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Abstract: The aim of this paper is to state second order necessary
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1 Introduction

In this paper we mainly discuss about second order necessary and sufficient op-
timality conditions for local solutions of a distributed control problem governed
by the Neumann problem associated to a semilinear elliptic partial differential
equation. Bound constraints on the control are considered, as well as equality
and inequality constraints of integral type on the gradient of the state. The
main tools to deal with this objetive are the necessary and sufficient optimality
conditions for some abstract optimization problems in Banach spaces stated in
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Section 4. These can be viewed as the natural extention of the correspond-
ing ones in finite dimensions, although the lack of compactness introduce some
well-known extra difficulties. The rest of the paper is organized as follows:
in Section 2, we study the existence, uniqueness and regularity of solution for
the state equation; in Section 3, the C2 character of the functionals involved
in our control problem is established; finally, in Section 5, we verify that our
control problem satisfies the assumptions required to the abstract optimization
problem.

The control problem is stated as follows. Let Ω be a bounded open set in
RN with a C1 boundary Γ. Let A be the operator given by

Ay = −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂y

∂xi

)
,

with aij ∈ C(Ω̄) satisfying that

µ1∥ξ∥2RN ≤
N∑

i,j=1

aij(x)ξiξj ≤ µ2∥ξ∥2RN ∀ξ ∈ RN , ∀x ∈ Ω,

for some positive constants µ1 and µ2.
Let f : R2 → R, g0 : R2 → R and gj : RN → R be continuous functions for

1 ≤ j ≤ ne + ni, with ni, ne ≥ 1. Let ua, ub ∈ L∞(Ω) with ua(x) ≤ ub(x) for
almost every x ∈ Ω. Our optimal control problem can be formulated as follows

(P)


Minimize J(u)
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ Ω,
Gj(u) = 0, 1 ≤ j ≤ ne,
Gj(u) ≤ 0, ne + 1 ≤ j ≤ ne + ni

where

J(u) =

∫
Ω

g0(yu(x), u(x))dx,

with {
Ayu = f(yu, u) in Ω

∂νA
yu = 0 on Γ,

(1)

and

Gj(u) =

∫
Ω

gj(∇yu(x)) dx.

Remark 1 The continuity assumption on the coefficients aij and the C1 reg-
ularity of the boundary of the domain will allow us to consider quite general
integral constraints Gj (see condition (7) below), thanks to the regularity result
given in Proposition 1. Notice that we do not impose aij = aji. Nevertheless,
if the coefficients aij are only bounded and the boundary Γ is Lipschitz, some
results (similar to those obtained here) can be derived, assuming more restricted
growth conditions on gj.
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2 State equation

Let us begin by recalling the following result on the existence, uniqueness and
regularity of the solution for the Neumann problem associated to a linear elliptic
partial differential equation, see [6] for the proof:

Proposition 1 Let p belong to (1,+∞), f̂ ∈ (W 1,p′
(Ω))′ with p′ = p

p−1 and

g ∈ W− 1
p ,p(Γ). Then there exists a unique variational solution y ∈ W 1,p(Ω) to

the Neumann’s problem {
Ay + y = f̂ in Ω
∂νA

y = g on Γ.
(2)

Moreover, the following estimate is satisfied.

∥y∥W 1,p(Ω) ≤ C

(
∥f̂∥(W 1,p′ (Ω))′ + ∥g∥

W
− 1

p
,p
(Γ)

)
.

where C is a constant only depending on p, the dimension N , the coefficients
aij and the domain Ω.

Remark 2 As usual, by a variational solution of problem (2) we understand
that y satisfies the variational equality

N∑
i,j=1

∫
Ω

aij(x)
∂y

∂xi
(x)

∂φ

∂xj
(x) dx+

∫
Ω

y(x)φ(x) dx

= ⟨f, φ⟩(W 1,p′ (Ω))′×W 1,p′ (Ω) + ⟨g, γφ⟩
W

− 1
p
,p
(Γ)×W

1
p
,p′

(Γ)

for all φ ∈ W 1,p′
(Ω), where ⟨·, ·⟩X′×X denotes the duality product between the

space X and its dual X ′, γ : W 1,p′
(Ω) → W

1
p ,p

′
(Γ) is the trace operator and

W− 1
p ,p(Γ) = (W

1
p ,p

′
(Γ))′.

In order to deal with the state equation (1) and to obtain a C2 relation
control-state, we assume that the function f belongs to C2(R2) and satisfies

∂f

∂y
(y, u) ≤ −µ1 < 0, ∀(y, u) ∈ R2. (3)

Under this hypothesis, we can prove the following theorem

Theorem 1 For every u ∈ L∞(Ω) there exists a unique variational solution
yu ∈ W 1,p(Ω) for all p ∈ (1,+∞) of the problem (1). Moreover, the mapping
G : L∞(Ω) → W 1,p(Ω) is of class C2 for all p ∈ [1,+∞). If u, h ∈ L∞(Ω)
yu = G(u) and zh = G′(u)h, then zh is the solution of Az =

∂f

∂y
(yu, u)z +

∂f

∂u
(yu, u)h in Ω

∂νA
z = 0 on Γ.

(4)
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Finally, if we take h1, h2 ∈ L∞(Ω), zi = G′(u)hi and z12 = G′′(u)[h1, h2], we
have

Az12 =
∂f

∂y
(yu, u)z12 +

∂2f

∂y2
(yu, u)z1z2 +

∂2f

∂u2
(yu, u)h1h2

+
∂2f

∂y∂u
(yu, u)(z1h2 + z2h1) in Ω

∂νA
z12 = 0 on Γ.

(5)

Proof. For a bounded function f , the existence of a unique solution yu
in H1(Ω) is classical. Moreover, by using the monotonicity of f with respect
to y and an standard technique (see Stampacchia [8]), it can be proved that
yu ∈ L∞(Ω). In the general case, the result follows from the previous case via a
truncation method. Since yu, u ∈ L∞(Ω), then f(yu, u) ∈ L∞(Ω) ⊂ (W 1,p′

(Ω))′

for all 1 < p < ∞, the regularity result for linear equations (Proposition 1),
assures that yu ∈ W 1,p(Ω) for all 1 < p < ∞. Hence, the mapping G is well
defined. To check that G is of class C2, we take

V (A) =
{
y ∈W 1,p(Ω) : Ay ∈ L∞(Ω), ∂νA

y = 0
}

endowed with the norm

∥y∥V (A) = ∥y∥W 1,p(Ω) + ∥Ay∥L∞(Ω)

(recall that

∂νA
y(x) =

N∑
i,j=1

aij(x)
∂y

∂xi
(x)νj(x),

where ν(x) = (ν1(x), . . . , νN (x)) denotes the unit outward normal vector to Γ
at x.)

Let us now define the function F : V (A) × L∞(Ω) → L∞(Ω), F (y, u) =
Ay − f(y, u). It is an exercise to show that F is of class C2. Moreover
∂F

∂y
(y, u) = A− ∂f

∂y
(y, u) is an isomorphism from V (A) to L∞(Ω). Taking into

account that F (y, u) = 0 if and only if y = G(u), we can apply the implicit
function theorem (see for instance [2]) to deduce that G is of class C2 and
satisfies

F (G(u), u) = 0. (6)

From this identity (4) and (5) follows easily.
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3 Functionals involved in the control problem.

As we have pointed out from the beginning, the aim of this work is to deduce
second order optimality conditions for problem (P). In order to deal with this
task, we will assume that g0 ∈ C2(R2), gj ∈ C2(RN ) for each j = 1, . . . , ne+ni,
and

N∑
i=1

(∣∣∣∣∂gj∂ηi
(η)

∣∣∣∣+ N∑
k=1

∣∣∣∣ ∂2gj∂ηi∂ηk
(η)

∣∣∣∣
)

≤ µ2(1 + ∥η∥r) ∀η ∈ RN (7)

for some exponent r ∈ [1,+∞) and µ2 > 0.
We now study the differentiability of J and Gj .

Theorem 2 The functional J : L∞(Ω) → R is of class C2. Moreover, for
every u, h ∈ L∞(Ω)

J ′(u)h =

∫
Ω

(
∂g0
∂u

(yu, u) + φ0u
∂f

∂u
(yu, u)

)
h dx (8)

and for every u, h1, h2 ∈ L∞(Ω)

J ′′(u)h1h2 =∫
Ω

[
∂2g0
∂y2

(yu, u)z1z2 +
∂2g0
∂y∂u

(yu, u)(z1h2 + z2h1) +
∂2g0
∂u2

(yu, u)h1h2

+φ0u

(
∂2f

∂y2
(yu, u)z1z2 +

∂2f

∂y∂u
(yu, u)(z1h2 + z2h1) +

∂2f

∂u2
(yu, u)h1h2

)]
dx

(9)
where yu = G(u), φ0u ∈ W 1,p(Ω) for all p ∈ (1,+∞) is the unique solution of
the problem  A∗φ =

∂f

∂y
(yu, u)φ+

∂g0
∂y

(yu, u) in Ω

∂νA∗φ = 0 on Γ,
(10)

where A∗ is the adjoint operator of A

A∗φ = −
N∑

i,j=1

∂

∂xj

(
aji(x)

∂φ

∂xi

)
,

and zi = G′(u)hi, i = 1, 2.

Proof. Let us consider the function F0 : C(Ω̄)× L∞(Ω) → R defined by

F0(y, u) =

∫
Ω

g0(y(x), u(x)) dx.
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Due to the assumptions on g0 it is straightforward to prove that F0 is of class
C2. Now, applying the chain rule to J(u) = F0(G(u), u) and using Theorem 1
and the fact that W 1,p(Ω) ⊂ C(Ω̄) for every p > n we get that J is of class C2

and

J ′(u)h =

∫
Ω

(
∂g0
∂y

(yu, u)zh +
∂g0
∂u

(yu, u)h

)
dx.

Taking φ0u as the solution of (10), we deduce (8) from previous identity and
(4). Let us remark that the assumptions on f and g0 and the Proposition 1
imply the regularity of φ0u. The second derivative can be deduced in a similar
way, using Theorem 1 once more.

Theorem 3 For each j, the functional Gj : L
∞(Ω) → R is of class C2. More-

over, for every u, h ∈ L∞(Ω)

G′
j(u)h =

∫
Ω

φju
∂f

∂u
(yu, u)h dx (11)

and for every u, h1, h2 ∈ L∞(Ω)

G′′
j (u)h1h2 =

∫
Ω

[
∇z2

∂2gj
∂η2

(∇yu)∇z1

+φju

(
∂2f

∂y2
(yu, u)z1z2 +

∂2f

∂y∂u
(yu, u)(z1h2 + z2h1) +

∂2f

∂u2
(yu, u)h1h2

)]
dx

(12)
where yu = G(u), φju ∈ W 1,p(Ω) for all p ∈ (1,+∞) is the unique solution of
the problem A∗φju =

∂f

∂y
(yu, u)φju − div

(
∂gj
∂η

(∇yu)
)

in Ω

∂νA∗φju = 0 on Γ,
(13)

and zi = G′(u)hi, i = 1, 2.

Proof. Given p > r + 2 (see the condition (7)), it is enough to consider the
function of class C2 Fj :W

1,p(Ω) → R defined by

Fj(y) =

∫
Ω

gj(∇y(x)) dx.

Taking into account Theorem 1, we know that yu ∈ W 1,p(Ω) for each p ∈
(1,+∞). Moreover, thanks to the assumption (7),

∂gj
∂ηi

(∇yu) ∈ Lp(Ω) ∀p ∈ (1,+∞);

hence, Proposition 1 can be used in order to deduce that φju is well defined and
belongs to W 1,p(Ω) for every p ∈ (1,+∞).
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Remark 3 The solution of equation (13) must be interpreted in the following
variational sense

N∑
i,j=1

∫
Ω

aji(x)
∂φku

∂xi
(x)

∂ψ

∂xj
(x) dx =

∫
Ω

∂f

∂y
(yu, u)φkuψ dx

+

N∑
j=1

∫
Ω

∂gk
∂ηj

(∇yu)
∂ψ

∂xj
(x) dx

for all ψ ∈W 1,p′
(Ω).

4 First and second order optimality conditions
for optimization problems.

In this section we present some results on the optimality conditions for abstract
optimization problems that have been mainly obtained by Casas and Tröltzsch
[3].

Let us consider the following optimization problem

(Q)


Minimize J(u)
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ Ω,
Gj(u) = 0, 1 ≤ j ≤ ne,
Gj(u) ≤ 0, ne + 1 ≤ j ≤ ne + ni

where ua, ub ∈ L∞(Ω) and J,Gj : L∞(Ω) −→ R are given functions, 1 ≤ j ≤
ne + ni.

We will assume that ū is a local solution of (Q), i.e. there exists a real
number ρ > 0 such that for every feasible point of (Q), with ∥u− ū∥L∞(Ω) < ρ,
we have that J(ū) ≤ J(u).

For every ε > 0, we denote

Ωε = {x ∈ Ω : ua(x) + ε ≤ ū(x) ≤ ub(x)− ε}.

We make the following regularity assumption{
∃εū > 0 and {hj}j∈I0 ⊂ L∞(Ω), with supphj ⊂ Ωεū , such that
G′

i(ū)hj = δij , i, j ∈ I0,
(14)

where
I0 = {j ≤ ne + ni |Gj(ū) = 0}.

I0 is the set of indices corresponding to active constraints. We also denote the
set of non active constraints by

I− = {j ≤ ne + ni |Gj(ū) < 0}.
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Under this assumption we can derive the first order necessary conditions for
optimality satisfied by ū. For the proof the reader is referred to Bonnans and
Casas [1] or Clarke [4]).

Theorem 4 Let us assume that (14) holds and J and {Gj}ne+ni
j=1 are of class

C1 in a neighbourhood of ū. Then there exist real numbers {λ̄j}ne+ni
j=1 such that

λ̄j ≥ 0, ne + 1 ≤ j ≤ ne + ni, λ̄j = 0 if j ∈ I−; (15)

⟨J ′(ū) +

ne+ni∑
j=1

λ̄jG
′
j(ū), u− ū⟩ ≥ 0 for all ua ≤ u ≤ ub. (16)

Since we want to give some second order optimality conditions useful for the
study of the control problem (P), we need to take into account the two-norm
discrepancy; for this question see for instance Ioffe [5] and Maurer [7]. Then we
have to impose some additional assumptions on the functions J and Gj .

(A1) There exist functions ϕ, ψj ∈ L2(Ω), 1 ≤ j ≤ ne +ni, such that for every
h ∈ L∞(Ω)

J ′(ū)h =

∫
Ω

ϕ(x)h(x)dx and G′
j(ū)h =

∫
Ω

ψj(x)h(x)dx, 1 ≤ j ≤ ne + ni.

(17)

(A2) If {hk}∞k=1 ⊂ L∞(Ω) is bounded, h ∈ L∞(Ω) and hk(x) → h(x) a.e. in
Ω, then

[J ′′(ū) +

ne+ni∑
j=1

λ̄jG
′′
j (ū)]h

2
k → [J ′′(ū) +

ne+ni∑
j=1

λ̄jG
′′
j (ū)]h

2. (18)

If we define

L(u, λ) = J(u) +

ne+ni∑
j=1

λjGj(u) and d(x) = ϕ(x) +

ne+ni∑
j=1

λ̄jψj(x), (19)

then

∂L
∂u

(ū, λ̄)h = [J ′(ū) +

ne+ni∑
j=1

λ̄jG
′
j(ū)]h =

∫
Ω

d(x)h(x)dx ∀h ∈ L∞(Ω). (20)

From (16) we deduce that

d(x) =

 0 for a.e. x ∈ Ω such that ua(x) < ū(x) < ub(x),
≥ 0 for a.e. x ∈ Ω such that ū(x) = ua(x),
≤ 0 for a.e. x ∈ Ω such that ū(x) = ub(x).

(21)
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Associated with d we set

Ω0 = {x ∈ Ω : |d(x)| > 0}. (22)

Given {λ̄j}ne+ni
j=1 by Theorem 4 we define

C0
ū = {h ∈ L∞(Ω) satisfying (24) and h(x) = 0 a.e. x ∈ Ω0}, (23)

with 

G′
j(ū)h = 0 if (j ≤ ne) or (j > ne, Gj(ū) = 0 and λ̄j > 0);

G′
j(ū)h ≤ 0 if j > ne, Gj(ū) = 0 and λ̄j = 0;

h(x) =

{
≥ 0 if ū(x) = ua(x);
≤ 0 if ū(x) = ub(x).

(24)

In the following theorem we state the necessary second order optimality
conditions.

Theorem 5 Let us assume that (14), (A1) and (A2) hold, {λ̄j}ne+ni
j=1 are the

Lagrange multipliers satisfying (15) and (16) and J and {Gj}ne+ni
j=1 are of class

C2 in a neighbourhood of ū. Then the following inequality is satisfied

∂2L
∂u2

(ū, λ̄)h2 ≥ 0 ∀h ∈ C0
ū. (25)

Now ū is a given feasible element for the problem (Q) satisfying first order
necessary conditions. Motivated again for the considerations on the two-norm
discrepancy we have to make some assumptions involving the L∞(Ω) and L2(Ω)
norms,

(A3) There exists a positive number ρ > 0 such that J and {Gj}ne+ni
j=1 are of

class C2 in the L∞(Ω)-ball Bρ(ū) and for every δ > 0 there exists ε ∈ (0, ρ)
such that for each u ∈ Bρ(ū), ∥v − ū∥L∞(Ω) < ε, h, h1, h2 ∈ L∞(Ω) and
1 ≤ j ≤ ne + ni we have

∣∣∣∣[∂2L∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2
∣∣∣∣ ≤ δ∥h∥2L2(Ω),

|J ′(u)h| ≤M0,1∥h∥L2(Ω), |G′
j(u)h| ≤Mj,1∥h∥L2(Ω),

|J ′′(u)h1h2| ≤M0,2∥h1∥L2(Ω)∥h2∥L2(Ω),

|G′′
j (u)h1h2| ≤Mj,2∥h1∥L2(Ω)∥h2∥L2(Ω),

(26)
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Analogously to (22) and (23) we define for every τ > 0

Ωτ = {x ∈ Ω : |d(x)| > τ} (27)

and

Cτ
ū = {h ∈ L∞(Ω) satisfying (24) and h(x) = 0 a.e. x ∈ Ωτ}. (28)

The next theorem provides the second order sufficient optimality conditions
of (Q).

Theorem 6 Let ū be a feasible point for problem (Q) satisfying first order
necessary optimality conditions, and let us suppose that assumptions (14), (A1)
and (A3) hold. Let us also assume that

∂2L
∂u2

(ū, λ̄)h2 ≥ δ∥h∥2L2(Ω) ∀h ∈ Cτ
ū (29)

for some δ > 0 and τ > 0 given. Then there exist ε > 0 and α > 0 such
that J(ū) + α∥u − ū∥2L2(Ω) ≤ J(u) for every feasible point u for (Q), with

∥u− ū∥L∞(Ω) < ε.

5 First and second order optimality conditions
for problem (P).

In this section we assume that ū is a local solution for problem (P). We denote
by ȳ = G(ū) the state associated to the optimal control and by φ̄j = φjū the
function satisfying (13) for u = ū. The same notation introduced in the Section
4 will be used.

5.1 First order necessary conditions for (P)

First order necessary conditions satisfied by ū can be deduced very easily from
the abstract Theorem 4 with the help of Theorems 2 and 3.

Theorem 7 Assume (14) is satisfied. Then there exist real numbers λ̄j , j =
1, . . . , ni + ne and functions ȳ, φ̄ ∈W 1,p(Ω) for all p <∞ such that

λ̄j ≥ 0 ne + 1 ≤ j ≤ ne + ni, λ̄j

∫
Ω

gj(∇ȳ(x)) dx = 0, (30)

{
Aȳ = f(ȳ(x), ū(x)) in Ω

∂νA
ȳ = 0 on Γ,

(31)
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 A∗φ̄ =
∂f

∂y
(ȳ, ū)φ̄+

∂g0
∂y

(ȳ, ū)−
ne+ni∑
j=1

div

(
∂gj
∂η

(∇ȳ)
)

in Ω

∂νA∗ φ̄ = 0 on Γ,

(32)

and

∫
Ω

(
∂g0
∂u

(ȳ, ū) + φ̄
∂f

∂u
(ȳ, ū)

)
(u− ū)dx ≥ 0 for all ua ≤ u ≤ ub. (33)

Moreover, if φ̄0 = φ0ū and φ̄j = φjū for 1 ≤ j ≤ ne + ni are the solutions
of (10) and (13) respectively for u = ū , then

φ̄ = φ̄0 +

ne+ni∑
j=1

λ̄jφ̄j . (34)

Remark 4 1. Equation (32) must be interpreted in the same sense to that
of Remark 3.

2. In our case, assumption (A1) is satisfied with ϕ =
∂g0
∂u

(ȳ, ū) + φ̄0
∂f

∂u
(ȳ, ū)

and ψj = φ̄j
∂f

∂u
(ȳ, ū).

3. The regularity assumption (14) is equivalent to: There exists ε̄ > 0 such
that the set of functions {ψj : j ∈ I0} is linearly independent in L1(Ωε̄).

This condition looks very similar to the corresponding one in finite dimen-
sions, with the identification G′

j(ū) = ψj.

5.2 Second order necessary conditions for problem (P)

Taking into account Theorems 2 and 3 together with the conditions imposed
over f , g0, gj is not difficult to show that the assumptions for Theorem 5 are
satisfied by the problem (P). Moreover in this case we can identify

d(x) =
∂g0
∂u

(ȳ(x), ū(x)) + φ̄(x)
∂f

∂u
(ȳ(x), ū(x)).

So we arrive to the following theorem.
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Theorem 8 Let the hypotheses of Theorem 7 be satisfied. Then

∂2L
∂u2

(ū, λ̄)h2 =

∫
Ω

(
∂2g0
∂y2

(ȳ, ū) + φ̄
∂2f

∂y2
(ȳ, ū)

)
z2h dx+

2

∫
Ω

(
∂2g0
∂y∂u

(ȳ, ū) + φ̄
∂2f

∂y∂u
(ȳ, ū)

)
hzh dx+

∫
Ω

(
∂2g0
∂u2

(ȳ, ū) + φ̄
∂2f

∂u2
(ȳ, ū)

)
h2 dx+

ni+ne∑
j=1

λ̄j

∫
Ω

∇zh
∂2gj
∂η2

(∇ȳ)∇zh dx ≥ 0

(35)

for all h ∈ L∞(Ω) satisfying h(x) = 0 for almost all x ∈ Ω0 and

∫
Ω

φ̄j
∂f

∂u
(ȳ, ū)h dx = 0 if (j ≤ ne) or (j > ne,

∫
Ω

gj(∇ȳ) = 0 and λ̄j > 0)

∫
Ω

φ̄j
∂f

∂u
h dx ≤ 0 if ne + 1 ≤ j ≤ ni + ne and

∫
Ω

gj(∇ȳ) = 0 and λ̄j = 0

h(x) ≥ 0 if ū(x) = ua(x)

h(x) ≤ 0 if ū(x) = ub(x).
(36)

5.3 Second order sufficient conditions for problem (P).

Clearly, here we are going to apply Theorem 6. Let us see that the assumptions
for this theorem are satisfied by our problem. The main difficulty appears to
prove that (A3) holds. Let ū be a feasible control satisfying first order necessary

conditions (30)–(33). Given v ∈ L∞(Ω), we denote φv = φ0v +

ne+ni∑
j=1

λ̄jφjv,

where φ0v and φjv are the solutions of (10) and (13) for u = v, respectively.
Take h ∈ L∞(Ω) and δ > 0.

Let us verify the first inequality in (26). In fact, we will state that∣∣∣∣[∂2L∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2
∣∣∣∣ ≤

∫
Ω

∣∣∣∣∂2g0∂u2
(yv, v) + φv

∂2f

∂u2
(yv, v)−

∂2g0
∂u2

(ȳ, ū)− φ̄
∂2f

∂u2
(ȳ, ū)

∣∣∣∣h2 dx+
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∫
Ω

∣∣∣∣( ∂2g0
∂y∂u

(yv, v) + φv
∂2f

∂y∂u
(yv, v)

)
zh −

(
∂2g0
∂y∂u

(ȳ, ū) + φ̄
∂2f

∂y∂u
(ȳ, ū)

)
z̄

∣∣∣∣ |h|

+

∫
Ω

∣∣∣∣(∂2g0∂y2
(yv, v) + φv

∂2f

∂y2
(yv, v)

)
z2h −

(
∂2g0
∂y2

(ȳ, ū) + φ̄
∂2f

∂y2
(ȳ, ū)

)
z̄2
∣∣∣∣ dx+

ne+ni∑
j=1

|λ̄j |
∫
Ω

∣∣∣∣∇zh ∂2gj∂η2
(∇yv)∇zh −∇zh

∂2gj
∂η2

(∇ȳ)∇zh
∣∣∣∣ dx ≤ δ∥h∥2L2(Ω) (37)

supposed that ∥v − ū∥L∞(Ω) < ε with ε small enough, where Az̄ =
∂f

∂y
(ȳ, ū)z̄ +

∂f

∂u
(ȳ, ū)h in Ω

∂νA
z̄ = 0 on Γ.

(38)

 Azh =
∂f

∂y
(yv, v)zh +

∂f

∂u
(yv, v)h in Ω

∂νA
zh = 0 on Γ.

(39)

We can carry out the argumentation working with each term in a separate
way. Let us emphasize that the main ingredients to prove (37) are the continuity
of the functional G, the C2− regularity of f and gj j = 0, 1, . . . , ne + ni and
the assumptions (3) and (7).

Given δ̃ > 0, for the first term of the left hand side of (37) it is easy to
establish that

∥∥∥∥∂2g0∂u2
(yv, v) + φv

∂2f

∂u2
(yv, v)−

∂2g0
∂u2

(ȳ, ū)− φ̄
∂2f

∂u2
(ȳ, ū)

∥∥∥∥
L∞(Ω)

< δ̃

provided that ∥v − ū∥L∞(Ω) is sufficiently small: this is a direct consequence of
the continuous dependence of φv with respect to v in the L∞(Ω)-norm, which
can be obtained with the help of Proposition 1.

For the second term of (37), the Hölder’s inequality leads us to

∫
Ω

∣∣∣∣( ∂2g0
∂y∂u

(yv, v) + φv
∂2f

∂y∂u
(yv, v)

)
zh −

(
∂2g0
∂y∂u

(ȳ, ū) + φ̄
∂2f

∂y∂u
(ȳ, ū)

)
z̄

∣∣∣∣ |h|
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≤ ∥h∥L2(Ω)

(∥∥∥∥ ∂2g0∂y∂u
(yv, v)−

∂2g0
∂y∂u

(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh∥L2(Ω)

+

∥∥∥∥ ∂2g0∂y∂u
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh − z̄∥L2(Ω)

+

∥∥∥∥φv
∂2f

∂y∂u
(yv, v)− φ̄

∂2f

∂y∂u
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh∥L2(Ω)

+

∥∥∥∥φ̄ ∂2f

∂y∂u
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh − z̄∥L2(Ω)

)

Argumentation can be now completed by taking into account the estimations

∥zh∥L2(Ω) + ∥z̄∥L2(Ω) ≤ C1∥h∥L2(Ω) and (40)

∥zh − z̄∥L2(Ω) ≤ δ̃∥h∥L2(Ω), (41)

when ∥v − ū∥L∞(Ω) is small.
Following the same scheme we have

∫
Ω

∣∣∣∣(∂2g0∂y2
(yv, v) + φv

∂2f

∂y2
(yv, v)

)
z2h −

(
∂2g0
∂y2

(ȳ, ū) + φ̄
∂2f

∂y2
(ȳ, ū)

)
z̄2
∣∣∣∣ dx ≤

≤
∥∥∥∥∂2g0∂y2

(yv, v)−
∂2g0
∂y2

(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh∥2L2(Ω)

+

∥∥∥∥∂2g0∂y2
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh − z̄∥L2(Ω)∥zh + z̄∥L2(Ω)

+

∥∥∥∥φv
∂2f

∂y2
(yv, v)− φ̄

∂2f

∂y2
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh∥2L2(Ω)

+

∥∥∥∥φ̄∂2f∂y2
(ȳ, ū)

∥∥∥∥
L∞(Ω)

∥zh − z̄∥L2(Ω)∥zh + z̄∥L2(Ω),

which together with (40)-(41) allow us to deal with the third term of (37)
We study the last term, by decomposing it as follows and using Hölder’s

inequality once more∫
Ω

∣∣∣∣∇zh ∂2gj∂η2
(∇yv)∇zh −∇zh

∂2gj
∂η2

(∇ȳ)∇zh
∣∣∣∣ dx ≤
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≤
∫
Ω

∣∣∣∣∇zh(∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
)
∇zh

∣∣∣∣ dx
+

∫
Ω

∣∣∣∣(∇zh −∇z̄)∂
2gj
∂η2

(∇ȳ)(∇zh +∇zh)
∣∣∣∣ dx ≤

≤ ∥∇zh∥2Lp(Ω)

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥
Lq(Ω)N2

+∥∇zh −∇z̄∥Lp(Ω)∥∇zh +∇z̄∥Lp(Ω)

∥∥∥∥∂2gj∂η2
(∇ȳ)

∥∥∥∥
Lq(Ω)N2

with p = 2N/(N − 2) (if N > 2), p = 3 (if N = 1 or 2) and q = pp′/(p− p′).
The exponent p has been chosen such that L2(Ω) ⊂ (W 1,p′

(Ω))′. Hence,
using Proposition 1, we have that

∥∇zh∥Lp(Ω) + ∥∇z̄∥Lp(Ω) ≤ C2∥h∥L2(Ω). (42)

when ∥v−ū∥L∞(Ω) is bounded. Moreover, in this case, subtracting the equations
(38) and (39) and using Proposition 1 once more, we can derive that

∥∇zh −∇z̄∥Lp(Ω) ≤ δ̃∥h∥L2(Ω).

Finally, we can deduce that∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥
Lq(Ω)N2

< δ̃

for small enough ∥v − ū∥L∞(Ω) uniformly with respect to v. Let us show this
in detail: by the continuity of the functional G and the assumption (7), fixed
q̃ > q, there exists a positive constant C3 such that

∥∇yv∥Lrq̃(Ω) + ∥∇ȳ∥Lrq̃(Ω) +

∥∥∥∥∂2gj∂η2
(∇yv)

∥∥∥∥
Lq̃(Ω)N2

+

∥∥∥∥∂2gj∂η2
(∇ȳ)

∥∥∥∥
Lq̃(Ω)N2

≤ C3,

the exponent r being the one introduced in (7) for every feasible point v. Given
M > 0, let us introduce the following sets EM

1 = {x ∈ Ω : ∥∇yv(x)∥ ≥ M}
and EM

2 = {x ∈ Ω : ∥∇ȳ(x)∥ ≥ M}. Clearly EM
1 and EM

2 depend on v and
ū, respectively, but we will not emphasized this. Here, it is important to point
out the obvious inequality

m(EM
1 ) ≤ 1

M

∫
Ω

∥∇yv(x)∥dx ≤ C4

M
.

The same argument holds for EM
2 .
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Thanks to the regularity of gj , the second order derivatives are uniform

continuity in the ball of RN with center at the origin and radiusM . Hence, there
exists ϵ1 > 0 such that always that ∥η − η̃∥RN ≤ ϵ1 with ∥η∥RN , ∥η̃∥RN ≤ M ,
we have ∥∥∥∥∂2gj∂η2

(η)− ∂2gj
∂η2

(η̃)

∥∥∥∥RN2
<

(
δ̃

4m(Ω)

)1/q

.

Using again the continuity of the functional G, there exists ϵ2 > 0 such that
when ∥v − ū∥L∞(Ω) ≤ ϵ2, then∫

Ω

∥∇yv(x)−∇ȳ(x)∥dx ≤ ϵ1
C4

M
.

Let us introduce another set EM
3 = {x ∈ Ω : ∥∇yv(x) − ∇ȳ(x)∥ > ϵ1}.

Arguing as before, we derive

ϵ1m(EM
3 ) ≤

∫
Ω

∥∇yv(x)−∇ȳ(x)∥dx.

In particular, the last two relations implym(EM
3 ) ≤ C4

M . Combining the previous
estimations and using Hölder’s inequality with s = q̃/q, we get∫

Ω

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q dx ≤

∫
EM

1

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q dx+

∫
EM

2

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q dx+

∫
EM

3

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q dx+

∫
Ω\(EM

1 ∪EM
2 ∪E3

M )

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q dx ≤

δ̃

4
+

 3∑
j=1

m(EM
j )1/s

′

(∫
Ω

∥∥∥∥∂2gj∂η2
(∇yv)−

∂2gj
∂η2

(∇ȳ)
∥∥∥∥q̃ dx

)1/s

≤ δ̃

4
+ 3

(
C4

M

)1/s′

2q+1/sCq
3

This right hand term can be taken less than δ̃, provided that M is sufficiently
large.

From all the above considerations, we can assure that the first condition on
the continuity of the second derivative of the Lagrangian in (26) is satisfied.
The rest of the conditions follows easily from the properties of the functions f
and gj , j = 0, 1, . . . , ne + ni.
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Theorem 9 Let ū be a feasible point for problem (P) and let us suppose that it
satisfies the regularity assumption (14) and the first order necessary conditions
stated in Theorem 7. Let us also assume that∫

Ω

(
∂2g0
∂y2

(ȳ, ū) + φ̄
∂2f

∂y2
(ȳ, ū)

)
z2hdx+ (43)

2

∫
Ω

(
∂2g0
∂y∂u

(ȳ, ū) + φ̄
∂2f

∂y∂u
(ȳ, ū)

)
hzhdx

+

∫
Ω

(
∂2g0
∂u2

(ȳ, ū) + φ̄
∂2f

∂u2
(ȳ, ū)

)
h2 dx+

ni+ne∑
j=1

λ̄j

∫
Ω

∇zh
∂2gj
∂η2

(∇ȳ)∇zh dx ≥ δ∥h∥2L2(Ω)

for all h ∈ L∞(Ω) satisfying (36) and h(x) = 0 for almost every x ∈ Ωτ and
some δ > 0 and τ > 0 given. Then there exist ε > 0 and α > 0 such that
J(ū)+α∥u− ū∥2L2(Ω) ≤ J(u) for every feasible control u with ∥u− ū∥L∞(Ω) < ε.

There is no difficulty in extending our results to more general situations,
where the nonlinear term f of the state equation depends on (x, yu, u), the cost
functional J is given by an integrand g0 depending on (x, yu,∇yu, u) as well
as the integral constraints Gj . Clearly, in this case, some appropiate growth
conditions have to be imposed in order to apply the abstract framework (see
Section 4).
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