

X-ray-determined structure of the technetium complex [Tc₂(μ -CO)₂(NC₅H₅)₂(CO)₆] revisited: [Tc₂(μ -OMe)₂(NC₅H₅)₂(CO)₆] as the correct formulation

Maaz Zuhayra, Arne Lützen and Miguel A. Ruiz

Acta Cryst. (2023). C79, 395-398

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence https://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original authors and source are cited.

Received 17 August 2023 Accepted 11 September 2023

Edited by M. Rosales-Hoz, Cinvestav, Mexico

Keywords: technetium; crystal structure; carbonyl; pyridine; methoxide.

CCDC references: 142167; 2294431; 2294833

Supporting information: this article has supporting information at journals.iucr.org/c

Published under a CC BY 4.0 licence

X-ray-determined structure of the technetium complex $[Tc_2(\mu-CO)_2(NC_5H_5)_2(CO)_6]$ revisited: $[Tc_2(\mu-OMe)_2(NC_5H_5)_2(CO)_6]$ as the correct formulation

Maaz Zuhayra,^a Arne Lützen^b and Miguel A. Ruiz^c*

^aKlinik für Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 9, D-24105 Kiel, Germany, ^bKekulé-Institut für Organische Chemie and Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and ^cDepartamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain. *Correspondence e-mail: mara@uniovi.es

Some of us reported previously the structure of di- μ -carbonyl-bis[tricarbonyl-(pyridine)technetium], $[Tc_2(\mu-CO)_2(C_5H_5N)_2(CO)_6]$, as the main product of the reaction of [Tc₂(CO)₁₀] with pyridine at room temperature, using the reagent itself as solvent [Zuhayra et al. (2008). Inorg. Chem. 47, 10177-10182]. On the basis of an X-ray analysis of the product, a molecular structure was proposed with two bridging carbonyls displaying very unusual geometrical features, not explained at the time. Subsequent chemical considerations, coupled with density functional theory (DFT) calculations, prompted us to revise the original structure determination. Using the original raw diffraction data, we have now performed new refinements to show that the previously proposed 'bridging carbonyls' actually correspond to bridging methoxide groups, and that the crystals analyzed at the time therefore would correspond to the complex di- μ -methoxido-bis[tricarbonyl(pyridine)technetium], syn-[Tc₂(μ -OMe)₂(NC₅H₅)₂- $(CO)_6$]. This methoxide-bridged complex likely was a minor side product formed along with the main product in the above reaction, perhaps due to the presence of trace amounts of methanol and air in the reaction mixture.

1. Introduction

Some of us reported previously that the room-temperature reaction of $[Tc_2(CO)_{10}]$ with pyridine, using the reagent itself as solvent, yields the octacarbonyl complex $[Tc_2(NC_5H_5)_2 (CO)_8$ (1) as the unique product, which upon heating undergoes an interesting C-H bond cleavage of a pyridine molecule (Zuhayra et al., 2008). On the basis of an X-ray analysis of the above product, a molecular structure was proposed for isomer syn-1 with two bridging carbonyls displaying several unusual geometrical features not explained at the time (Fig. 1): (i) a strong pyramidalization of the bridgehead C atoms, with unusually small displacement parameters and very large C–O separations of ca 1.45 Å, actually close to the reference value of 1.42 Å for a $C(sp^3)$ -O single bond (Cordero et al., 2008), and far larger than the reference value of 1.21 Å for a double bond between these atoms (Pyykkö & Atsumi, 2009); and (ii) a large intermetallic separation of ca 3.37 Å, far above that of the parent complex $[Tc_2(CO)_{10}]$ (ca 3.03 Å; Bailey & Dahl, 1965; Sidorenko et al., 2011), and inconsistent with the formulation of a single Tc-Tc bond, as required by application of the 18-electron rule to complex syn-1. Recently, we used density functional theory (DFT) calculations to find that the most likely structure of 1 would display only terminal carbonyls and a staggered conformation,

Table 1

Experimental details for structural determinations of complexes syn-1 to syn-3.

	syn-1 ^a	syn-2	syn-3
Crystal data			
Chemical formula	$C_{18}H_{10}N_2O_8Tc_2$	$C_{16}H_{12}N_2O_{10}Tc_2$	$C_{18}H_{16}N_2O_8Tc_2$
$M_{ m r}$	578.28	588.28	584.33
Crystal system, space group	Orthorhombic, $Pna2_1$	Orthorhombic, $Pna2_1$	Orthorhombic, Pna21
Temperature (K)	200	200	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	18.116 (16), 10.359 (8), 12.148 (10)	18.116 (16), 10.359 (8), 12.148 (10)	18.116 (16), 10.359 (8), 12.148 (10)
$V(Å^3)$	2280 (3)	2280 (3)	2280 (3)
Z	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	1.25	1.26	1.26
Crystal size (mm)	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.2$
Data collection			
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2614, 2614, 2265	2614, 2614, 2265	2614, 2614, 2265
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639	0.639	0.639
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.146, 1.10	0.046, 0.122, 1.05	0.042, 0.113, 1.05
No. of reflections	2614	2614	2614
No. of parameters	273	281	274
No. of restraints	1	4	1
H-atom treatment	Only H-atom displacement parameters refined	Only H-atom displacement parameters refined	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.16, -1.14	1.12, -0.97	1.13, -1.03
Flack parameter	0.07 (10)	0.04 (9)	0.02 (8)

Note: (a) data taken from Zuhayra et al. (2008). Computer programs: SHELXL2017 (Sheldrick, 2015b) in WinGX (Farrugia, 2012), SHELXT2014 (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

as observed in the parent precursor, and that the crystals analysed by X-ray diffraction in 2008 would most likely correspond to either the hydroperoxide-bridged ditechnetium(I) complex syn-[Tc₂(μ -OOH)₂(NC₅H₅)₂(CO)₆] (syn-2) or its methoxide-bridged analogue syn-[Tc₂(μ -OMe)₂(NC₅H₅)₂(CO)₆] (syn-3) (García-Vivó & Ruiz, 2020). This prompted us to revise the structure determination of compound syn-1 by performing new refinements using the original raw diffraction data, which is the purpose of the present article. As will be shown below, the new refinements indicate beyond doubt that the crystal actually analyzed at the time was not that of compound syn-1 but that of the methoxide-bridged complex syn-[Tc₂(μ -OMe)₂(NC₅H₅)₂(CO)₆] (syn-3), whereby the 'anomalous' geometrical parameters mentioned above now become 'as expected'.

2. Experimental

Diffraction data were collected on a Siemens Nicolet Syntex R3m/V diffractometer using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Intensities were measured by fineslicing φ -scans and corrected for background, polarization and Lorentz effects. The original structure of *syn-1* was solved by direct methods and refined with the programs *SHELXS86* and *SHELXL93* (Sheldrick, 2008) by a full-matrix least-squares method based on F^2 (Zuhayra *et al.*, 2008).

Taking the same diffraction data, the structures of *syn-2* and *syn-3* were now solved by a dual-space algorithm using *SHELXT2014* (Sheldrick, 2015*a*) and refined by full-matrix

396 Zuhayra et al. • $[Tc_2(\mu-CO)_2(NC_5H_5)_2(CO)_6]$ revisited

electronic reprint

least-squares on F^2 using *SHELXL2017* (Sheldrick, 2015*b*) within *OLEX2* (Dolomanov *et al.*, 2009) and *WinGX* (Farrugia, 2012) environments.

2.1. Refinement

Crystal data, data collection and structure refinement details for *syn-1*, *syn-2* and *syn-3* are summarized in Table 1. All carbon-bound H atoms were calculated at their optimal positions and treated as riding on their parent atoms using isotropic displacement parameters 1.2 (or 1.5 in the case of methyl groups) times larger than the $U_{\rm eq}$ values of the respective parent atoms. The methyl groups in *syn-3* were calculated as idealized rotating groups. We could not recover

Table 2

Selected parameters $(\text{\AA}, \text{\AA}^2)$ for structural determinations following formulations as *syn-1* to *syn-3*.

Parameter	syn-1 ^a	syn-2	syn-3
	(XY = CO)	(XY = OO)	(XY = OC)
Tc···Tc	3.370 (3)	3.369 (3)	3.368 (3)
Average $Tc - (\mu - X)$	2.163	2.162	2.163
X4-Y4	1.451 (14)	1.441 (12)	1.424 (11)
X5-Y5	1.470 (14)	1.433 (14)	1.415 (11)
$U_{\rm eq}(X4)$	0.018 (2)	0.034 (2)	0.035 (2)
$U_{\rm eq}(X5)$	0.019(1)	0.037 (2)	0.038(1)
$U_{\rm eq}(Y4)$	0.083 (3)	0.082 (3)	0.044 (2)
$U_{\rm eq}(Y5)$	0.112 (5)	0.116 (5)	0.061 (3)
$\Delta MSDA(X4 - Y4)$	0.052 (8)	0.036 (8)	0.010(6)
$\Delta MSDA(X5-Y5)$	0.040 (11)	0.041 (11)	0.008 (7)

Note: (a) data taken from Zuhayra et al. (2008).

research papers

from the stored old data (recorded some 20 years ago) all the information currently required for standard CIF files, and this caused the appearance of some A-level alerts in the corresponding *checkCIF* reports for *syn-2* and *syn-3*.

3. Results and discussion

The small size of the displacement ellipsoids of the bridgehead 'carbon' atoms (C4 and C5) in the original structure determination of *syn-1*, compared to those of the corresponding O atoms (O4 and O5; Fig. 1 and Table 2), suggested that positions C4 and C5 might actually correspond to atoms having a higher number of electrons (Stout & Jensen, 1989). Moreover, the theoretical calculations mentioned above indicated that replacing the bridging carbonyl ligands in *syn-1* with either

Figure 1

(a) The molecular structure (30% probability displacement ellipsoids) of the presumed compound **syn-1**, with H atoms omitted for clarity. (b) A view of the molecule along an axis close to the intermetallic line (García-Vivó & Ruiz, 2020). Both images were generated from the original CIF file (Zuhayra *et al.*, 2008). Selected bond lengths (Å): Tc1 \cdots Tc2 = 3.370 (3), C1–O1 = 1.148 (13), C2–O2 = 1.14 (2), C3–O3 = 1.149 (15), C4–O4 = 1.451 (14) and C5–O5 = 1.470 (14).

OOH (peroxide) or OMe (methoxide) groups would yield complexes with geometries matching the anomalous features of the original structural determination (García-Vivó & Ruiz, 2020). We then proceeded to make new refinements with the original raw diffraction data under both hypotheses (syn-2 and syn-3, respectively). Both refinements converged satisfactorily to give improved fitting parameters, compared to the original refinement based on the formulation $syn-[Tc_2(\mu-CO)_2(N-CO)_$ $C_5H_5_2(CO)_6$] (Fig. 2, and Tables 1 and 2), but there were some significant differences between them: (i) the R_1 , wR_2 and goodness-of-fit (GOF) values were better for syn-3. (ii) the $U_{\rm eq}$ values for the heavy atoms at the bridging positions (OO or OC) were more similar to each other in the case of syn-3; in contrast, the U_{eq} values for the O(H) atoms in syn-2 were almost three times the value of the corresponding bridgehead O atom. This is clearly reflected in the significantly smaller values of $ca \ 0.01 \ \text{\AA}^2$ in the difference between the meansquare displacement amplitudes (Δ MSDA) for the C4/O4 or

electronic reprint

C5/O5 pairs in syn-3, as expected for mutually bonded atoms (Hirshfeld, 1976), which can be compared with values of ca 0.04 Å^2 for the corresponding pairs in either syn-2 or syn-1 (Table 2). Moreover, we note that the average C-O bond length for the bridging methoxide groups in syn-3 (ca 1.42 Å) exactly matches the reference value for a $C(sp^3)$ -O single bond. In contrast, the average O–O bond length of 1.43 Å in the formulation as syn-2 falls below the values of 1.45–1.50 Å typically determined for OOR-bridged complexes (García-Vivó & Ruiz, 2020). All of this provides conclusive evidence for the presence of methoxide groups bridging the Tc atoms in the complex under discussion. It is thus concluded that the crystal analyzed at the time actually was not one of compound syn-1 but one of the methoxide-bridged complex syn-[Tc₂(μ - $OMe_2(NC_5H_5)_2(CO)_6$] (syn-3). We finally note that the geometrical parameters obtained for this complex are similar to those determined previously for different rhenium complexes with dimetal cores of the type syn-[Re₂(μ -OR)₂L₂(CO)₆] having bridging alkoxide or hydroxide ligands and terminal pyridine, dipyridyl and polypyridyl ligands (García-Vivó & Ruiz, 2020). The latter belong to a relatively large family of complexes which have been studied extensively because of their photophysical and chemical properties, host-guest interactions and biological activity.

After concluding that the crystal analyzed at the time, formed through crystallization from acetone/n-hexane of the bulk product obtained when reacting $[Tc_2(CO)_{10}]$ with pyridine at room temperature, corresponds to the methoxidebridged complex syn-3 rather than the simple substitution product *syn-1*, the question then to be answered is from where could the methoxide ligands possibly arise. Unfortunately, we are not in a position to reproduce the above synthetic procedure in our laboratories, so we can only speculate about its possible origin. We currently trust that complex syn-3 might just have been a very minor side product formed along with the major product, which just happened to crystallize first from the reaction mixture. Interestingly, we note that many dirhenium polypyridyl complexes with metal cores of the type syn-[Re₂(μ -OR)₂ L_2 (CO)₆] have been made by reacting [Re₂- $(CO)_{10}$ with stoichiometric amounts of the pertinent N-donor ligand in the corresponding alcohol (ROH) or water, although high temperatures are typically required to form these products. However, a separate experiment carried out previously by us revealed that stirring $[Re_2(CO)_{10}]$ in pyridine at room temperature for 4 d caused no detectable transformation on the Re₂ substrate, unless air is admitted into the reaction flask (García-Vivó & Ruiz, 2020). Based on the above indirect pieces of evidence, we tend now to think that formation of the

methoxide-bridged complex *syn-3* during the slow reaction of $[Tc_2(CO)_{10}]$ with pyridine at room temperature (5 d) might have followed from the presence of trace amounts of methanol and air in the reaction mixture.

4. Conclusion

The raw diffraction data of the compound formulated in 2008 as syn-[Tc₂(μ -CO)₂(NC₅H₅)₂(CO)₆] have now been re-processed under the hypothesis that the bridging ligands might actually be either hydroperoxide or methoxide ligands. The latter option proved to be the correct one, as it leads not only to better agreement parameters, such as *R*, *wR* or GOF, but also to chemically more sensible interatomic distances and displacement parameters for the non-H atoms of the bridging ligands. The formation of syn-[Tc₂(μ -OMe)₂(NC₅H₅)₂(CO)₆] in the room-temperature reaction of [Tc₂(CO)₁₀] with pyridine might have been facilitated at the time by the presence of unnoticed trace amounts of methanol and air in the reaction mixture.

Funding information

Funding for this research was provided by: Ministerio de Ciencia, Innovación y Universidades (grant No. PGC2018-097366-B-I00).

References

- Bailey, M. F. & Dahl, L. F. (1965). Inorg. Chem. 4, 1140-1145.
- Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). *Dalton Trans.* pp. 2832–2838.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- García-Vivó, D. & Ruiz, M. A. (2020). *ChemRxiv*, https://doi.org/10. 26434/chemrxiv.12964574.v1.
- Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
- Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770-12779.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sidorenko, G. V., Miroslavov, A. E., Grigor'ev, M. S., Gurzhiy, V. V., Lumpov, A. A., Mikhalev, V. A. & Suglobov, D. N. (2011). *Radiochemistry*, 53, 44–50.
- Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination, 2nd ed., ch. 16, p. 358. New York: John Wiley & Sons.
- Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). *Inorg. Chem.* **47**, 10177–10182.

Acta Cryst. (2023). C79, 395-398 [https://doi.org/10.1107/S2053229623007957]

X-ray-determined structure of the technetium complex $[Tc_2(\mu - CO)_2(NC_5H_5)_2(CO)_6]$ revisited: $[Tc_2(\mu - OMe)_2(NC_5H_5)_2(CO)_6]$ as the correct formulation

Maaz Zuhayra, Arne Lützen and Miguel A. Ruiz

Computing details

For both structures, program(s) used to solve structure: *SHELXL2017* (Sheldrick, 2015*b*) in *WinGX* (Farrugia, 2012); program(s) used to refine structure: SHELXT2014 (Sheldrick, 2015*a*); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Di-µ-peroxido-bis[tricarbonyl(pyridine)technetium] syn-[Tc₂(CH₃O)₂(NC₅H₅)₂(CO)₆] (syn2)

Crystal data	
$[Tc_{2}(HO_{2})_{2}(C_{5}H_{5}N)_{2}(CO)_{6}]$ $M_{r} = 588.28$ Orthorhombic, $Pna2_{1}$ a = 18.116 (16) Å b = 10.359 (8) Å c = 12.148 (10) Å V = 2280 (3) Å ³ Z = 4	F(000) = 1152 $D_x = 1.714 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 1.26 \text{ mm}^{-1}$ T = 200 K , colorless $0.3 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
Siemens Nicolet Syntex R3m/V diffractometer 2614 measured reflections 2614 independent reflections 2265 reflections with $I > 2\sigma(I)$	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -19 \rightarrow 23$ $k = -13 \rightarrow 8$ $l = -10 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.122$ S = 1.05 2614 reflections 281 parameters 4 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed Only H-atom displacement parameters refined	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0734P)^{2} + 2.8233P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.12$ e Å ⁻³ $\Delta\rho_{min} = -0.97$ e Å ⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015 <i>b</i>), Fc*=kFc[1+0.001xFc ² \lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0030 (4) Absolute structure: No quotients, so Flack parameter determined by classical intensity fit Absolute structure parameter: 0.04 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Tc1	0.40833 (4)	0.80691 (7)	0.49957 (6)	0.0389 (2)	
Tc2	0.29129 (3)	0.74681 (7)	0.70890 (8)	0.03599 (19)	
01	0.3474 (5)	1.0862 (7)	0.4879 (9)	0.072 (2)	
O2	0.4001 (6)	0.8051 (10)	0.2445 (8)	0.076 (3)	
03	0.5616 (5)	0.9329 (10)	0.4740 (9)	0.075 (3)	
O4B	0.4419 (6)	0.8844 (11)	0.7446 (9)	0.082 (3)	
O5B	0.2428 (9)	0.7334 (16)	0.4609 (10)	0.116 (5)	
O6	0.2295 (4)	1.0247 (7)	0.7043 (10)	0.069 (2)	
O7	0.1264 (4)	0.6803 (10)	0.7349 (8)	0.071 (3)	
08	0.3006 (5)	0.7811 (12)	0.9603 (8)	0.078 (3)	
N1	0.4528 (4)	0.6049 (7)	0.5105 (8)	0.0383 (16)	
N2	0.3282 (4)	0.5403 (7)	0.7176 (7)	0.0372 (15)	
C1	0.3693 (6)	0.9809 (10)	0.4936 (11)	0.053 (2)	
C2	0.4032 (7)	0.8043 (15)	0.3418 (13)	0.061 (4)	
C3	0.5047 (6)	0.8826 (10)	0.4845 (11)	0.055 (3)	
O4	0.4056 (3)	0.7889 (7)	0.6774 (7)	0.0343 (17)	
05	0.3036 (4)	0.7139 (8)	0.5344 (6)	0.0374 (15)	
C6	0.2552 (5)	0.9227 (10)	0.7038 (10)	0.047 (2)	
C7	0.1898 (5)	0.7011 (12)	0.7244 (10)	0.052 (2)	
C8	0.2977 (7)	0.7689 (14)	0.8681 (15)	0.061 (4)	
C9	0.5176 (6)	0.5817 (10)	0.5665 (8)	0.046 (2)	
H9	0.5417	0.6513	0.6024	0.066 (13)*	
C10	0.5490 (6)	0.4571 (12)	0.5718 (10)	0.055 (3)	
H10	0.5937	0.4430	0.6107	0.066 (13)*	
C11	0.5134 (6)	0.3554 (11)	0.5192 (10)	0.056 (3)	
H11	0.5338	0.2709	0.5215	0.066 (13)*	
C12	0.4483 (6)	0.3780 (11)	0.4635 (9)	0.053 (3)	
H12	0.4230	0.3096	0.4276	0.066 (13)*	
C13	0.4199 (5)	0.5063 (9)	0.4610 (8)	0.043 (2)	
H13	0.3753	0.5220	0.4220	0.066 (13)*	
C14	0.3902 (6)	0.5067 (10)	0.7709 (9)	0.046 (2)	
H14	0.4198	0.5725	0.8028	0.066 (13)*	
C15	0.4128 (6)	0.3779 (12)	0.7809 (10)	0.055 (3)	
H15	0.4567	0.3567	0.8197	0.066 (13)*	
C16	0.3705 (7)	0.2823 (10)	0.7337 (10)	0.055 (3)	
H16	0.3851	0.1945	0.7392	0.066 (13)*	
C17	0.3064 (6)	0.3156 (10)	0.6779 (9)	0.049 (2)	
H17	0.2762	0.2514	0.6448	0.066 (13)*	
C18	0.2872 (5)	0.4471 (10)	0.6717 (8)	0.044 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18	0.2435	0.4707	0.6335	0.066 (13)*
H4B	0.46 (4)	0.96 (3)	0.72 (2)	1.4 (15)*
H5B	0.248 (7)	0.721 (12)	0.387 (3)	0.05 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Tc1	0.0428 (3)	0.0385 (4)	0.0354 (3)	0.0053 (3)	0.0039 (4)	0.0030 (4)
Tc2	0.0338 (3)	0.0386 (4)	0.0356 (3)	0.0011 (3)	0.0005 (3)	-0.0025 (3)
01	0.102 (6)	0.047 (4)	0.068 (5)	0.019 (4)	0.007 (5)	0.018 (5)
O2	0.101 (7)	0.087 (7)	0.040 (5)	0.013 (5)	-0.002 (4)	0.005 (4)
03	0.058 (4)	0.076 (6)	0.092 (8)	-0.004 (4)	0.010 (5)	0.025 (6)
O4B	0.081 (6)	0.083 (7)	0.083 (7)	-0.007 (5)	-0.008 (5)	-0.010 (6)
O5B	0.107 (9)	0.183 (15)	0.058 (6)	-0.005 (9)	-0.027 (7)	-0.003 (7)
06	0.063 (4)	0.046 (4)	0.098 (7)	0.016 (3)	0.012 (6)	-0.012 (5)
07	0.038 (4)	0.104 (7)	0.070 (6)	-0.011 (4)	-0.001 (4)	0.002 (5)
08	0.080 (6)	0.121 (8)	0.034 (4)	-0.013 (6)	0.006 (4)	-0.016 (5)
N1	0.041 (3)	0.037 (4)	0.037 (4)	0.003 (3)	0.003 (4)	0.004 (4)
N2	0.039 (3)	0.037 (4)	0.035 (4)	0.000 (3)	0.003 (3)	-0.002 (3)
C1	0.067 (6)	0.052 (5)	0.038 (5)	0.016 (4)	0.011 (6)	0.003 (5)
C2	0.062 (8)	0.083 (10)	0.039 (7)	0.004 (6)	0.000 (5)	0.003 (6)
C3	0.055 (5)	0.052 (6)	0.058 (7)	0.003 (5)	-0.001 (5)	0.019 (6)
O4	0.041 (4)	0.036 (3)	0.026 (4)	-0.004 (3)	0.000 (2)	-0.002 (3)
05	0.034 (3)	0.050 (4)	0.028 (3)	-0.003 (3)	-0.009 (2)	0.001 (3)
C6	0.039 (4)	0.053 (5)	0.049 (5)	0.002 (4)	0.003 (5)	-0.017 (5)
C7	0.038 (5)	0.070 (6)	0.049 (6)	-0.001 (4)	0.006 (4)	-0.010 (6)
C8	0.064 (8)	0.058 (7)	0.060 (10)	-0.018 (6)	0.004 (6)	-0.008 (6)
C9	0.048 (5)	0.050 (5)	0.042 (5)	0.005 (4)	-0.004 (4)	-0.002 (4)
C10	0.049 (5)	0.059 (7)	0.057 (6)	0.011 (5)	0.006 (5)	0.004 (5)
C11	0.063 (6)	0.045 (5)	0.059 (8)	0.015 (5)	0.015 (5)	0.007 (5)
C12	0.063 (6)	0.044 (5)	0.051 (6)	0.005 (5)	0.004 (5)	-0.010 (5)
C13	0.050 (5)	0.034 (4)	0.047 (5)	-0.001 (4)	-0.004 (4)	-0.004 (4)
C14	0.054 (5)	0.040 (5)	0.043 (5)	0.004 (4)	-0.010 (4)	-0.002 (4)
C15	0.060 (6)	0.057 (6)	0.049 (6)	0.014 (5)	-0.007 (5)	0.004 (5)
C16	0.074 (7)	0.039 (5)	0.052 (7)	0.012 (5)	0.005 (5)	0.008 (4)
C17	0.057 (6)	0.037 (5)	0.053 (6)	-0.010 (4)	-0.006 (4)	0.004 (4)
C18	0.047 (5)	0.045 (5)	0.041 (5)	-0.008 (4)	-0.004 (4)	-0.002 (4)

Geometric parameters (Å, °)

Tc1—N1	2.246 (7)	O5B—O5	1.433 (14)
Tc1—C1	1.937 (10)	O6—C6	1.155 (12)
Tc1—C2	1.919 (16)	O7—C7	1.176 (12)
Tc1—C3	1.922 (11)	O8—C8	1.13 (2)
Tc1—O4	2.168 (9)	N1—C9	1.377 (12)
Tc1—O5	2.170 (7)	N1—C13	1.327 (12)
Tc2—N2	2.244 (7)	N2	1.342 (12)
Tc2—O4	2.150 (7)	N2	1.339 (12)

Acta Cryst. (2023). C79, 395-398

Tc2—O5	2.158 (8)	C9—C10	1.412 (15)
Tc2—C6	1.937 (10)	C10—C11	1.391 (17)
Tc2—C7	1.907 (10)	C11—C12	1.380 (16)
Tc2—C8	1.951 (18)	C12—C13	1.426 (14)
01—C1	1.162 (12)	C14—C15	1.401 (15)
O2—C2	1.183 (19)	C15—C16	1.376 (17)
O3—C3	1.162 (14)	C16—C17	1.389 (16)
O4B—O4	1.441 (12)	C17—C18	1.408 (14)
C1—Tc1—N1	178 7 (4)	C8—Tc2—O5	170 4 (4)
C1— $Tc1$ — $O4$	96 3 (4)	C9-N1-Tc1	119.8 (6)
C1— $Tc1$ — $O5$	95 8 (4)	C13 - N1 - Tc1	121.9 (6)
C2— $Tc1$ — $N1$	93.6 (5)	C13 - N1 - C9	118.2 (8)
C2— $Tc1$ — $C1$	87.6 (6)	C14— $N2$ — $Tc2$	121.3 (6)
C2— $Tc1$ — $C3$	87.4 (6)	C18 - N2 - Tc2	120.1 (6)
C2—Tc1—O4	173.0 (4)	C18—N2—C14	118.5 (8)
C2—Tc1—O5	98.4 (5)	01—C1—Tc1	178.1 (10)
C3—Tc1—N1	93.4 (4)	O2—C2—Tc1	178.8 (14)
C3—Tc1—C1	87.1 (5)	O3—C3—Tc1	177.3 (10)
C3—Tc1—O4	98.7 (4)	Tc2—O4—Tc1	102.5 (3)
C3—Tc1—O5	173.6 (4)	O4B-O4-Tc1	119.6 (7)
O4—Tc1—N1	82.5 (3)	O4B-O4-Tc2	118.6 (6)
O4—Tc1—O5	75.4 (3)	Tc2—O5—Tc1	102.2 (3)
O5—Tc1—N1	83.6 (3)	O5B-O5-Tc1	119.3 (8)
O4—Tc2—N2	85.1 (3)	O5B-O5-Tc2	120.7 (8)
O4—Tc2—O5	76.0 (3)	O6—C6—Tc2	175.4 (9)
O5—Tc2—N2	82.2 (3)	O7—C7—Tc2	176.2 (11)
C6—Tc2—N2	177.5 (3)	O8—C8—Tc2	179.2 (13)
C6—Tc2—O4	97.4 (3)	N1-C9-C10	121.7 (10)
C6—Tc2—O5	98.8 (4)	C11—C10—C9	119.0 (10)
C6—Tc2—C8	86.6 (6)	C12—C11—C10	119.5 (10)
C7—Tc2—N2	92.6 (4)	C11—C12—C13	118.6 (10)
C7—Tc2—O4	174.8 (4)	N1-C13-C12	123.0 (9)
C7—Tc2—O5	99.1 (4)	N2-C14-C15	122.2 (10)
C7—Tc2—C6	84.9 (4)	C16—C15—C14	119.1 (10)
C7—Tc2—C8	89.3 (5)	C15—C16—C17	119.4 (10)
C8—Tc2—N2	92.7 (5)	C16—C17—C18	118.2 (9)
C8—Tc2—O4	95.5 (5)	N2—C18—C17	122.6 (9)

di-µ-methoxido-bis[tricarbonyl(pyridine)technetium], syn-[Tc₂(CH₃O)₂(NC₅H₅)₂(CO)₆] (syn3)

Crystal data [Tc₂(CH₃O)₂(C₅H₅N)₂(CO)₆] $M_r = 584.33$ Orthorhombic, $Pna2_1$ a = 18.116 (16) Å b = 10.359 (8) Å c = 12.148 (10) Å

 $V = 2280 (3) Å^{3}$ Z = 4 F(000) = 1152 $D_{x} = 1.702 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 1.26 \text{ mm}^{-1}$

T = 200 K, colorless	$0.3 \times 0.2 \times 0.2$ mm
Data collection	
Siemens Nicolet Syntex R3m/V diffractometer 2614 measured reflections 2614 independent reflections 2265 reflections with $I > 2\sigma(I)$	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -19 \rightarrow 23$ $k = -13 \rightarrow 8$ $l = -10 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.113$ S = 1.05 2614 reflections 274 parameters 1 restraint Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0658P)^{2} + 2.1707P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.13$ e Å ⁻³ $\Delta\rho_{min} = -1.03$ e Å ⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0027 (4) Absolute structure: No quotients, so Flack parameter determined by classical intensity fit Absolute structure parameter: 0.02 (8)
H-atom parameters constrained	•

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3474 (5)	1.0858 (7)	0.4880 (8)	0.073 (2)	
O2	0.4008 (5)	0.8066 (10)	0.2443 (7)	0.078 (3)	
03	0.5615 (4)	0.9325 (9)	0.4743 (9)	0.077 (3)	
04	0.4059 (3)	0.7895 (7)	0.6772 (6)	0.0346 (16)	
05	0.3036 (4)	0.7137 (7)	0.5342 (6)	0.0379 (14)	
06	0.2294 (4)	1.0246 (7)	0.7049 (9)	0.070 (2)	
O7	0.1264 (4)	0.6800 (9)	0.7355 (8)	0.071 (2)	
08	0.2997 (5)	0.7804 (11)	0.9605 (7)	0.078 (3)	
N1	0.4529 (3)	0.6053 (7)	0.5102 (7)	0.0379 (15)	
N2	0.3279 (3)	0.5405 (6)	0.7179 (6)	0.0370 (14)	
C1	0.3690 (5)	0.9810 (9)	0.4936 (10)	0.053 (2)	
C2	0.4030(7)	0.8046 (14)	0.3420 (12)	0.063 (4)	
C3	0.5048 (6)	0.8829 (10)	0.4843 (10)	0.056 (3)	
C4	0.4421 (5)	0.8837 (9)	0.7433 (8)	0.044 (2)	
H4A	0.4176	0.9674	0.7342	0.066*	
H4B	0.4938	0.8910	0.7203	0.066*	
H4C	0.4399	0.8576	0.8207	0.066*	
C5	0.2435 (6)	0.7327 (13)	0.4615 (9)	0.061 (3)	

H5A	0.2019	0.6787	0.4846	0.091*
H5B	0.2584	0.7089	0.3866	0.091*
H5C	0.2287	0.8237	0.4628	0.091*
C6	0.2553 (4)	0.9227 (9)	0.7041 (10)	0.048 (2)
C7	0.1901 (5)	0.7010 (11)	0.7240 (9)	0.053 (2)
C8	0.2970 (7)	0.7691 (13)	0.8678 (14)	0.058 (4)
C9	0.5175 (5)	0.5815 (9)	0.5663 (8)	0.046 (2)
H9	0.5417	0.6510	0.6024	0.055*
C10	0.5489 (5)	0.4568 (11)	0.5718 (9)	0.055 (2)
H10	0.5935	0.4426	0.6111	0.066*
C11	0.5134 (6)	0.3554 (10)	0.5189 (9)	0.057 (3)
H11	0.5339	0.2710	0.5208	0.068*
C12	0.4482 (6)	0.3784 (10)	0.4636 (9)	0.054 (2)
H12	0.4227	0.3099	0.4281	0.065*
C13	0.4197 (5)	0.5062 (9)	0.4607 (8)	0.044 (2)
H13	0.3751	0.5217	0.4217	0.053*
C14	0.3900 (5)	0.5067 (9)	0.7710 (8)	0.046 (2)
H14	0.4195	0.5724	0.8033	0.055*
C15	0.4127 (6)	0.3789 (11)	0.7806 (9)	0.053 (2)
H15	0.4566	0.3582	0.8193	0.064*
C16	0.3709 (6)	0.2825 (9)	0.7333 (9)	0.054 (3)
H16	0.3858	0.1948	0.7386	0.065*
C17	0.3063 (5)	0.3156 (9)	0.6776 (8)	0.049 (2)
H17	0.2761	0.2514	0.6447	0.059*
C18	0.2873 (5)	0.4469 (9)	0.6718 (8)	0.045 (2)
H18	0.2437	0.4704	0.6334	0.053*
Tc1	0.40832 (3)	0.80689 (6)	0.49960 (6)	0.03886 (19)
Tc2	0.29129 (3)	0.74678 (7)	0.70886 (8)	0.03592 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.103 (5)	0.047 (4)	0.068 (5)	0.019 (4)	0.007 (5)	0.019 (4)	
O2	0.104 (7)	0.091 (7)	0.039 (4)	0.020 (5)	0.000 (4)	0.005 (4)	
O3	0.058 (4)	0.078 (5)	0.095 (8)	-0.004 (4)	0.009 (5)	0.028 (5)	
O4	0.041 (4)	0.036 (3)	0.028 (3)	-0.003 (2)	0.000 (2)	-0.003 (2)	
05	0.038 (3)	0.048 (3)	0.028 (3)	-0.001 (3)	-0.010 (2)	0.001 (3)	
O6	0.064 (4)	0.045 (4)	0.101 (6)	0.016 (3)	0.009 (5)	-0.010 (5)	
07	0.039 (3)	0.102 (6)	0.072 (6)	-0.009 (4)	-0.001 (4)	0.003 (5)	
08	0.082 (6)	0.119 (8)	0.034 (4)	-0.012 (5)	0.006 (4)	-0.017 (4)	
N1	0.041 (3)	0.036 (3)	0.036 (4)	0.003 (2)	0.003 (3)	0.004 (3)	
N2	0.039 (3)	0.038 (3)	0.034 (3)	-0.001 (3)	0.003 (3)	-0.002 (3)	
C1	0.069 (6)	0.051 (5)	0.038 (4)	0.015 (4)	0.014 (6)	0.001 (5)	
C2	0.065 (8)	0.085 (10)	0.039 (7)	0.004 (6)	-0.001 (5)	0.005 (5)	
C3	0.058 (5)	0.055 (5)	0.054 (6)	0.001 (4)	-0.003 (5)	0.019 (5)	
C4	0.039 (4)	0.046 (5)	0.048 (5)	-0.002 (4)	-0.001 (4)	-0.005 (4)	
C5	0.045 (5)	0.092 (8)	0.045 (5)	0.000 (5)	-0.013 (4)	0.000 (5)	
C6	0.039 (4)	0.052 (5)	0.052 (5)	0.002 (4)	0.002 (4)	-0.017 (5)	

Acta Cryst. (2023). C79, 395-398

C7	0.040 (4)	0.069 (6)	0.050 (6)	-0.002 (4)	0.005 (4)	-0.008 (5)
C8	0.059 (7)	0.055 (6)	0.060 (9)	-0.014 (5)	0.005 (5)	-0.010 (6)
C9	0.046 (5)	0.050 (5)	0.042 (5)	0.006 (4)	-0.004(4)	-0.004(4)
C10	0.048 (5)	0.061 (6)	0.056 (6)	0.010 (4)	0.005 (4)	0.003 (5)
C11	0.062 (5)	0.046 (5)	0.063 (8)	0.014 (4)	0.015 (5)	0.007 (5)
C12	0.065 (6)	0.044 (5)	0.053 (6)	0.002 (5)	0.003 (5)	-0.010 (4)
C13	0.046 (5)	0.037 (4)	0.048 (5)	-0.002(4)	-0.003(4)	-0.006(4)
C14	0.054 (5)	0.042 (5)	0.043 (5)	0.002 (4)	-0.010 (4)	-0.001 (4)
C15	0.054 (5)	0.055 (6)	0.051 (5)	0.011 (4)	-0.010 (4)	0.003 (5)
C16	0.071 (6)	0.039 (5)	0.053 (6)	0.014 (4)	0.005 (5)	0.007 (4)
C17	0.059 (5)	0.038 (4)	0.050 (5)	-0.008(4)	-0.007(4)	0.003 (4)
C18	0.049 (5)	0.044 (5)	0.041 (4)	-0.008(4)	-0.005 (4)	-0.002(4)
Tc1	0.0428 (3)	0.0385 (3)	0.0353 (3)	0.0053 (3)	0.0039 (4)	0.0030 (4)
Tc2	0.0336 (3)	0.0386 (3)	0.0355 (3)	0.0011 (3)	0.0005 (3)	-0.0025 (3)

Geometric parameters (Å, °)

01—C1	1.157 (11)	N2—C18	1.339 (11)
O2—C2	1.187 (18)	N2—Tc2	2.240 (7)
O3—C3	1.155 (13)	C1—Tc1	1.940 (9)
O4—C4	1.424 (11)	C2—Tc1	1.917 (15)
O4—Tc1	2.166 (8)	C3—Tc1	1.926 (11)
O4—Tc2	2.157 (6)	C6—Tc2	1.936 (9)
O5—C5	1.415 (11)	C7—Tc2	1.903 (9)
O5—Tc1	2.170 (7)	C8—Tc2	1.947 (16)
O5—Tc2	2.160 (8)	C9—C10	1.413 (14)
O6—C6	1.155 (11)	C10—C11	1.389 (16)
O7—C7	1.183 (11)	C11—C12	1.380 (15)
O8—C8	1.134 (18)	C12—C13	1.421 (14)
N1—C9	1.376 (11)	C14—C15	1.391 (14)
N1—C13	1.333 (11)	C15—C16	1.378 (16)
N1—Tc1	2.243 (7)	C16—C17	1.393 (15)
N2—C14	1.343 (11)	C17—C18	1.405 (13)
C4—O4—Tc1	119.7 (6)	O4—Tc1—N1	82.7 (3)
C4—O4—Tc2	119.0 (6)	O5—Tc1—N1	83.7 (3)
Tc2—O4—Tc1	102.4 (3)	C1—Tc1—O4	96.1 (4)
C5-05-Tc1	119.3 (7)	C1—Tc1—O5	95.7 (4)
C5	120.8 (7)	C1—Tc1—N1	178.8 (4)
Tc2—O5—Tc1	102.1 (3)	C2—Tc1—O4	173.2 (4)
C9—N1—Tc1	120.1 (6)	C2—Tc1—O5	98.3 (5)
C13—N1—C9	118.0 (8)	C2—Tc1—N1	93.6 (5)
C13—N1—Tc1	121.9 (6)	C2—Tc1—C1	87.5 (6)
C14—N2—Tc2	121.4 (6)	C2—Tc1—C3	87.4 (5)
C18—N2—C14	118.1 (8)	C3—Tc1—O4	98.6 (4)
C18—N2—Tc2	120.5 (6)	C3—Tc1—O5	173.8 (4)
01-C1-Tc1	177.9 (9)	C3—Tc1—N1	93.4 (3)
O2-C2-Tc1	178.1 (13)	C3—Tc1—C1	87.1 (4)

O3—C3—Tc1	177.6 (9)	O4—Tc2—O5	76.0 (3)
O6—C6—Tc2	175.2 (9)	O4—Tc2—N2	85.4 (2)
O7—C7—Tc2	176.0 (10)	O5—Tc2—N2	82.3 (3)
O8—C8—Tc2	179.0 (13)	C6—Tc2—O4	97.2 (3)
N1—C9—C10	121.9 (9)	C6—Tc2—O5	98.9 (4)
С11—С10—С9	118.9 (9)	C6—Tc2—N2	177.3 (3)
C12—C11—C10	119.4 (9)	C6—Tc2—C8	86.3 (5)
C11—C12—C13	118.9 (9)	C7—Tc2—O4	174.7 (4)
N1—C13—C12	122.9 (9)	C7—Tc2—O5	98.9 (4)
N2—C14—C15	122.4 (9)	C7—Tc2—N2	92.4 (4)
C16-C15-C14	119.5 (9)	C7—Tc2—C6	85.0 (4)
C15—C16—C17	119.0 (9)	C7—Tc2—C8	89.1 (5)
C16—C17—C18	117.9 (9)	C8—Tc2—O4	95.8 (4)
N2-C18-C17	123.0 (8)	C8—Tc2—O5	170.8 (4)
O4—Tc1—O5	75.6 (2)	C8—Tc2—N2	92.8 (4)