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A B S T R A C T

The equation most commonly used to estimate a person’s blood alcohol concentration after consuming alcoholic
drinks assumes zero-order kinetics in the ethanol elimination phase. This implies that the elimination process
occurs in the body at a uniform rate as a function of the ethyl-oxidation constant. The model, formulated by
Widmark, does not consider the phase of increase in concentration, and approximates the phase of elimination
in a linear way, which may be insufficient if the tests are carried out in the first phases of alcohol intake.
In this paper, a non-linear model that fits the different phases of the pharmacokinetic process of ethanol in
the human body (absorption, distribution, metabolism, and elimination) is proposed. Optimal experimental
designs methods are used in order to find the most informative observation times for the estimation of the
parameters of the model.
1. Introduction

Alcohol is probably the most extended legal drug consumed by
humans [1]. Moreover, alcohol use increased during the epidemic
in several countries, for example, in the United States, Spain, and
France [2,3]. In the human body, most of the ingested alcohol (90–
98%) is processed in the liver, with the remaining 2–10% eliminated
unchanged by breath, perspiration, and urine [4].

There are several equations that can be used to model the pharma-
cokinetics of ethanol and thus the Blood Alcohol Concentration (BAC)
in the body [5] but it has traditionally been modeled making use of
the Widmark equation, which was first developed in the 1930s [6].
In these equation, it is assumed that the BAC decreases at a constant
rate per a unit time, i.e. zero-order elimination rate. Although BAC is
the most reliable indicator of alcoholic drunkenness, police frequently
use a Breath Alcohol Concentration (BrAC) estimate obtained with a
breathalyzer, which is a less intrusive and more practical tool and,
therefore, the Widmark equation has been adapted for these type of
tests [7,8]. In order to match the estimates of blood and breath con-
centration temporal patterns, a blood/breath alcohol ratio of 2,300:1
is commonly advised Jones [9].

As explained in Jones [10], since the main metabolizing enzyme
is saturated at low blood alcohol concentrations, ethanol is a good
example of a drug that usually displays dose-dependent or saturation
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1 mg% indicate the mass (in milligrams) of that chemical in 100 milliliters of solution.

kinetics and, for questions arising in forensic science and legal medicine
(BAC of 50–500 mg%1), zero-order kinetics is a reasonable assumption
for characterizing the elimination of ethanol from blood [11]. However,
below a BAC of 5–10 mg% the metabolizing enzymes are no longer
saturated with substrate and first-order kinetics apply [12]. The linear
model relates to the one-compartment model with zero-order elimi-
nation kinetic, leaving the absorption kinetics out of the study [13].
This implies that the traditional linear model may be ineffective at
forecasting BAC at various time points, as well as estimating the time
when the maximum is reached.

The Widmark model is the most used in forensic medicine and
by traffic officers, due to its simplicity and because it adjusts quite
well the alcohol elimination phase. However, in some situations the
interest is not in estimating the level of alcohol at the present time,
but in past temporal points (e.g. forensic science trying to estimate the
level of alcohol of the driver at the exact time of a car accident that
happened some time ago: minutes, hours...). In this scenario, it would
not be reasonable to estimate the level of alcohol in the past by the
decreasing linear trend. The linear regression model works well in a
local environment of the lab test, but it does not when going backwards.
As can be seen in Fig. 1, the green point would represent the real
alcohol concentration and the red point the estimate made with the
Widmark line. A non-linear trend model is needed, more specifically, a
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Fig. 1. Widmark line versus blood alcohol concentration.
hill-shaped function that could describe not only the clearance but also
the absorption phase of alcohol intake.

Li et al. [14] performed an experiment based in non-linear re-
gression models, with a non-zero right-skewed bell-shaped assump-
tion for the model. They considered different alternatives, but the
gamma regression model with parameters based on the alcohol dosage,
gender, weight and age outperformed the other candidate models.
The non-linear alcohol elimination model was as well proved better
than its linear equivalent in terms of prediction accuracy. Other hill-
shaped models worth studying are Weibull, Log-Normal and Wagner
models [15].

Regardless of the model used, it is very important to obtain good
estimation of the parameters. In Li et al. [14] disparities in peak levels
were startling, which indicate an urgent need for better estimates of a
subject’s peak alcohol level, since breath tests are usually conducted a
long time after an accident or a police intervention in a drunk-driving
case. When these type of experiments are performed, it is important to
take observations at the moments that give more information. For this
reason, it is essential to use optimal designs to estimate the parameters
of the model.

To fit the model parameters, the first important thing to do is set
up an experiment (clinical trial) so that the pharmacokinetics of the
ethanol elimination can be properly studied. An experiment with a good
design and a proper model not only yields more information than an
experiment with a worse design, but it also makes it possible to provide
the best conditions for the experiment [16]. Moreover, in chemometrics
experiments quite often an approximate model is used instead of the
true one when the latter is hard to deal with. Space-filling designs are
usually used for such situation [17]. However, when the underlying re-
gression model is known, 𝐷-optimal designs (see Section 3) is the most
effective on parameter estimation. Atkinson et al. [18] first introduced
𝐷-optimal design to estimate rate constants in chemical kinetic model
of a reversible reaction by computer experiments. The aim is to find
the time points 𝑡1, 𝑡2,… at which to take samples in order to get the
best estimators of the parameters of model, that is, the estimators with
minimum variance. Nonlinear models arise in scientific experiments
in a variety of areas, such as pharmacology, biology and agriculture.
Determination of optimal designs for these models is more tricky and
it often involves linearization.

In Section 2, the Widmark model is introduced, followed by two
Hill-shaped models, the Gamma model employed in Li et al. [14] and
a simplified version proposed in the present work. In Section 3, a
2

general introduction to optimal experimental designs is given, focusing
on 𝐷-optimality, which provides good estimations of all the parameters
jointly. The calculation of optimal designs for the proposed simplified
Gamma model is shown in Section 4 and an example of application
is presented in Section 5. Equally-spaced designs, a special type of
designs frequently-used in this kind of experiments is studied in Sec-
tion 6. Section 7 provides a brief discussion, specially on the subject of
equally-spaced designs presented is Section 6. Finally, a summary of the
work and further lines of investigation are gathered in the Conclusion
Section.

2. Alcohol clearance models

The kinetics of ethanol metabolism have been extensively studied,
in both healthy and alcohol-dependent men and women, with many
models focusing on how the blood’s ethanol concentration changes over
time. A more extensive review of some mathematical models can be
found in, for example in Lands [19] or Heck et al. [15].

2.1. Widmark model

Widmark [20] proposed an equation to model the pharmacokinetics
of ethanol and it is commonly used to predict blood alcohol concentra-
tion some time after drinking alcohol. Widmark equation is still widely
used in forensic research since it performs well with real data over
a wide range of values. It assumes a zero-order elimination process,
i.e. the alcohol is eliminated at a constant rate in the human body. The
hypothetical BAC at zero time is calculated as:

𝐶0 =
𝐴
𝑟𝑊

,

where 𝑟 is the so-called Widmark factor, 𝐴 is the mass of alcohol
consumed and 𝑊 the body weight (in kg). The Widmark factor 𝑟 is
variable and depends on body mass, percentage body fat, age, and sex.

Widmark tested a large number of individuals and found that the
average value of 𝑟 for males is 0.68 ± 0.17 and for females is 0.55 ±
0.11 [21].

The quantity consumed, 𝐴, is sometimes expressed as the product
of volume of alcoholic beverage consumed (ml), represented by 𝑣, the
strength of alcoholic beverage (%v/v), 𝑧, and the density of ethanol
(l/kg), 𝑑 [22]. Moreover, some versions utilize the total body water
(TBW) of an individual:

𝐶 =
100𝑣𝑧𝑑𝐹𝑤𝑎𝑡𝑒𝑟 ,
0 𝑇𝐵𝑊
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where 𝐹𝑤𝑎𝑡𝑒𝑟 is the fraction of blood volume that is water. It is generally
assumed to be 0.838%w/v in women and 0.825%w/v in men. 𝑇𝐵𝑊 is
an individual’s total body water (in liters).

The blood alcohol concentration (BAC) at time 𝑡 can then be deter-
mined from the following equation:

𝐶𝑊 (𝑡) = 𝐶0 − 𝛽𝑡

where 𝛽 is the clearance rate (in g/L/h), and 𝑡 is the time (in hours)
after consuming alcohol [15]. This zero-order (linear) model assumes
an alcohol elimination rate, 𝛽 which is constant, independently of the
alcohol taken.

2.2. Hill-shaped models

As previously mentioned, the rate of alcohol elimination in humans
is not necessarily constant, and in fact the study of the absorption
phase may be interesting for different purposes. In the following, dif-
ferent non-linear regression models, based on a non-zero right-skewed
bell-shaped assumption are presented. The Gamma, Weibull and Log-
Normal densities are similar in shape and mainly differ at the tails
(i.e., long time after consumption) [23].

2.2.1. Gamma model
The BAC at time 𝑡 can be expressed as:

𝐶𝐺(𝑡) = 𝑠
𝛽𝛼

𝛤 (𝛼)
𝑡𝛼−1𝑒−𝛽𝑡,

where 𝛼 > 1 is the shape parameter and 𝛽 > 0 the scale parameter
(sometimes 1∕𝛽 is considered instead). These parameters determine
the shape, skewness and dispersion of the model and represent a
combination of the subject characteristics. For example, Li et al. [14]
consider them as a linear combination of the gender, age and weight.
The parameter 𝑠 specifies that BAC is directly proportional to the
alcohol dose consumed by the subject: 𝑠 = 𝐾 × 𝐴, where 𝐴, as before,
represents the alcohol dose taken (in grams) and 𝐾 is the constant of
proportionality.

If 𝛼 ≤ 1 the derivative is negative for 𝑡 > 0, thus the function
is always decreasing. The hill-shape shows up when 𝛼 > 1, having a
maximum value (maximum BAC) of:

𝐶𝐺(𝑡∗) = 𝑠
𝛽

𝛤 (𝛼)

(𝛼 − 1
𝑒

)𝛼−1
,

which is reached at a time 𝑡∗ = (𝛼 − 1)∕𝛽.

.2.2. Simplified-Gamma (SG) model
The Gamma model can be simplified so that it can capture all the

ifferent phases of the BAC while remaining user-friendly. It can be
xpressed as:

𝑆𝐺(𝑡) = 𝑠𝑡𝑎𝑒−𝑏𝑡, (1)

ith 𝑎, 𝑏 > 0. This model has always a hill shape, and the maximum
alue is attained at 𝑡∗ = 𝑎∕𝑏. The simplified model, just like the Gamma
unction, enables the fitting of a wide range of hill-shape models.
owever, since the most important fact is indeed this hilly shape, there

s no need for the density-function constraints; these can be removed
o obtain a model that is easier to handle and work with.

Fig. 2 shows the graphs corresponding to the SG model (1) for
ifferent values of the parameters 𝑎 and 𝑏. On the left (Fig. 2(a)),
= 𝑏 = 1 are kept constant. It can be noted how increasing the value
f 𝑎 increases the value of the function. In addition, the maximum is
eached at higher values of time, changing the slope of the descending
hase after the maximum. On the right (Fig. 2(b)), with 𝑠 = 𝑎 = 1, the

slope, on the contrary, is maintained after the peak. The graph for fixed
values for 𝑎 and 𝑏 and varying 𝑠, has been omitted since the latter is a
linear parameter in the model.
3

3. Optimal designs of experiments background

Let 𝑥 represent the experimental conditions in the design space
 . An exact design, 𝜉, is a collection of points, {𝑥1, 𝑥2,… , 𝑥𝑛} where
samples are to be taken. Let 𝐘 = (𝑦1,… , 𝑦𝑛) denote the vector of
observations of a one-response linear model 𝑦 = 𝑓 (𝑥; 𝜃), where 𝜽 is the
𝑚-parameter vector and 𝐗 = (𝐟 (𝑥1),… , 𝐟 (𝑥𝑛))𝑇 , the design matrix, with
𝐟 (𝑥) = (𝑓1(𝑥),… , 𝑓𝑚(𝑥))𝑇 . If there is a correlation structure Σ = Var(𝐘)
between the samples, the information given by a design 𝜉 is reflected
in the Fisher Information Matrix (FIM), defined as

𝐌(𝜉, 𝜃) = 𝐗𝑇Σ−1𝐗.

The FIM describes essentially the amount of information about the
unknown parameters provide by the data. The inverse of the FIM,
𝑀−1(𝜉, 𝜃), is proportional to the asymptotic covariance matrix for the
maximum likelihood estimate of 𝜽. The covariance between the obser-
vations taken at different points will be assumed to be dependent only
on the distance between points, which is a logical assumption when
studying the incorporation-elimination phases in alcohol consumption.

For non-linear models the usual approach is to linearize them (by
computing the derivates with respect to the parameters) and proceed
as above. In this case 𝐌 will depend on the unknown parameters,
thus nominal values are needed for them and the designs computed
will be locally optimal. Linearizing may be a problem when it is not
possible to have an analytical expression of the model; in this case the
procedures described in Rodríguez-Díz and Sánchez-León [24] can be
used for computing the derivatives.

The aim is to find optimal designs that produce precise estimators of
the model parameters. This is achieved minimizing (a characteristic of)
the covariance matrix of the estimators of the model parameters. Since
the covariance matrix is proportional to the inverse of the information
matrix, usually a function 𝜙 of the latter, called the optimality criterion,
is employed. Amongst the different criteria for optimal designs, the 𝐷-
criterion is the most popular. A design 𝜉 is 𝐷-optimal if it maximizes
the determinant of the FIM, which is equivalent to minimizing that of
the covariance matrix of the parameters’ estimators, or minimizing the
volume of the confidence ellipsoid of these parameters [25,26].

When we are interested in obtaining the best design for the esti-
mation of a specific linear combination of the parameters 𝑐𝑇 𝛽 (where

is a vector of length 𝑚, the proper criterion function to employ is
-optimality. 𝑐-optimal designs are not to easy to compute in gen-
ral. Elfving [27] shows a very nice graphical procedure for find-
ng 𝑐-optimal designs for two-parameter models assuming indepen-
ent observations, and later on López-Fidalgo and Rodríguez-Díaz [28]
xtended it for 𝑚-parameter models.

In order to check the goodness of a design, its efficiency can be
omputed. The 𝐷-efficiency of a design 𝜉 is

𝑛2
𝑛1

[

|𝐌(𝜉)|
|𝐌(𝜉∗𝐷)|

]
1
𝑚
, (2)

where 𝜉∗𝐷 is the optimal design and 𝑛1, 𝑛2 are the number of obser-
vations of designs 𝜉 and 𝜉∗𝐷 respectively. If 𝑁 experiments can be
erformed under the design 𝜉, which has 𝐷-efficiency 𝑝, this means
hat the same accuracy (measured in terms of the 𝐷 criterion) in the

estimations would be achieved by performing only pN experiments
under the optimal design 𝜉∗𝐷 [29].

4. Optimal designs for the Simplified-Gamma model

In the literature, studies of the proposed model have been already
performed from the point of view of optimal design of experiments,
considering the model as a modification of the Arrhenius equation
or the generalized exponential model. In Rodríguez-Díaz and Santos-
Martín [30] a study of the best designs for modifications of the Arrhe-
nius equation was carried out; the equation is similar to the proposed

model but assuming that one of the parameters is known (the parameter
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Fig. 2. Graphs of SG model for different values of the parameters.
𝑚, which is now called 𝑎). In Rodríguez-Díaz et al. [31] filling and
𝐷-optimal designs for the correlated generalized exponential models
were calculated. The correlation was also incorporated assuming that
the parameter was known. The Michaelis–Menten equation is as well
used sometimes to model the pharmacokinetics of ethanol elimination,
and 𝐷-optimal designs for this model have been obtained (see Mariñas-
Collado et al. [32]). In this section, optimal designs for the proposed
Simplified Gamma model will be computed.

For the alcohol clearance models, the BAC or BrAC for one subject
is observed at different times, 𝑡𝑖. Thus from now on  will denote
the design space, and every observation will be taken at time 𝑡 ∈  .
A sensible and common assumption is that the covariance between
observations from the same subject taken at different points depends
on the distance between points, that is:

𝐶𝑜𝑣[𝑦(𝑡𝑖), 𝑦(𝑡𝑗 )] = 𝜌(∣ 𝑡𝑖 − 𝑡𝑗 ∣),

where 𝜌 is a stationary covariance kernel, which is assumed to be
known. The fact that the covariance function is assumed to be known
while the parameters of the model are unknown is a controversial
issue (see discussion on page 9 of Näther [33]), but nevertheless this
situation appears quite often in bibliography. The assumption, how-
ever, seems to be more acceptable when working with locally optimal
designs.

The simplified-Gamma model (SG) introduced before, 𝐶𝑆𝐺(𝑡; 𝜃) =
𝑠𝑡𝑎𝑒−𝑏𝑡, is a triparametric model with parameter vector 𝜽 = (𝑠, 𝑎, 𝑏)𝑇 .
The model can be linearized as

𝑓 (𝑡; 𝜃)𝑇 =
𝜕𝐶𝐺(𝑡; 𝜃)

𝜕𝜽
= 𝑡𝑎𝑒−𝑏𝑡 (1, 𝑠 log(𝑡),−𝑠𝑡) .

It appears obvious that samples collected on the same subject at
different times should be regarded as correlated. However, very often
in the literature (see for instance Li et al. [14] and references therein),
the alcohol clearance model assumes independent observations because
it simplifies the modeling process, but it may not accurately reflect
the true nature of alcohol metabolism in the body [34]. Nonethless,
in the following, optimal designs will be obtained for different levels
of correlation, even for independent observations, in order to be able
to compare the results with those found in the literature. When the
number of support points is the number of parameters in the model,
the design is said to be minimally supported or saturated. Having a
minimally supported design reduces the difficulty of the computation
of optimal designs, since the criterion becomes a function of the 𝑚
unknown support points only [35]. When the number of design points
is the same than the number of parameters, 𝐗 is a square matrix and
|𝐗𝑇𝐗| = |𝐗|2. Very often, in order to deal with a three-point design
𝜉 = {𝑡1, 𝑡2, 𝑡3}, 𝑡𝑖 > 0, it will be more convenient to write it as 𝜉 =
{𝑡, 𝑡+ 𝑑 , 𝑡+ 𝑑 } where 𝑡 = 𝑡, 𝑡 = 𝑡+ 𝑑 , 𝑡 = 𝑡+ 𝑑 + 𝑑 and 𝑡, 𝑑 , 𝑑 > 0.
4

1 2 1 2 1 3 1 2 1 2
Then the determinant of the information matrix (FIM) when there is no
correlation structure can be expressed as

|𝐌(𝜉)| = 𝑠4𝑡2𝑎𝑒−2𝑏(3𝑡+2𝑑1+𝑑2)(𝑡 + 𝑑1)2𝑎(𝑡 + 𝑑1 + 𝑑2)2𝑎

×
(

𝑑2 log(𝑡) − (𝑑1 + 𝑑2) log(𝑡 + 𝑑1) + 𝑑1 log(𝑡 + 𝑑1 + 𝑑2)
)2. (3)

This notation may be more convenient when there is a non-trivial
correlation structure given by a kernel function that depends only on
the distance between points, 𝑐𝑜𝑣(𝑦(𝑡𝑖), 𝑦(𝑡𝑗 )) = 𝜌(|𝑡𝑖 − 𝑡𝑗 |). In this work,
the quite used exponential covariance kernel, 𝜌(𝑑) = 𝑒−𝜆𝑑 , where 𝜆 is
characteristic of the subject, will be assumed, producing the following
covariance matrix.

𝛴 =
(

1 𝑒−𝜆𝑑1 𝑒−𝜆(𝑑1+𝑑2)
𝑒−𝜆𝑑1 1 𝑒−𝜆𝑑2

𝑒−𝜆(𝑑1+𝑑2) 𝑒−𝜆𝑑2 1

)

.

Then the determinant of the FIM, 𝐌(𝜉, 𝜃) = 𝐗𝑇Σ−1𝐗, when there
exists correlation structure is:

|𝐌𝛴 (𝜉)| =
𝑒2𝜆(𝑑1+𝑑2)

(𝑒2𝜆𝑑1 − 1)(𝑒2𝜆𝑑2 − 1)
|𝐌(𝜉)| (4)

The usual procedure for estimating the level of alcohol (either in
breath or blood) is taking the first test as soon as possible, and a
second one some time later (not quite exactly defined); in this scenario
𝑡 represents the first moment after the ingestion when the subject can
be tested. In most of the cases the optimal time 𝑡2 = 𝑡 + 𝑑1 has been
found to be close to the peak of alcohol concentration and 𝑡3 = 𝑡 +
𝑑1 + 𝑑2 would be at the end of the elimination phase. In order too
find the optimal times for a set of nominal values of the parameters,
𝜃0 = (𝑠, 𝑎, 𝑏)𝑇 , the determinant of the FIM has to be maximized. The
following propositions show the main results for the uncorrelated and
correlated case respectively:

Proposition 1. The 𝐷-optimal design 𝜉∗𝐷 = {𝑡, 𝑡 + 𝑑1, 𝑡 + 𝑑1 + 𝑑2} for the
Simplified-Gamma model 𝐶𝑆𝐺(𝑡) = 𝑠𝑡𝑎𝑒−𝑏𝑡 with parameter vector (𝑠, 𝑎, 𝑏)
and assuming independent observations can be computed as the solution of
the system

𝑄1 log(𝑡) +𝑄2 log(𝑡 + 𝑑1) +𝑄3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

𝑅1 log(𝑡) + 𝑅2 log(𝑡 + 𝑑1) + 𝑅3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

𝑆1 log(𝑡) + 𝑆2 log(𝑡 + 𝑑1) + 𝑆3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

where 𝑄𝑖, 𝑅𝑖 and 𝑆𝑖 are parameter and time dependent functions, which
satisfy that the sum of the functions that multiply the logarithms of the
optimal times is always zero: ∑𝑄𝑖 =

∑

𝑅𝑖 =
∑

𝑆𝑖 = 0. The explicit
expressions of 𝑄𝑖, 𝑅𝑖 and 𝑆𝑖 are shown in Appendix A.1. Due to the
complexity of the equation system above, it is not possible to obtain an
analytical expression of the design, which should be computed numerically.
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Fig. 3. Sensitivity function for the D-optimal designs, without correlation, over the time range. Vertical lines represent the corresponding design support points.
Proposition 2. The optimal points of the D-design 𝜉∗𝐷 = {𝑡, 𝑡 + 𝑑1, 𝑡 +
𝑑1 + 𝑑2} for the Simplified-Gamma model 𝐶𝑆𝐺(𝑡) = 𝑠𝑡𝑎𝑒−𝑏𝑡, with parameter
vector (𝑠, 𝑎, 𝑏) and assuming a correlation structure between the samples
given by an exponential kernel function, are the solutions of the system

𝑄1 log(𝑡) +𝑄2 log(𝑡 + 𝑑1) +𝑄3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

𝑉1 log(𝑡) + 𝑉2 log(𝑡 + 𝑑1) + 𝑉3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

𝑊1 log(𝑡) +𝑊2 log(𝑡 + 𝑑1) +𝑊3 log(𝑡 + 𝑑1 + 𝑑2) = 1,

where 𝑄𝑖, 𝑉𝑖 and 𝑊𝑖 are parameter and time dependent functions. The
functions 𝑄𝑖 are the same than that in Proposition 1, and the expressions
of 𝑉𝑖 and 𝑊𝑖 as functions of 𝑅𝑖 and 𝑆𝑖 of Proposition 1 respectively are
shown in Appendix A.2.

In order to check that a design is, indeed, 𝐷-optimal, the General
Equivalence Theorem (GET) for 𝐷-optimality [36] may be used. The
GET states that an approximate design, 𝜉, is 𝐷-optimal if and only if

𝜓𝑎(𝜉, 𝜃, 𝑡) = 𝑓 (𝑡, 𝜃)𝑇 �̃�−1(𝜉)𝑓 (𝑡, 𝜃) ≤ 𝑚 ∀𝑡 ∈  , (5)

where �̃� denotes the information matrix of the approximate design 𝜉.
The function 𝜓(𝜉, 𝜃, 𝑡) is known as the sensitivity function, and equality
is reached at the support points of the design.

An approximate design is a set of design points, 𝑥1,… , 𝑥𝑛, each of
one having an associated weight 𝑤𝑖 (∑𝑛

𝑖=1𝑤𝑖 = 1), which indicates the
proportion of observations to be taken at that point, and the FIM is
calculated using the corresponding weight for each point in the design.
An exact design can always be thought as an approximate design with
equal weights (every of them equal to 1∕𝑛), thus if 𝐌 is the FIM of an
exact design 𝜉, then the FIM of the corresponding approximate design
𝜉 is �̃� = 𝐌∕𝑛. Therefore (5) can be expressed as

𝜓(𝜉, 𝜃, 𝑡) = 𝑛𝑓 (𝑡, 𝜃)𝑇𝐌−1(𝜉)𝑓 (𝑡, 𝜃) ≤ 𝑚 ∀𝑡 ∈  . (6)

5. Case study

In order to find the best estimates for the model parameters, samples
should be taken at least at three different time points, representing
minutes after the consumption. Tables 1 and 2 show optimal designs
𝜉∗𝐷 = {𝑡, 𝑡 + 𝑑1, 𝑡 + 𝑑1 + 𝑑2}, using initial values from Li et al. [14],
where observations were made every 10 minutes for the first hour after
consumption (absorption phase) and then every 30 minutes, up to 8
5

hours after the intake (elimination phase). The times taken into account
are from the instant that alcohol can be detected in blood. Although
that this moment depends on factors such as weight, health, quantity
of alcohol consumed, type of beverages, etc., is usually accepted to
be around 5 minutes after consumption. Moreover, a BAC test is only
accurate within 6 to 12 hours after someone has had their last drink.
The results and calculations have been done with the help of softwares:
R [37] and Mathematica [38]. More specifically, computations have
been done using Mathematica functions FindMaximum and NMax-
imize. The first one may produce a local maximum, thus it has
been employed several times for each case, using different starting
points. NMaximize attempts to find a global maximum by using one of
the four direct search algorithms (Nelder–Mead, differential evolution,
simulated annealing, and random search), then fine-tunes the solution
by using a combination of KKT solution, the interior point, and a
penalty method. Both procedures have been used for each parameter
combination, in order to double-check the results.

Note that, as 𝜆 → ∞, 𝛴 → 𝐼 and the designs with correlation
structure tend to be the same as when the correlation is not considered.
When there is no previous information regarding the value of 𝜆, an
intermediate value could be used, e.g. 𝜆 = 1. A sensitivity study
regarding the choice of 𝜆 has shown that the designs are quite robust for
the actual value of 𝜆. If the advisable optimal design for 𝜆 = 1 is chosen,
the loss in efficiency is not very big even when the actual value of 𝜆 is
as far as 0.25 or 4. For instance, assuming the case of a Chinese 65-kg
male, the efficiency of the 𝐷-optimal design for 𝜆 = 1 is 98.1% when it
is assumed that the actual value of 𝜆 is 0.25, and 87.3% when the true 𝜆
is taken to be 4. Similar values are found for the rest of the cases. It can
be observed that the designs indicate that the first observation should
be taken as soon as possible, while the last one should be between 4
and 6 hours after consumption, when alcohol is believed to be almost
eliminated from the body. The midpoint corresponds approximately
to the alcohol concentration peak, that is around time 𝑎∕𝑏. The 𝐷-
optimality of the designs is checked using condition (6), which is shown
in Fig. 3 for different body weights.

The 𝐷-efficiency of the design employed in Li et al. [14], with
respect to the optimal designs, is shown in Tables 3 and 4. For instance,
an efficiency of around 50% means that the optimal design would
obtain the same information with a number of samples that is just a half
than the number needed for the other design. Very often practitioners
prefer to use designs with more points, thinking that model fitting will
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Fig. 4. Efficiency of the D-optimal designs with respect to the choice of initial values for designs in Table 1.
Table 1
D-optimal design in minutes for different weights in 38-year-old men consuming 40 gr. of alcohol.
Weights (kg) 45 55 65 75

𝜃 = (𝑠, 𝑎, 𝑏) (48.03, 0.36, 0.42) (39.75, 0.33, 0.36) (34.29, 0.29, 0.31) (30.33, 0.26, 0.28)

w/o corr. {2, 51, 244} {2, 54, 276} {1, 55, 305} {1, 55, 326}

𝜆 = 0.25 {1, 16, 180} {1, 13, 205} {0, 8, 226} {0, 2, 239}
𝜆 = 0.5 {1, 19, 206} {1, 16, 233} {0, 10, 256} {0, 2, 268}
𝜆 = 0.75 {1, 22, 217} {1, 21, 244} {0, 13, 265} {0, 3, 274}
𝜆 = 1 {1, 27, 233} {1, 27, 251} {1, 19, 272} {0, 6, 278}
𝜆 = 2 {2, 44, 238} {2, 48, 270} {1, 48, 299} {1, 46, 318}
𝜆 = 3 {2, 49, 243} {2, 53, 275} {1, 54, 304} {1, 53, 324}
𝜆 = 4 {2, 50, 244} {2, 54, 275} {1, 55, 305} {1, 54, 326}
Table 2
D-optimal design in minutes for different doses of alcohol in 38 year-old men weighing
66.7 kg.

Doses (gr.) 20 40 60

𝜃 = (𝑠, 𝑎, 𝑏) (14.75, 0.18, 0.25) (33.35, 0.29, 0.31) (62.22, 0.39, 0.39)

w/o corr. {0, 42, 327} {1, 55, 305} {3, 60, 272}

𝜆 = 0.25 {0, 0.6, 248} {0, 8, 226} {2, 22, 207}
𝜆 = 0.5 {0, 0.6, 279} {0, 10, 256} {2, 26, 235}
𝜆 = 0.75 {0, 0.6, 283} {0, 13, 265} {2, 32, 246}
𝜆 = 1 {0, 0.6, 284} {1, 19, 272} {2, 38, 253}
𝜆 = 2 {0, 0.6, 284} {1, 48, 299} {3, 55, 268}
𝜆 = 3 {0, 36, 321} {1, 54, 304} {3, 59, 271}
𝜆 = 4 {0, 41, 326} {1, 55, 305} {3, 59, 271}

be better and at the same time for checking the goodness of the chosen
model. But usually every test has a cost (time, money,...) and for this
reason when comparing designs the number of samples employed by
each one should be taken into account.

In order to study the dependency of the D-optimal designs on the
initial values of the parameters, the efficiency function (2) can be used.
First, given initial values for 𝜃, a 𝐷-optimal design 𝜉 is computed. Then,
6

for different values 𝜃𝑖, the corresponding 𝐷-optimal designs, 𝜉𝑖, are also
calculated. Assuming that the initial 𝜃 is actually the true parameter
vector, the 𝐷-efficiency of the designs 𝜉𝑖 with respect to 𝜉 may be
computed.

Let the values provided in Li et al. [14] be considered as ‘true
parameters’ for 𝜃 = (𝑠, 𝑎, 𝑏). Fig. 4 shows the efficiencies (in percentage)
for some of the designs from Table 1 for different combinations of 𝑎 and
𝑏. It can be seen that the efficiency always surpasses 90%. Moreover,
when the differences between the alternative values of the parameters
and the assumed trued values are less than two decimal points, the
efficiency is always greater than 98%. In general, the efficiency appears
to be consistent across the different values of correlation, which proves
the robustness of the optimal designs with respect to the choice of the
nominal values and the correlation structure.

6. Equally-spaced designs

Very often, optimal designs contain few points, and frequently
most of them are concentrated at the extremes of the design interval.
However, in experimental science, usually due to operational reasons,
practitioners prefer to employ designs that cover the design space
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Table 3
𝐷-efficiency of the design used in Li et al. [14] with respect to the optimal designs of Table 1.
Weights (kg) 45 55 65 75

𝜃 = (𝑠, 𝑎, 𝑏) (48.03, 0.36, 0.42) (39.75, 0.33, 0.36) (34.29, 0.29, 0.31) (30.33, 0.26, 0.28)

w/o corr. 59.5% 61.3% 60.4% 58.6%

𝜆 = 0.25 14.3% 14.1% 13.1% 12.0%
𝜆 = 0.5 16.1% 16.1% 15.3% 14.0%
𝜆 = 0.75 18.2% 18.4% 17.7% 16.4%
𝜆 = 1 20.3% 20.6% 20.3% 21.9%
𝜆 = 2 27.9% 28.5% 28.3% 27.7%
𝜆 = 3 33.9% 35.0% 34.6% 33.7%
𝜆 = 4 38.7% 40.0% 39.6% 38.6%
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Table 4
𝐷-efficiency of the design used in Li et al. [14] with respect to the optimal designs of
Table 2.

Doses (gr.) 20 40 60

𝜃 = (𝑠, 𝑎, 𝑏) (14.75, 0.18, 0.25) (33.35, 0.29, 0.31) (62.22, 0.39, 0.39)

w/o corr. 51.2% 60.4% 65.19%

𝜆 = 0.25 7.2% 13.1% 15.6%
𝜆 = 0.5 8.4% 15.3% 17.7%
𝜆 = 0.75 9.9% 17.7% 20.0%
𝜆 = 1 10.7% 20.3% 22.1%
𝜆 = 2 17.1% 28.4% 30.2%
𝜆 = 3 27.7% 34.6% 36.9%
𝜆 = 4 31.7% 39.6% 42.3%

‘uniformly’, keeping a constant distance between adjacent points, rather
than the optimal designs. Those are called equally-spaced designs, and
they are related with the space-filling designs [see for instance31].
Equally-spaced designs are used for instance in Li et al. [14], where first
measurements are taken every 10 minutes during the first hour after
consumption (absorption phase) and then every 30 minutes. Moreover,
equally-spaced designs have been used to identify the parameters of
alcohol kinetics (see for instance Fujimiya et al. [39]; Maskell et al.
[40]) and for this reason it seems convenient to perform a study about
the behavior of this type of designs for the alcohol-clearance model.

Thus, in this section, designs 𝜉𝑛 = {𝑡, 𝑡 + 𝑑,… , 𝑡 + (𝑛 − 1)𝑑} will
e considered. The main advantage of these designs is that each one
f them just depends on just two values, namely the time of the
irst sample, 𝑡, and the distance 𝑑 between adjacent observations. For
nstance, the determinant of the information matrix of the 3-point
esign 𝜉3 assuming independent observations is
2𝑠4𝑡2𝑎(𝑑 + 𝑡)2𝑎(2𝑑 + 𝑡)2𝑎𝑒−6𝑏(𝑑+𝑡)(−2 log(𝑑 + 𝑡) + log(2𝑑 + 𝑡) + log(𝑡))2,

and when using the parameter values of a 75-kg Chinese male (𝜃 =
(𝑠, 𝑎, 𝑏) = (30.33, 0.26, 0.28)) the maximum is attained for 𝑡 = 0.01968
hours (1.18 mins.) and 𝑑 = 2.0994 hours (Fig. 5).

When assuming exponential correlation, the covariance matrix for
the 3-point design is

𝛴 =
⎛

⎜

⎜

⎝

1 𝑒−𝜆𝑑 𝑒−2𝜆𝑑

𝑒−𝜆𝑑 1 𝑒−𝜆𝑑

𝑒−2𝜆𝑑 𝑒−𝜆𝑑 1

⎞

⎟

⎟

⎠

,

with determinant 𝑒−4𝜆𝑑
(

𝑒2𝜆𝑑 − 1
)2. Thus, the determinant of the 3-point

design information matrix assuming correlation is:

𝑑2𝑠4𝑡2𝑎(𝑑 + 𝑡)2𝑎(2𝑑 + 𝑡)2𝑎(−2 log(𝑑 + 𝑡) + log(2𝑑 + 𝑡) + log(𝑡))2𝑒4𝑑𝜆−6𝑏(𝑑+𝑡)
(

𝑒2𝑑𝜆 − 1
)2

Table 5 shows optimal values for the parameters 𝑡 and 𝑑 when
searching for optimal designs with different number of points, with
and without correlation. The initial points are quite similar for every
design and type of correlation; the variation of the optimal distances
with 𝑛 for both cases is shown in Fig. 6 where it can be checked that
the optimal distance between adjacent points decreases as 𝑛 increases,
7

but the decreasing is faster for the correlated case.
Table 5
Locally optimal 𝑡 and 𝑑 in equally-spaced designs for independent
(left) and correlated (right) observations assuming the simplified
gamma model. Initial values corresponding to a 75-kg male
Chinese have been used.
𝑛 Independent Correlated

𝑡 𝑑 𝑡 𝑑

3 0.0197 2.099 0.0191 2.013
4 0.0183 1.649 0.0188 1.738
5 0.0172 1.349 0.0184 1.530
6 0.0164 1.135 0.0175 1.370
7 0.0158 0.975 0.0175 1.243
8 0.0153 0.852 0.0170 1.138
9 0.0148 0.755 0.0167 1.051
10 0.0144 0.677 0.0163 0.977

Fig. 7 shows the explicit equally-spaced 𝐷-optimal designs 𝜉∗3 ...𝜉∗10
hen assuming independent observations, using for the parameters, as
efore, the nominal values of a 75-kg Chinese male. The time of the
irst sample is quite similar for all of them, while the pattern of the
emaining observations follows a clear symmetry.

The efficiency (2) of these designs, with respect to the 3-point D-
ptimal design, assuming independent observations, is shown in Fig. 8.
t clearly proves that when using equally-spaced designs just three
bservations are too few, producing an efficiency of less than 75%; but
t also shows that there is no need to take too many samples. In fact the
-point design seems to be the most efficient (more than 80%), which
hould be the most clever choice when using designs with constant
istance between samples.

Regarding the parameters estimations, simulations for different
ases have been performed using both the optimal design and the
qually-spaced designs. It has been found that the estimation of the pa-
ameters is quite similar in average, but the variance of this estimation
as smaller when using the optimal designs. For instance, for a 75 kg.
hinese male assuming independent observations, the variance of the
stimator of the 𝑠 parameter was 3.7174 when using the 𝐷-optimal
esign, and 13.5782 when the equally-spaced design in three points
as employed.

. Discussion

The study of equally-spaced designs opens new lines of research.
or instance, from the shape of the curves described by the points
see Fig. 7) it would be possible to estimate the values of the 𝐷-
ptimal designs with more support points from the knowledge of the
ptimal designs with fewer points, following an iterative procedure. For
nstance, Fig. 9(a) shows the 11 curves needed for the estimation of an
1-point design from optimal equally-spaced designs with fewer points.
ote that this procedure, say 𝑃1, will not produce in general an equally-

paced final design. Another possibility, say 𝑃2, would be to estimate
suitable 𝑡 and 𝑑 for an 𝑛-point design from the two corresponding curves
efined by the values of the optimal 𝑡 and 𝑑 for the designs with fewer

points (Fig. 9(b)). The estimated 11-point design using 𝑃1 is
{0.014086, 0.6109, 1.2078, 1.8349, 2.4547, 3.0906, 3.6941,
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Fig. 5. Determinant of the information matrix of an equally-spaced design as a function of 𝑡 and 𝑑.

Fig. 6. 𝐷-optimal distance for equally-spaced 𝑛-point designs for independent (dashed) and correlated (full line) observations.

Fig. 7. 𝐷-optimal 𝑛-point equally-spaced designs (in rows) for independent observations.
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Fig. 8. Efficiency of 𝐷-optimal 𝑛-point equally-spaced designs for independent observations.
Fig. 9. Procedures for generating designs with more support points from known equally-spaced designs.
4.3206, 4.9686, 5.5655, 6.1623} ,

with determinant 3.2297 × 107 and not exactly equally-spaced. From
method 𝑃2, the estimated 𝑡 and 𝑑 for the 11-point design are re-
spectively 0.01409 and 0.5969, producing the 11-point equally-spaced
design

{0.014086, 0.6109, 1.2078, 1.8047, 2.4015, 2.9984, 3.59526,
4.1921, 4.7890, 5.3859, 5.9827} ,

which has determinant 3.1835 × 107. Finally, the optimal 11-point
equally-spaced design computed using numerical procedures is

{0.01410, 0.6258, 1.2376, 1.8493, 2.4610, 3.0727, 3.6844,
4.2962, 4.9079, 5.5196, 6.1313} ,

with determinant 3.1861 × 107. It can be seen that the values of the
determinants are quite similar, thus the three designs have roughly the
same efficiency. However, in this case the design obtained with the
𝑃1 procedure is slightly better than the other two, that are tied to the
restriction of having equally-spaced points while the former is not.
9

On the other hand, when an exponential correlation is assumed in
an equally-spaced design {𝑡, 𝑑}, the covariance matrix for 𝑛+1 support
points will have the shape

𝛴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 𝐾 𝐾2 … 𝐾𝑛

𝐾 1 𝐾 … 𝐾𝑛−1

𝐾2 𝐾 1 … 𝐾𝑛−2

⋮ ⋮ ⋮ ⋱ ⋮
𝐾𝑛 𝐾𝑛−1 𝐾𝑛−2 … 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝐾 = 𝑒−𝜆𝑑 . Some characteristics of these matrices could now be
studied. For instance, the eigenvalues for the 3-equally-spaced-point
covariance matrix are

𝜆1 = 1 −𝐾2, 𝜆2 =
1
2

(

2 +𝐾2 −𝐾
√

𝐾2 + 8
)

,

𝜆3 =
1
2

(

2 +𝐾2 +𝐾
√

𝐾2 + 8
)

,

and since the covariance matrix is non-negative definite, 𝜆1 ≥ 0,
𝑖 = 1, 2, 3. Therefore, a square root of 𝛴 can be obtained, and a
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procedure similar to that described in Rodríguez-Díz [41] can be used
for computing 𝑐-optimal designs even for the correlated case.

8. Conclusion

In this work, a new non-linear model is proposed to adjust the
pharmacokinetics of ethanol in the human body. As stated in the
introduction, it is necessary to use a non-linear trend model, more
precisely, a hill-shaped function, to explain both the clearance and
absorption phases of alcohol consumption. The proposed model can be
considered a simplification of the Gamma model used in Li et al. [14]
or a modified Arrhenius model.

Whilst taking into account all the different phases of alcohol con-
centration in the body (i.e. absorption and elimination), a key aspect of
the proposed model is its simplicity, unlike other more complex models
such as compartmental models. It is important to use not very com-
plex models so that they can be used to, for example, retrospectively
determine the level of alcohol that a driver had in the moment of an
accident. This has been so far done using the Widmark equation, which
only models the elimination phase in a linear way but is widely used
because of its simplicity in forensic medicine.

Among all optimality criteria for precise estimation, the 𝐷-criterion
is the most popular, minimizing the volume of the confidence ellipsoid
of the estimators of the model parameters [25,26]. For this reason,
𝐷-optimal designs for the Simplified-Gamma model have been calcu-
lated, which determine the observation times at which BAC should
be measured to find the best estimations of the model parameters.
These parameters, as well as the correlation parameter 𝜆, will depend
on factors such as the amount and type of alcohol consumed, sex,
age, weight, height... and must be determined after conducting clinical
trials. In the future, after the appropriate experimental studies, lambda
could be chosen to fit the ‘‘standard’’ individual, i.e. a value that
describes the characteristics of the average subject. Being a non-linear
model, an initial estimation of the parameters that appear ’non-linearly’
in the model [42] has been required. This has been done by calculating
the equivalent values from those in Li et al. [14].

Nonetheless, due to the complexity of the system of equations that
optimize the designs, these had to be solved analytically, so future
work may include the implementation of a web application that allows
the calculation of the designs for any initial estimation of the parame-
ters. Additionally, 𝑐-optimal designs can be studied in order to obtain
good designs for estimating more precisely one particular parameter, if
needed. Furthermore, equally-spaced designs have also been presented.
These designs, a compromise between 𝐷-optimal designs and filling
designs, while easier to calculate have been proven to be less efficient
than unrestricted 𝐷-optimal designs, but offer an alternative when easy
to implement designs with more points are needed.

Further lines of investigations may also include a deeper study of
how efficient are the more complex models, such as compartmental
models, when used for alcohol clearance, in terms of whether their
complexity can be justified by a much better adjustment. However, the
main drawback for these models is still that they are not as user friendly
so that the can be used on the go by, for example, police officers when
intervening with a drunk driver.

When both BAC and BrAC tests are conducted on the same subject
we get into the field of multiresponse models (see Rodríguez-Díaz and
Sánchez-León 43). If, in addition, the study is made over different
subjects, the results in Rodríguez-Díaz [44] could be used. In future
works, derivations of the proposed model when the intake of alcohol
is carried out in multiple steps (which probably fits better the actual
situation of an alcohol drinker) should be studied.

To summarize, the purpose of this work is to present a model
that could represent a compromise between simplicity and utility for
estimating BAC and BrAC. The crucial next step, outside the authors’
scope, is to run the appropriate trials so as to estimate the parameters
of the model for subject of different type, combining on factors such
as age, race, sex, ... For this, the optimal time points at which to take
samples are given through the 𝐷-optimal designs presented. Moreover,
the procedures given in the Discussion could also be used.
10
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Appendix. Sketches of the proofs

A.1. Proposition 1

Proof. In order to find the maximum, the derivatives of (3) with
respect to 𝑡, 𝑑1 and 𝑑2 are calculated. The following expressions are
btained after lengthy computations to obtain simplified terms of the
ystem of equations. The functions 𝑄𝑖 can be computed as

1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
−𝑄(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2)
𝑑1(𝑑1 + 𝑑2)

(A.1)

2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
𝑄(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2)

𝑑1𝑑2
(A.2)

3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
−𝑄(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2)
𝑑2(𝑑1 + 𝑑2)

, (A.3)

ith

(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑎[(𝑡+𝑑1)2+2𝑡(𝑡+𝑑1+𝑑2)+(𝑑1𝑑2)]−3𝑏𝑡(𝑡+𝑑1)(𝑡+𝑑1+𝑑2).

(A.4)

Regarding the 𝑅𝑖:

1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
𝑅(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2)
𝑡 + 2𝑑1 + 𝑑2

(A.5)

2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
−(𝑑1 + 𝑑2)𝑅(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) − (𝑡 + 𝑑1)(𝑡 + 𝑑1 + 𝑑2)

𝑑2(𝑡 + 2𝑑1 + 𝑑2)
(A.6)

3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
𝑑1𝑅(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) + (𝑡 + 𝑑1)(𝑡 + 𝑑1 + 𝑑2)

𝑑2(𝑡 + 2𝑑1 + 𝑑2)
, (A.7)

(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑎[(𝑡 + 𝑑1) + (𝑡 + 𝑑1 + 𝑑2)] − 2𝑏(𝑡 + 𝑑1)(𝑡 + 𝑑1 + 𝑑2). (A.8)

And finally, the 𝑆𝑖:

1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
−𝑑2𝑆(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) − (𝑡 + 𝑑1 + 𝑑2)

𝑑1
(A.9)

2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) =
(𝑑1 + 𝑑2)𝑆(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) + (𝑡 + 𝑑1 + 𝑑2)

𝑑1
(A.10)

𝑆3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = −𝑆(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2), (A.11)

here
(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑎 − 𝑏(𝑡 + 𝑑1 + 𝑑2). □ (A.12)
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A.2. Proposition 2

Proof. In the case of correlated observations, the procedure is the
same, taking into account the correlation matrix. Now, in the first
equation the 𝑄𝑖 functions are the same as those in Proposition 1 (see
A.1),(A.2), (A.3), and (A.4)).

For the second equation:

1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑅1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) +
𝜆(𝑡 + 𝑑1)(𝑡 + 𝑑1 + 𝑑2)

(𝑒2𝜆𝑑1 − 1)𝑑2(𝑡 + 2𝑑1 + 𝑑2)

𝑉2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑅2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) +
𝜆(𝑡 + 𝑑1)(𝑑1 + 𝑑2)(𝑡 + 𝑑1 + 𝑑2)
(𝑒2𝜆𝑑1 − 1)𝑑2(𝑡 + 2𝑑1 + 𝑑2)

𝑉3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑅3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) +
−𝜆𝑑1(𝑡 + 𝑑1)(𝑡 + 𝑑1 + 𝑑2)
(𝑒2𝜆𝑑1 − 1)𝑑2(𝑡 + 2𝑑1 + 𝑑2)

,

with 𝑅1, 𝑅2, 𝑅3 and 𝑅 from Proposition 1: (A.5), (A.6), (A.7) and (A.8).
For the last equation:

𝑊1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑆1(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) +
𝜆𝑑2(𝑡 + 𝑑1 + 𝑑2)
(𝑒2𝜆𝑑2 − 1)𝑑1

2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑆2(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) +
𝜆(𝑑1 + 𝑑2)(𝑑1 + 𝑑2)(𝑡 + 𝑑1 + 𝑑2)

(𝑒2𝜆𝑑2 − 1)𝑑1

3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) = 𝑆3(𝑎, 𝑏, 𝑡, 𝑑1, 𝑑2) −
𝜆(𝑡 + 𝑑1 + 𝑑2)
(𝑒2𝜆𝑑2 − 1)

,

ith 𝑆1, 𝑆2, 𝑆3 and 𝑆 corresponding to (A.9), (A.10), (A.11) and (A.12),
espectively.

The expressions above are obtained after lengthy calculations and
implifying the derivatives of (4) with respect to 𝑡, 𝑑1 and 𝑑2 in order
o find the maximum. □
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