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Abstract
The field of proteomics and its application to platelet biology, is rapidly and promisingly developing. 
Platelets (and megakaryocytes) are postulated as biosensors of health and disease, and their pro
teome poses as a tool to identify the specific health-disease hallmarks. Furthermore, the clinical 
management of certain pathologies where platelets are active players demands the development of 
alternative treatments, such is the case in patients where the balance thrombosis-bleeding is 
compromised, and a proteomics approach might aid at the identification of novel targets. Hereby, 
the mouse and human platelet proteomes and secretomes from public databases are compared, 
which shows that human and mouse platelets share a highly conserved proteome, considering 
identified proteins, and most importantly, their relative abundance. These supports, also interspecies 
wise, the use of the proteomics tool in the field, substantiated by a growing number of clinically 
relevant studies in humans or preclinical models. While the study of platelets through proteomics 
seems accessible and direct (i.e. noninvasive blood sampling, enucleated), there are some points of 
concern regarding the quality control of samples for such proteomics studies. Importantly, the quality 
of the generated data is improving over the years, which will allow cross-study comparisons. In 
parallel, the application of proteomics to the megakaryocyte compartment has a promising but long 
journey ahead. We foresee and encourage the application of platelet proteomics for diagnostic/ 
prognostic purposes even beyond hematopoiesis and transfusion medicine, and as a tool that will 
procure the improvement of current therapies and the development of alternative treatment options.

Plain Language Summary
The unbiased identification and quantitation of the protein profile (the so-called proteome) of cells, 
tissues, or organs, has gained attention from different fields because it gives additional valuable 
information to research questions. Understanding the protein building blocks of a biological system 
in normal physiological processes and how this may be altered in disease, may allow the discovery of 
biomarkers that could be used in diagnosis (early diagnosis), prognosis of disease or response to 
treatment. Furthermore, it may allow the identification of novel targets to develop personalized 
treatment options. Platelets, the anucleate cell components of the blood in charge of maintaining 
the body hemostasis, are postulated as biosensors of health and disease, and their proteome poses 
as a tool to identify health-disease hallmarks. Since platelets are in the circulation, a noninvasive 
blood sample is sufficient to obtain platelets from donors or patients in order to acquire information 
of the platelet proteome. Still, some research questions might require the use of animal preclinical 
models, where researchers may phenocopy human disorders, pathologies or diseases, to better 
understand the mechanisms behind these traits and to test potential novel treatments. How mean
ingful the studies in preclinical models are depends on how similar the biological systems of study 
are, interspecies wise. Hereby, the mouse and human platelet proteomes from available databases 
obtained by different research groups are compared, which shows that human and mouse platelets 
share a highly conserved proteome, considering identified proteins, and most importantly, their 
relative abundance. These supports, also interspecies wise, the use of the proteomics tool in the field, 
an approach with growing clinical relevance, as discussed.
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The use of mice as pre-clinical models

Although there are obvious differences between mice and 
humans, the use of mice as preclinical models is sufficiently 
justified by the conservation of physiological, anatomic, and 
genetic features.1 Needless to say, preclinical models have pro
vided essential knowledge and facilitated various clinical appli
cations that range from surgery, and vaccine development, to 
diagnosis and treatment of disease, amongst others. However, 
there are social, scientific, and ethical concerns regarding their 
usage.2 The detailed knowledge acquired so far from interspecies
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studies, makes it clear that conclusions drawn from animal 
studies cannot be carelessly transferred to humans. Still, some 
studies require a living organism, which allows observation and 
experimental manipulation, in order to answer biological ques
tions where multiple tissues or systems contribute to health and 
disease. In parallel, in vitro tools with increasing levels of com
plexity (i.e., human organoids) are being developed, which can 
potentially substitute many in vivo studies.3 All in all, many 
variables have to be pondered before engaging in animal studies, 
and always bearing in mind that, ultimately, the experimental 
option has to translate into a benefit for human clinical research.

While differences in the platelet formation process between 
mice and humans have been identified, their genetic similarity 
to humans and our ability to genetically/physiologically modify 
them, have positioned mice as a suitable model for studying 
human megakaryopoiesis, thrombopoiesis, and platelet 
function.1,4 For example, murine preclinical models have been 
essential to demonstrate the function of various proteins (tran
scription factors, receptors, signaling molecules, hormones, 
cytokines . . .) in megakaryopoiesis and hemostasis and have 
aided to better understand the process of megakaryocyte 
differentiation.5,6 However, whenever a murine preclinical 
model is used with the intention to extrapolate results into 
humans, either when studying normal physiological processes 
or when phenocopying a human disease or pathology, it is 
important to be aware of the differences and similarities.

Key features of megakaryopoiesis in mice and humans

Haematopoiesis is a dynamic and constant physiological process 
that aims at the production of all circulating blood and immune 
cells. It starts from a multipotent stem cell that may, by asym
metric cell division, self‐renew and/or give rise to the progeni
tors that later commit or differentiate toward the various cell 
lineages.7,8 A hierarchic idea of cell-trajectory from the multi
potent hematopoietic stem cell (HSC) through committed pro
genitors, which give rise to mature blood cells, has been 
replaced by the long-lasting theory of the hematopoietic 
continuum,9 recently supported by the implementation of new 
technologies, such as single-cell RNA sequencing, amongst 
others.10,11 In fact, it seems that megakaryocytes could be 
located at the crossroads of this continuum, since they not only 
share features with HSCs but also with immune cells, myeloid 
cells (like their twinned erythroid progenitors), and even with 
neurons.12–15 While thrombopoietin (TPO) is the main hormone 
regulating platelet production, it is not the only required factor, 
as basal platelet production occurs in its absence.16,17 On the 
other hand, loss of function of MPL, the TPO receptor, affects 
the whole hematopoietic continuum, as it is expressed in early 
progenitors and HSCs.18 In fact, megakaryocyte/platelet specific 
Mpl deletion in mice not only results in thrombocytosis, but it 
also associates with myeloproliferation, presumably as 
a consequence of ineffective TPO clearance.19 That makes the 
megakaryocytic lineage a particular one, within the hematopoie
tic system.

Bone marrow-resident megakaryocytes release platelets into 
the blood circulation through a process of cell-remodeling, 
which appears to be conserved between mice and humans, with 
some species-specific particularities. While human megakaryo
cytes locate principally to the bone marrow, murine megakaryo
cytes are also present in clusters in the red pulp of the spleen, at 
least in the normal adult state.4 Adding to that, murine and human 
megakaryocytes have also been observed within the lungs and 
pulmonary circulation, where they may contribute to platelet 
production.4,20 Curiously, lung megakaryocytes seem to be

immune-primed compared to bone marrow megakaryocytes and 
may exert a function at the crossroads with the immune system.21

Although murine and human megakaryocytes display similar 
ploidy distribution (modal ploidy of 16N), their density within the 
bone marrow is greater in mice than in humans, while the size of 
mature megakaryocytes appears to be significantly smaller in 
mice.4 Proplatelets are formed in megakaryocytes from both 
species; however, human megakaryocyte proplatelets have been 
described as “long strands with regular constrictions (collar of 
pearls),” while murine megakaryocyte proplatelets are shorter and 
interconnected with other proplatelets.4

Key features of platelets in mice and humans

Mice have approximately five times more platelets in the circula
tion compared to humans, although murine platelets are overall 
smaller. Their lifespan is also shorter, around 4 d, while human 
platelets remain in the circulation for 8- to 12-d; the faster turn
over is probably counterbalanced in mice by a constant splenic 
platelet production.4,6 Schmitt et al. reported that murine platelets 
have an increased granule heterogeneity, although reduced in 
number per platelet section, and it seems that this heterogeneity 
affects specially the α-granules, as dense granules are quite simi
lar morphologically between the two species.4

Evolutionary aspects and platelet function

Aside from the classical role that platelets play in maintaining 
hemostasis, the ancestral immune function of thrombocytes has 
not been lost through evolution, as they participate in immuno
modulation and inflammation, in the separation of blood and 
lymphatic vessels during ontogeny, and are also active players 
on pathogenic processes, such as thrombo-inflammation or cancer 
metastasis.22–27

Polyploid megakaryocytes and enucleated platelets are only 
found in mammals (placentals, marsupials, and monotremes).28 It 
seems that these acquired characteristics have resulted from the 
necessity to enhance the hemostatic function of platelets in detri
ment of their prominent immune ancestral role in other verte
brates. The fact that in mice platelets are more numerous, smaller 
and with a shorter lifespan, might be to cover a greater demand to 
protect against injury, which implies faster and more efficient 
clotting reactions, while facilitating, at the same time, the clear
ance of potential circulating pathogens.

Many other differences have already been put forward 
between mouse and human platelets, such as the absence of 
FCγRIIA29 and PAR1 in mouse.30 Additionally, several studies 
with Eltrombopag, a noncompetitive agonist of TPO, found that 
the juxtamembrane domain of MPL (at residue H499) is not 
conserved in mice, which means that it is specific to humans 
and nonhuman primates.31 In this context, studies with 
Eltrombopag may seem intuitively useless in mice; however, 
this particular feature is the basis for the rationale to use 
mouse models to study MPL-independent mechanisms, which 
seem to play a role in the recovery of immune thrombocytopenia 
patients treated with this drug. Another example of interspecies 
differences is the case of the protein kinase C (PKC) isoforms, 
PKCδ and PKCε, whose expression levels seem to display an 
opposite balance between mouse and human platelets, with 
PKCδ being highly expressed in human platelets, while in mur
ine platelets, it is PKCε the one expressed at higher levels.32 

However, the kinase universe of platelets is so promiscuous (or 
pleiotropic) that these differences do not seem to make 
a difference in the functional capacities between murine and 
human platelets.
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An interspecies proteomics overview of platelets

Given the plethora of functions in which platelets are involved, in 
addition to the fact that they are produced differently or altered 
somehow by the health status,33,34 and that they even uptake 
molecules from neighboring cells, and release microvesicles in 
the circulation, they constitute biosensors worth exploring and 
delineating.35,36

Proteomics stands as one of the most interesting tools to study 
platelets, due to their inherent characteristics (i.e., absence of 
a nucleus). This tool might be used to understand disease, and 
to identify biomarkers for prognosis and diagnosis of pathologies 
of different etiology.37–39

In that regard, if we employ mice as preclinical models, how 
similar are they, proteomic-wise? Do we have a basis to claim that 
they represent a good model?

The platelet and megakaryocyte proteome

The comparison of the mouse and human genomes at the 
sequence level has revealed that, while there are striking differ
ences, especially in non-coding regions, the protein-coding 
regions are evolutionary conserved, with approximately 85% 
identity on average,40 driven by physiological function require
ments. In order to obtain a comprehensive comparison of the 
platelet proteome between species, we have selected different 
publicly available proteomics datasets, as described in the 
Supplementary Methods and Tables S1 and S2.

The core platelet proteome in each species – that is, the subset 
of platelet proteins detected in at least half of the datasets 
included in this review (see Supplementary Methods, Tables S1, 
S2, and Figure S1a)– represents about 10% of the respective 
species reference proteome (Figure 1a). Additionally, the

Figure 1. Interspecies comparison of the human and mouse reference and platelet core proteomes. (a) Venn diagrams showing the overlap between the 
human (left) and mouse (right) reference proteomes, and the respective platelet core proteome. (b) Venn diagrams showing the overlap between the 
reference proteomes or the platelet core proteomes, of mouse and human (top left and right, and bottom left and right, respectively), and their 
respective mouse and human orthologs.
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comparison after bidirectional orthologue translation of the core 
platelet proteome protein lists confirms an overlap of approxi
mately 85% of the identified proteins (Figure 1b). This is a very 
important aspect to consider, since the bidirectional orthologue 
translation of the reference proteome between species is 70–80% 
(Figure 1b), suggesting a strong function-driven evolutionary 
conservation in the protein content of platelets of both species.

We next compared the relative quantification distribution of 
the identified proteins in platelets from the respective mouse and 
human chosen datasets, as indicated in the Supplementary 
Methods. We could observe a high overlap of the highly and 
intermediately expressed proteins between species, while low 
abundant proteins differed more, suggesting that they either do 
not have an essential role in platelet function (i.e., residual pro
teins, plasma/erythrocyte contamination), that they are different 
components of unitary functional protein-complexes (i.e. redun
dancy), and/or that the heterogeneity is subject to technical lim
itations in the detection, due to their low abundance expression or 
other protein-specific constraints38 (Figures S2 and S3). 
Enrichment analysis of the protein lists based on abundance 
(i.e., per expression slot), further supported these results, con
firming conservation of function between species (Figures S2 and 
S3). According to this, we can suggest that human and mouse 
platelets share a highly conserved proteome, considering identi
fied proteins, and most importantly, their relative abundance.

These conclusions are parallel to those extrapolated from the 
isolated comparison of the mouse and human platelet

transcriptomes.41 Therefore, we next set out to determine the 
mirroring level of the platelet transcriptome and proteome, 
species-wise. Both species showed a similar overlap, around 
18% (suggesting that the majority of platelet RNA is either 
inherited residual RNA or exogenous), which constitutes 85% 
and 75% of the human and mouse core proteome, respectively 
(Figure 2a). However, they both showed a weak correlation (R  
~ 0.4) in terms of relative abundance (Figure 2b), in accordance 
with what has been published,42 and supporting the idea of 
a desynchronized protein and RNA homeostasis in platelets. 
Still, a multi-Omics approach (proteomics, transcriptomics) in 
the study of platelets and megakaryocyte progenitor cells may 
be determinant, especially considering that platelets contain 
exogenous proteins, as mentioned above. Studies that intended 
to identify the transcription origin of identified platelet proteins 
have included megakaryocyte transcriptomics in their experi
mental design, proving the reliability of the multi-Omics 
approach in this regard.43,44

Literature search related to the megakaryocyte proteome 
showed that it is scarcely studied from an unbiased perspective, 
and a characterization of both mouse and human primary mega
karyocytes is lacking. A study focusing on mouse megakaryocytes, 
aimed at comparing the total proteome of embryonic stem cell- 
derived and fetal liver megakaryocytes.45 As for the human studies, 
one of them aimed at identifying the proteome of megakaryocytes 
differentiated from induced pluripotent stem cells (iPSCs),46 while 
the other was performed on megakaryocytes differentiated from

Figure 2. Interspecies comparison of the human and mouse platelet transcriptomes and core proteomes. (a) Venn diagrams showing the overlap 
between the human (left) and mouse (right) transcriptome and platelet core proteome. (b) Scatterplot showing the Pearson correlation between the 
relative transcriptomics (log2-RPKM) and proteomics (log2-LFQ) abundances both in human (left) and in mouse (right). The proteomics data belong 
to the x11 and x39 datasets (as in Tables S1 and S2), respectively.
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DAMI cell line.47 Additionally, no raw data was available from any 
of the mentioned studies. This points toward the difficulty of work
ing with primary megakaryocytes, due to their low abundance in 
peripheral blood and in vitro, their asynchrony when differentiated 
from progenitor cells, and the issues regarding their isolation (i.e., 
flow cytometry cell-sorting), evidencing that the application of 
proteomics to the megakaryocyte compartment has a promising 
but long journey ahead.48–50

The platelet secretome

Since platelets secrete their granule cargo upon activation, and 
this process is relevant in their hemostatic and non-hemostatic 
functions, we set out to compare the proteomic profile of 
platelet secretomes of mouse and human from publicly avail
able datasets (see Supplementary Methods, Tables S1, S2, and 
Figure S1b). Of these, all save one were using thrombin as the 
stimulating agonist. The secretome constitutes around 20% of 
the core platelet proteome both in mouse and human 
(Figure 3a). Of note, the platelet secretome proteins that do 
not overlap with the respective core platelet proteomes 
(Figure 3a) are detected as part of the platelet proteome, 
when all the proteins of all datasets are taken into considera
tion (data not shown, see Supplementary Methods). The over
lap of the identified secretome proteins, in bidirectional 
orthologue translations, is around 75% (Figure 3b).

Following the same analysis performed with the platelet core 
proteome, we next compared the identified proteins in the platelet 
secretomes from mouse and human depending on their relative abun
dance, in different datasets. We observed a great overlap of the highly 
and intermediately expressed proteins between species, while low 
abundant proteins showed more variation, similarly as with the platelet 
core proteome (Figure S4). However, the separation of the proteins 
that are present in the high and intermediate abundances slots did not 
appear as relevant, functionally, as with the platelet core proteome. 
Enrichment analysis of the protein lists further supported these results, 
confirming the conservation of function between species, and support
ing the notion that the high and intermediate abundance slots consti
tute a functional joint fraction (Figure S4).

Clinical applications of platelet and megakaryocyte 
proteomics studies

The analysis of the platelet proteome and sub-proteomes (relea
sates/secretomes, phospho-proteome, platelet-derived extracellu
lar vesicles, etc) poses as a promising mean not only to better 
understand platelet function and production but also to identify 
novel biomarkers for disease diagnosis and prognosis. 
Furthermore, the increasing demand to develop novel and more- 
specific anti-platelet/anti-aggregant drugs for the management of 
thrombosis will benefit from the rigorous dissection of platelet

Figure 3. Interspecies comparison of the human and mouse platelet core proteomes and secretomes. (a) Venn diagrams showing the overlap between 
the human (left) and mouse (right) platelet core proteomes, and their respective platelet secretomes. (b) Venn diagrams showing the overlap between 
the platelet human (left) and mouse (right) secretomes, and their respective mouse and human orthologs.
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signaling cascades, where phospho-proteomics may play 
a relevant role.

Platelets represent a critical factor in the onset and progression of 
cardiovascular diseases, which globally account for one of the top-ten 
leading causes of death worldwide.51,52 A study by Maguire and 
colleagues identified distinct proteomic signatures in platelet relea
sates from patients at different stages of progression of symptomatic 
cardiovascular disease,39,53 and another study by García et al. even 
observed differences in the proteomes of intracoronary and peripheral 
platelets in patients of acute myocardial infarction.54

Regarding genetic platelet disorders, a comprehensive quantita
tive proteomics analysis revealed that platelets of patients carrying 
individual mutations in the transcription factors GATA1, GFI1B, or 
RUNX1 had a distinct proteome profile, while displaying similar 
platelet morphological and functional abnormalities,55 and recent 
data of platelet proteome profiles of inherited platelet disorders, 
although performed with a limited amount of samples from each 
condition, already shows how the platelet proteome reflects the 
mechanisms behind each of the genetic traits.56

Concerning the ability of platelets to reflect health or disease 
status, several studies have reported differences at the proteomic 
level in platelets or platelet-derived extracellular vesicles of can
cer patients, which further supports the idea of platelets and their 
proteome as potential holders of valuable general disease diag
nostics and prognostic biomarkers.57–60

In the field of transfusion medicine, there is a concern on how to 
maintain the integrity and functionality of platelets in the platelet 
concentrates to be transfused. The so-called platelet storage lesion 
(PSL), appears with more evidence in longer-stored platelet concen
trates, and manifests conditioned by all the steps involved in platelet 
concentrate production and storage.61,62 The application of proteomics 
identified a number of hallmarks that could be associated with PSL, 
starting from proteomic differences related to platelet apoptosis,63 to 
a differential expression of proteins related to platelet degranulation or 
structural ones.39,64,65 Of note, more information was gained in parallel 
to technology development. Another aspect of concern is the impact of 
pathogen reduction treatments on platelet concentrates, a safety mea
sure to reduce the inherent risk for bacterial contamination of platelet 
concentrates.66 Proteomics studies on platelet concentrates treated or 
not with Mirasol Pathogen Reduction Technology, also revealed spe
cific alterations, although marginal, which were not exclusively due to 
an accelerated PSL, contrary to what was earlier thought.67 Likewise, 
proteomics has been employed to characterize temperature-induced 
platelet alterations in stored concentrates.68

The similarity of the mouse and human platelet proteome 
provides a solid foundation to the studies performed on mouse 
models, such as our recently published study, where we charac
terized and compared the platelet proteome of two mouse models 
of immune thrombocytopenia, at the thrombocytopenic stage and 
after platelet count recovery. The study revealed specific 
dynamics in the alterations of the platelet proteomes, which 
could serve to develop prognostic markers, and that will be 
followed up in a cohort of immune thrombocytopenia patients.69

Interestingly, the application of proteomics in the field has 
allowed the exploration of the platelet proteomes and secretomes 
in other species, such as squirrels, rats, pigs, and dogs.70–75 The 
particular physiological or pathological conditions in each model 
provide new knowledge with potential direct applications in evolu
tionary science, veterinary medicine, and importantly, with potential 
translation into humans. An example is the case of the study of the 
platelet proteomes of hibernating squirrels that reach body tempera
tures of 4–8°C. Physiological differences have been observed in the 
platelet proteome of squirrels (hibernating vs active) which might 
translate into developments to improve the cold storage of human 
platelets used for transfusion, in an effort to minimize platelet 
activation at the same time as relenting the storage lesion.70

In summary, given the function of platelets to facilitate throm
bosis and hemostasis, quantitative (phospho)proteomics analyses 
of platelet proteomes/sub-proteomes, and of megakaryocytes, will 
provide molecular biomarkers for diagnosis and prognosis of 
platelet related pathologies or dysfunction, and even provide 
targets for anti-platelet drug development. On the other hand, 
considering the various and diverse roles of platelets during 
ontogeny, or in inflammation, platelet proteomics might pose 
a significant biomarker discovery tool in other pathologies, 
beyond those primarily related to platelets.34,38,39,76–81

Limitations and final conclusion

As it has been acknowledged by all experts in the field, there are 
certain issues of concern regarding the application of high- 
throughput proteomics to the study of platelet biology, ranging 
from the field-specific ones (such as blood sampling collection 
variables [extraction method, anticoagulant used] and sample pro
cessing), to the aspects related to mass spectrometry technological 
characteristics and data analysis themselves (protein detection – low 
abundance, modifications altering digestion, etc.). When applying 
proteomics to megakaryocytes, certain variables will also require to 
be acknowledged, such as the source (primary, or cultured in vitro), 
the homogeneity of the sample (differentiation status, contamination 
with other cell types, etc), to name a few. Such variables account for 
inter-laboratory procedural differences that might limit cross- 
comparison of data and extrapolation of results to the clinical 
setting. As of today, mass spectrometry proteomic analyses are 
still costly, many studies comprise a low number of samples, and 
data should be validated in larger cohorts; however, few institutions 
can afford to perform studies with an optimal number of samples 
that allows rigorous data analysis. As a consequence, regarding the 
applicability of platelet proteomics to the clinical field, there is 
a concern that the equipment may not be affordable by clinical 
institutions, and that proteomics analysis is complex and requires 
trained staff, precluding a globalized usage of the technique at the 
diagnostic clinical laboratory.38,39,81–84

Consider, and despite having observed experimental differ
ences in the datasets used in this study, we have also noticed 
consistency and reproducibility if we consider the relative abun
dance of detected proteins, and the identified GO terms from the 
enrichment analysis (see Supplementary Figures).

Supporting our findings, Bayés et al. (2012) studied human 
and mouse postsynaptic membranes at the protein level, and 
found a ∼70% overlap after orthologue translation, similarly to 
what we have observed with the interspecies platelet proteomes 
and combining data from datasets from independent 
experiments.85 This suggests that it is possible to identify differ
ences in the platelet proteome (or sub-proteome) associated with 
pathology, even in an interspecies-wise manner.69,76

In general, we propose that, for the field to move forward, common 
guidelines and points of concern should be established that help to 
improve the multi-laboratory reproducibility of platelet preparation, 
sample processing, and data analysis. Most importantly, all these 
variables should be carefully described in scientific communications, 
and access to raw data and/or data analysis through public repositories 
should be mandatory. Objectively, technological developments of 
mass spectrometers, with deeper detection capacities and more com
pact, will allow the reduction of costs for the analysis of large sample 
groups. The implementation of comprehensive pipelines of analysis, 
which are globally evolving in parallel, will also provide more robust 
information at the clinical level. The quality of the generated data is 
improving over the years, and when technical limitations and hetero
geneity are overcome, cross-study comparisons will be possible, aid
ing in the advance of the field. While crude mass spectrometry might 
be as of today unthinkable in the clinical diagnostic lab, it will surely
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aid biomarker discovery with potential application in the clinic, as 
customized protein multiplex detection assays can be designed with 
the information obtained from unbiased proteomic studies and imple
mented in the diagnostic lab. Finally, we conclude from our in silico 
analysis that platelets from mice and humans share a proteome with 
high identity, which portrays mouse as an optimal pre-clinical model. 
The same conclusion was reached by Balkenhol and colleagues on 
their systems biology study aimed at the in silico analysis of the central 
platelet signaling cascade and interspecies comparison.86 

Furthermore, obtaining blood samples requires noninvasive methods, 
and if platelets (and their proteome) should reflect the health status of 
a patient, the application of platelet proteomics for diagnostic/prog
nostic purposes could potentially invade other clinical fields beyond 
hematopoiesis and transfusion medicine.
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