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Chaotic Motion in the Breathing Circle
Billiard

Claudio Bonanno and Stefano Marò

Abstract. We consider the free motion of a point particle inside a circular
billiard with periodically moving boundary, with the assumption that
the collisions of the particle with the boundary are elastic so that the
energy of the particle is not preserved. It is known that if the motion
of the boundary is regular enough then the energy is bounded due to
the existence of invariant curves in the phase space. We show that it
is nevertheless possible that the motion of the particle is chaotic, also
under regularity assumptions for the moving boundary. More precisely,
we show that there exists a class of functions describing the motion of
the boundary for which the billiard map has positive topological entropy.
The proof relies on variational techniques based on the Aubry–Mather
theory.

Mathematics Subject Classification. 37C83, 37B40, 37E40.

1. Introduction

A mathematical billiard with moving boundary is a region of the plane instan-
taneously bounded by a closed curve changing with time. The billiard problem
then consists of the free motion of a point particle inside this region colliding
elastically with the moving boundary.

The study of time-dependent billiards can be motivated physically by the
study of confined Lorentz gas or by some models in nuclear physics (see, for
instance, [5,6,13,31]). In the physical contexts, a relevant question is whether
the elastic bounces can make the energy of the particle grow infinitely. The
question was raised by Fermi [10] trying to explain the high velocity gained by
photons. A mathematical formulation of the problem was proposed by Ulam
and is now called the Fermi–Ulam model. It describes the free motion of a
particle between two parallel walls moving periodically. “Fermi acceleration”
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then occurs if the elastic bounces with the moving walls make the energy of
the particle tend to infinity. It is known that it depends on the regularity of
the motion of the walls. Actually, it was proved in [17] that if the motion of the
walls is at least C6 then KAM theory applies and the energy remains bounded.
On the other hand, in [33] it is shown how to construct a motion of the walls
that is only continuous and allows the energy to grow to infinity (see also [21]
for a similar result in a related impact model).

Time-dependent billiards can be seen as natural generalisations of the
Fermi–Ulam model, and the question on the existence of Fermi acceleration
naturally extends to this context. In this case, the answer also depends on the
geometry of the boundary.

If the boundary is a moving ellipse, then it has been proved in [9] that
it is possible to construct orbits that gain energy. Moreover, the existence of
unbounded motions is a symptom of complex dynamics. In fact, in [9] it is
also proved that the phenomenon of splitting of the separatrices occurs and a
scattering map can be defined. We refer to [12] for more insight on the topic
of Fermi acceleration in general time-dependent billiards.

Instead, if the boundary is a circle with radius varying smoothly with
time, then KAM theory applies and the energy remains bounded [29]. Since
the motion along a diameter is described by the classical Fermi–Ulam model,
the counterexample constructed in [33] shows that the regularity of the motion
of the boundary is a fundamental assumption in [29].

In this paper, we deal with the case of a region with circular boundary of
radius R(t) periodic in time. The region is called the breathing circle billiard.
We show that chaotic phenomena can occur also if the motion of the boundary
is regular. More precisely, we find a class of function ˜R such that if R ∈ ˜R
then the associated billiard map has positive topological entropy. The class ˜R
has a somehow technical definition, but it can be shown that a representative
is

R(t) = M + δ sin(2πt)

with M sufficiently large with respect to δ.
The dynamics of a time-dependent billiard whose boundary remains a

convex curve can be described by a 4-dimensional exact symplectic map [15].
However, for the breathing circle billiard, the angular momentum is a first
integral so that the dynamics can be reduced to a two-dimensional map of
the cylinder that turns out to be exact symplectic and twist at large energies.
We show that to the reduced map we can apply the variational framework of
Aubry–Mather theory, which implies the existence of interesting invariant sets.
In particular, a key role is played by invariant curves with irrational rotation
numbers. More precisely, it is known that the lack of invariant curves for a
given irrational rotation number implies the existence of chaotic motion, and
in particular we apply a result by Forni [11] to obtain the existence of many
invariant measures with positive metric entropy (and support of zero Lebesgue
measure), from which positiveness of topological entropy follows. See [1,2] for
related results.
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In the last decades, many results have been proved in the direction
of “breaking” invariant curves, also in higher dimensions, giving rise to the
so-called converse KAM theory [14,18,19]. In this paper, we show the non-
existence of some invariant curve using a criterion based on the variational
approach of Aubry–Mather theory, in the spirit of what is done in [24]. More
precisely, it is known that orbits of exact symplectic twist maps correspond to
stationary points of an action functional, and the ones on invariant curves are
minimal. As a consequence, the second variation of the action must be positive
on orbits lying on invariant curves. The main idea to prove our main result
is then to show that if R ∈ ˜R the second variation of the action is negative
in a zone of the phase space, preventing the existence of invariant curves for
some irrational rotation numbers. From a technical point of view, in order to
compute the second variation of the action, one needs the generating function
of the associated diffeomorphism. A considerable part of the paper is dedi-
cated to get an explicit formulation of the generating function of the billiard
map for large energies. To this aim, we follow the idea, used in [16] for the
(non-periodic) Fermi–Ulam model, that the generating function is given by the
Lagrangian action of a solution of the Dirichlet problem between two consec-
utive impacts. We conclude noting that a consequence of our approach is the
existence of Aubry–Mather sets with different rotation numbers, giving rise
to periodic and quasi-periodic motions of the breathing circle billiard. Similar
results have been obtained for other systems with impacts such as bouncing
balls [20].

The paper is organised as follows: In Sect. 2, we state the problem and the
main results of the paper. In Sect. 3, we study the Dirichlet problem between
two consecutive impacts, and its results are used in Sect. 4 to compute the
generating function of the billiard map. In Sect. 5, we describe the periodic
and quasi-periodic motions. Section 6 is dedicated to the proof of the main
theorem on chaotic motion. Appendix A contains the proof that the class of
functions ˜R is not empty. Finally, the main results of Aubry–Mather theory
used in the paper are collected in Appendix B.

2. Statement of the Problem and Main Results

Let R(t) be a strictly positive function, and let the breathing circle Dt be the
bounded region of the plane with moving boundary ∂Dt = {x ∈ R

2 : |x|2 =
R2(t)}. Let us consider a particle of unitary mass moving freely inside Dt and
satisfying the elastic impact law at every bounce on the boundary. Assume
that ∂Dt is positively oriented and denote by τ̂ , η̂ the unitary tangent and
outward normal vectors at points of ∂Dt. By a bouncing solution, we mean a
continuous and piecewise-C2 function

x : R → R
2

with a sequence of impact times (tn)n∈Z satisfying
1. ẍ(t) = 0 for t ∈ (tn, tn+1) for every n ∈ Z,
2. |x(t)| < R(t) for t ∈ (tn, tn+1) for every n ∈ Z,
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3. |x(tn)| = R(tn) for every n ∈ Z,
4. ẋ(t+n ) · τ̂n = ẋ(t−n ) · τ̂n and ẋ(t+n ) · η̂n = −ẋ(t−n ) · η̂n +2Ṙ(tn), where τ̂n, η̂n

are the unitary tangent and outward normal vectors at x(tn), and ẋ(t−n )
and ẋ(t+n ) denote the velocity vector just before and after the bounce at
time tn, respectively.
Condition 4 describes the elastic bouncing condition: the tangent com-

ponent of the velocity is preserved and the impulse is given in the normal
direction. Note that if Ṙ ≡ 0 we get the usual mirror law.

To describe the possible bouncing solutions, we first note that the angular
momentum is preserved, more precisely,

Proposition 2.1. Let x(t) be a bouncing solution with impact times (tn)n∈Z,
and then, the angular momentum C(t) = x(t) ∧ ẋ(t) is constant for every t.

Proof. It is clear that the angular momentum is constant for t ∈ (tn, tn+1) for
every n ∈ Z. Moreover at the bouncing time it holds

C(t−n ) = x(tn) ∧ ẋ(t−n ) = R(tn)η̂n ∧ ẋ(t−n ) = R(tn)η̂n ∧ (ẋ(t−n ) · τ̂n)τ̂n

= R(tn)η̂n ∧ (ẋ(t+n ) · τ̂n)τ̂n = R(tn)η̂n ∧ ẋ(t+n ) = C(t+n )

hence the proposition is proved. �

Since the motion is in the plane we have C(t) = (0, 0, c). If c = 0, the
motion is along a diameter and never leaves the diameter. Moreover, there is
a symmetry between motion in the clockwise and in the anticlockwise direc-
tion given by changing sign to c (see (3.1)). Without loss of generality in the
following we assume c > 0, which corresponds to anticlockwise motion.

Fixed the angular momentum c and assuming that the function R(t)
is periodic, a bouncing solution can be obtained as the orbit of a map, the
breathing circle billiard map, on a two-dimensional cylinder. Since R(t) is not
constant, the radial velocity of the particle has varying moduli so that a good
choice of coordinates is given by the time of an impact and the radial velocity
after an impact. Other velocity-related coordinates for the second component
work as well. If R ∈ Ck with k > 7, it has been shown in [29] that the billiard
map admits invariant circles which are homotopically non-trivial, thus showing
that the velocity of a particle remains bounded. Their proof follows by showing
that for high velocities the billiard map can be written as a small perturbation
of an integrable map. Our main result in the case of highly regular functions
R may be read as a completion of that in [29], as we prove the coexistence
of regular and of chaotic orbits in the phase space. However, our results hold
under more general assumptions. If R ∈ C2, we prove existence of both chaotic
and regular motions. An informal statement is the following.

Main result. There exists a class of C2, strictly positive and 1-periodic func-
tions ˜R, which contains the functions Rδ,M (t) := M + δ sin(2πt) for δ ∈
( 1
8π2 , 2π) and M large enough, such that if R(t) ∈ ˜R and c is sufficiently

small, then the breathing circle billiard map has positive topological entropy
and admits periodic and quasi-periodic solutions.
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The formal statements along with the definitions of the class ˜R and of
quasi-periodic bouncing solutions are given in Sect. 2.1. We now discuss the
geometric ideas underlying the proofs of this result.

Let us first consider the simple case in which R(t) ≡ R∗ > 0, that is the
circle D is fixed. It is well known that in this case the norm of the velocity
v(t) := |ẋ(t)| of a solution and the angle ϕ of reflection at ∂D are preserved at
every bounce. Hence, the radial velocity of the particle is constant and a good
set of coordinates for the billiard map is given by the arc length s of ∂D and the
angle ϕ. The motion is then described by the billiard map B(s0, ϕ0) = (s1, ϕ1)
of the cylinder R/2πR∗

Z × (0, π
2 ) given by

s1 = s0 + 2R∗ϕ0, ϕ1 = ϕ0. (2.1)

The corresponding orbits (s0+2R∗nϕ0, ϕ0)n∈Z represent the successive impact
points on the boundary and the respective angles of reflection. It is clear that
a trajectory is uniquely determined (up to rotations) by the value ϕ0, and
introducing the rotation number ω = πϕ0 ∈ (0, 1

2 ) one finds that if ω =
p/q ∈ Q then the trajectory closes after q bounces and p revolutions, while if
ω ∈ R \ Q then the trajectory never closes and the bouncing points are dense
on the boundary.

In addition, the map B is exact symplectic in the sense that for all
(s0, ϕ0) ∈ R/2πR∗

Z × (0, π
2 ) the condition ϕ1ds1 − ϕ0ds0 = dV (s0, ϕ0) is

satisfied with V (s0, ϕ0) = R∗ϕ2
0, and (positive) twist in the sense that for all

(s0, ϕ0) ∈ R/2πR∗
Z × (0, π

2 )

∂s1
∂ϕ0

> 0.

This implies that it is implicitly given by means of a generating function h :
R

2 → R
2 given by h(s0, s1) = 1

4R∗ (s1 − s0)2 through the equations

ϕ0 = − ∂h

∂s0
(s0, s1), ϕ1 =

∂h

∂s1
(s0, s1). (2.2)

Finally, one observes that the (positive) twist condition is equivalent to

∂2h

∂s1 ∂s0
(s0, s1) < 0

for all (s0, s1) ∈ R
2, which implies that (2.1) and (2.2) are equivalent. Exact

symplectic (positive or negative) twist maps enjoy several properties that can
be deduced only by the properties of the generating function and are at the
basis of Aubry–Mather theory (see Appendix B).

In the first part of this paper, we follow the approach in [16] to find
an exact symplectic twist map that describes the motion of some bouncing
solutions of the breathing circle billiard. However, it turns out that the vari-
ables (s, ϕ) are not a good choice to this aim, but as in [29] it is better to
work with time and velocity. Again in the case of the fixed circle D with
R(t) ≡ R∗, consider the variables (t, v2(t)) where t represents the bouncing
time. By Proposition 2.1, fixed the angular momentum c > 0, we can consider
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the map Bc(t0, v2
0) = (t1, v2

1) of the cylinder R/Z × R
+, depending on the

parameter c, given by

t1 = t0 + 2

√

(R∗)2v2
0 − c2

v2
0

=: t0 + fc(v2
0), v2

1 = v2
0 .

where v2
i := v2(ti). Here, fc(v2) plays the role of the rotation number. Notice

that the map Bc is still exact symplectic, since v2
1dt1 − v2

0dt0 = dV (t0, v2
0) for

V (t0, v2
0) = v2

0fc(v2
0) − Fc(v2

0) where Fc is a primitive of fc. However, it does
not satisfy the twist condition, as f ′

c(v
2) has one change of sign. This has the

following geometric interpretation: fixing c there exist two possible trajectories
joining two points on the boundary in time t1 − t0. More precisely,

fc(v2) = t1 − t0 ⇐⇒ v2
±(t1 − t0) =

2(R∗)2 ± 2
√

(R∗)4 − c2(t1 − t0)2

(t1 − t0)2
,

hence using c = R∗v cos ϕ one gets two values for the angles ϕ± of reflection.
This problem can be overcome by considering only motions with large

values of v2. Actually, it can be verified that for v2 large, Bc(t0, v2
0) satisfies

the (negative) twist condition and can be expressed implicitly as in (2.2) by
using the generating function

hc(t0, t1) = −(t1 − t0)v2
+(t1 − t0) − 2c arctan

(

c(t1 − t0)
√

(R∗)4 − c2(t1 − t0)2

)

.

Thus, one obtains an exact symplectic twist map, which describes the motion
of some bouncing solutions of the fixed circle billiard.

The main idea behind the present paper is to replicate this last construc-
tion in the case of the breathing circle Dt. Given a C2, strictly positive and
1-periodic function R(t) and fixed the angular momentum c, we show that
there exist variables (t,K) in the cylinder R/Z × R

+ such that the billiard
map P (t,K) is exact symplectic and twist for K large enough. The variable K

is a generalisation of v2 and reduces to v2

2 for R(t) constant. This program is
developed in Sects. 3 and 4 where the generating function is obtained by using
the solutions of a suitable Dirichlet problem.

Thus, we show that Aubry–Mather theory can be applied to the exact
symplectic twist map P , and the last part of the paper is devoted to proving
the main result.

First of all, one gets the existence of interesting invariant sets, called
Aubry–Mather sets, whose properties are summarised in Appendix B. Aubry–
Mather sets are characterised by their rotation number ω; hence, we denote
them by Mω. If ω = p/q ∈ Q; then, Mω contains a periodic orbit, instead
if ω ∈ R \ Q then Mω is a graph over the first coordinate of the cylinder
R/Z × R

+ and is either an invariant curve which is homotopically non-trivial
or a Cantor set. Orbits on Mω give rise to interesting bouncing solutions of
the breathing billiards: in the case ω = p/q ∈ Q one gets periodic solutions
of period p with q bounces in a period, while in the case ω ∈ R \ Q one gets
families of quasi-periodic solutions of frequencies (1, 1/ω) (see Definition 2.4).
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By the properties of the billiard map P , we thus obtain existence of
periodic and quasi-periodic orbits for some values of the rotation number ω.
In fact, since we can only guarantee that the map P is exact symplectic and
twist for large values of the coordinate K, we can apply Aubry–Mather theory
to P only for a subset of the possible rotation numbers and we need to assume
that R belongs to the class R defined in Definition 2.2. This is discussed in
Sect. 5 where we give the proof of our first result, Theorem 2.5.

Then, Aubry–Mather theory gives also the tools to prove the existence
of chaotic motion for exact symplectic twist maps on a cylinder. Namely it
is well known (see Theorem B.6) that if an Aubry–Mather set of irrational
rotation number is a Cantor set, then close to it there exist many invariant
probability measures with positive metric entropy; hence, the map has positive
topological entropy. Unfortunately the supports of these measures have zero
Lebesgue measure in the cylinder, so that the problem of proving chaotic
behaviour in the sense of smooth ergodic theory remains open.

In order to prove that an Aubry–Mather set with irrational rotation num-
ber is a Cantor set, as explained before, one needs to prove that it cannot be
an invariant curve. Many techniques are available to prove the non-existence
of invariant curves and form the so-called converse KAM theory. Here we are
using the variational characterisation of the invariant curves for exact symplec-
tic twist maps. We recall that there exists an action functional for which the
orbits of an exact symplectic twist map are critical points, and in particular
each orbit lying on an invariant curve is a point of minimum. As a consequence,
the second variation of the action along an invariant curve is positive (see the
function in Proposition B.7-(ii)). The basic idea to prove that a map does not
have an invariant curve in a region of the cylinder is then to show that the
second variation is negative in the whole region. We apply this method to the
map P as showed in Sect. 6. For us, it is enough to find a vertical segment 	 in
the cylinder on which the second variation of the action is negative, so that 	
cannot be crossed by any invariant curve. Then we show that there exists a set
I ⊂ R such that the Aubry–Mather sets of the map P with rotation number
ω ∈ I must cross the vertical segment 	. This is achieved by recalling that
the rotation number gives an estimate on the zone of the cylinder on which
the corresponding Aubry–Mather set is located. In the end, we have showed
that the Aubry–Mather sets Mω with ω ∈ I cannot be invariant curves, and
this implies our main result stated in Theorem 2.7, namely that the map P is
chaotic in the sense that it has positive topological entropy. We remark that
the proof of this result needs the assumption that the angular momentum c is
small enough and that the boundary of the circle Dt is described by a function
in ˜R � R. This last restriction is used to study the sign of the second variation
of the action functional.

As a final comment, we remark that on one side the class ˜R contains
“natural” choices of behaviours of the breathing circle such as the functions
Rδ,M (t), which give rise to large circles with relatively small and slow breath-
ing, thus intuitively describing a system which for large velocities is a small
perturbation of the integrable system given by the billiard in a fixed circle. On
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the other side, we cannot say that the class ˜R is optimal to obtain the exis-
tence of chaotic motion for the breathing circle billiard. Its technical definition
mainly follows from the methods of our proofs.

It is worth noting that the unperturbed map Bc is exact and the twist
has exactly one change of sign, so that it is a non-twist map as defined in [7,8].
However, it is not clear if also the billiard map P is a non-twist map as we
only prove that it can be expressed via a good generating function only for
large values of the coordinate K.

2.1. Formal Statement of the Main Result

We split our main result into two theorems: Theorem 2.5 refers to periodic and
quasi-periodic motions, while Theorem 2.7 concerns the chaotic behaviour.

Let us first introduce the classes of functions we consider for the motion
of ∂Dt.

Definition 2.2. Let R(t) be a C2, strictly positive and 1-periodic function, and
ε ∈ (0, 1) be a fixed parameter. We denote by ‖ · ‖ the sup-norm of a function
and use the notations

R := min
t

R(t) , R := max
t

R(t)

and

σ := min

⎧

⎨

⎩

R

2 ‖Ṙ‖ ,
2
√

1 +
√

1 − ε2 R
√

‖ d2

dt2 R2‖

⎫

⎬

⎭

.

We say that R(t) belongs to the class R if σ > 2.
We say that R(t) belongs to the class ˜R if:

(i) σ > 4;

and there exists t̄ ∈ [0, 1) such that (R̈(t̄)R + ‖Ṙ‖R) < 0 and

(ii)

3 < 1 +

√

√

√

√

2R
2

−R̈(t̄)R − ‖Ṙ‖R
< −1 +

√

√

√

√

2R2

2R
2

σ2 + ‖Ṙ‖R
;

(iii)

Ṙ(t̄) = 0 and R̈(t̄) < − 2R
2

σ2R
.

For simplicity, we drop the dependence on ε in the notations for σ and
the classes R and ˜R. Clearly ˜R ⊂ R and the classes R and ˜R are non-empty
as shown by the next proposition whose technical proof is in Appendix A. In
the following, the parameter ε is to be considered fixed in (0, 1); there is not
a more interesting value for it. However, notice that the class ˜R is empty if
ε = 1 (see Remark A.2).



Vol. 23 (2022) Chaotic Motion in the Breathing Circle Billiard 263

Proposition 2.3. The functions

Rδ,M (t) := M + δ sin(2πt)

with δ ∈ ( 1
8π2 , 2π) and M large enough belong to the class ˜R.

We now begin to state our main results. The first concerns the existence of
regular motion for the billiard dynamics inside Dt. We first give the definition
of periodic and quasi-periodic bouncing solutions, inspired by [32] (see also
[30]):

Definition 2.4. Given ω ∈ R, we say that a family of bouncing solutions

{xξ(t)}ξ∈R

is a family of generalised quasi-periodic solutions of frequencies (1, 1/ω) if
(i) there exists a function Φξ(a, b) such that

– the function ξ �→ Φξ(a, b) is of bounded variation for all (a, b), and
if ξ is a point of continuity, then so are ξ ± ω and ξ ± 1;

– Φξ(a + 1, b) = Φξ(a, b) = Φξ(a, b + 1) for all (a, b);
– for every ξ ∈ R, the function t �→ Φξ(t, t/ω) is continuous;
– xξ(t) = Φξ(t, t/ω);

(ii) for every ξ ∈ R, the sequence of impact times (tn)n∈Z satisfies

lim
n→∞

tn
n

= ω ,

and if ω = p/q ∈ Q then tn+q = tn + p for every n ∈ Z.
If ω ∈ R \ Q and the function (ξ, a, b) �→ Φξ(a, b) is continuous, then these
solutions are called classical quasi-periodic.
If ω = p/q ∈ Q, then for every ξ ∈ R

xξ(t + p) = Φξ

(

t + p,
q

p
t + q

)

= Φξ

(

t,
q

p
t

)

= xξ(t)

so that the bouncing solution makes q bounces in time p before repeating itself.
They are said (p, q)-periodic.

Theorem 2.5. Suppose that c ∈
(

0, ε R2

σ

)

and let R(t) ∈ R. Then, for every
1 < ω < σ − 1 there exists a family of generalised quasi-periodic bouncing
solutions of frequencies (1, 1/ω).

Remark 2.6. Under the hypotheses of Theorem 2.5 we are not able to guar-
antee that the solutions are classical quasi-periodic. Moreover, the restriction
ω > 1 is not optimal and is due to the techniques used in the proof.

Let us now consider the existence of chaotic dynamics for the billiard mo-
tion in Dt. Let P be the breathing circle billiard map as defined in Proposition
4.4.

Theorem 2.7. Suppose that R(t) ∈ ˜R. Then, for c sufficiently small, the breath-
ing circle billiard map P has positive topological entropy.
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The result is proved in Sect. 6. It follows by a standard application of the
Variational Principle, showing the existence of invariant probability measures
with positive metric entropy. Such measures are obtained by applying results
in [11]. We remark that the union of the supports of these invariant measures
has zero Lebesgue measure. However, the existence of invariant probability
measures with positive metric entropy and support of positive Lebesgue mea-
sure is a major problem in dynamical systems and is an open problem also for
well-known twist maps of the cylinder as the standard map.

Remark 2.8. We have stated Theorems 2.5 and 2.7 for positive values of the
angular momentum c, the case c = 0 corresponding to motions along a diame-
ter and the system reducing to the Fermi–Ulam model. Our arguments can be
readily adapted to the case c = 0, so that the conclusions of our main theorems
also hold for the Fermi–Ulam model.

3. The Dirichlet Problem

The proofs of our main results rely on Aubry–Mather theory, for which we need
to define a generating function for the billiard map associated with the billiard
flow in Dt. The first step is the study of the Dirichlet problem associated with
the flow between two consecutive bounces.

Let us consider two consecutive bounces for the billiard motion in Dt at
times tn and tn+1; the Dirichlet problem which describes the billiard motion
between the two bounces is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẍ(t) = 0, t ∈ (tn, tn+1),

|x(t)| < R(t), t ∈ (tn, tn+1),

|x(tn)| = R(tn),

|x(tn+1)| = R(tn+1)

and in polar coordinates (r, θ) it transforms into
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r̈ =
c2

r3
, t ∈ (tn, tn+1),

r2θ̇ = c, t ∈ (tn, tn+1),

r(t) < R(t), t ∈ (tn, tn+1),

r(tn) = R(tn),

r(tn+1) = R(tn+1)

(3.1)

from which it is evident the symmetry with respect to the change of sign of c.
Bouncing condition 4 in these coordinates reads

θ̇(t+n ) = θ̇(t−n ), (3.2)

ṙ(t+n ) = −ṙ(t−n ) + 2Ṙ(tn). (3.3)

In the following result, we find sufficient conditions for a solution of sys-
tem (3.1) to exist. Note that these solutions do not satisfy in general the
bouncing conditions (3.2)–(3.3) when glued together.
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Proposition 3.1. Let ε ∈ (0, 1) be a fixed parameter, and let us fix a value of
c > 0. For all times tn, tn+1 satisfying

0 < tn+1 − tn < ε
R2

c
, (3.4)

0 < tn+1 − tn <
R

2 ‖Ṙ‖ , (3.5)

0 < tn+1 − tn <
2
√

1 +
√

1 − ε2 R
√

‖ d2

dt2 R2‖
(3.6)

system (3.1) admits a unique C2 solution (r(t; tn, tn+1), θ(t; tn, tn+1)) such
that

ṙ(t+n ) < − R(tn)
tn+1 − tn

, ṙ(t−n+1) >
R(tn+1)
tn+1 − tn

, (3.7)

and

ṙ(t+n ) < Ṙ(tn) , ṙ(t−n+1) > 2Ṙ(tn+1). (3.8)

Proof. Define Rn = R(tn), Rn+1 = R(tn+1) and τn = tn+1 − tn. The equation
r̈ = c2/r3 has the first integral

A = 2E = ṙ2 +
c2

r2
> 0 (3.9)

where E is the energy of the system, and can be integrated giving the general
solution

r(t) =

√

c2 + A2(t + B)2

A
(3.10)

for B ∈ R. System (3.1) is rotationally invariant so that we can fix θ(tn) = 0
without loss of generality. With this assumption, solution (3.10) represents a
straight trajectory in the billiard table starting from the point (Rn, 0) with
velocity ẋ(tn) satisfying

ẋ(tn) =

(

A(tn+B)
Rn
c

Rn

)

and |ẋ(tn)|2 = 2E = A. (3.11)

Moreover, notice that by (3.10)

ṙ(t) =
A(t + B)

r(t)
. (3.12)

Let 	 := A(tn + B), then the straight trajectory (3.10) is parametrised
by

[0,+∞)  s �→
(

Rn + s �
Rn

s c
Rn

)

and the condition r(tn+1) = Rn+1 is then equivalent to
(

Rn + τn
	

Rn

)2

+ τ2
n

c2

R2
n

= R2
n+1.
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We then obtain

	± =
Rn

τn

(

−Rn ±
√

R2
n+1 − τ2

n

c2

R2
n

)

(3.13)

which is well defined thanks to (3.4). Using (3.11), it also holds

A± =
	2± + c2

R2
n

, B± =
R2

n 	±
	2± + c2

(3.14)

which in (3.10) gives r(tn) = Rn. We still have to verify conditions (3.7), (3.8)
and r(t) < R(t) for all t ∈ (tn, tn+1).

Using (3.12), the first condition in (3.7) reduces to

ṙ(t+n ) =
	±
Rn

< −Rn

τn
.

From (3.13), it is immediate that the choice 	+ has to be discarded and 	− is
admissible. Let us now consider the second condition in (3.7). From (3.12), we
need to check that

ṙ(t−n+1) =
A(tn+1 + B)

Rn+1
=

Aτn + 	−
Rn+1

>
Rn+1

τn
.

But, by (3.14) we have

Aτn + �− =
�2− + c2

R2
n

τn + �−

=
1

τn

⎡

⎣

(

Rn +

√

R2
n+1 − τ2

n

c2

R2
n

)2

+ τ2
n

c2

R2
n

− Rn

(

Rn +

√

R2
n+1 − τ2

n

c2

R2
n

)

⎤

⎦

=
1

τn

(

R2
n+1 + Rn

√

R2
n+1 − τ2

n

c2

R2
n

)

>
R2

n+1

τn
,

so that both conditions (3.7) are satisfied only for 	−. Moreover, from (3.5),

|Ṙ(tn)| ≤ 2 ‖Ṙ‖ <
R

τn
≤ Rn

τn
,

from which, using the first condition in (3.7), we get

ṙ(t+n ) < −Rn

τn
< Ṙ(tn)

that is the first condition in (3.8). The second condition is proved similarly.
It remains to show that r(t) < R(t) for all t ∈ (tn, tn+1). From (3.8), it

follows that

d
dt

(

R2(t) − r2(t)
)

|t=t+n
> 0 ,

d
dt

(

R2(t) − r2(t)
)

|t=t−
n+1

< 0.

Moreover from (3.12) and (3.14)
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d2

dt2

(

R2(t) − r2(t)
)

=
( d2

dt2
R2(t)

)

− 2A =

=
( d2

dt2
R2(t)

)

− 2
τ2
n

(

R2
n + R2

n+1 + 2Rn

√

R2
n+1 − τ2

n

c2

R2
n

)

<

<

∥

∥

∥

∥

d2

dt2
R2

∥

∥

∥

∥

− 2
τ2
n

(

2R2 + 2R

√

R2(1 − ε2)
)

where in the last inequality we have used (3.4). It follows that

d2

dt2

(

R2(t) − r2(t)
)

<

∥

∥

∥

∥

d2

dt2
R2

∥

∥

∥

∥

− 4(1 +
√

1 − ε2)R2

τ2
n

< 0

by (3.6). Hence, since r2(tn) = R2(tn) and r2(tn+1) = R2(tn+1), we have that
R2(t) > r2(t) for all t ∈ (tn, tn+1). This concludes the proof of the proposition,
for which the solution is given by (3.10) with A,B as in (3.14) with 	 = 	− as
defined in (3.13).

In conclusion, we have proved that for all times tn, tn+1 satisfying (3.4)–
(3.6), the functions

r(t; tn, tn+1) :=

√

A2(tn, tn+1) (t + B(tn, tn+1))2 + c2

A(tn, tn+1)
,

θ(t; tn, tn+1) := θ(tn) +
∫ tn+1

tn

c

r2(t; tn, tn+1)
dt

(3.15)

where θ(tn) is the angular variable of the bounce point at time tn, are a solution
to system (3.1) satisfying also conditions (3.7)–(3.8) by letting

A(tn, tn+1)

=
R2(tn) + R2(tn+1) + 2

√

R2(tn)R2(tn+1) − c2(tn+1 − tn)2

(tn+1 − tn)2
,

B(tn, tn+1)

= −
(

tn +
R2(tn) +

√

R2(tn)R2(tn+1) − c2(tn+1 − tn)2

(tn+1 − tn)A(tn, tn+1)

)

.

(3.16)

The C2 regularity of the solution (r(t; tn, tn+1), θ(t; tn, tn+1)) with respect to
all its variables follows from (3.15)–(3.16). �

Remark 3.2. Given times tn, tn+1 and tn+2 such that the intervals (tn+1 − tn)
and (tn+2 − tn+1) satisfy assumptions (3.4)–(3.6), the solutions r(t; tn, tn+1)
and r(t; tn+1, tn+2) given in Proposition 3.1 in general do not satisfy the bounc-
ing condition (3.3) at time tn+1. However, in Sect. 4 we find a method to get
sequences (tn)n∈Z satisfying conditions (3.4)–(3.6) for every n and such that
the corresponding functions defined in (3.15) satisfy the bouncing condition
(3.3). Hence, we will construct bouncing solutions satisfying conditions (3.7)–
(3.8) at every bouncing time.
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Remark 3.3. Given θ(tn) and θ(tn+1), the angular variables of two consecu-
tive bounces at times tn and tn+1 determined by solution (3.15), the angular
variation δθ(tn, tn+1) := θ(tn+1) − θ(tn) is given by

δθ(tn, tn+1) = π − arctan

(

c (tn+1 − tn)
√

R2(tn)R2(tn+1) − c2(tn+1 − tn)2

)

. (3.17)

Indeed, the length of the trajectory between the two bounces is given by (tn+1−
tn)|ẋ(tn)| = (tn+1 − tn)

√

A(tn, tn+1) (see (3.11)), and hence, by Carnot’s the-
orem

(tn+1 − tn)2A(tn, tn+1) = R2(tn) + R2(tn+1) − 2R(tn)R(tn+1) cos δθ(tn, tn+1)

and by (3.16)

cos δθ(tn, tn+1) = −
√

1 − c2(tn+1 − tn)2

R2(tn)R2(tn+1)
.

Then (3.17) immediately follows by computing sin δθ(tn, tn+1) using that c >
0, so that δθ(tn, tn+1) ∈ (0, π).

4. The Generating Function

In this section, we define a generating function h(t0, t1) for the billiard map
between two consecutive bounces on ∂Dt at times t0 and t1. The orbits of the
corresponding billiard map generate bouncing motions with large velocity, in
the sense that conditions (3.7), (3.8) are satisfied.

Following the approach in [16], we first show that a good guess for h is
given by the action of system (3.1). Let

hc(tn, tn+1) =
∫ tn+1

tn

Lc(r(t; tn, tn+1), ṙ(t; tn, tn+1))dt (4.1)

where r(t; tn, tn+1) is the solution to (3.1) found in Proposition 3.1 and

Lc(r, ṙ) =
1
2
ṙ2 − c2

2r2
(4.2)

is the reduced Lagrangian of the system for a fixed value c > 0. In particular,
r(t; tn, tn+1) satisfies the Euler–Lagrange equation

d
dt

(

∂Lc

∂ṙ

)

=
∂Lc

∂r
.

For simplicity, let us denote r(t) = r(t; tn, tn+1) and remove the dependence
on c. We have

∂tn
h(tn, tn+1) = ∂tn

∫ tn+1

tn

L(r(t), ṙ(t))dt = −L(r(tn), ṙ(t+n ))

+
∫ tn+1

tn

∂L

∂ṙ

∂ṙ

∂tn
+

∂L

∂r

∂r

∂tn
dt
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= −L(r(tn), ṙ(t+n )) +
[

∂L

∂ṙ

∂r

∂tn

]t=tn+1

t=tn

+
∫ tn+1

tn

[

− d
dt

(

∂L

∂ṙ

)

+
∂L

∂r

]

∂r

∂tn
dt

= −L(r(tn), ṙ(t+n )) +
∂L

∂ṙ
(tn+1)

∂r

∂tn
(tn+1) − ∂L

∂ṙ
(tn)

∂r

∂tn
(tn),

where we first used integration by parts, and then, the fact that r(t) satisfies
the Euler–Lagrange equation and finally denoted

∂L

∂ṙ
(tn+1) =

∂L

∂ṙ
(r(tn+1), ṙ(t+n+1)),

and analogously for ∂L
∂ṙ (tn). Differentiating with respect to tn the relations

r(tn+1; tn, tn+1) = R(tn+1) and r(tn; tn, tn+1) = R(tn), we get
∂r

∂tn
(tn+1) = 0, ṙ(t+n ) +

∂r

∂tn
(tn) = Ṙ(tn) .

Hence, we have

∂tn
h(tn, tn+1) = −L(r(tn), ṙ(t+n )) +

∂L

∂ṙ
(tn)(ṙ(t+n ) − Ṙ(tn))

and, remembering the expression of L in (4.2) and that r(tn) = R(tn),

∂tn
h(tn, tn+1) =

1
2
ṙ2(t+n ) +

c2

2R2(tn)
− ṙ(t+n )Ṙ(tn) . (4.3)

Analogously, one can get

∂tn+1h(tn, tn+1) = −1
2
ṙ2(t−n+1) − c2

2R2(tn+1)
+ ṙ(t−n+1)Ṙ(tn+1) .

Therefore, we conclude that if a sequence (tn) satisfies

∂1h(tn, tn+1) + ∂2h(tn−1, tn) = 0 for every n ∈ Z , (4.4)

where ∂1 and ∂2 denote differentiation with respect to the first and the second
argument, respectively, then

1
2
ṙ2(t+n ) − ṙ(t+n )Ṙ(tn) =

1
2
ṙ2(t−n ) − ṙ(t−n )Ṙ(tn) ⇔

1
2
ṙ2(t+n ) − ṙ(t+n )Ṙ(tn) +

1
2
Ṙ2(tn) =

1
2
ṙ2(t−n ) − ṙ(t−n )Ṙ(tn) +

1
2
Ṙ2(tn) ⇔

1
2
(ṙ(t+n ) − Ṙ(tn))2 =

1
2
(ṙ(t−n ) − Ṙ(tn))2

from which we get the bouncing condition (3.3) using that ṙ(t+n ) < Ṙ(tn) and
ṙ(t−n ) > Ṙ(tn) (see (3.8)). Conversely, a sequence satisfying (3.3) also satisfies
(4.4). Using also Remark 3.2, we have proved the following

Proposition 4.1. A sequence (tn, ṙ(t+n ; tn, tn+1)), with (tn+1 − tn) satisfying
(3.4)–(3.6) and r(t; tn, tn+1) being the solution to (3.1) given by Proposition
3.1 defines a bouncing solution with angular momentum c if and only if for
every n ∈ Z

∂1h
c(tn, tn+1) + ∂2h

c(tn−1, tn) = 0

for the function hc(tn, tn+1) defined in (4.1).
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We are now ready to give an explicit expression to the function hc in
terms of the times of bouncing.

Proposition 4.2. Fixed a value c > 0 for the angular momentum, let t0, t1
be two consecutive bouncing times and R0 := R(t0) and R1 := R(t1) be the
corresponding radii of the breathing circle. The generating function defined in
(4.1) computed along solutions to (3.1) defined in (3.15) has the form

h(t0, t1) =
1
2
(t1 − t0)A(t0, t1) + c arctan

(

c(t1 − t0)
√

R2
0R

2
1 − c2(t1 − t0)2

)

(4.5)

where A(t0, t1) is defined in (3.16).

Proof. Using (3.9) for solutions to (3.1) it holds

Lc(r, ṙ) =
1
2
ṙ2 − c2

2r2
= E − c2

2r2
=

A(t0, t1)
2

− c2

r2
.

Hence

hc(t0, t1) =
∫ t1

t0

Lc(r, ṙ)dt =
1
2
(t1 − t0)A(t0, t1) − c

∫ t1

t0

c

r2(t; t0, t1)
dt .

Moreover by (3.15) for θ(t; t0, t1) and Remark 3.3, we have
∫ t1

t0

c

r2(t; t0, t1)
dt = δθ(t0, t1) = π − arctan

(

c(t1 − t0)
√

R2
0 R2

1 − c2(t1 − t0)2

)

and the proof is finished, since the generating function is defined up to an
additive constant. �

We now argue on the other direction. Given the function h(t0, t1) in (4.5),
we show that when restricted to a suitable subset, it is a generating function
of the bouncing motion of a particle inside the breathing circle Dt.

Proposition 4.3. Let ε ∈ (0, 1) be a fixed parameter and let

σ := min

⎧

⎨

⎩

R

2 ‖Ṙ‖ ,
2
√

1 +
√

1 − ε2 R
√

‖ d2

dt2 R2‖

⎫

⎬

⎭

and c ∈
(

0, ε
R2

σ

)

.

Let us consider the strip Ω = {(t0, t1) ∈ R
2 : 0 < t1 − t0 < σ}. Then, the

function h : Ω → R defined in (4.5) satisfies
(i) h ∈ C2(Ω);
(ii) h(t0 + 1, t1 + 1) = h(t0, t1) for all (t0, t1) ∈ Ω;
(iii) ∂t0t1h(t0, t1) < 0 for all (t0, t1) ∈ Ω, and ∂t0t1h(t0, t1) → −∞ as (t1 −

t0) → 0.

Proof. Properties (i) and (ii) follow immediately from the regularity and the
periodicity of R(t), and from the definition of h(t0, t1).

To prove (iii), by standard computations we obtain

∂t0h(t0, t1) =
c2

2R2
0

+
1
2

(

R2
0 +
√

R2
0R

2
1 − c2(t1 − t0)2

R0 (t1 − t0)

)2
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+Ṙ(t0)
R2

0 +
√

R2
0 R2

1 − c2(t1 − t0)2

R0 (t1 − t0)
(4.6)

hence, using that h ∈ C2,

∂t0t1h(t0, t1) =

(

R2
0 +
√

R2
0R

2
1 − c2(t1 − t0)2

R0 (t1 − t0)
+ Ṙ(t0)

)

∂t1

(

R2
0 +
√

R2
0 R2

1 − c2(t1 − t0)2

R0 (t1 − t0)

)

. (4.7)

We can then conclude by the following estimates. First, if Ṙ(t0) ≥ 0, then

R2
0 +
√

R2
0R

2
1 − c2(t1 − t0)2

R0 (t1 − t0)
+ Ṙ(t0) > 0 .

If instead Ṙ(t0) < 0, then we use (t1 − t0) < σ and write

R2
0 +
√

R2
0R

2
1 − c2(t1 − t0)2

R0 (t1 − t0)
≥ R0

t1 − t0
>

2 ‖Ṙ‖R0

R
> −Ṙ(t0)

so that the first term in ∂t0t1h(t0, t1) is positive in all cases.
For the second term, we have

∂t1

(

R2
0 +
√

R2
0 R2

1 − c2(t1 − t0)2

R0 (t1 − t0)

)

= R2
0

R1 Ṙ(t1) (t1 − t0) −
√

R2
0 R2

1 − c2(t1 − t0)2 − R2
1

(t1 − t0)2
√

R2
0 R2

1 − c2(t1 − t0)2

which is negative both if Ṙ(t1) ≤ 0, as sum of non-positive terms with R1 > 0,
and if Ṙ(t1) > 0 since by (t1 − t0) < σ it holds

R1 Ṙ(t1) (t1 − t0) <
R1 Ṙ(t1)R

2‖Ṙ‖ ≤ R2
1

2
.

Finally, from (4.7) we find

∂t0t1h(t0, t1) = −R0(R0 + R1)2

(t1 − t0)3
+ o

(

1
(t1 − t0)3

)

as (t1 − t0) → 0+. Hence, (iii) is proved. �
Let Ω ⊂ R

2 be the strip defined in Proposition 4.3 and rewrite h : Ω → R

as

h(t0, t1) =
R2

0 + R2
1 + 2

√

R2
0R

2
1 − c2(t1 − t0)2

2(t1 − t0)

+c arctan

(

c(t1 − t0)
√

R2
0R

2
1 − c2(t1 − t0)2

)

where R0 := R(t0), R1 := R(t1), and c ∈ (0, εR2

σ ). As before let ∂1 and ∂2

denote the partial derivatives with respect to the first and second argument of
a function, and let T denote the one-dimensional torus.
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Proposition 4.4. Define σ∗ := maxt∈T∂1h(t, t + σ). The equations
{

K0 = ∂1h(t0, t1)

K1 = −∂2h(t0, t1)
(4.8)

define implicitly a Ck embedding P : T × (σ∗,+∞) → T × R, P (t0,K0) =
(t1,K1). Moreover, P is twist in the sense that

∂t1
∂K0

< 0,

and exact symplectic in the sense that there exists a Ck function V : T×R → R

such that

K1dt1 − K0dt0 = dV (t0,K0).

Proof. Using that ∂1h(t0, t1) → +∞ as (t1 − t0) → 0+ as can be shown from
(4.6) and Proposition 4.3-(iii), we can apply the implicit function theorem to
the first of (4.8) and get the Ck function

t1 = t1(t0,K0) (4.9)

for (t0,K0) ∈ T × (σ∗,+∞). Inserting (4.9) into the second of (4.8), we
get the desired Ck map P . To prove that it is injective, we note that if
P (t0,K0) = P (t′0,K

′
0) then, using once again Proposition 4.3-(iii), the sec-

ond of (4.8) implies t0 = t′0 that, substituted in the first gives also K0 = K ′
0.

By implicit differentiation of the first, we get the twist condition:
∂t1
∂K0

=
1

∂12h(t0, t1)
< 0 .

Finally, if we define V (t0,K0) = −h(t0, t1(t0,K0)) we get

dV (t0,K0) =
(

−h1(t0, t1) − h2(t0, t1)
∂t1
∂t0

)

dt0 − h2(t0, t1)
∂t1
∂K0

dK0

= −K0dt0 + K1
∂t1
∂t0

dt0 + K1
∂t1
∂K0

dK0 = K1dt1 − K0dt0.

�

Remark 4.5. It follows from the previous Proposition that a sequence (tn,Kn)
is an orbit of the map P if and only if, for every n, (tn+1 − tn) ∈ Ω and

∂1h(tn, tn+1) + ∂2h(tn−1, tn) = 0, Kn = ∂1h(tn, tn+1).

We finally note that the orbits of the diffeomorphism P give rise to bounc-
ing solutions of the billiard map in the breathing circle Dt.

Proposition 4.6. Let (tn,Kn) be an orbit of P , let us set Rn := R(tn) and
define ṙ(t+n ) as

ṙ(t+n ) := Ṙ(tn) −
√

Ṙ2(tn) − 2Kn − c2

R2
n

, (4.10)

then {(tn, ṙ(t+n ))} represents a bouncing solution in the sense that {tn} is the
sequence of bouncing times, and {ṙ(t+n )} is the sequence of radial velocities
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right after the bounce at time tn with corresponding trajectories between two
consecutive bounces being the solutions to system (3.1) found in Proposition
3.1.

Proof. Using (3.16), we write

Kn = −1
2
A(tn, tn+1) − Ṙ(tn)

R2
n +

√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)
.

Since

A(tn, tn+1) − c2

R2
n

=

⎛

⎝

R2
n +

√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)

⎞

⎠

2

we obtain that ṙ(t+n ) defined in (4.10) can be written as

ṙ(t+n ) = Ṙ(tn) −

√

√

√

√

√

⎛

⎝Ṙ(tn) +
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)

⎞

⎠

2

= −
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)

(4.11)

where we have used that

R2
n +

√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)

> 2 ‖Ṙ‖
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn R
≥ 2 ‖Ṙ‖ > −Ṙ(tn)

since (tn+1 − tn) < σ. A straightforward computation shows that ṙ(t+n ) is then
equal to ṙ(t+n ; tn, tn+1), the velocity of solution (3.15) to system (3.1) found
in Proposition 3.1. In particular, (4.11) shows that ṙ(t+n ) satisfies the first
condition in (3.8). �
Remark 4.7. The definition of ṙ(t+n ) in Proposition 4.6 is inspired by (4.3).
Notice that the two solutions of (4.3) are

ṙ± := Ṙ(tn) ±
√

Ṙ2(tn) + 2∂tn
h(tn, tn+1) − c2

R2
n

which can be written as

ṙ± := Ṙ(tn) ±
⎛

⎝Ṙ(tn) +
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)

⎞

⎠ .

Now, since (tn+1 − tn) < σ,

ṙ+ = 2Ṙ(tn) +
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn (tn+1 − tn)
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> 2Ṙ(tn) + 2 ‖Ṙ‖
R2

n +
√

R2
n R2

n+1 − c2(tn+1 − tn)2

Rn R

≥ 2Ṙ(tn) + 2 ‖Ṙ‖ ≥ max{0, Ṙ(tn)}.

Hence, ṙ− is the only solution of (4.3) which may represent the radial velocity
of a bouncing solution leaving the boundary. Moreover, ṙ− = −ṙ+ + 2Ṙ(tn);
hence, ṙ+ and ṙ− can be interpreted as the radial velocity before and after the
bounce, respectively.

Remark 4.8. For completeness, we show that the map P defined in Proposition
4.4 corresponds to the map M considered in [29] with a different choice of
variables. The variables used in [29] are (t, I), and the map M : (t0, I0) �→
(t1, I1) is implicitly given by

⎧

⎨

⎩

I1 = −I0 − 2R1 Ṙ(t1) + c2+I2
0

R2
0

(t1 − t0)

(t1 − t0)
(

c2+I2
0

R2
0

(t1 − t0) − 2I0

)

= R2
1 − R2

0

with In = −Rnṙ(t+n ) in our notations. The second equation is obtained by

c2 + I20
R2

0

=
c2

R2
0

+ ṙ2(t+0 ) = A(t0, t1)

and using (3.16) and (4.11) for ṙ(t+0 ). On the other hand, from Proposition 4.6
and (4.8)

ṙ(t+1 ) = Ṙ(t1) −
√

Ṙ2(t1) − 2∂2h(t0, t1) − c2

R2
1

and, arguing as in the proof of Proposition 4.3, it holds

∂2h(t0, t1) +
c2

2R2
1

= Ṙ(t1)
R2

1 +
√

R2
0 R2

1 − c2(t1 − t0)2

R1 (t1 − t0)

−1
2

(

R2
1 +
√

R2
0 R2

1 − c2(t1 − t0)2

R1 (t1 − t0)

)2

.

Therefore, using

R2
1 +
√

R2
0 R2

1 − c2(t1 − t0)2

R1 (t1 − t0)
>

2R1 ‖Ṙ‖
R

≥ 2 ‖Ṙ‖ > Ṙ(t1)

for (t1 − t0) < σ, we have

ṙ(t+1 ) = Ṙ(t1) −
(

R2
1 +
√

R2
0 R2

1 − c2(t1 − t0)2

R1 (t1 − t0)
− Ṙ(t1)

)

= 2 Ṙ(t1) − R2
1 +
√

R2
0 R2

1 − c2(t1 − t0)2

R1 (t1 − t0)
. (4.12)

Using (4.12), we get

I1 = −R1ṙ(t+1 ) = −2R1 Ṙ(t1) +
R2

1 +
√

R2
0R

2
1 − c2(t1 − t0)2

t1 − t0
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and again by (4.11) for ṙ(t+0 ), we conclude

I1 + I0 = −2R1 Ṙ(t1) +
R2

0 + R2
1 + 2

√

R2
0R

2
1 − c2(t1 − t0)2

t1 − t0

= −2R1 Ṙ(t1) + (t1 − t0)A(t0, t1)

which is the first equation.

5. Periodic and Quasi-Periodic Orbits

In this section, we give the proof of Theorem 2.5. The proof is based on the
Aubry–Mather theory, and the results we use are recalled in Appendix B. We
begin with a preliminary result for the billiard map. Let ε ∈ (0, 1) be a fixed
parameter as in Definition 2.2.

Proposition 5.1. Suppose that σ > 2 and fix c ∈
(

0, ε R2

σ

)

. Then, for every
1 < ω < σ − 1

• if ω = p/q ∈ Q, then there exists a minimal orbit (tn,Kn)n∈Z of angular
momentum c of the billiard map such that (tn+q,Kn+q) = (tn + p,Kn);

• if ω ∈ R\Q, then there exists a minimal invariant set Mω of rotation
number ω made of orbits of angular momentum c. Moreover, Mω is the
graph of a Lipschitz function u : π(Mω) → R, and Mω is either an
invariant curve or a Cantor set.

Proof. Fix σ > 2 and c ∈
(

0, ε R2

σ

)

. The function h defined in (4.5) is by
Proposition 4.3 a generating function when restricted to the set Ω = {(t0, t1) ∈
R

2 : 0 < t1 − t0 < σ}. Choose ω such that 1 < ω < σ − 1. Fix a positive
number β < min{ω − 1, σ − ω − 1}. By compactness, there exists δ such that

h12 ≤ δ < 0 on Ωβ = {(t0, t1) ∈ R
2 : β ≤ t1 − t0 ≤ σ − β}.

Hence, we can apply Lemma B.3 and find a generating function h̃ that coincides
with h on Ωβ and satisfies the hypothesis of Theorem B.4. The function h̃

generates a diffeomorphism P̃ that coincide with the billiard map on some
strip. Applying Theorem B.4, for every ω̃ ∈ R we find the periodic orbits and
the invariant sets Mω̃ described in the same theorem. These sets are made of
orbits (tn,Kn)n∈Z of the diffeomorphism P̃ and become orbits of the billiard
map if

(tn, tn+1) ∈ Ωβ for every n ∈ Z.

For ω̃ = ω, by (B.2), we have that

|tn+1 − tn − ω| ≤ 1

that implies, since ω > 1, that for every n ∈ Z

0 < ω − 1 ≤ tn+1 − tn ≤ ω + 1.

By the choice of β, for every n ∈ Z,

β < ω − 1 ≤ tn+1 − tn ≤ ω + 1 < σ − β
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that is (tn, tn+1) ∈ Ωβ for every n ∈ Z. �

Then Corollary B.5 immediately implies

Corollary 5.2. For each 1 < ω < σ − 1, there exist two functions φ, η : R → R

such that for every ξ ∈ R

φ(ξ + 1) = φ(ξ) + 1, η(ξ + 1) = η(ξ), (5.1)

S(φ(ξ), η(ξ)) = (φ(ξ + ω), η(ξ + ω)) (5.2)

where φ is monotone (strictly if ω ∈ R\Q ) and η is of bounded variation.
Moreover, φ and η have the same points of continuity, and if ξ is a point of
continuity then so are ξ ± ω and ξ ± 1.

Let us now come to the

Proof of Theorem 2.5. Fix c ∈
(

0, ε R2

σ

)

. Consider ω ∈ R\Q and the corre-
sponding functions φ, η : R → R given by Corollary 5.2. Denote by

xξ(t) = (r(t), θ(t))ξ

the bouncing solution with angular momentum c which satisfies

r(φ(ξ)) = R(φ(ξ)) , ṙ(φ(ξ)) = Ṙ(φ(ξ)) −
√

Ṙ2(φ(ξ)) − 2η(ξ) − c2

R2
φ(ξ)

.

Since the system is rotationally invariant, it is clear that to fix c, r(φ(ξ))
and ṙ(φ(ξ)) are sufficient to uniquely determine the bouncing solution up to
rotations. The value of θ(φ(ξ)) can be chosen freely. We claim that the family
{xξ(t)}ξ∈R satisfies the conditions in Definition 2.4.
By the periodicity of φ, η,

(r(t), θ(t))ξ+1 = (r(t − 1), θ(t − 1))ξ.

In addition, using (5.2) and Proposition 4.6 we have

(r(t), θ(t))ξ+ω = (r(t), θ(t))ξ.

Thus, we have proved that for every ξ ∈ R

xξ+1(t) = xξ(t − 1), (5.3)

xξ(t) = xξ+ω(t). (5.4)

Consider now the function

Φξ(a, b) = xξ−ωb+a(a). (5.5)

Using (5.3) and (5.4), it is not difficult to show that

Φξ(a + 1, b) = xξ−ωb+a+1(a + 1) = Φξ(a, b),

Φξ(a, b + 1) = xξ−ωb+a−ω(a) = Φξ(a, b)

and Φξ(t, t/ω) = xξ(t). So that the solutions satisfy condition (i) in Definition
2.4, since the regularity follows from (5.5) and Corollary 5.2. Finally, condition
(ii) follows from the definition of the rotation number of a minimal orbit.
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6. Chaotic Motion

In this section, we prove Theorem 2.7, showing the existence of chaotic motion
for the billiard map inside the breathing circle Dt with R(t) ∈ ˜R. In particular,
we are going to prove that there exists c0 > 0 such that for every c ∈ (0, c0)
there exist many probability measures with positive metric entropy, which are
invariant for the map P defined in Proposition 4.4. As in the previous section,
we will refer to results from Appendix B.

The idea of the proof is the following. First we extend the map P to the
whole cylinder as in the proof of Proposition 5.1. The key point is then to prove
that there exists an open interval I ⊂ R such that for sufficiently small values
of c, the extended map has no invariant curve with rotation number ω ∈ I.
Hence, for irrational ω ∈ I the Mather sets Mω of Theorem B.4 are Cantor sets.
Then, Theorem B.6 guarantees the existence of invariant probability measures
with positive metric entropy for the extended map. The final step is to show
that the extension has been made in such a way that these invariant measures
are supported in the zone of the cylinder where the extended map coincides
with P .

Let us first state and prove a series of technical lemmas. Let R ∈ ˜R
and recall by Definition 2.2 that σ > 4. Moreover, in this section we use the
notations Ṙt̄ and R̈t̄ for Ṙ(t̄) and R̈(t̄), respectively. Let us consider the set

ΞR :=

{

ω ∈ (3, σ − 1) :
2R

2

σ2
<

2R2

(ω + 1)2
− ‖Ṙ‖ 2R

ω + 1
<

2R
2

(ω − 1)2
+ ‖Ṙ‖ 2R

ω − 1
< −R̈t̄R

}

.

Lemma 6.1. If R(t) ∈ ˜R, the set ΞR is not empty and contains an open interval
I.

Proof. Let us first note that

2R2

2R
2

σ2 + ‖Ṙ‖R
<

R2

R
2 σ2 < σ2

from which, by conditions (i) and (ii) of Definition 2.2, there exist 3 < ω− <
ω+ < σ − 1 such that every ω ∈ (ω−, ω+) satisfies

1 +

√

√

√

√

2R
2

−R̈t̄R − ‖Ṙ‖R
< ω < −1 +

√

√

√

√

2R2

2R
2

σ2 + ‖Ṙ‖R

or, equivalently,

(ω − 1)2 >
2R

2

−R̈t̄R − ‖Ṙ‖R
and (ω + 1)2 <

2R2

2R
2

σ2 + ‖Ṙ‖R
. (6.1)

Since ω > 3, using the first of (6.1)

2R
2

(ω − 1)2
+ ‖Ṙ‖ 2R

ω − 1
<

2R
2

(ω − 1)2
+ ‖Ṙ‖R < −R̈t̄R



278 C. Bonanno, S. Marò Ann. Henri Poincaré

that proves the third inequality in the definition of the set ΞR. Analogously,
since ω > 1, using the second of (6.1)

2R2

(ω + 1)2
− ‖Ṙ‖ 2R

ω + 1
>

2R2

(ω + 1)2
− ‖Ṙ‖R >

2R
2

σ2
.

that proves the first inequality in the definition of the set ΞR. The second
inequality can be easily proved. �

Lemma 6.2. Let c ∈
(

0, ε R2

σ

)

and I = (ω−, ω+) be the interval defined in
Lemma 6.1. Let Γ = {(t, γ(t)) : t ∈ T} be an invariant curve of the billiard
map with rotation number ω ∈ I. Then

K−(ω) + o(c) ≤ γ(t) ≤ K+(ω) + o(c) ,

where

K−(ω) =
2R2

(ω + 1)2
− ‖Ṙ‖ 2R

ω + 1
, K+(ω) =

2R
2

(ω − 1)2
+ ‖Ṙ‖ 2R

ω − 1

and o(c) represents a function depending on R,ω, c, t0, t1 that tends to zero
uniformly for ω ∈ I as c → 0+.

Proof. Let (tn,Kn) be an orbit of the billiard map with rotation number ω on
the invariant curve Γ. From (4.8) and (4.6), a direct computation gives for the
point (t0,K0) of the orbit

K0 =
1
2

(

R0 + R1

t1 − t0

)2

+ Ṙ(t0)
(

R0 + R1

t1 − t0

)

− c2f(t1, t0, c) (6.2)

where

f(t1, t0, c) =
1

2R0
+

R0 + Ṙ(t0)(t1 − t0)
R2

0R1 + R0

√

R2
0R

2
1 − c2(t1 − t0)2

can be bounded by a constant depending on R and c but not on ω. Actually,
from (B.2) and the fact that ω ∈ I,

2 < ω− − 1 < ω − 1 < t1(t0,K0, c) − t0 < ω + 1 < ω+ + 1 (6.3)

so that |t1(t0,K0, c) − t0| is uniformly bounded on every invariant curve with
rotation number ω ∈ I for c fixed. Solving (6.2) for (t1 − t0), we get

t1 − t0 =
R0 + R1

√

Ṙ2(t0) + 2(K0 + c2f(t1, t0, c)) − Ṙ(t0)

that used in (6.3) gives

K−(ω) ≤ K0 + c2f(t1, t0, c) ≤ K+(ω) .

Since this argument applies to all points of Γ, the proof is finished. �



Vol. 23 (2022) Chaotic Motion in the Breathing Circle Billiard 279

Lemma 6.3. Let I = (ω−, ω+) be the interval defined in Lemma 6.1. Suppose
that there exists an invariant curve Γ of the billiard map with rotation number
ω ∈ I. Consider a point (t̄, K̄) ∈ Γ such that

Ṙt̄ = 0.

Let t1 = t1(t̄, K, c) and t−1 = t−1(t̄, K, c), and consider the function

ac(t̄, K) := a(t−1(t̄, K, c), t̄, t1(t̄, K, c))

with the notation given in Proposition B.7. Then

ac(t̄, K) = 2
√

2K

(

R̈t̄ + K

(

1
R0 + Rt̄

+
1

R2 + Rt̄

))

+ o(c),

where o(c) represents a function depending on R,ω, c, t0, t1 that tends to zero
uniformly for ω ∈ I as c → 0.

Proof. Let h(t, s) be the function defined in (4.5) on the the strip Ω = {(t, s) ∈
R

2 : 0 < t−s < σ}, with ε, σ and c given as in Proposition 4.3. Computations
show that

∂11h(t, s) = R̈(t)
R2

t +
√

R2
tR

2
s − c2(s − t)2

Rt (s − t)
+

Ṙ2(t)

s − t

(

1 +
c2(s − t)2

R2
t

√

R2
tR

2
s − c2(s − t)2

)

+2
Rt Ṙ(t)

(s − t)2

(

1 +
R2

tR
2
s

R2
t

√

R2
tR

2
s − c2(s − t)2

)

+
A(t, s)

s − t
+

c2(s − t)2

(s − t)3
√

R2
tR

2
s − c2(s − t)2

∂22h(t, s) = R̈(s)
R2

s +
√

R2
tR

2
s − c2(s − t)2

Rs (s − t)

+
Ṙ2(s)

s − t

(

1 +
c2(s − t)2

R2
s

√

R2
tR

2
s − c2(s − t)2

)

−2
Rs Ṙ(s)

(s − t)2

(

1 +
R2

tR
2
s

R2
s

√

R2
tR

2
s − c2(s − t)2

)

+
A(t, s)

s − t
+

c2(s − t)2

(s − t)3
√

R2
tR

2
s − c2(s − t)2

where Rt := R(t) and Rs := R(s), and we recall from (3.16) that

A(t, s) =
R2

t + R2
s + 2

√

R2
t R

2
s − c2(s − t)2

(s − t)2
.

Consider the function
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(t,K, c) �→ ac(t,K) := ∂11h(t, t1) + ∂22h(t−1, t)

then

ac(t,K) = 2 R̈(t)

(

Ṙ(t) +
R2

t +
√

R2
t R

2
1 − c2(t1 − t)2

Rt (t1 − t)

)

+
Ṙ2(t)
t − t−1

⎛

⎝1 +
c2(t − t−1)2

R2
t

√

R2
t R

2
−1 − c2(t − t−1)2

⎞

⎠

+
Ṙ2(t)
t1 − t

(

1 +
c2(t1 − t)2

R2
t

√

R2
t R

2
1 − c2(t1 − t)2

)

+
A(t−1, t)
t − t−1

+
c2(t − t−1)2

(t − t−1)3
√

R2
t R

2
−1 − c2(t − t−1)2

+
A(t, t1)
t1 − t

+
c2(t1 − t)2

(t1 − t)3
√

R2
t R

2
1 − c2(t1 − t)2

+ 2
Rt Ṙ(t)
(t1 − t)2

(

1 +
R2

t R
2
1

R2
t

√

R2
t R

2
1 − c2(t1 − t)2

)

−2
Rt Ṙ(t)

(t − t−1)2

⎛

⎝1 +
R2

t R
2
−1

R2
t

√

R2
t R

2
−1 − c2(t − t−1)2

⎞

⎠

where we have used that

R2
t +
√

R2
t R

2
−1 − c2(t − t−1)2

Rt (t − t−1)
= ṙ(t−; t−1, t)

= −ṙ(t+; t, t1) + 2Ṙ(t) =
R2

t +
√

R2
t R

2
1 − c2(t−1 − t)2

Rt (t−1 − t)
+ 2Ṙ(t).

As in Lemma 6.2, since t1(t,K, c)−t and t−t−1(t,K, c) are uniformly bounded
for c fixed, we can write

⎧

⎪

⎨

⎪

⎩

K = 1
2

(

Rt+R1
t1−t

)2

+ Ṙt
Rt+R1
t1−t + o(c)

K1 = 1
2

(

Rt+R1
t1−t

)2

− Ṙ1
Rt+R1
t1−t + o(c)

from which
⎧

⎨

⎩

t1 − t = Rt+R1√
Ṙ2

t+2K−Ṙt

+ o(c)

t0 − t−1 = R−1+Rt√
Ṙ2

t+2K+Ṙt

+ o(c).

Using these formulas in the expression of ac(t,K) for t = t̄, since Ṙt̄ = 0 we
get from standard computations

ac(t̄, K) = 2
√

2K

(

R̈t̄ + K

(

1
R0 + Rt̄

+
1

R2 + Rt̄

))

+ o(c)
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where o(c) is as in Lemma 6.2. �

Lemma 6.4. If Ṙt̄ = 0 and R̈t̄ < − 2R
2

σ2R , then

α(t̄, K) := 2
√

2K

(

R̈t̄ + K

(

1
R0 + Rt̄

+
1

R2 + Rt̄

))

< 0

for every K ∈ ( 2R
2

σ2 ,−R̈t̄R).

Proof. First note that

α(t̄, K) = 2
√

2K

(

R̈t̄ + K

(

1
R0 + Rt̄

+
1

R2 + Rt̄

))

< 2
√

2K

(

R̈t̄ +
K

R

)

,

from which we get α(t̄, K) < 0 for every K ∈ (0,−R̈t̄R). Moreover, by the
hypothesis on R̈t̄ it holds 0 < 2R

2

σ2 < −R̈t̄R. �
We are now ready to extend the map P to the cylinder T×R. Fix σ > 4.

As in the proof of Proposition 5.1, for every c ∈ (0, εR2

σ ), the function h
defined in (4.5) is, by Proposition 4.3, a generating function when restricted
to the set Ω = {(t0, t1) ∈ R

2 : 0 < t1 − t0 < σ}. By Lemma 6.1, we can fix
ω ∈ I = (ω−, ω+) ⊂ ΞR. Fix a positive number β < min{ω− − 1, σ − ω+ − 1}
and consider the set

Ωβ = {(t0, t1) ∈ R
2 : β ≤ t1 − t0 ≤ σ − β}.

Hence, we can apply Lemma B.3 and find a generating function h̃ that coincides
with h on Ωβ and satisfies the assumptions of Theorem B.4. The function h̃

generates a diffeomorphism P̃ that coincides with the billiard map on some
strip.

The following result is crucial for the proof of Theorem 2.7.

Proposition 6.5. Suppose that R(t) ∈ ˜R. Then, there exists c0 such that for
every c ∈ (0, c0) and ω ∈ I ⊂ ΞR the extended map P̃ does not admit any
invariant curve with rotation number ω.

Proof. Suppose by contradiction that for c → 0, the map P̃ has an invariant
curve Γ with rotation number ω ∈ I. By (B.2), for every orbit {(tn,Kn)} on
Γ we have that

|tn+1 − tn − ω| ≤ 1

that implies, since ω > ω− > 3, that for every n ∈ Z

0 < ω − 1 ≤ tn+1 − tn ≤ ω + 1.

By the choice of β, for every n ∈ Z,

β < ω− − 1 < ω − 1 ≤ tn+1 − tn ≤ ω + 1 < ω+ + 1 < σ − β

that is (tn, tn+1) ∈ Ωβ for every n ∈ Z. Hence the dynamics on the invariant
curve are given by the billiard map P . By condition (iii) in Definition 2.2,
there exists a point (t̄, K̄) ∈ Γ such that

Ṙt̄ = 0 and R̈t̄ < − 2R
2

σ2R
.
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By Proposition B.7 and Lemma 6.3,

ac(t̄, K̄) = α(t̄, K̄) + o(c)

= 2
√

2K̄

(

R̈t̄ + K̄

(

1
R0 + Rt̄

+
1

R2 + Rt̄

))

+ o(c) > 0.

However, from Lemma 6.4 we have α(t̄, K) < 0 for every K ∈ ( 2R
2

σ2 ,−R̈t̄R)
then, if

K̄ ∈
(

2R
2

σ2
,−R̈t̄R

)

for c sufficiently small, we obtain a contradiction and the proposition is proved.
In fact, applying Lemmas 6.1 and 6.2 we find

K̄ ≤ 2R
2

(ω − 1)2
+ ‖Ṙ‖ 2R

ω − 1
+ o(c) < −R̈t̄R + o(c)

and

K̄ ≥ 2R2

(ω + 1)2
− ‖Ṙ‖ 2R

ω + 1
+ o(c) >

2R
2

σ2
+ o(c),

where o(c) represents a function that tends to zero for c → 0 uniformly for
ω ∈ I, and we are done. �

Proof of Theorem 2.7. Consider the extended map P̃ for c < c0, where c0 is
given as in Proposition 6.5. For every irrational ω ∈ I ⊂ ΞR, the Mather set
Mω is a Cantor set and there are no invariant curves with rotation number
ω. Hence, Theorem B.6 gives, for every irrational ω ∈ I, the existence of a
P̃ -invariant measure μω with positive metric entropy arbitrarily close, in the
sense specified in Theorem B.6, to the Mather set Mω. By the choice of the
extension, as shown in Proposition 6.5, the Mather sets Mω are contained in
the zone of the cylinder where P̃ = P . Hence, there exist measures μω which
are P -invariant.
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CARE Agreement.

www.dinamici.org
www.dinamici.org


Vol. 23 (2022) Chaotic Motion in the Breathing Circle Billiard 283

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

A. The Classes R and ˜R
Proposition A.1. For a fixed ε ∈ (0, 1), let α :=

√

1 +
√

1 − ε2 and

k̄ :=
α2 +

√
2α4 − 1

α2 − 1
.

For every integer k > k̄ and δ > 0 such that
1

4π2(k2 + 1)
< δ <

1
2π(k + 1)

there exists M > 0 such that the function

Rk,δ,M (t) := M + δ sin (2πkt) + δ sin(2πt)

belongs to the class ˜R.
Moreover, if ε <

√

1 − 1
(π−1)2 , then there exist δ,M such that

Rδ,M (t) := M + δ sin(2πt)

is in ˜R.

Remark A.2. Notice that for ε = 1 the class ˜R is empty. From condition (iii)
and the definition of σ,

R̈(t̄) < − 2R
2

σ2R
≤ − R

2

2R3

∥

∥

∥

∥

d2

dt2
R2

∥

∥

∥

∥

.

But
∥

∥

∥

∥

d2

dt2
R2

∥

∥

∥

∥

≥
∣

∣

∣

∣

d2

dt2
R2
∣

∣

∣

t=t̄

∣

∣

∣

∣

= 2R(t̄) |R̈(t̄)| ≥ 2R |R̈(t̄)|,

so that

R̈(t̄) < −R
2

R2 |R̈(t̄)|

that is impossible.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof of Proposition A.1. It is clear that for every k ∈ N, δ > 0, the function
R(t) is C2, 1-periodic and positive if M > 2δ. It is easily seen that

R = M − 2δ , R = M + 2δ , ‖Ṙ‖ = 2πδ(k + 1) (A.1)

and
∥

∥

∥

∥

d2

dt2
R2

∥

∥

∥

∥

≤ 8π2δ[(k2 + 1)(M + 3δ) + 2kδ] . (A.2)

Moreover, choosing t̄ = π/2,

Ṙ(t̄) = 0 , −R̈(t̄) = 4π2δ(k2 + 1) .

Finally it is immediate from the hypothesis that δ < 1.
Let us start with the computation of σ. Using (A.1), we have that

σ = (M − 2δ)min

⎧

⎨

⎩

1
4πδ(k + 1)

,
2α

√

‖ d2

dt2 R2‖

⎫

⎬

⎭

.

We note that ‖ d2

dt2 R2‖ ≥ 2R(−R̈(t̄)) = 8π2δ(M − 2δ)(k2 + 1). If

M > max{34δ , 2δ + 216π2(k + 1)2} (A.3)

using the fact that α ∈ (1,
√

2) one can show that

4πδ(k + 1) <

√

8π2δ(M − 2δ)(k2 + 1)
4

<

√

8π2δ(M − 2δ)(k2 + 1)
2α

=

√

2R(−R̈(t̄))

2α
<

√

‖ d2

dt2 R2‖
2α

from which using (A.2) and (A.3)

σ =
2(M − 2δ)α
√

‖ d2

dt2 R2‖
>

2(M − 2δ)α
√

8π2δ[(k2 + 1)(M + 3δ) + 2kδ]
> 4 . (A.4)

This gives condition (i).
To prove that condition (iii) holds we note that if

M > 2δ
4π2δ(k2 + 1) + 1
4π2δ(k2 + 1) − 1

, (A.5)

using that by hypothesis 4π2δ(k2 + 1) − 1 > 0, we get

−R̈(t̄) = 4π2δ(k2 + 1) >
M + 2δ

M − 2δ
>

2(M + 2δ)
16(M − 2δ)

>
2R

σ2R

since σ > 4.
Let us now prove condition (ii). By (A.5) and the hypothesis 2πδ(k+1) <

1, it holds

−R̈(t̄)R − ‖Ṙ‖R = 4π2δ(k2 + 1)(M − 2δ)
−2πδ(k + 1)(M + 2δ) > (M + 2δ)(1 − 2πδ(k + 1)) > 0.
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Since by (A.3)

M > 8π2δ(k2 + 1)

then

2 <

√

M

2π2δ(k2 + 1)
<

√

2(M + 2δ)2

4π2δ(k2 + 1)(M − 2δ) − 2πδ(k + 1)(M + 2δ)

=

√

√

√

√

2R
2

−R̈(t̄)R − ‖Ṙ‖R

that gives the first inequality in (ii). To prove the second inequality, we note
that the first inequality in (A.4) gives
√

√

√

√

2R2

2R
2

σ2 + ‖Ṙ‖R
>

√

α2(M − 2δ)4

πδ[2π(M + 2δ)2((k2 + 1)(M + 3δ) + 2kδ) + α2(k + 1)(M + 2δ)(M − 2δ)2]

so that we are done if

1 +

√

2(M + 2δ)2

4π2δ(k2 + 1)(M − 2δ) − 2πδ(k + 1)(M + 2δ)
<

−1 +

√

α2(M − 2δ)4

πδ[2π(M + 2δ)2((k2 + 1)(M + 3δ) + 2kδ) + α2(k + 1)(M + 2δ)(M − 2δ)2]

Looking at the asymptotic behaviour as M → +∞ of the left- and right-hand
side of the previous inequality, we find that the condition is equivalent to

√

1
πδ[2π(k2 + 1) − (k + 1)]

M <

√

α2

πδ[2π(k2 + 1) + α2(k + 1)]
M.

Hence, the inequality is satisfied for M large enough if

1
2π(k2 + 1) − (k + 1)

<
α2

2π(k2 + 1) + α2(k + 1)
. (A.6)

Since
1

2π(k2 + 1) − (k + 1)
<

1
2π(k2 + 1) − 2π(k + 1)

and
α2

2π(k2 + 1) + 2πα2(k + 1)
<

α2

2π(k2 + 1) + α2(k + 1)

(A.6) is implied by

1
2π(k2 + 1) − 2π(k + 1)

<
α2

2π(k2 + 1) + 2πα2(k + 1)
or equivalently by

(α2 − 1)k2 − 2α2k − α2 − 1 > 0 .

Since α ∈ (1,
√

2), it follows that a sufficient condition for (A.6) to hold is

k >
α2 +

√
2α4 − 1

α2 − 1
.
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This concludes the proof that for any ε ∈ (0, 1), there exist k, δ,M such that
the function

Rk,δ,M (t) := M + δ sin (2πkt) + δ sin(2πt)

is in ˜R. Moreover, for any

ε ∈
(

0,

√

1 − 1
(π − 1)2

)

we have α2 ∈ ( π
π−1 , 2), and the previous arguments can be repeated to show

that there exist δ,M such that the function Rk,δ,M (t) is in ˜R for k = 1 (it is
enough to check (A.6) with k = 1).

B. Some Results of Aubry–Mather Theory

In this section, we gather the results from Aubry–Mather theory that are used
in the paper. For the proofs, we refer to [3,4,11,27,28].

Consider the cylinder A = T × R and a strip Σ = T × (a, b) with −∞ ≤
a < b ≤ +∞. Let S : Σ → A, be a C2-embedding and denote S(x, y) = (x̄, ȳ)
and Sn(x, y) = (xn, yn).

In the following, we will tacitly consider the lift of S to the universal
cover R

2 of A where x ∈ R, x̄(x + 1, y) = x̄(x, y) + 1 and ȳ(x + 1, y) = ȳ(x, y).
With some abuse, we will use the same notation for S and its lift, and the
correct interpretation should be clear from the context.

We suppose that S is exact symplectic and twist. The exact symplectic
condition requires the existence of a C2 function V : Σ → R such that

ȳdx̄ − ydx = dV (x, y) in Σ,

and the (positive) twist condition reads
∂x̄

∂y
> 0 in Σ.

A negative twist condition would give analogous results. If Σ = A, we also
suppose that S preserves the ends of the cylinder that is

ȳ → ±∞ as y → ±∞ uniformly in x,

and twists each end infinitely that is

x̄ − x → ±∞ as y → ±∞ uniformly in x.

Note that the exact symplectic condition implies that S is orientation
preserving and preserves the two-form dy ∧ dx.

For this class of maps, the following result is well known [4,28]. In the
following, we denote the partial derivative of h with respect to the i-th variable
by hi.

Proposition B.1. Given Ω :=
{

(x, x̄) ∈ R
2 : x̄(x, a) ≤ x̄ ≤ x̄(x, b)

}

, there ex-
ists a C2 function h : Ω → R such that
(i) h(x + 1, x̄ + 1) = h(x, x̄) in Ω,
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(ii) h12(x, x̄) < 0 in Ω,
(iii) for (x, y) ∈ Σ we have S(x, y) = (x̄, ȳ) if and only if

{

h1(x, x̄) = −y

h2(x, x̄) = ȳ

Conversely, for Ω′ :=
{

(x, x̄) ∈ R
2 : a′ ≤ x̄ − x ≤ b′} let h′ : Ω′ → R be a C2

function such that
(i) h′(x + 1, x̄ + 1) = h′(x, x̄) in Ω′,
(ii) h′

12(x, x̄) < 0 in Ω′,
then, the equations

{

h′
1(x, x̄) = −y

h′
2(x, x̄) = ȳ

define implicitly on Σ′ := T × (−h′
1(x, x̄ + a′),−h′

1(x, x̄ + b′)) a C2 exact
symplectic twist embedding S′ : Σ′ → A.

Remark B.2. If Σ = A, the fact that S preserves and twists each end infinitely
implies that Ω = R

2. The condition h12(x, x̄) < 0 is related to the twist
condition. Actually, the twist implies that we can write y = y(x, x̄) and one
gets that

h12(x, x̄) = −
(

∂x̄

∂y
(x, y(x, x̄))

)−1

.

The function h (or h′) is called generating function and gives an equiv-
alent implicit definition of the diffeomorphism S. From this proposition, one
has that a sequence (xn, yn)n∈Z such that (xn, yn) ∈ Σ for every n ∈ Z is an
orbit of S if and only if for every n ∈ Z one has (xn, xn+1) ∈ Ω and

h2(xn−1, xn) + h1(xn, xn+1) = 0,
yn = −h1(xn, xn+1). (B.1)

From now on, we consider the case Σ = A. Actually, the following exten-
sion result (see, for example, [22,28]) guarantees that we can always extend
an exact symplectic diffeomorphism defined on a strip to one defined on the
cylinder.

Lemma B.3. Let h be a C2 generating function defined on Ω =
{

(x, x̄) ∈ R
2 :

a ≤ x̄ − x ≤ b
}

such that h12 ≤ δ < 0 on Ω. Then there exists a generating
function h̃ defined on R

2 such that h = h̃ on Ω and h̃ ≤ δ < 0 on R
2. Moreover,

h̃ = 1
2 (x̄−x)2 on R

2 \Ωβ, being Ωβ =
{

(x, x̄) ∈ R
2 : a − β ≤ x̄ − x ≤ b + β

}

.

Let Σ = A, we recall the variational characterisation of the orbits of S in
terms of the action

H�k(x�, . . . , xk) =
k−1
∑

n=�

h(xn, xn+1) .
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It is well known that solutions of (B.1) (and hence orbits of S) are in 1-1
correspondence with stationary points of H�k with respect to variations fixing
the endpoints x�, xk. In the following, we are interested in minimal orbits, i.e.
orbits (xn, yn)n∈Z of S such that for every pair of integers h < k and for every
sequence of real numbers (x∗

n)�≤n≤k such that x∗
� = xh and x∗

k = xk, it holds

H�k(x�, . . . , xk) ≤ H�k(x∗
� , . . . , x

∗
k).

Moreover, we recall that an orbit (xn, yn)n∈Z of S has rotation number ω ∈ R

if

lim
n→∞

xn

n
= ω.

It is well known that minimal orbits are monotone, that is only one of the
following is satisfied:

xn < xn+1 for every n ∈ Z,

xn = xn+1 for every n ∈ Z, xn > xn+1 for every n ∈ Z.

Moreover, if it has rotation number ω, then it satisfies the following estimate
for every n,m ∈ Z:

|xn − xm − (n − m)ω| ≤ 1. (B.2)

Finally we recall that an invariant set of S is said to be minimal and with
rotation number ω if it is made of minimal orbits with rotation number ω
and that the term invariant curve of S refers to a curve Γ ⊂ Σ homotopic to
{(x, y) ∈ A : y = k, for some k ∈ R} and such that S(Γ) = Γ.

The following theorem gives the existence of minimal orbits with rotation
number.

Theorem B.4 [ [4,27]]. Let h : R
2 → R be a C2 generating function such that

(i) h(x + 1, x̄ + 1) = h(x, x̄) in R
2,

(ii) h12(x, x̄) ≤ δ < 0 in R
2

and let S be the corresponding diffeomorphism. For a fixed ω ∈ R

• if ω = p/q ∈ Q, then there exists a minimal orbit (xn, yn)n∈Z of S such
that (xn+q, yn+q) = (xn + p, yn)

• if ω ∈ R \ Q, then there exists a minimal invariant set Mω of rotation
number ω such that Mω is the graph of a Lipschitz function u : π(Mω) →
R. Moreover, Mω is either an invariant curve or a Cantor set.

The following corollary gives an equivalent interpretation of the result
and has been proven in [26] (see also [23]).

Corollary B.5. For each ω ∈ R, there exist two functions φ, η : R → R such
that for every ξ ∈ R

φ(ξ + 1) = φ(ξ) + 1, η(ξ + 1) = η(ξ),

S(φ(ξ), η(ξ)) = (φ(ξ + ω), η(ξ + ω))

where φ is monotone (strictly if ω ∈ R \ Q ) and η is of bounded variation.
Moreover, φ and η have the same points of continuity and if ξ is a point of
continuity, then so are ξ ± ω and ξ ± 1.
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For irrational rotation numbers ω, Theorem B.4 leaves open the possi-
bility for the minimal set Mω to be an invariant curve or not. To prove what
is the case for a given ω is of fundamental importance to prove the existence
of chaotic motion for the diffeomorphism S. We recall the following result by
Forni.

Let us fix ω ∈ R \ Q and denote by σω the unique S-invariant ergodic
Borel probability measure supported on Mω.

Theorem B.6 [ [11]]. Let S be a C2 diffeomorphism of the cylinder A as in
Theorem B.4. Suppose that S does not admit any invariant curve of rotation
number ω. Then there exists an S-invariant ergodic Borel probability measure
μω with positive metric entropy. Moreover, μω can be chosen arbitrarily close
to σω in the sense of the weak topology on the space of compactly supported
Borel probability measures on A.

Finally we recall a result to prove whether the set Mω is an invariant
curve or not.

Proposition B.7 [ [25]]. Let S be a C2 diffeomorphism of the cylinder A as in
Theorem B.4, and let Γ be an invariant curve of S. Then

(i) Γ is a minimal set and each orbit on Γ has the same rotation number;
(ii) for any orbit (xn, yn) on Γ, it holds

a(xn−1, xn, xn+1) := h22(xn−1, xn) + h11(xn, xn+1) > 0 , ∀n ∈ Z .
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1633–1650 (2015)
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