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Abstract: The great geometric complexity that additive manufacturing allows in parts, together
with the possibility of combining several materials in the same part, establishes a new design and
manufacturing paradigm. Despite the interest of many leading sectors, the lack of standardization
still makes it necessary to carry out characterization work to enjoy these advantages in functional
parts. In many of these techniques, the process does not end with the end of the machine cycle, but
different post-processing must be carried out to consider the part finished. It has been found that
the type of post process applied can have a similar effect on part quality as other further studied
process parameters. In this work, the material projection technique was used to manufacture multi-
material parts combining resins with different mechanical properties. The influence of different
post-processing on the tensile behavior of these parts was analyzed. The results show the detrimental
effect of ultrasonic treatment with isopropyl alcohol in the case of the more flexible resin mixtures,
being advisable to use ultrasonic with mineral oil or furnace treatment. For more rigid mixtures,
the furnace is the best option, although the other post-processing techniques do not significantly
deteriorate their performance.

Keywords: additive manufacturing; multi-material; material projection; post-processing

1. Introduction

Additive manufacturing technology (AM) is based on part manufacturing by adding
layers of material. Originally called rapid prototyping, it was conceived to produce proto-
types quickly and easily from digital models. Given its advantages in terms of simplicity of
use, great freedom of design and customization without a significant increase in cost, the
possibility of reducing the number of components, etc., it is currently of great interest to
many sectors such as medical [1], aerospace [2], energy industry [3], sports [4,5], and those
geared towards the manufacture of micrometer-scale components [6].

One of the AM techniques that has received great attention in recent times is the
Material Projection (MP) technique [7]. This technique allows for the addition of material
layers by selective deposition of light-curing resin droplets that are subsequently cured by
an ultraviolet light source. For this purpose, AM machines have a head that incorporates
piezoelectric injectors arranged in a matrix to deposit the resin, as well as a blade or
roller and several ultraviolet light lamps, which flatten and cure the resin once it has been
deposited [8].

The main manufacturers of AM machines based on this technique (3D Systems [9]
and Stratasys [10]) have developed equipment capable of mixing several light-curable
polymer resins simultaneously at the voxel level (3D pixel) to manufacture multi-material
parts [11,12]. This new paradigm undoubtedly marks a milestone in terms of the ability to
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simplify designs by reducing the number of components, due to the variety of properties
that these resins can present. The support material used in this technique consists of a
paraffin or hydrophobic material that is deposited next to the photopolymers that must be
removed by post-processing out of the machine.

The MP technique has proven useful for manufacturing functional parts, in general [13,14],
for manufacturing plastic injection molds for short or one-off series [15,16] and for vali-
dating prototype parts for series production [17,18]. In addition to the aforementioned
advantages of additive manufacturing, this technique has minimal material waste, lower
cost, and greater supply chain efficiency compared to machining or small series injection
molding [19]. This has made it of great interest to industries as varied as biomedical [20,21]
and aeronautics [22].

Nevertheless, MP does not escape the challenges that remain to be addressed for
additive manufacturing, among which can be highlighted both the lack of design and
manufacturing guidelines, as well as the lack of specific standardization [23]. This has led
several researchers to focus in recent years on studying this technique in depth, mainly
focusing on the material properties’ characterization [24,25], studying the geometric and
surface quality [26–28], analyzing the anisotropy of the mechanical properties of the printed
parts [29], and manufacturing structures reinforced with multiple materials [30,31].

The interesting results achieved by these works reinforce the need to address the
AM challenges mentioned above. Specifically for MP, there is a key issue related to the
development of manufacturing procedures: the post-processing operation for removing
support material. This operation is mandatory and common to all parts obtained by this
technique. As seen in many of the aforementioned works, researchers have focused on
analyzing the properties and the economy of the parts depending on their orientation
and position in the machine working volume, while avoiding the implications of the
needed post-processing. In this respect, a few works mention the problems related to
this post-processing. Liu et al. [32] note the advantage of using integrated lattices over
snap-fitted lattices in terms of energy absorption but state the difficulty of removing the
support material from the former when the structure is very intricate. Something similar is
highlighted by Meisel et al. [33] in their work evaluating different limitations of the process,
among which stands out the elimination of support material in the case of thin sections.
Eren et al. [34] recognize that the removal of support is extremely difficult when printing
delicate and thin cell structures, as this limits the minimum cell size and affects the final
mechanical response of the reticular structures. Abayazid et al. [31] note that the use of
the post-processing recommended by manufacturers can generate warping and geometric
distortions of the printed parts. Meanwhile, He et al. [35] note the extreme force that must
be applied and its adverse effects on the final quality of the parts in the case of using certain
support materials that are different from the usual ones. Therefore, there is a clear need to
analyze in depth the influence of post-processing.

On the other hand, it is worth highlighting the few works that analyze the properties or
establish design guidelines for using something that is relatively common in this technique,
i.e., the combination of different resins with different properties in the same part. This
characteristic undoubtedly makes this technique stand out within additive manufacturing
due to the simplification of the design in terms of reducing the number of components, as
it allows different materials with different properties to be combined in the same part. With
regard to the combination of materials, Boopathy et al. [36] studied the energy absorption
capacity of printed parts against impact, observing that the different combinations of
materials and the direction of the load played an important role in the behavior of the
composite material.

This work focused on analyzing two questions that have been little studied or outright
overlooked in other works on MP and that are of vital importance to safely exploit the
advantages of this AM technique: the good tensile behavior of components that combine
several materials with different mechanical properties, as well as the influence that the
post-processing to be applied has on this behavior. For that, in the first part of the work,
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the tensile mechanical behavior of standardized specimens combining a stiff and tough
resin with a more flexible one is analyzed. After verifying the good performance of the
multi-material specimens, the second part of the work analyzes the influence of different
usual post-processing procedures, i.e., using heat or wet ultrasound (with vegetable oil
and with isopropanol), on the tensile behavior of multi-material specimens, identifying the
most suitable post-processing for the different resin combinations.

2. Materials and Methodology
2.1. Materials

The AM Material Projection Machine ProJet® MJP 5600 (3DSystems, Rock Hill, SC, USA)
was used in this study. The working volume of this machine is 518 × 381 × 300 mm3, with a
maximum resolution in the XYZ axes of 750 × 750 × 2000 DPI. As manufacturing material,
this machine uses various resins, including mixtures of these in different proportions.
The resins used in this work, both supplied by the 3D System (Rock Hill, SC, USA),
are VisiJet CR-CL 200 (translucent acrylic based photopolymer resin) and VisiJet CE-NT
(amber acrylic-based photopolymer resin). After MP manufacturing, the VisiJet CR-CL
200 resin is comparatively much stiffer and stronger than VisiJet CE-NT, which shows
a more flexible behavior. Table 1 shows the tensile strengths of these resins and of the
different resin mixtures configurable in the manufacturing software [9]. These tensile
strengths are represented in Figure 1, where it can be seen that the higher the proportion
of VisiJet CR-CL 200 in the material mixture, the higher the tensile strength achieved.
For the pure resins, the supplier also provides the tensile modulus, 0.27–0.43 MPa and
1400–2100 MPa, and the elongation at break, 160–230% and 14–22%, VisiJet CE-NT and
VisiJet CR-CL 200, respectively. Figure 2 shows the AM machine used and the carbides of
the different VisiJet materials.

Table 1. Main mechanical properties of resins and mixtures (according to ASTM D638) [9].

Material/Mixture Tensile Strength (MPa) Material/Mixture Tensile Strength (MPa)

VisiJet CE-NT 0.20–0.40 D50 1–3
A40 0.23–0.32 D55 2–3
A50 0.35–0.48 D60 4–5
A60 0.48–0.77 D65 8–10
A70 0.75–1.10 D70 12–16
A80 1.30–1.70 D75 19–27
A90 1.40–1.90 VisiJet CR-CL 200 30–43

As support material, this machine uses VisiJet S500, also supplied by 3D Systems,
which is a non-toxic wax. During the MP process, both the resins and the support material
are heated to around 60 ◦C, so that they acquire an appropriate viscosity for projection
onto the manufacturing platform. After projection, the resins are cured by ultraviolet light,
while the wax is solidified by cooling.

In order to evaluate the tensile mechanical properties of components containing areas
made of different resins or resin mixtures, a tensile specimen was designed with a central
area which can be made of a different material than that used for the heads. This specimen
was designed according to the recommendations of ISO 527-2 [37], with the geometrical
parameters represented in Figure 3. As can be seen, the specimen is always manufactured
with the strongest material, CR-CL 200, in the head area to ensure the correct gripping
of the tensile grips in the tensile test, while in the core, any of the 14 possibilities shown
in Table 1 can be selected. Therefore, this specimen not only allows us to determine the
tensile behavior of the weakest material used, which is the weakest link in the chain, but
also to validate the good behavior of the interface between materials (see Figure 3). All
the specimens manufactured were oriented horizontally and with their longitudinal axis
perpendicular to the direction of movement of the machine head in order to avoid the main
effect of the characteristic anisotropy of this process [38].
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Figure 2. Projet MJP 5600 machine with a set of specimens and VisiJet materials.

Before the parts produced with this machine can be used, it is necessary to remove
the VisiJet S500 material in which they are embedded immediately after the MP process.
For this purpose, both a DIGITHEAT-TFT furnace (JP Selecta, Barcelona, Spain) and a
Digital Pro ultrasonic tank (GT Sonic, Meizhou, China) were used, using either isopropyl
alcohol (99.9% purity) or vegetable oil as the fluid in the latter. In some cases which
are described in the Methodology section below, the roughness of the central area of the
specimens was measured using a Surftest SJ-500 roughness tester (Mitutoyo, Kawasakishi,
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Japan). The different manufactured specimens were tensile tested using a ME-402 universal
machine (Servosis, Madrid, Spain) equipped with a 5 kN load cell. In order to determine
the actual dimensions of the center section of the specimens, all of them were measured
with a Mitutoyo universal calliper before being tested. During the tests, the length of the
central area of the specimen, l1, was taken as the reference length for the calculation of the
length deformations.
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Figure 3. Schematic of the 1BA multi-material specimen designed according to ISO 527-2 [37].

2.2. Methodology

This work was carried out in two parts. In the first part (Figure 4a), the tensile strength
behavior of specimens combining different resins mixtures was analyzed. These specimens
were manufactured using the ultrahigh-definition mode for XY axes, but with a layer height
of 16 µm for productivity reasons. For this purpose, 3 specimens were manufactured with
each of the possible VisiJet resin combinations (Table 1), equaling 42 specimens in total.
After the MP process, these specimens were post-processed to remove the VisiJet S500
material with two 10-min thermal cycles in the furnace at 60 ◦C. During each of these
cycles, the specimens were placed horizontally on a rack, analogous to the manufacturing
orientation, so as to avoid possible warping and geometric distortions caused by heat.
Between the two furnace cycles, the specimens were removed from the oven for a short
period of time, during which the excess wax was manually removed using a piece of
absorbent paper. Subsequently, after cooling to room temperature, they were tensile tested
according to ISO527-1 recommendations [37], using a speed of 1 mm/min.

Once the good interface performance of the multi-material specimens analyzed in
the first part of the work was verified, the influence of the post-processing used on the
mechanical properties of these specimens was analyzed in the second part of the work
(Figure 4b). In this part, the least and greatest strength specimens, CE-NT and CL-CR
200, respectively, were manufactured, as well as two additional specimens that had shown
in the first part tests a strength equi-spaced in magnitude with respect to the previous
ones. Three replicates of each of them were manufactured, making thirty-six specimens in
total, as shown in Figure 5. These specimens were manufactured with the same machine
configuration as the one used in the first part of the work. Then, the replicates were
post-processed with each of the following procedures:

• F: two furnace cycles at 60 ◦C;
• OU: two ultrasonic cycles with mineral oil at 60 ◦C;
• IU: two ultrasound cycles with isopropyl alcohol at 60 ◦C.
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Each of the above cycles lasted 10 min, and the specimens were manually cleaned
with absorbent paper between the two cycles, in each type of post-processing. During the
ultrasonic cycles, a 40 kHz frequency was applied when each specimen was completely
immersed in the treatment tank, which was filled with the appropriate fluid, i.e., mineral
oil or isopropyl alcohol. After post-processing, the roughness of the core of the specimens
was measured using a λc of 2.5 mm and λs of 8 µm, following the recommendations of
the ISO 4288 standard [39], and subsequently a tensile test was performed under the same
conditions as in the first part of the work.

To prevent environmental or machine-specific conditions from affecting the results,
both the specimens tested in the first part and those tested in the second part were manu-
factured and tested within 24 h after manufacturing. In addition, the specimens were tested
in random order [40]. All specimens were manufactured at the highest machine resolution
and with the same material cartridges.

3. Results and Discussion

The 42 specimens analyzed in the first part of the work required 14 h of fabrication
on the AM machine, consuming 46 g of VisiJet CE-NT, 196 g of VisiJet CR-CL, and 132 g
of VisiJet S500. Post-processing took about 2 h. The results of the tensile test carried out
on these specimens are shown in Figure 6. As can be seen, it follows a similar exponential
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behavior to that of the characteristics sheet provided by the manufacturer, but with higher
resistances. For specimens of material from CE-NT to D70, the observed strength is several
times that specified by the manufacturer, while for the D75 and CR-CL 200 specimens,
74.5% and 29.2% more strength were obtained, respectively.
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Figure 6. Tensile strength for different material mixtures.

In all cases, the interface between the core material or mixture and the head material,
i.e., CR-CL 200, showed adequate behavior, with the rupture occurring in the central section
of the core. This can be seen in the sequence of photographs captured during the testing of
the A70 core material specimen (Figure 7).

Figure 6 shows the exponential behavior observed in the tensile strength of the spec-
imens as a function of the specimen core composition. It can be approximated by the
function represented in Equation (1) with an r-square of 98.02%, where P represents the
ratio between CE-NT and CR-CL 200, so that 1 is equivalent to 100% CE-NT and 14 is
equivalent to 100% CR-CL 200. This behavior, together with an improvement in the AM
machine-control software, would allow more intermediate materials to be defined between
the two extremes, so that they could be manufactured with a more suitable strength for
each application.

σR = 1.8475·e0.2450·P MPa, where P ∈ [1, 14] (1)

Figure 8 shows the elongation of specimens manufactured with different materials
at tensile strength, ε(σR), and at the moment of breaking, i.e., at ultimate strength ε(σU).
On the one hand, the similarity of both elongations can be highlighted, as well as the
exponential decreasing behavior as a function of the CR-CL 200 material concentration.
In the case of the specimen made entirely of this material, CR-CL 200 (in Figure 8), the
elongation obtained in the test, i.e., 14%, is within the range indicated by the supplier [9].
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Figure 8. Elongation at tensile strength, ε(σR), and at ultimate strength, ε(σU), for the different
materials and mixtures (reference length, l1).

After verifying the good performance of the analyzed specimens, in the second part of
this work, the roughness of the core area and the tensile behavior as a function of the type
of post-processing were studied. This study was performed for those specimens with lower
and higher strength and additionally two specimens with equally spaced tensile strength
values: CE-NT, D60, D70, and CR-CL 200. From each of these specimens, 3 replicates
were manufactured, in total 36 specimens, to be post-processed in three different ways
(Figure 4b): F, IU, and OU.
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The Ra roughness values obtained in the core area of the specimens are presented in
Table 2 and represented in Figure 9. As can be seen, the specimen whose roughness is most
altered depending on the post-processing used is the CE-NT specimen. In this specimen, a
much higher roughness is obtained in the case of applying ultrasonic post-processing with
isopropanol (IU), 8.87 µm on average in front of 2.03 µm from using mineral oil, and of
3.10 µm obtained with the furnace post-processing. This indicates a chemical interaction
between isopropanol and the CE-NT material that alters its surface and, therefore, could
also alter its integrity. In the rest of the specimens, no significant variation is observed
when changing the post-processing, obtaining Ra values in the range of 2 µm.

Table 2. Ra measured in the core of the specimens: individual values of the replicates and
mean values.

Ra (µm)

Post-Process Material/Mixture CE-NT D60 D70 CR-CL 200

F

Replica 1 2.9 0.8 2.7 2.4
Replica 2 3.4 1.5 2.9 1.5
Replica 3 3.0 1.6 3.2 1.6

Mean 3.10 1.30 2.93 1.83

OU

Replica 1 1.9 1.6 2.2 1.5
Replica 2 2.2 1.7 1.9 1.4
Replica 3 2.0 1.6 2.1 1.3

Mean 2.03 1.63 2.07 1.40

IU

Replica 1 8.9 1.6 1.7 1.5
Replica 2 8.9 1.7 2.5 1.3
Replica 3 8.8 3.0 1.6 1.3

Mean 8.87 2.10 1.93 1.37
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The results of tensile strength, strain at tensile strength, and strain at ultimate strength
obtained in the tensile tests are shown in Figure 10a–c, respectively. Different statistical
models were fitted to analyze these results in search of conclusions about the effect of the
different post-processing on that tensile performance. The type of post-processing was
used as the input parameter, and the following as output indicators were used: tensile
strength, strain at tensile strength, and strain at ultimate strength. The p-values shown in
Table 3 were obtained from these adjustments.
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(b) strain at tensile strength, and (c) strain at ultimate strength.

Table 3. P-values and correlations (p-value ≤ 0.05 criteria) between post-processing type and tensile
performance (σR; ε(σR); ε(σU).

Material/Mixture σR ε(σR) ε(σU)

CE-NT 0.000 (3) 0.001 (3) 0.001 (3)
D60 0.048 (3) 0.010 (3) 0.054 (5)
D70 0.031 (3) 0.047 (3) 0.132 (5)

CR-CL 200 0.032 (3) 0.110 (5) 0.520 (5)

As can be noticed, the type of post-processing influences the tensile strength reached
by the material. Looking at Figure 10a, it can be seen that IU post-processing is the most
detrimental. The most affected material is CE-NT with regard to the roughness study
(Figure 9). For this material, it is interesting to use the OU post-processing to achieve
the best properties, while for the rest of the materials, the F and OU post-processing,
are practically equivalent (Figure 10a). In the case of the strain at tensile strength, the
IU post-processing should again be avoided for CE-NT, with the effect of the other two
processes being similar, while for the D60 and D70 materials, the F post-processing stands
out as being beneficial in comparison with the other two (Figure 10b). Finally, regarding
elongation at ultimate strength, a correlation was found only for the CE-NT material, with
the IU post-processing again being detrimental (Figure 10c).

4. Conclusions

In the first part of this work, the tensile mechanical performance of specimens manufac-
tured with Visijet CR-CL 200 material heads and core mixtures of this material in different
proportions with Visijet CE-NT was analyzed. These specimens were manufactured using
the material projection technique on a ProJet® MJP 5600 machine, whose manufacturer,
3DSystems, also supplies the material. After the design of a 1BA tensile specimen by
following the recommendations of the ISO 527-2 standard, 42 of these specimens were
manufactured and tensile tested (3 iterations for each of the 14 possible combinations). In
these tests, it was verified that all the specimens break transversely through the core and
with a resistance greater than that specified by the supplier, which demonstrated the good
performance of the different materials’ interfacial zones. These results demonstrate the
feasibility of using combinations of these materials within the same component, with the
associated advantages in terms of simplicity and reduction in the number of components.
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In the second part of the work, the influence of the type of post-processing on the
surface quality and tensile behavior was analyzed for several of the previously tested
combinations. In view of the results achieved in the first part, the study was restricted to
four combinations of Visijet CR-CL 200 with Visijet CE-NT, so that they were approximately
equally spaced in terms of tensile strength: CE-NT, D60, D70, and CR-CL 200. In this
way, the influence of three post-processing procedures could be assessed within the whole
strength spectrum: furnace (F), ultrasonic with vegetable oil (OU), and ultrasonic with
isopropyl alcohol (IU). Three iterations of the four combinations were used for each post-
processing, in a total of 36 specimens. The results achieved in this part demonstrated
the negative effect of using ultrasonics with isopropyl alcohol (IU) for the lower-strength
specimens. This post-processing worsens the surface quality, limits the tensile strength,
and reduces the deformation achievable by the material. In the case of the higher-strength
specimens with lower CE-NT content, post-processing is less important for the elongation,
but it has some influence on the strength. This behavior results from the detrimental effect
of isopropyl alcohol on the CE-NT material. Therefore, for parts with a higher content of
this material, post-processing in a furnace (F) or with ultrasonic and vegetable oil (OU) is
recommended. For parts with a lower proportion of CE-NT, the furnace post-processing (F)
stands out as the best option.

As future work, a study of all possible combinations of CR-CL 200 and CE-NT ma-
terials is proposed to carry out a more detailed characterization and, thus, to be able to
identify in greater detail the combinations for which post-processing with isopropyl alcohol
is detrimental. In addition, an in-depth analysis of the porosity of the multi-material parts
using microscopy is proposed, so that the microscopic effect of the different post-processing
on the material of the specimens can be studied. Thus, it will be possible to correlate the
microscopic physical effect of the post-processing with the mechanical performance of the
material in each case.
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