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A B S T R A C T   

Single-phase nanocrystalline R2Fe17 (R = Pr and Nd) ribbons with rhombohedral Th2Zn17-type crystalline 
structure (space group R3m) have been fabricated by melt-spinning technique. The microstructure of the 
polycrystalline ribbons is composed of quasi-spherical grains with an average size below 100 nm. Transmission 
electron microscopy reveals that these grains are formed by agglomeration of smaller nanocrystalline entities 
around 15 nm in diameter, separated by disordered boundaries where the long-range crystalline order is lost. 
Two different ferro-to-paramagnetic phase transitions are observed, one of them coincides with that of the parent 
bulk alloy (290 and 326 K for R = Pr and Nd, respectively), and the other one can be ascribed to the disordered 
boundaries (323 and 350 K for R = Pr and Nd, respectively). For R= Pr, this fact gives rise to a significant 
broadening (c.a. 120 K under a magnetic field change of 2 T) of the full-width at the half-maximum of the 
magnetic entropy change curve, |ΔSM(T)| (that adopts a "table-like" shape), resulting in a considerable increase 
of the refrigerant capacity.   

1. Introduction 

Stoichiometric Fe-rich R2Fe17 compounds (2:17) with R = Pr and Nd 
crystallize in the Th2Zn17-type rhombohedral crystal structure (space 
group R3m) where the rare-earth (R) element occupies a unique 6c 
crystallographic position and Fe atoms the four different 6c, 9d, 18f, and 
18h sites (Wyckoff notation) [1]. As in all the rare-earth (R) transition 
metal (TM) compounds, their intrinsic magnetic properties are deter
mined by the coexistence of 4f and 3d magnetism in which interatomic 
distances play a crucial role in both the strength and nature of R-R, R-Fe, 
and Fe-Fe magnetic interactions [2–4]. In particular, the magnetic 
coupling between Fe magnetic moments depends strongly on the Fe-Fe 
interatomic distance di [5]; it is parallel (ferromagnetic) or antiparallel 
(antiferromagnetic) for di values above or below 2.45 Å, respectively [6, 
7]. Despite the dominant ferromagnetic interactions, the Fe atoms 
located at 6c sites, which lie along the c-axis forming the so-called 
"dumbbell sites”, could couple antiferromagnetically because the Fe-Fe 
distances are around 2.45 Å [8,9]. The observed significant 

magnetovolume effects, characterized by the anomalous thermal 
expansion below the magnetic ordering temperature, TC, is another 
consequence of the notable dependence of exchange interaction upon 
Fe-Fe distances [6,7,10,11]. Modified R2Fe17 compounds by adding light 
elements (such as H, C, and N) as interstitial atoms or other transition 
metals with larger atomic radii than that of Fe as substitutional atoms, 
that provoke a lattice expansion along the crystallographic c-axis, is 
perhaps the best example of the effect that Fe-Fe distances have on 
magnetization, magnetocrystalline anisotropy, and specifically on the 
Curie temperature TC [12]. 

These binary compounds with either Pr or Nd as rare-earth elements 
show a collinear ferromagnetic structure where the main contribution to 
the spontaneous magnetization and the magnetic ordering temperature 
stems from Fe atoms that exhibit a magnetic moment close to that of 
pure Fe, i.e., ~ 2 μB/Fe atom [2,13]. As for R atoms, they contribute 
substantially to the magnetocrystalline anisotropy in both compounds 
[14], and the easy magnetization direction lies along the basal plane. 
Pr2Fe17 and N2Fe17 show a high spontaneous magnetization [164.7 
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Am2kg− 1 (36.3 μB/f.u.) and 166.7 Am2kg− 1 (37.0 μB/f.u.), for Pr and Nd, 
respectively] [2,4,14], and a value of TC close to room temperature 
(285–295 and 326–350 K, for Pr and Nd, respectively) [2,4,14]. Both 
compounds display a moderate second-order magnetocaloric effect 
(MCE) with maximum magnetic entropy change |ΔSM|max values of ~ 6 
Jkg− 1K− 1 for a magnetic field change µ0ΔH of 5 T [15–17]. However, 
even though they do not show a competitive adiabatic temperature 
change value in comparison with Gd or those materials exhibiting 
first-order magnetostructural transitions, the reversible nature of the 
effect and the low rare-earth content (< 25 wt%) have placed them in 
the list of potential candidates for room-temperature (RT) magnetic 
refrigeration applications [18]. 

Moreover, melt-spinning is an out-of-equilibrium fabrication tech
nique allowing the production of many families of R-TM intermetallic 
alloys with different compositions in a one-step procedure [19,20]. The 
rapid solidification (≈ 106 K/min) occurring during the melt-spinning 
process gives rise to peculiar microstructures of the formed alloys, 
such as amorphous, nanocrystalline, or a mixture of both, which are not 
accessible by conventional arc melting or induction techniques. 

In the present work, we investigate the influence of the microstruc
ture on the magnetic and magnetocaloric properties of Pr2Fe17 and 
Nd2Fe17 thin ribbons fabricated by the melt spinning technique. The as- 
cast ribbons are single-phase alloys with a microstructure composed of 
nanocrystalline grains surrounded by disordered intergranular regions 
that play an essential role in the magnetic behavior of these alloys. The 
results are compared with those reported for the parent bulk alloys [17, 
21–24]. 

2. Experimental methods 

Fe 99.9%, Nd 99.9%, and Pr 99.98%, provided by Sigma-Aldrich, 
were used as raw materials to produce Pr2Fe17 and Nd2Fe17 ingots 
through arc-melting under an inert Ar atmosphere in a model MAM-1 
system (from Edmund Bühler GmbH). The ingots were the precursors 
to obtain rapidly solidified ribbon flakes by melt spinning technique at a 
linear speed of the rotating copper wheel of 20 m/s. The dimensions of 
the ribbon flakes were typically 1–2 cm long, 1.0–1.5 mm wide, and 

18–25 µm thick (determined from Scanning Electron Microscopy, SEM, 
observation of the cross-section). The process was carried out under a 
high-purity argon atmosphere in a model SC melt spinner system from 
Edmund Bühler GmBH. 

X-ray powder diffraction (XRD) patterns of the samples were 
collected at room temperature in the 2θ range 10–40◦ with a 2θ angle 
step of 0.01º using Mo Kα radiation (λ1 = 0.7093 Å, λ2 = 0.7136 Å). For 
this purpose, a Seifert XRD 3000TT X-ray diffractometer in Bragg- 
Brentano geometry was used. The ribbons were finely powdered using 
an agate mortar to guarantee a random distribution and homogeneous 
sizes of the powders. The diffractograms were analyzed through the Le 
Bail and Rietveld methods using the FullProof suite package [25]. 
Microstructure and elemental chemical composition were investigated 
using a Dual Beam (FIB/SEM) FEI-Helios Nanolab 600 scanning electron 
microscope equipped with an energy dispersive spectroscopy (EDS) 
system. The nanostructure of the samples was examined in a model 
JEM-2100 F field emission high-resolution transmission electron mi
croscope (HRTEM). Several HRTEM images at different resolution scales 
of small ribbon particles deposited on carbon-coated TEM grids were 
collected for each sample. With such a purpose, ribbon samples were 
finely pulverized, poured into a vial with ethanol, and sonicated for 
10 min in an ultrasonic bath to form a suspension. Drops taken from its 
upper part were deposited into the TEM grids and carefully dried. SEM 
and HRTEM images were analyzed using ImageJ software [26]. 

Magnetization as a function of temperature T and applied magnetic 
field µ0H, i.e., M(T) and M(µ0H) curves, were measured by vibrating 
sample magnetometry in a Quantum Design PPMS® Dynacool®− 9 T 
platform. M(T) curves were recorded at a 1.0 K/min T sweep rate. The 
magnetic transition temperatures were obtained from the minimum of 
the first temperature derivative of the M(T) curves measured under a 
magnetic field of 5 mT. The temperature dependence of the magnetic 
entropy change |ΔSM(T)| was determined numerically by integrating the 
Maxwell relation from the sets of M(µ0H) curves shown in Fig. 4a, c. 

3. Results and discussion 

Fig. 1(a), (d) show the experimental and calculated XRD patterns for 

Fig. 1. Experimental (dots) and calculated (black lines) X-ray powder diffraction patterns, SEM micrographs showing the granular microstructure at the ribbon cross- 
section and the corresponding histograms of the particle size for Pr2Fe17 [(a), (b) and (c)] and Nd2Fe17 [(d), (e) and (f)] melt-spun ribbons. The vertical bars in (a) and 
(d) denote the Bragg positions for the rhombohedral Th2Zn17-type crystal structure, whereas the bottom blue line represents the difference between the experimental 
and calculated patterns. 
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powdered samples of both compounds. The values for the unit cell pa
rameters and the cell volume, together with the reliability factors of the 
fits, are given in Table 1. For comparison, the table also displays the data 
available for bulk alloys. The fitting of both patterns reveals that as-cast 
ribbon samples crystallize into the Th2Zn17-type rhombohedral crystal 
structure (space group R3m) with a cell volume slightly reduced (≈ 0.2%) 
compared to the reported for bulk and high-energy-ball milled (HEBM) 
alloys. Moreover, the Bragg peaks’ broadening suggests small nanometer 
length-scale crystallite sizes. A small amount of α-Fe impurities has been 
detected, as can be deduced from the presence of the (110) Bragg 
reflection, marked with a vertical arrow in Fig. 1(a), (d). However, the 
amount of such impurities estimated from the Rietveld fitting, 3.7 and 
1.0 wt% for Pr2Fe17 and Nd2Fe17 ribbons, respectively, is well below the 
percentages found for HEBM powders (around 7 wt%) [21,23]. It is worth 
noting that no traces of iron oxides and/or rare-earth oxides were found. 
In Table 1, the relevant Fe-Fe distances for the dumbbell-pairs (6c site) are 
included for easy comparison, being around 2.4 Å. 

The SEM images of the ribbon cross-section [see Fig. 1(b), (e)] show 
a typical granular morphology, consisting of quasi-spherical 

Table 1 
Crystal structure and microstructure data, saturation magnetization MS at 2 K 
and 5 T, and Curie temperature TC determined from the low-field M(T) curves 
for Pr2Fe17 and Nd2Fe17 alloy ribbons. The results are compared with previous 
data reported for bulk alloys [21,23].  

Material Pr2Fe17 

ribbons 
Pr2Fe17 

bulk* 
Nd2Fe17 

ribbons 
Nd2Fe17 

bulk* * 

a (Å) 8.5586(3) 8.5849 8.5679(2) 8.582(1) 
c (Å) 12.523(1) 12.4659 12.462(1) 12.463(1) 
c/a 1.463(4) 1.452(3) 1.455(4) 1.452(3) 
V (Å3) 794.38(7) 795.66 792.23(3) 795 
Fe-Fe (6c) (Å) 2.422(3) 2.411(2) 2.410(3) 2.410(2) 
χ2 3.3 7.0 3.2 1.3 
RB (%) 4.9 3.3 6.6 5.8 
Fe (% wt.) 3.7 7.2 1.0 3.0 
<d> (nm) 70 - 41 - 
< τ > (nm) 15 - 12 - 
MS (Am2kg¡1) 159 162 147 138 
TC (K) 290, 323 286 ± 1 326, 350 339 ± 5  

Fig. 2. Typical high-resolution TEM images and histograms of the nanocrystal size distribution for Pr2Fe17 [(a) and (b)] and Nd2Fe17 [(c) and (d)] melt-spun ribbons. 
The inset in (b) and (d) shows the selected area electron diffraction (SAED) pattern of the respective TEM images. (e) and (f) show the Fourier transform of a 
nanocrystal and the disordered intergranular phase for Pr2Fe17 and Nd2Fe17 ribbons. 
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polycrystalline grains, but unusually small in size (tens of nanometers) 
compared with other polycrystalline melt-spun intermetallic RE-TM 
ribbons in which the average grain size is of the order of 1 µm [27]. 
From the fit of the histograms obtained after counting more than 300 
grains [see Fig. 1(c), (f)] to a log-normal distribution, the average size 
<d> for these grains are 70 and 41 nm for Pr2Fe17 and Nd2Fe17 ribbons, 

respectively. Despite the solidification process occurring under a high 
thermal gradient, which is predominantly perpendicular to the ribbons’ 
plane, samples do not show preferential grain growth (i.e., they seem to 
be isotropic). Several TEM and HRTEM images were collected for both 
ribbon samples to assess the grains’ morphology better. The images 
shown in Fig. 2(a), (c) reveal that each of such grains is indeed an 
agglomeration of smaller nanocrystals with an average size, < τ(σ)> =

15(3) and 12(2) nm for Pr2Fe17 and Nd2Fe17, respectively, estimated 
from the log-normal fit of the histograms shown in Fig. 2(b), (d). These 
values are in good agreement with those obtained from the Rietveld fit 
of the x-ray diffraction patterns (around 20 nm). Thus, SEM and TEM 
images unveil a markedly two-scale microstructure of the ribbons. 
Moreover, the analysis of several diffraction rings in the selected area 
electron diffraction (SAED) patterns confirms the Th2Zn17-type rhom
bohedral crystal structure [see insets in Fig. 2(b), (d) where the Miller 
indices corresponding to some lattice d-spacings are depicted]. 

In the HRTEM images of Fig. 2(e), (f) obtained at higher magnifi
cation, we show an individual nanocrystal surrounded by a lighter gray 
region where the absence of ordered atomic layers is recognizable. This 
a quite common in melt-spun magnetic ribbons, where it is likely to find 
a dual microstructure with different atomic arrangements and, conse
quently, different magnetic properties, such as saturation magnetiza
tion, coercivity, or Curie temperature (see below). The insets in Fig. 2(e), 
(f) show the typical Fourier transform (FT) patterns of individual 
nanocrystals (upper insets) and their surrounding disordered region 
(bottom insets). Whereas some diffraction spots are identified in the FT 
patterns inside the nanocrystalline region, only typical “amorphous 
haloes” are observed in the FT patterns of the regions surrounding the 
nanocrystals, thus confirming the absence of long-range atomic order 
within these regions. Another feature that evidences the existence of a 
disordered phase comes from the low-angle region of the diffraction 
patterns (see Fig. 1(a), (d), where an increase of the background signal 
can be perceived (below 16º). Hence, we can conclude that at the 
nanometer length scale, two phases coexist with the same composition 
but different structures, nanocrystals surrounded by a disordered or 
amorphous-like region. 

Fig. 3. Thermomagnetic curves measured under static magnetic fields at 5 mT 
and 5 T for Pr2Fe17 (b) and Nd2Fe17 (b) melt-spun ribbons. The insets show the 
temperature dependence of the first derivative of magnetization at 5 mT in the 
temperature interval of the ferromagnetic transition. 

Fig. 4. Set of isothermal magnetization M(µoH) curves across the second-order magnetic phase transition and Arrott plots (i.e., M2 vs. µoH/M) for Pr2Fe17 [(a) and 
(b)] and Nd2Fe17 [(c) and (d)]. 
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Fig. 3(a), (b) show the temperature dependence of the magnetiza
tion, M(T) curves, measured under low (5 mT) and high (5 T) magnetic 
fields, and after zero-field-cooling and field-cooling procedures for 
Pr2Fe17 and Nd2Fe17 ribbons, respectively. Firstly, we notice that the 
low-field M(T) curves display a two-step falling of the magnetization 
before reaching an almost vanishing value in both samples, thus sug
gesting the existence of two different values of the Curie temperature, 
TC. To determine those TC values for each sample, we performed the 
temperature derivative of the magnetization versus temperature. In the 
insets of Fig. 3 (a), (b), two successive minima can be visualized: (i) a 
narrow and well-defined one at 290 K and 326 K for Pr2Fe17 and 
Nd2Fe17, respectively, that match with the reported values for the TC of 
the corresponding bulk alloys, and (ii) a broad minimum at 323 K and 
350 K for Pr2Fe17 and Nd2Fe17, respectively. Hence, we assume that (i) 
can be ascribed to the Curie temperature of the nanocrystalline phases 
Tnc

C , and (ii) to that of the amorphous regions surrounding the nano
crystallites Tam

C . Two aspects regarding Tam
C are interrelated and deserve 

further discussion. On the one hand, a broader minimum in the dM/dT 
vs. T curve suggests a distribution of Curie temperatures for the disor
dered region instead of a unique, well-defined value [28]. Moreover, 
there is an enhancement of the value for the Curie temperature of this 
amorphous region, Tam

C > Tnc
C , probably due to an average slight increase 

of the Fe-Fe interatomic distances that favors ferromagnetic exchange 
interactions [6,7]. Similar results involving an enhancement of the Curie 
temperature have been reported in the literature for Invar Fe-rich 
FeZr-based metallic glasses around 90% at. in Fe. Surprisingly, the 
addition of boron and/or zirconium, and thus a reduction in the iron 
content, gives rise to a noticeable increase (up to 100 K) in the value of 
TC [29,30]. In addition, it has been observed that TC can be augmented 
by tensile stress in FeZrB metallic glasses [31]. It seems, that in both 
cases a small increase in the average Fe-Fe interatomic distances is 
produced. As it is well-known, R2Fe17 intermetallic compounds exhibit 
large magneto-volume coupling, the negative thermal expansion and 
Invar effect for temperatures below TC being the most representative 
features, associated with slight variations of the distances between Fe 
atoms along the z-axis direction ("dumbbell-sites") [6,7,22,23,32]. 
Another signature for the strong magneto-volume coupling can be 

inferred from the M(T) curves measured under a magnetic field of 5 T. 
As shown in Fig. 3, the magnetization exhibits a long “tail” for T > TC up 
to 1.2 TC or higher, indicating the existence of moment-volume in
stabilities characteristic of Invar-type alloys [33]. 

We have investigated the intrinsic and extrinsic effects that nano
structuring has on a magneto-thermal property such as the magneto
caloric effect (MCE) across the second-order ferromagnetic phase 
transition through the magnetization curves, M(µ0H), measured under 
magnetic field changes up to 5 T [see Fig. 4(a), (c)]. From them, we 
calculated the temperature dependence of the magnetic entropy change, 
ΔSM(T) curves, for different magnetic field changes. Fig. 5 displays the 
|ΔSM(T)| curves for µ0ΔH = 2 and 5 T. The inset in both figures shows 
that |ΔSM|max linearly depends on (µ0ΔH)2/3 as expected for ferromag
netic materials across the second-order phase transition [Fig. 4(b),(d) 
show the Arrot plots of both samples] whose behavior obeys the mean- 
field theory [32]. 

Tables 2 and 3 summarize the most relevant information regarding the 
magnetocaloric properties of both ribbon samples. The |ΔSM(T)| curves 
display a “caret-like” shape for the bulk alloys [17], however for Nd2Fe17 
ribbons, the curves show a broad maximum located at around 330 K 
(reaching values of |ΔSM|max = 2.5 and 4.8 Jkg− 1K− 1 for µ0ΔH = 2 and 
5 T, respectively), whereas for Pr2Fe17 ribbons the ΔSM(T) curve exhibit a 
table-like shape in the temperature range between 296 and 329 K (with 
|ΔSM|max values of 1.8 and 3.7 Jkg− 1K− 1 for µ0ΔH = 2 and 5 T, respec
tively). Therefore, it seems that a compromise between the value of |Δ 
SM|max and ΔTC = Tam

C − Tnc
C is needed to achieve a table-like behavior of 

the |ΔSM(T)| curve, which optimizes an Ericsson thermodynamic cycle 
[34] and maximizes the refrigerant capacity, RC, of the material. In Fig. 6 
(a),(b) the dependence of the refrigerant capacity, RC, on the magnetic 
field change, obtained from the criteria established in literature, is 
depicted. This condition is better fulfilled in the case of R = Pr, although 
Nd2Fe17 shows higher |ΔSM|max values. As seen from Table 4, for µ0ΔH 
= 2 T, the RC of Pr2Fe17 ribbons is substantially enhanced (almost 50%) 
compared to that of the bulk alloy and is about 25% higher than that of 
Nd2Fe17 ribbons and other reported values for bulk Nd2Fe17-based alloys 
[23,24,38]. It is worth noting that the estimated value for RC-1 in Pr2Fe17 
ribbons for µ0ΔH = 5 T (Fig. 6a and Table 3) is approximately the same to 
that reported for ball-milled powders, and slightly higher than that of bulk 
alloy [17,39] and other Pr2Fe17− xMx pseudo-binary intermetallics with Al 
[39], Mn [40] or Ni [41]. 

Fig. 5. Temperature dependence of the isothermal magnetic entropy change 
under µ0ΔH = 2 and 5 T for Pr2Fe17 and Nd2Fe17 melt-spun ribbons. The inset 
shows the |ΔSM|max versus (µ0ΔH)2/3 dependencies. 

Table 2 
|ΔSM|max, RC-1, δTFWHM, Thot, and Tcold under µ0ΔH = 1.5 T for Pr2Fe17 and Nd2Fe17 melt-spun ribbons and their mechanical milled and bulk counterparts [21,24].   

Pr2Fe17 

ribbons 
Pr2Fe17 bulk* Pr2Fe17 

(MM 10 h)*  
Nd2Fe17 

ribbons 
Nd2Fe17 bulk* * Nd2Fe17 

(MM 10 h)** 

|ΔSM|max (J kg− 1 K− 1) 1.4 2.6 2.1  2.0 2.6 1.9 
RC-1 (J kg− 1) 149 105 107  118 122 130 
δTFWHM (K) 107 40 51  61 47 70 
Thot (K) 261 265 252  303 315 304 
Tcold (K) 368 305 303  364 362 374  

Table 3 
|ΔSM|max, and RC-1, RC-2, RC-3, and related δTFWHM, and Thot, and Tcold values 
for magnetic field changes µoΔH from 1 to 5 T for Pr2Fe17 melt-spun ribbons. The 
values of RC were estimated form the field dependence of RC in Fig. 6(a).  

μoΔH (T) 1.0 2.0 3.0 4.0 5.0 

|ΔSM|max (J kg− 1 K− 1) 1.0 1.8 2.5 3.1 3.7 
RC-1 (J kg− 1) 95 208 328 450 ≈ 580 
RC-2 (J kg− 1) 74 163 259 357 ≈ 450 
δTFWHM (K) 96 117 133 145 ≈ 155 
Thot (K) 361 373 383 391 - 
Tcold (K) 265 256 250 246 242 
RC-3 (J kg− 1) 48 105 164 228 ≈ 290 
δTRC-3 (K) 82 108 132 133 - 
Thot

RC− 3 (K) 353 368 382 385 - 
Tcold

RC− 3 (K) 271 260 250 252 -  
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Thus, the heavy rare earths with high total angular momentum, J, 
and their intermetallic compounds are therefore preferential choices for 
room temperature magnetic refrigerants, and still today ensures further 
investigations on the different magnetic-thermal properties of these 
R2Fe17 alloys. 

4. Final remarks 

In summary, we would like to emphasize that the relevance of a 
current investigation is to obtain through a one-step fabrication method, 
like melt-spinning, R2Fe17 (R = Pr and Nd) single-phase ribbons with a 
mixed microstructure (nanocrystalline/amorphous). The appropriate 
combination of the magnetic phase transition temperatures related to 
the ordered (nanocrystalline) and disordered (amorphous) regions in the 
sample and the magnitude of the corresponding isothermal magnetic 
entropy change lead to a table-like shape of the |ΔSM(T)| curve of the Pr- 
based alloy. In addition, a remarkable improvement of the refrigerant 
capacity is achieved for the ribbon samples compared with the parent 
bulk alloy (over 40% larger for a magnetic field change of 2 T). 
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