 

Casting 
65 ◦C 

(Chen et al., 2021) 

Snails Chitosan Ozone disinfection and citric acid 
stimulating solution, stored at 4 ◦C 

1 g of chitosan was added to 70 ml of 
A (1 % v/v) or L (1 % v/v) followed by 
30 ml of snail solution to give 100 ml 
of chitosan-S mixture in a ratio of 
70:30. 

Casting 
Room temperature 

(Di Filippo，M. F. 
et al., 2020)  
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optical properties of the film are not only related to the source of the 
material, but also to the molecular weight and the degree of deacety-
lation of the chitosan (Jarolimkova, 2015). 

In respect to the light transmittance of insect-derived films, the chitin 
film from Hylobius abietis has a transmittance of 70.1 % at 600 nm (Kaya 
et al., 2019), while chitin films from Periplaneta americana have a 
transmittance of 80.316 % at 600 nm (converted from the provided 
opacity and thickness values) (Chen et al., 2021). Chitosan films derived 
from crickets also have a light transmittance of about 70 %, even when 
different cricket species are used (Jarolimkova, 2015; Malm et al., 
2021). Another study on Hermetia illucens (Chandran et al., 2021) tested 
a mixture of protein and chitosan films, giving opacity values from a 
600 nm UV spectroscopy test. The opacity of the 100 % chitosan film as 
a control was 4.853 ± 0.40(λ/mm), while the mix with 70 % protein 
showed 10.082 ± 0.22(λ/mm). The films with half protein and half 
chitosan exhibited an opacity of 6.087 ± 0.48(λ/mm) and the opacity of 
the films with 70 % chitosan was 5.558 ± 0.44(λ/mm). Also, based on 
the film thickness and opacity equations during the test, the absorbance 
of each mix at 600 nm was calculated as 0.33971, 1.20984, 0.54783 and 
0.50022. The transmittance ( %) was 45.739 %, 6.168 %, 28.325 % and 
31.607 % respectively. The opacity of the films increased with 
increasing protein composition. In addition to films prepared by ordi-
nary casting methods, hot-pressing and cold-pressing methods to fabri-
cate chitin nanofiber films (Fly Larvae and Mealworm) have also been 
used by some researchers (Pasquier et al., 2021). The transmittance of 
the Fly Larvae chitin fibre film when cold-pressed was 21 ± 2 %, while 
that of the hot-pressed film was only 1.8 ± 0.2 % (UV wavelength was 
550 mm). Researchers in the study suggested that the impermeability of 
the films may be due to the high porosity. When the film is hot pressed, 
the rate of drying and moisture evaporation is much higher than that of 
overnight cold drying (Pasquier et al., 2021). Thus, the chitin nanofibers 
in hot pressing had little time to rearrange and entangle, leaving porous 
or defective structures in the stacked flakes. In addition, the films made 
of chitosan extracted from Periplaneta americana (Chen et al., 2021) 
exhibited excellent UVC (200–300 nm) light resistance, and the light 
transmittance was significantly lower than that of commercial shrimp 
chitosan films. That is considered to be because a large amount of the 
pigment deposited in the stratum corneum is bound to chitin (Chen 
et al., 2021). 

3.2. Barrier properties 

One of the primary functions of food packaging is to prevent or 
reduce moisture transfer between the food and the surrounding envi-
ronment (Alamri et al., 2021), although barrier requirements depend on 
end use. In general, biodegradable polymers have some disadvantages 
relative to conventional packaging in terms of moisture resistance 

(Shaikh, Yaqoob, & Aggarwal, 2021; Wu, Misra, & Mohanty, 2021). 
In ideal food packaging, a barrier to maintain a low level of oxygen 

and a controlled degree of moisture is essential in order to conserve dry, 
moist or textured products (Trajkovska Petkoska, Daniloski, D’Cunha, 
Naumovski, & Broach, 2021). These traditional packaging attributes 
also apply to packaging films using insect-derived materials. 

Food packaging films are often tested for contact angle, which is one 
of the methods commonly used to measure the wettability of surfaces or 
materials (Huhtamäki, Tian, Korhonen, & Ras, 2018). Wetting refers to 
the study of the behaviour of liquids on substrates, whether it is diffusion 
or the ability of liquids and solids to form boundary surfaces. It was 
found in one study (Zhang, Zhou, Fang, & Wang, 2022) that the hy-
drophobicity of the film was increased by the soy protein isolate in the 
mixture material, and xylose as a cross-linking agent did not restrict 
access to the hydrophilic groups in the protein mixture. When 30 % 
cinnamaldehyde was added, the WCA (water contact angle) of the 
composite film was further increased to 38◦, because CIN (cinna-
maldehyde) conjugated with free amine groups to replace the hydro-
philic groups with hydrophobic aromatic groups, thereby improving the 
hydrophobicity of the films. Another film, extracted from Locusta 
migratoria and also composed of protein, is hydrophilic (Zhang, Fang, 
et al., 2022). In general, WCA > 65◦ can be regarded as a hydrophobic 
surface, and < 65◦ is regarded as a hydrophilic surface (Feng et al., 
2018). A rise in protein content increased the hydrophobicity of the 
surface, but when the glycerol content increased from 35 % to 45 %, the 
WCA decreased from 45.9◦ to 38.6◦. Some researchers (Zhang, Fang, 
et al., 2022) believe that the added plasticizer glycerol tends to reduce 
the surface tension of the film, which is beneficial to the wettability of 
the film surface; the increased mobility of the polypeptide chain can 
promote water absorption and transport within the film. In addition, 
after the pH of the film-forming solution was adjusted from 9 to 11 in 
this study, the WCA decreased from 49.4◦ to 42.7◦. The effect of pH on 
protein structure altered the WCA performance of the final films. These 
researchers (Zhang, Fang, et al., 2022) also mentioned that L. migratoria 
protein contains very low levels of cystine. The density of disulphide 
bonds in proteins is influenced by cystine. A low concentration of cystine 
leads to a low density of disulphide bonds in proteins, resulting in 
low-energy disulphide bonds within and between molecules that are 
more soluble, thus making the film itself more hydrophilic and soluble. 

Unlike the cricket protein blend film, the shellac produced by lac 
bugs helped the original glycan film to have a higher WCA (Du et al., 
2019), and this improvement may be attributed to the intrachain and 
interchain interactions between KGM (Konjac glucomannan) and SHL 
(shellac) molecules. The interaction between them forms a rigid struc-
ture. However, in Cricket chitosan films, the increased water contact 
angle may be a result of the possible presence of melanin (hydropho-
bicity) and possibly other residual components (Malm et al., 2021). 

Table 3 
Optical L*/a*/b* values and light transmittance of edible insect films.  

Insect & material Composition Thickness 
(mm) 

L* a* b* Transparency 
(%) 

Reference 

Large pine weevil (Hylobius 
abietis L.)/Chitosan 

10 mg chitosan and 50 µl glycerol in 1 
% acetic acid (10 ml) 

0.044 
± 0.001 

/ / / 70.1 at 600 nm (Kaya et al., 2019) 

Cricket/Chitosan 1:2 glycerol: chitosan (w/w) (8–12 ml) 0.061 
± 0.006 

89.22 
± 0.67 

-0.25 
± 0.04 

12.07 
± 0.87 

/ (Jarolimkova, 
2015) 

cricket chitosan in 1 % acetic acid (v/v) 
+ 37.5 % (w/w) 
glycerol 

/ / / / ~70 at 600 nm (Malm et al., 2021) 

Black Soldier Fly (Hermetia 
illucens)/Protein 

4 % insect protein & 1 % Chitosan 
(ratio 70:30) + 0.5 ml glycerol 

0.12 ± 0.02 32.46 
± 0.11 

5.04 
± 0.04 

11.39 
± 0.04 

6.168 at 
600 nm 

(Chandran et al., 
2021) 

Maggot (Fly Larvae and 
Mealworm)/Chitin 

cold-pressed (0.012 bar) Fly Larvae 
chitin 

/ / / / 21 ± 2 
（550 nm) 

(Pasquier et al., 
2021) 

Cockroach (Periplaneta 
americana)/Chitosan 

Chitosan (0.5 g) + 25 ml of 1 % acetic 
acid + 0.5 g glycerol 

0.080 
± 0.004 

/ / / 65.39 at 
600 nm 

(Chen et al., 2021) 

Migratory Locust/Protein 7 % Locust protein + 40 % glycerol 
+ pH 10 

0.376 
± 0.042 

11.542 
± 3.125 

0.059 
± 0.087 

0.535 
± 0.292 

/ (Zhang, Fang, et al., 
2022)  
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Therefore, if melanin crosslinks are present, intramolecular interactions 
increase and lead to a decrease in the ability of the film surface to 
interact with water. The increased complexity of cricket chitosan may be 
an advantage of chitosan biobased food packaging. In the study 
mentioned above, using hot-pressing and cold-pressing techniques 
(Pasquier et al., 2021), the contact angles of the hot-pressed shrimp 
chitin nanofiber film and the cold-pressed fly nano-chitin film ranged 
from 29.0 ± 0.3◦ to 40.0 ± 2.0◦, respectively, which were highly hy-
drophilic. Compared with cold pressing, hot pressing gives a smoother 
film surface, which tends to lower contact angles. The films made from 
worms had slightly higher contact angles than the former. Due to the 
presence of a charge opposite to that of chitin, there are fewer 
water-interacting groups. Varying the pH between 3 and 7 did not affect 
the contact angle of the films. 

The “water vapour barrier” property is important in a food packaging 
film, since the ability to block the passage of water vapour directly af-
fects the shelf life of food. To delay food spoilage, the water vapor 
permeability value should be kept at a reasonably achievable low level 
(Bourlieu, Guillard, Vallès-Pamiès, Guilbert, & Gontard, 2009). 

Table 4 lists the water evaporation rate performance of insect- 
derived films in the current research field, where molecular weight 
(Mw), cross-linking agent, film-forming material bulk and pH are all 
factors that affect water vapour permeability (WVP). Among the film- 
forming materials seen, the combination of glucomannan and shellac 
exhibited levels that were significantly different, by 10-7 to 10-6 orders of 
magnitude, compared to the other two materials (protein and chitin). 

The last test related to water is the solubility or water absorption 
capacity of the packaging material in the water environment. A total of 
four groups of researchers investigated the water solubility of Hylobius 
abietis L chitosan films, Tenebrio and Brachystola magna insect chitosan 
films, Schisandra-containing cricket chitosan, and grasshopper protein 
films mixed with soybean protein (Kiiru et al., 2020; Saenz-Mendoza 
et al., 2020; Kaya et al., 2019; Zhang, Zhou, Fang, & Wang, 2022). 

The results showed that the water solubility decreased after adding 
β-carotene to Hylobius abietis L chitosan films. The water solubility 
values of the chitosan control and chitosan-β-carotene films were 
recorded as 28.4 ± 1.21 % and 31.1 ± 1.34 %, respectively. For soil 
solubility, the weight loss values for chitosan control and chitosan- 
β-carotene films were 30.4 % and 23.5 %, respectively (Kaya et al., 
2019). Chitosan films of B. magna (≈41.2 %) showed higher solubility 

(≈35.4 %) than those of T. molitor. However, these values did not show 
significant differences (P < 0.05), and insect chitosan films were more 
soluble than commercial chitosan films. The lower solubility of films of 
T. molitor chitosan can be explained by its higher Mw than B. magna 
chitosan. In addition to the above, the higher solubility in insect chitosan 
films may be due to the smaller intermolecular forces between chitosan 
chains. This is a result of ingredient residues (probably melanin) and the 
moisture content of the film. (Saenz-Mendoza et al., 2020) Some re-
searchers believe that the water solubility and degree of swelling of 
cricket chitosan films are lower (WS 13.12 ± 3.42 %; SD swelling degree 
1.15 ± 0.43) compared with commercial shrimp chitosan, but adding 
Schisandra chinensis extract slightly increases the degree of swelling 
(Jarolimkova, 2015). A possible explanation for the difference between 
shrimp and cricket chitosan is the lower degree of deacetylation and 
very low molecular weight of chitosan films, but there are no studies on 
the use of insect-derived chitosan or very low molecular weight/low 
deacetylation chitosan films. In the latest grasshopper protein film 
study, the authors found that WS with 10 % xylose was significantly 
reduced from 91 % to 46 %. But when the dosage reaches 15 %, the 
saturation effect occurs (Jarolimkova, 2015). 

The choice of protein/chitosan concentration, pH, temperature and 
plasticizer determines solubility and water absorption capacity (Mihalca 
et al., 2021). WVP is directly affected by many factors (e.g., polymer 
chain mobility, thickness, film integrity). The main influence tending to 
increase water vapour permeability is the increased solubility of 
protein-based films and chitosan-based films. 

3.3. Mechanical properties 

Mechanical strength depends on the composition and process con-
ditions when making biopolymer films (Gheribi, Gharbi, El Ouni, & 
Khwaldia, 2019). It is responsible for maintaining the integrity of the 
packaging during handling and storage. Mechanical properties include 
tensile strength, elongation, elasticity and Young’s modulus (Assad, 
Bhat, Gani, & Shah, 2020). These can be improved and enhanced by 
different moulding conditions, processing parameters and the addition 
of plasticizers depending on the source and application. Table 5 sum-
marizes the mechanical properties of existing films derived from insect 
components, including the tensile stress and elongation at break of the 
films. 

Table 4 
WVP properties of insect derived food packaging films.  

Top Performing Group WVP (g/m s Pa) Characteristics of the films Reference 

Grasshopper chitosan 1 × 10− 10 The microstructure of the CCF films appears to be rougher and more aggregated, leading to an 
increase in the length of the tortuous path for the diffusion of water vapour across the film. 
Ultimately, this will lead to a decrease in the water vapour permeability of the CCF, while the 
microstructure of the chitosan film is smoother and more compact, and the propagation path length 
of the water vapour will be shorter. 

(Malm et al., 2021) 

KSH5 (10 ml SHL 
solution mixed) 

~1.134 × 10-4 One characteristic is the presence of intermolecular hydrogen bonds between KGM and SHL, which 
may reduce the number of hydrophilic groups. Furthermore, the presence of ester bonds in the 
blended films contributes to the formation of compact structures. Also, the decreased WVP of the 
hybrid film with increasing SHL content is due to the presence of uniformly dispersed SHL in the 
composite structure, which may force water vapour to overcome the tortuous path through the 
polymer matrix, resulting in an effective path with increased diffusion length. 

(Du et al., 2019) 

T. molitor 4.77 × 10− 11 As the melanin concentration increased, the WVP value increased. The WVP value of T. molitor 
chitosan film was 13 % lower than that of B. magna chitosan film. These differences may be due to 
the Mw, as the Mw of T. molitor chitosan is higher than that of B. magna chitosan. 

(Saenz-Mendoza et al., 
2020) 

“6–40–10” ~1.3 × 10− 11 Glycerol: Tends to aggregate with itself at high concentrations to increase chain spacing, thereby 
promoting the diffusivity of water vapour through the membrane and accelerating its transport. 
Alkaline pH changes protein structure. Growth of protein content increased WVP due to increased 
film thickness. 

(Zhang, Fang, et al., 2022) 

PaCSF （64.85 
± 4.82）× 10− 11 

Higher Mv (viscosity) may contribute to better water repellency. And since many water molecules 
escaped from the chitosan film after drying and storage, many binding sites for water could freely 
accept water molecules again. 

(Chen et al., 2021) 

70 %GP+ 30 %SPI 2.0 × 10− 9 The formation of the cross-linked network contributes to the dense structure of the film and reduces 
the permeability, but after adding xylose and CIN, there is no significant change in WVP compared 
with the 30 % SPI group. This suggests that the influence of the substrate on the WVP is more 
important than that of the crosslinker. 

(Zhang, Zhou, Fang, & 
Wang, 2022)  
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Some researchers (Zhang, Zhou, Fang, & Wang, 2022) found that 
films with xylose glycosylation were more likely to form dense struc-
tures with high molecular weights. When xylose was increased from 10 
% to 15 %, TS (tensile stress) and EAB (elongation at break) decreased 
due to saturation effects. CIN has a negative effect on TS and EAB, 
especially when added at levels above 10 %. The effect of CIN on 
polymer mechanical properties depends on the substrate, and there is no 
particularly consistent trend. Some researchers (Zhang, Fang, et al., 
2022) used the response surface design in their migratory locust study to 
obtain the TS and EB values of the films through the response surface 
formula. The plasticiser used has an increasing and then decreasing ef-
fect on TS, as the plasticising capacity of glycerine exceeds the threshold. 
For proteins, the difference in content affects the degree of aggregation 
between molecules. Of course, pH may lead to different degrees of 
accumulation by adjusting the charge properties of the protein network. 

In an insect chitosan film study (Saenz-Mendoza et al., 2020), TS 
(≈42–44 MPa) and EM (≈737–1060 MPa) values in insect chitosan 
films were lower than those obtained in commercial chitosan films. In 
contrast, the E % (Elongation at break) in insect chitosan films (≈56–66 
%) was higher than in commercial chitosan films (≈38–41 %). Insect 
chitosan films are more flexible than commercial chitosan films because 
insect films are about 15–25 % more ductile. The mechanical properties 
of the film may be due to residual melanin in the insect chitosan, as well 
as higher film moisture content. 

When a group of researchers (Di Filippo，M. F. et al., 2020) studied 
the mechanical properties of chitosan films with added snail mucus, they 
found that the effect of adding snail mucus was similar to that of a 
plasticizer. At higher snail mucus concentrations, the increased ductility 
of the films can be attributed to the solution-polymer interaction. This 
reduces intermolecular interactions between polymer chains, promoting 
their sliding and fluidity, and improving overall ductility. 

Additionally, the shellac-containing films were more stretchable in 
the tensile stress test. Possibly because of the low molecular weight of 
shellac, it can occupy the space between the macromolecules of the film, 
resulting in weaker connections between the film macromolecules and 
thus increasing the flexibility of the food packaging film (Du et al., 
2019). 

And in another study, Malm et al. (2021) found that compared with 
commercial shrimp chitosan films, cricket chitosan had similar or better 
tensile strength (TS), and the degree of deacetylation had no significant 
effect on the films. The elongation rate is basically not as good as that of 
commercial chitosan films. The author believes that because chitosan is 
covalently cross-linked with the residual melanin of insects, it can be 
compared with commercial shrimp shell chitosan in terms of TS. The 
molecular weight of chitosan prepared from crickets is smaller, so the 
elongation rate is basically inferior to that of commercial chitosan films. 

Using a hot-pressing process, some researchers (Pasquier et al., 
2021) found that the strength of the chitin nanofiber network is mainly 
affected by the assembly conditions (CP or HP) rather than by the 
properties of the chitin precursors. The hot press process greatly reduces 
the maximum tensile strain and toughness. S-ChNF decreased from 5.5 
± 0.7–1.9 ± 0.2 % and F-ChNF decreased from 5.0 ± 0.6–1.4 ± 0.1 %. 
The reason is that after hot pressing, the moisture in the film is reduced. 
Cold-pressed products have better mechanical properties. In addition, it 

was found that the cellulose composition in W-NF was different from 
that of conventional CNF. Possibly W-NF molecules are smaller or highly 
impregnated with pigments or are entangled. 

3.4. Antibacterial properties 

In a study using cinnamaldehyde as an antibacterial agent in cricket 
protein films (Zhang, Zhou, Fang, & Wang, 2022), due to high volatility, 
the composite film has antibacterial activity only when the amount of 
cinnamaldehyde reaches 20 %. In a study that also used crickets as 
research material, the experimenters compared the antibacterial prop-
erties of chitosan films and films to which Schisandra chinensis extract 
had been added (Jarolimkova, 2015). This author shows that the anti-
bacterial activity of the pure chitosan film itself depends on a complex 
combination of different factors, including molecular weight, degree of 
deacetylation, pH, film moisture content and bacterial strain species. 
The experimenter designed the agar diffusion experiment because it was 
thought to more realistic for bacterial growth unless it was necessary to 
package beverages. And tests were performed on a variety of common 
strains (e.g., Bacillus cereus, Escherichia coli, Listeria monocytogenes). The 
combined effects of S. chinensis extract and cricket chitosan were found. 
Diffusion of the extract likely inhibited the initial growth, an effect 
supported by the slow diffusion of cricket chitosan after several days. 

In contrast to adding antibacterial agents, some researchers (Chen 
et al., 2021; Kaya et al., 2019) have conducted experiments on the 
inherent antibacterial properties of the film made from insect compo-
nents themselves. The performance of the Periplaneta americana chitosan 
film against common food-borne pathogens Serratia marcescens and 
Escherichia coli was significantly better than that of the commercial 
chitosan film. The H. abietis chitosan film has been studied with 28 
different bacterial species (against 18 of which it had antibacterial 
properties) It has the highest activity against Vibrio parahaemolyticus, 
followed by Acinetobacter baumannii and Streptococcus pneumoniae, and 
relatively low activity against Klebsiella pneumoniae subsp. 

4. Perspectives 

Insects are already being commercialized as food in Western markets 
but they are not mainstream (Reverberi, 2021). They face many com-
mercial challenges, including production costs, certifications and regu-
lations, marketing communications, and retail distribution and 
consumer positioning. In the current situation, most countries or re-
gions, because of dietary habits, cultural background and religious be-
liefs, do not accept insect products to a high degree. For example, this 
review finds that because the image of Orthoptera insects may be more 
acceptable to humans than other insects, mainly because they are mostly 
herbivorous and widely distributed around the world, this group of in-
sects is the most frequently studied. However, the use of packaging 
derived from insects such as Periplaneta americana and fly maggots will 
be limited by people’s traditional consumption concepts. This type of 
perception about a food product is very visceral and difficult to change 
and may require a large investment in marketing or a drastic change in 
public awareness, triggered by an external event, which in this case may 
be climate change. 

Table 5 
Tensile stress and elongation of several film materials prepared from insects.  

Insect Material Tensile stress (MPa) Elongation at break ( %) Reference 

Fly Larvae and Mealworm Chitin 89.6 10.6 (Pasquier et al., 2021) 
Crickets Chitosan 27.5 ± 3.3 49.6 ± 8.7 (Malm et al., 2021) 
Laccifer lacca Shellac 13.8 20.6 (Du et al., 2019) 
Snail Chitosan 

and Mucus 
15 ± 4 13 ± 6 (Di Filippo，M. F. et al., 2020) 

Tenebrio molitor and Brachystola magna Chitosan 43.51 ± 0.91 66.28 ± 2.48 (Saenz-Mendoza et al., 2020) 
Migratory locust Protein 2.51 13.16 (Zhang, Fang, et al., 2022) 
Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde 3.38 ± 0.23 38.1 ± 3.1 (Zhang, Zhou, Fang, & Wang, 2022)  
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Compared with the accumulated information that is available with 
respect to the safety of conventional animal and plant-derived materials, 
there are very few studies on insects as raw materials. Marshall, Dickson, 
& Nguyen, 2016 described in detail the types of infectious and intox-
icating bacteria, viruses and parasites related to edible insects. Their 
paper also provides examples of careful insect food processing and 
preparation methods that ensure a safe, wholesome and nutritious 
product for consumers. Vandeweyer, De Smet, Van Looveren, & Van 
Campenhout, 2021 identify the top three bacterial pathogens associated 
with insects for food as Staphylococcus aureus, pathogenic Clostridium 
spp. and pathogenic species of the Bacillus cereus group. Contamination 
risk assessments for the insect species employed will need to be carried 
out in the future. Edible insect supply chains may require the imple-
mentation of detailed sampling plans and, in each chain, the prediction 
of potential hazardous microorganisms to gain insight into the quality of 
the overall supply chain. Otherwise, there may be a risk of contamina-
tion of insect-derived film-forming materials. 

In addition, Alok Bang et al. (2021) have warned that, in general, 
industrial farming of insects for feeding purposes is based on production 
models that use large numbers of non-native insect species. These insect 
species have considerable invasive potential. If there are loopholes in the 
implementation of transportation and breeding, or a lack of adequate 
policies and production standards, there may be threats to regional or 
even global biodiversity (Bang & Courchamp, 2021). This issue must be 
taken into account when planning and instituting future developments 
in the farming of insects. 

5. Conclusions 

This review summarizes the results of the main scientific studies on 
the use of insects to prepare edible packaging that have been published 
over the past five years. The insect species currently receiving more in- 
depth study are crickets/grasshoppers/locusts in the order Orthoptera. 
This is likely because the image of Orthoptera is more acceptable to 
humans than that of other insects, because most of them are herbivorous 
and widely distributed worldwide. Rather than extracting proteins from 
insects as a substrate for making packaging films, researchers have 
preferred to extract chitosan from insects. Chitosan films generally have 
higher tensile stress than protein films. With respect to antibacterial 
properties, protein-based films can carry antibacterial agents in combi-
nation to achieve antibacterial effects, while chitosan films themselves 
have certain antibacterial activity. 

The currently available insect-derived food packaging films still have 
much room for improvement with respect to various attributes. In 
particular, insect pigments have a positive effect on the light tolerance of 
packaging films and the protection of the wrapped food from light, but 
more research and design work are needed to make them more 
aesthetically acceptable. The hydrophilic, hydrophobic and solubility 
characteristics of the films are generally not as good as those of tradi-
tional plastic packaging. In addition, the protein concentration, pH, 
temperature and choice of plasticizer of the insect-derived material all 
determine the final solubility and hydrophobicity of the film. In terms of 
mechanical properties, differences in the film fabrication processes used 
will have a huge impact. 
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species of edible insects as a source of nutrient composition. Food Research 
International, 77, 460–466. https://doi.org/10.1016/j.foodres.2015.09.008. 

S. Weng et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.ifset.2021.102908
https://doi.org/10.22146/jfps.3402
https://doi.org/10.1080/10408398.2018.1440191
https://doi.org/10.3920/JIFF2020.0111
https://doi.org/10.3920/JIFF2020.0111
https://doi.org/10.1007/s00217-019-03383-0
https://doi.org/10.1007/s00217-019-03383-0
https://doi.org/10.3390/ijerph191811653
https://doi.org/10.3390/ijerph191811653
https://doi.org/10.1016/j.ijbiomac.2020.05.255
https://doi.org/10.1016/j.ijbiomac.2020.05.255
https://doi.org/10.1038/s41598-018-26985-2
https://doi.org/10.1016/j.crfs.2021.07.005
https://doi.org/10.1016/j.crfs.2021.07.005
https://doi.org/10.1673/031.014.14
https://www.researchgate.net/publication/358891115_Silkworm_as_an_edible_insect_A_review
https://www.researchgate.net/publication/358891115_Silkworm_as_an_edible_insect_A_review
https://doi.org/10.1016/j.ijbiomac.2018.11.242
https://doi.org/10.1016/j.ijbiomac.2018.11.242
https://www.researchgate.net/publication/335893221_Nutritional_Value_of_Four_Common_Edible_Insects_in_Zambia
https://www.researchgate.net/publication/335893221_Nutritional_Value_of_Four_Common_Edible_Insects_in_Zambia
https://www.researchgate.net/publication/335893221_Nutritional_Value_of_Four_Common_Edible_Insects_in_Zambia
https://doi.org/10.3390/foods10030640
https://doi.org/10.3390/foods10122895
https://doi.org/10.1016/j.jclepro.2021.127111
https://doi.org/10.1016/j.foodres.2020.109981
https://doi.org/10.1016/j.foodres.2020.109981
https://doi.org/10.1038/s41598-022-10423-5
https://doi.org/10.1038/s41598-022-10423-5
https://doi.org/10.3920/JIFF2014.0008
https://doi.org/10.3920/JIFF2014.0008
https://doi.org/10.3920/JIFF2018.0020
https://doi.org/10.1007/s13593-017-0452-8
https://doi.org/10.1007/s13593-017-0452-8
https://doi.org/10.3920/JIFF2020.0060
https://doi.org/10.1021/acs.jafc.7b04528
https://www.researchandmarkets.com/reports/5233747/edible-insects-market-by-product-whole-insect?utm_source=GNOM&amp;utm_medium=PressRelease&amp;utm_code=krv7hd&amp;utm_campaign=1713325+-+Global+Edible+Insects+Market+Report+2022-2030%3A+Environmental+Benefits+of+Edib
https://www.researchandmarkets.com/reports/5233747/edible-insects-market-by-product-whole-insect?utm_source=GNOM&amp;utm_medium=PressRelease&amp;utm_code=krv7hd&amp;utm_campaign=1713325+-+Global+Edible+Insects+Market+Report+2022-2030%3A+Environmental+Benefits+of+Edib
https://www.researchandmarkets.com/reports/5233747/edible-insects-market-by-product-whole-insect?utm_source=GNOM&amp;utm_medium=PressRelease&amp;utm_code=krv7hd&amp;utm_campaign=1713325+-+Global+Edible+Insects+Market+Report+2022-2030%3A+Environmental+Benefits+of+Edib
https://www.researchandmarkets.com/reports/5233747/edible-insects-market-by-product-whole-insect?utm_source=GNOM&amp;utm_medium=PressRelease&amp;utm_code=krv7hd&amp;utm_campaign=1713325+-+Global+Edible+Insects+Market+Report+2022-2030%3A+Environmental+Benefits+of+Edib
https://www.researchandmarkets.com/reports/5233747/edible-insects-market-by-product-whole-insect?utm_source=GNOM&amp;utm_medium=PressRelease&amp;utm_code=krv7hd&amp;utm_campaign=1713325+-+Global+Edible+Insects+Market+Report+2022-2030%3A+Environmental+Benefits+of+Edib
https://doi.org/10.1016/j.progpolymsci.2021.101395
https://doi.org/10.1016/j.progpolymsci.2021.101395
https://doi.org/10.3389/fnut.2022.796356
https://doi.org/10.3389/fnut.2022.796356
https://doi.org/10.1016/j.fpsl.2022.100899
https://doi.org/10.1016/j.fpsl.2022.100899
https://doi.org/10.1016/j.foodres.2015.09.008

	Insect-derived materials for food packaging-A review
	1 Introduction
	1.1 Insects as food
	1.2 Insects as a source of biopolymers for preparing edible films and coatings

	2 Insects as a source of biopolymers to prepare bioplastics
	3 Characterization of insect-derived packaging films
	3.1 Optical and colour properties
	3.2 Barrier properties
	3.3 Mechanical properties
	3.4 Antibacterial properties

	4 Perspectives
	5 Conclusions
	Ethics statement file
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	References


