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Abstract— In this work, two different methods based on the 
Intersection Approach (IA) for the synthesis of transmitarrays 
are compared. The first method leverages the Fast Fourier 
Transform (FFT) to efficiently seek solutions when constraints 
are enforced only on planes parallel to the radiating aperture. 
The second method aims to overcome the limitations of the first 
one in terms of generality, using a different model for the near-
field computation and an alternative algorithm for the 
backward operator. To benchmark the two methods, the 
synthesis of a relatively large (576 elements) Ka-band 
transmitarray with a shaped near-field pattern is performed. 
The results reveal certain advantages and disadvantages for 
each method. The classic IA demonstrates faster convergence to 
a solution due the reduced computational complexity of the 
FFT. Conversely, the generalized IA yields slightly better 
fulfillment of the imposed requirements. Importantly, both 
solutions closely align with the challenging objectives of the 
synthesis.  

Keywords—Transmitarray, Intersection Approach, Near Field 
Synthesis. 

I. INTRODUCTION  
The analysis and synthesis of near-field antennas have 

attracted increasing interest in a range of applications, 
including wireless power transfer [1], medical scanners and 
hyperthermia treatments [2], and next-generation smart 
access points [3]. These applications often require precise 
shaping of the radiated near field (NF) in specific planes or 
volumes [4]. 

Transmissive and reflective spatially fed arrays (SFAs), 
such as transmitarrays (TAs) and reflectarray (RA) antennas, 
have emerged as effective solutions for controlling the 
radiated field amplitude in the Fresnel zone of the antenna. 
Unlike conventional phased arrays, SFAs can achieve high 
radiation efficiency even in the millimeter-wave (mm-wave) 
band, as they do not require complex feeding networks, even 
when the radiating aperture is electrically large. Among 
SFAs, TAs offer several advantages over RAs, as it does not 
require offset-feed configurations and nor exhibit feed 
blockage. A TA is a quasi-periodic structure composed of 
unit cells (UCs) that introduce a local phase delay to the 
incident field provided by the primary feed, thereby re-
radiating it. By carefully designing the UCs and tailoring the 
phase-shift distribution over the TA surface, the near-field 
pattern can be precisely shaped. 

The optimization of the phase-shift distribution is usually 
performed by array synthesis techniques. Several methods 
have been proposed for SFAs in recent years. Among others, 
the Intersection Approach (IA) (an alternate projection 
method) has been successfully employed for the synthesis of 
SFAs [5] [6]. However, most works address far-field shaping. 
Indeed, the original classic IA algorithm allow one to compute 
the far field and retrieve the corresponding source field on the 
array surface using basic Fourier analysis. When dealing with 
the near-field synthesis, the FFT cannot be directly used, and 
both forward and backward operators must be redefined. 

This work aims to fairly compare two different phase-only 
synthesis techniques for shaping the near field emitted by a 
TA. The first method uses a classic IA, while the second one 
uses a generalized version (gIA) [6]. They differ for the 
models used to compute both the forward (propagation) and 
backward (projection) operators. The classic IA exploits 
Fourier analysis to efficiently calculate the field on planes 
parallel to the TAs, via FFTs. The proposed gIA is more 
general, as it computes the near field in any point, by 
superposition of the far fields radiated by each UC and uses 
the Levenberg–Marquardt algorithm [7] to optimize it. 

II. SYNTHESIS MODELS USING IA  

A. Intersection Approach 
The IA considers two sets: the set ℳ of the radiated fields 

that fulfill the requirements, and the set ℛ  of the feasible 
radiated fields, i.e. the fields that can be physically radiated by 
the antenna [5]. The search for the intersection between these 
two sets is an iterative process based on the method of 
Alternate Projections. The latter one performs two operations 
at each iteration, which can be mathematically expressed as: 

𝐸𝐸𝑁𝑁𝑁𝑁𝑖𝑖+1 = ℬ�ℱ�𝐸𝐸𝑁𝑁𝑁𝑁𝑖𝑖 ��, (1)   

where 𝐸𝐸𝑁𝑁𝑁𝑁𝑖𝑖   is a component of the NF radiated by the TA at the 
𝑖𝑖𝑡𝑡ℎ -iteration, ℱ  is the forward projection operator, which 
projects a point of ℛ  onto  ℳ, and ℬ  is the backward 
projection operator, which projects a point of ℳonto ℛ.  



 
Fig. 1. Flowchart of the classic Intersection Approach algorithm.  

The framework can be easily translated into field 
components to relate the tangential fields over the TA aperture 
(𝐸𝐸�⃗𝐴𝐴𝐴𝐴) with the field radiated by them (𝐸𝐸�⃗𝑁𝑁𝑁𝑁). 

𝐸𝐸�⃗𝐴𝐴𝐴𝐴 (𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛) = 𝑻𝑻𝑚𝑚𝑛𝑛⋅ 𝐸𝐸�⃗ 𝑖𝑖𝑛𝑛𝑖𝑖 (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑛𝑛) (2)   

where 𝑻𝑻𝑚𝑚𝑛𝑛 is the transmission coefficient matrix that relates 
the complex amplitude of the tangential components of the 
incident field (𝐸𝐸�⃗ 𝑖𝑖𝑛𝑛𝑖𝑖 (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑛𝑛)) and the transmitted electric field 
by the 𝑚𝑚𝑚𝑚𝑡𝑡ℎ element of the TA located at the point (𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛). 
It can be expressed as: 

𝑻𝑻𝑚𝑚𝑛𝑛 = �
Γ𝑥𝑥𝑥𝑥𝑚𝑚𝑛𝑛  Γ𝑥𝑥𝑥𝑥𝑚𝑚𝑛𝑛

Γ𝑥𝑥𝑥𝑥𝑚𝑚𝑛𝑛 Γ𝑥𝑥𝑥𝑥𝑚𝑚𝑛𝑛� (3)   

Due to the physical characteristics of the TA structure, the 
synthesis procedure will be a phase-only synthesis (POS), 
because the incident amplitude is fixed and determined by 
both the configuration and the antenna selected as the primary 
feed. For simplicity, the behavior of the elements comprising 
the TA will be considered ideal phase shifters, therefore the 
element will only introduce a phase delay and no losses. These 
two considerations combined with the assumption that there is 
no cross-polarization, lead to a simplified form for 𝑻𝑻𝑚𝑚𝑛𝑛. 

𝑻𝑻𝑚𝑚𝑛𝑛 = �𝑒𝑒
𝑗𝑗∠Γ𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚   0

0 𝑒𝑒𝑗𝑗∠Γ𝑦𝑦𝑦𝑦
𝑚𝑚𝑚𝑚� (4)   

Looking at the flowchart of the classic IA algorithm 
illustrated in Fig. 1 the near field can be computed using the 
forward propagator 𝐹𝐹𝐼𝐼𝐴𝐴  and the aperture field of a certain 
radiated near field can be retrieved using 𝐵𝐵𝐼𝐼𝐴𝐴 . These 
operators’ definition will make the difference between both 
algorithms the that will be introduced in following sections. 

Once the field at the aperture is computed, the near field 
(𝐸𝐸𝑁𝑁𝑁𝑁) can be obtained by forward propagation. This computed 
near field will typically not fulfill the constraints. Thus, 
additional operations (𝑃𝑃) are performed to obtain a field in ℳ. 
To this end, two masks (𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  and 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 ) describing the 
maximum and minimum acceptable field values, for each 
spatial point, are described. In both methods presented in this 
work, a modified near field (𝐸𝐸�𝑁𝑁𝑁𝑁) falling in the ℳ set is then 
defined as: 

𝐸𝐸�𝑁𝑁𝑁𝑁 =

⎩
⎪
⎨

⎪
⎧

  𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ;      𝑖𝑖𝑖𝑖  |𝐸𝐸𝑁𝑁𝑁𝑁| ≥ 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 
  𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢  ;      𝑖𝑖𝑖𝑖  |𝐸𝐸𝑁𝑁𝑁𝑁| ≤ 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢
 
   𝐸𝐸𝑁𝑁𝑁𝑁  ;           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒            

 (5)   

However, this modified field is not necessarily feasible, 
since the constraints are only imposed on the radiated field but 
not on the aperture field. Thus, backpropagating this field is 
again not enough to ensure that the retrieved aperture field 
(𝐸𝐸𝐴𝐴𝐴𝐴 ) falls into ℛ. Therefore, the synthesis procedure requires 

one more step (𝐴𝐴) to obtain a TA aperture field (𝐸𝐸�𝐴𝐴𝐴𝐴) that can 
be physically realized using the selected primary feed and 
antenna optics.  

B. Classic IA 
In the classic implementation of IA, both forward and 

backward projectors are based on the use of FFT. However, 
when dealing with near-field implementation some 
modifications and constraints should be introduced to get a 
proper simple model. 

In particular, the region of validity of the model 
calculating the field radiated by the antenna is restricted to 
planes parallel to the aperture of the antenna, provided the TA 
aperture is also planar. Under these assumptions, the forward 
propagator (𝐹𝐹𝐼𝐼𝐴𝐴) is defined as: 

𝐸𝐸𝑁𝑁𝑁𝑁 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧0) =
1

4𝜋𝜋2
𝔉𝔉−1{𝑔𝑔𝑢𝑢𝔉𝔉{𝐸𝐸𝐴𝐴𝐴𝐴(𝑥𝑥, 𝑦𝑦)}} (6)   

where 𝔉𝔉  and 𝔉𝔉−1  are the operators for direct and inverse 
Fourier transforms, respectively. It is assumed that the 
aperture field has only one non-zero component (𝐸𝐸𝐴𝐴𝐴𝐴). The 
factor 𝑔𝑔𝑢𝑢 = 𝑒𝑒−𝑗𝑗𝑘𝑘𝑧𝑧 𝑧𝑧0  [8] represents a spatial translation by 𝑧𝑧0 
along the z-axis, where 𝑘𝑘𝑧𝑧  is the z-component of the wave 
vector, given by: 

𝑘𝑘𝑧𝑧 =

⎩
⎨

⎧�𝑘𝑘02 − 𝑘𝑘𝑥𝑥2 − 𝑘𝑘𝑥𝑥2 ,         𝑘𝑘02 ≥ 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2

−𝑗𝑗�−𝑘𝑘02 + 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2 , 𝑘𝑘02 < 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2
 , (7)   

being 𝑘𝑘0  the free-space propagation constant, 𝑘𝑘𝑥𝑥  and 𝑘𝑘𝑥𝑥  the 
spatial frequencies extending over the entire spectrum. 

Combining this propagator with the previously defined 
operator 𝑃𝑃  described by (5), the forward projector ℱ𝐼𝐼𝐴𝐴  is 
completely defined. 

In a similar way, the backward propagator (𝐵𝐵𝐼𝐼𝐴𝐴) can be 
expressed as follows: 

𝐸𝐸𝐴𝐴𝐴𝐴(𝑥𝑥, 𝑦𝑦) =
1

4𝜋𝜋2
𝔉𝔉−1 �𝑔𝑔𝑏𝑏𝔉𝔉{𝐸𝐸�𝑁𝑁𝑁𝑁 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧0)}�, (8)   

where 𝑔𝑔𝑏𝑏 = 𝑒𝑒𝑗𝑗𝑘𝑘𝑧𝑧ℎ𝑧𝑧0. The expression for 𝑘𝑘𝑧𝑧 is similar to that in 
(7). However, when the second condition (𝑘𝑘02 < 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2) is 
met, the positive imaginary root is retained. 

At this point, following the diagram depicted in Fig. 1, 
only operator 𝐴𝐴 is missing to have the complete procedure. As 
mentioned in the previous section, the amplitude of the field 
on the TA aperture is dependent on the incident field, so it 
cannot be ensured 𝐸𝐸𝐴𝐴𝐴𝐴  is a feasible tangential field. Only the 
phase of 𝐸𝐸𝐴𝐴𝐴𝐴  can be adjusted by distributing the UCs in the 
TA. Therefore, the following feasible aperture field (𝐸𝐸�𝐴𝐴𝐴𝐴) is 
prescribed, after the backward propagation, to be used in the 
next iteration of the algorithm: 

𝐸𝐸�𝐴𝐴𝐴𝐴 = � |𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖|𝑒𝑒𝑗𝑗∠𝐸𝐸𝐴𝐴𝐴𝐴  ;     |𝑥𝑥| ≤
𝐷𝐷𝑥𝑥
2

 , |𝑦𝑦| ≤
𝐷𝐷𝑥𝑥
2

 

               0 ;          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒       
, (9)   

where 𝐷𝐷𝑥𝑥 and 𝐷𝐷𝑥𝑥  are the dimensions of the TA aperture in 𝑥𝑥 
and 𝑦𝑦 dimensions respectively (see Fig. 3). 

Both the forward (ℱ𝐼𝐼𝐴𝐴) and backward (ℬ𝐼𝐼𝐴𝐴) projectors are 
defined now and by iterating the procedure presented in (1), a 



solution that satisfies both the physical constraints on the 
aperture field and the near-field pattern constraints may be 
found. 

C. Generalized IA 
In this generalized version, the forward propagator (𝐹𝐹𝑔𝑔𝐼𝐼𝐴𝐴) 

is defined using the principle of superposition, whereby each 
element of the transmitarray (TA) is considered as a radiating 
element modelled as a small aperture antenna. This allows for 
the calculation of the near-field radiation pattern produced by 
the TA at any given point in space by summing up the far-field 
contributions from each cell of the TA, i.e. as: 

𝐸𝐸𝑁𝑁𝑁𝑁 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ) = � 𝐸𝐸𝑁𝑁𝑁𝑁𝑚𝑚
𝑀𝑀

𝑚𝑚=1

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ) (10)   

where (𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ) is the point where the near field of the TA is 
computed, 𝑀𝑀 is the total number of UCs, and 𝐸𝐸𝑁𝑁𝑁𝑁𝑚𝑚 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ) is 
the far field radiated by the 𝑚𝑚-th element at the desired point. 
The far-field contribution of the 𝑚𝑚 -th element can be 
computed using the second principle of equivalence for planar 
aperture antennas [10]. 

Combining this forward propagator with the previously 
defined operator 𝑇𝑇  in (5), the forward projection operator 
ℱ𝑔𝑔𝐼𝐼𝐴𝐴 is completely defined for the gIA implementation. 

In the classic IA, the most challenging aspect is the 
backward projector, specifically the definition of an operator 
𝐵𝐵𝑔𝑔𝐼𝐼𝐴𝐴  not restricting the region where the synthesis can be 
performed. An alternative approach consists in using an 
optimization algorithm [9]. In this case, the Levenberg–
Marquardt algorithm (LMA) has been selected for integration 
within the Intersection Approach (IA). 

In order to use the LMA in the generalized Intersection 
Approach, a functional, denoted as 𝑑𝑑 , is introduced. This 
functional evaluates the distances between points in set ℛ and 
points in set ℳ, thereby measuring the discrepancy between 
the desired near-field distribution (𝐸𝐸𝑁𝑁𝑁𝑁) and the synthesized 
near-field distribution (𝐸𝐸�𝑁𝑁𝑁𝑁 ) (as depicted in Fig. 2). The 
functional is based on the Euclidean distance concept, but it is 
important to note that each element in these sets must be 
expressed in terms of both magnitude and phase. Therefore, 
the functional takes into account the magnitude and phase 
distances independently to accurately assess the discrepancy 
between the desired and synthesized near-field patterns. 

𝑑𝑑 = � 𝑒𝑒𝑀𝑀 ���𝐸𝐸�𝑁𝑁𝑁𝑁�
2 − |𝐸𝐸𝑁𝑁𝑁𝑁𝐿𝐿𝑀𝑀𝐴𝐴|2�� 𝑑𝑑Ω

 

Ω
 

                    + ∫ 𝑒𝑒𝐴𝐴��∠𝐸𝐸�𝑁𝑁𝑁𝑁
 − ∠𝐸𝐸𝑁𝑁𝑁𝑁𝐿𝐿𝑀𝑀𝐴𝐴

 ��𝑑𝑑Ω 
Ω , 

(11)   

where Ω is the volume where the near field is computed and 
𝑒𝑒𝑀𝑀 and 𝑒𝑒𝐴𝐴 are weight functions. 

III. NEAR FIELD SHAPED TA 

A. TA optics 
The structure used in order to compare both presented 

synthesis procedures is a square 24×24 (576) elements, which 
are distributed in a regular grid of a periodicity of 𝜆𝜆/2 × 𝜆𝜆/2 
along the 𝑥𝑥- and 𝑦𝑦-axes. 

 
Fig. 2. Schematic diagram illustrating the generalized Intersection 

Approach iterative process. Extracted from [6].  

 
Fig. 3. Sketch of the transmitarray geometry. 

In this case, the TA is fed using a pyramidal horn of 10 dBi 
gain, located at a distance (𝐷𝐷 in Fig. 3) of 0.1 m and aligned 
with the center of the lens. The feed generates an illumination 
taper of -19.7 dB at the edge of the TA, at the working 
frequency of 30 GHz. 

The TA synthesis aims to obtain a flat top beam at a 
distance of 22𝜆𝜆  with a -3dB spot of 11𝜆𝜆 (𝑥𝑥) × 5𝜆𝜆 (𝑦𝑦), i.e. 
(0.11 m × 0.05 m),  maintaining the SLLs below -12dB. 
Additionally, a maximum ripple of 1 dB is required in the flat-
top region. 

Considering the geometry described above, the starting 
phase profile of the TA is selected to just compensate for the 
different phase delays in the incident field. Thus, the radiated 
field that will be the seed of both methods is a far-field focused 
pencil beam. 

B. Near-field synthesis results 
The optimization process has not been divided into 

different stages. Although this may result in poor 
convergence, it is useful to test both algorithms in a non-ideal 
environment to assess their robustness. 

The results obtained for both principal cuts using both 
methods are shown in Fig. 5. Both synthesis procedures 
quickly converged to feasible solutions. Upon closer 
examination of the results, it is evident that the requirements 
were mostly achieved in both cases, fulfilling the masks in 
around a 98% for the gIA and a 97% for classic 
implementation of the points where it was enforced Both 
methods fulfilled the −3 dB spot requirements, yielding an 



approximate result of (0.12(𝑥𝑥) × 0.05(𝑦𝑦) 𝑚𝑚) in both cases. 
The SLL requirement was also largely met, and the ripple 
obtained in the flat-top regions was nearly equal, with an 
approximate value of −0.6 dB. 

The classic IA implementation managed to converge to the 
phase profile shown in Fig. 4 (a) in just about 4 seconds thanks 
to the use of FFT. In contrast, the generalized IA required 
approximately 9 minutes to converge to the phase profile in 
Fig. 4 (b). This was expected since the generalized approach 
computes the near field as a sum rather than using an FFT and 
runs the LMA. Additionally, the selected TA consists of a 
significant number of UCs (576 elements), which further 
amplifies the differences in computational cost. 

Moreover, it appears that the generalized IA is less prone 
to getting stuck in local solutions, as the solution returned by 
the synthesis procedure slightly better satisfies the 
requirements compared to the classic IA. However, the phase 
profile generated by the classic IA synthesis exhibits smoother 
spatial variations than that obtained with the generalized IA. 

(a) 

(b) 

Fig. 4. Phase profile in degrees obtained after the optimization process for 
the 24×24 near field shaped TA: (a) using the classic IA; (b) using the 
generalized IA. 

(a) 

(b) 

Fig. 5. Comparison of the normalized NF amplitude cuts obtained 
performing the TA phase-only synthesis (24×24 elements) with the 
classic IA and the generalized IA, respectively. (a) Vertical cut along 
𝑥𝑥 (see Fig. 3) and (b) horizontal cut along 𝑦𝑦 (see Fig. 3), at a distance 
of 22 λ from the radiating aperture. 

IV. CONCLUSION

In this work, two different methods for the phase-only 
synthesis of TAs have been introduced. Both techniques are 
based on the IA but differ for the models used to compute the 
near field and the techniques to retrieve the aperture field. The 
first, the classic IA, uses the FFT to rapidly converge, but can 
be used only when the field constraints are enforced on planes 
parallel to the TA. The second one, the generalized IA, avoids 
the limitations of the back propagation step of the previous 
one, using the LMA optimization, and allows one to shape the 
field emitted by a TA in an arbitrary set of point in its Fresnel 
region. 

The two methods have been benchmarked discussing the 
synthesis of a relatively large (24×24 elements) Ka-band 
transmitarray with a shaped near-field pattern. The capability 
of both optimization techniques to escape local minima has 
been evaluated using the same seed and enforcing several 
stringent constraints. Moreover, the feasibility of the obtained 
solutions in terms of physical implementation, e.g., the 
smoothness of the phase variation over the TA, the 
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compliance with the target pattern, and the computation time 
have been compared. 

The results of our analysis demonstrate that the classic IA 
method exhibits faster convergence. On the other hand, the 
generalized IA method yields a solution that slightly better 
meets the imposed requirements. 

Overall, this study highlights the potential benefits of 
employing computational enhancement methods, such as 
FFT, when the pattern requirements are prescribed only on 
planes parallel to the TA. Both methods demonstrate a strong 
agreement with the objectives of the synthesis, highlighting 
their suitability for transmitarray design and optimization. 
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