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Disentangling Jenny’s equation 
by machine learning
F. Prieto‑Castrillo 1,7, M. Rodríguez‑Rastrero 2,7, F. Yunta 3,7, F. Borondo 4,7 & J. Borondo 5,6,7*

The so‑called soil‑landscape model is the central paradigm which relates soil types to their forming 
factors through the visionary Jenny’s equation. This is a formal mathematical expression that 
would permit to infer which soil should be found in a specific geographical location if the involved 
relationship was sufficiently known. Unfortunately, Jenny’s is only a conceptual expression, where 
the intervening variables are of qualitative nature, not being then possible to work it out with 
standard mathematical tools. In this work, we take a first step to unlock this expression, showing how 
Machine Learning can be used to predictably relate soil types and environmental factors. Our method 
outperforms other conventional statistical analyses that can be carried out on the same forming 
factors defined by measurable environmental variables.

In 1960 the Nobel Prize in Physics Eugene Wigner published a fascinating  paper1 on The unreasonable effective-
ness of mathematics in the natural sciences. Despite the generality of the title, the text was mainly restricted to 
physics, but the belief that mathematical equations are the best way to go in translating relationships and interac-
tions has always been at the deepest root of science.

Other disciplines, like biology or geology, have traditionally kept outside this stream, by accepting paradigms 
consisting of a seemingly endless resort to a multiplicative use of taxonomy, trying to cope with the tremendous 
diversity in the subject. This situation suffered a dramatic change in biology at the turn of the century, when the 
appearance of complex networks  theory2,3 brought long-awaited tools to help tackling some of their  problems4,5; 
this being also true in  sociology6,7. The new approach shifted the focus from diversity to the web of interactions 
among species or individuals. This approach became even more successful with the advent of Machine Learn-
ing (ML).

Similarly, in Soil Science, understanding soil state-and-change in response to different natural or humans 
factors still remains a great, yet important,  challenge8. The so-called Soil-Landscape Model, graphically described 
in Fig. 1, is the operational  paradigm9 on which field surveys are based. The model assumes that the soil state is 
a function of the complex interaction of some (landscape) forming  factors10, which creates a pattern of layers, 
on the decimeter scale, more or less parallel to the earth surface, called soil  horizons11,12.

The classical denomination of soil horizons relies on remarkably subjective criteria imprinted by different 
researchers, something that motivated the introduction of the so-called ’diagnostic horizons’, based on measurable 
physical, chemical, and morphological  properties12,13, aiming to establish a classification (soil taxa) . Diagnostic 
horizons reflect soil properties in a simpler way and they are susceptible to spatial  representation14.

In this scenario, first Dokuchaev and later  Jenny11,15 developed a seminal milestone of the paradigm, propos-
ing a formalization of the soil forming factors, in the form of the famous clorpt mathematical expression

In it, S is a currently existing  (local16) soil, expressed either as a specific taxon or as one of its diagnostic horizons. 
On the r.h.s. of the equation, cl (atmospheric climate), o (organisms), r (relief and landforms) and p (parent 
material) constitute spatially located environmental  factors17, and the time factor, t, indicates the duration of the 
interaction among  them18. Had all symbols in Jenny’s equation have a unique and precise numerical meaning, 
this equation would have been the central computational expression in  pedology19, surely what Dokuchaev and 
Jenny originally had in mind in their visionary approach. But this is not the case. To make things worst, Eq. (1) 
does not specify which raw variables integrate the forming factors; however, we know, for example, that cl must 

(1)S = f (cl, o, r, p, t, . . .).
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be an aggregate of other variables (altitude, distance to the sea, etc.), which have to be considered, nevertheless, 
context dependent. Therefore, the clorpt signature in the argument of f (. . .) turns out to be a template or coarse-
grain vision that has to be explicitly specified. This is also true for the l.h.s. of the equation, since the soil type is, 
in general, a combination of epipedon and endopedons.

However, despite the fact that Eq. (1) is more of a descriptive expression for being all involved variables of 
qualitative synthetic type, and f impossible to formulate with standard mathematical expressions, we are now in 
an era where the development of ML can provide tools capable of turning Eq. (1) into a true predictive device. 
Modern techniques in ML can extract knowledge from large data sets (soil surveys), thus supplying the adequate 
algorithms to make of Jenny’s function f an algorithmically defined one.

The aim of this paper is to contribute to narrow the gap between Pedology and Mathematics, by developing a 
method, based on the application of self-organized maps (SOM)20,21 to ground-truth soil data, able to quantita-
tive compute relationships between soils and their environmental forming factors. More specifically, we show 
here to what extent a ML approach can be defined that represents a first step towards a true reinterpretation of 
Jenny expression (1) that: i) is coherent with the empirical knowledge provided by field work, and ii) it can be 
established in simple mathematical terms/model.

Embedded in this philosophy is also digital soil mapping (DSM)22,23, a very interesting application of (1) which 
in recent years have witnessed an increasing demand due to potential applications. Using neural networks or 
other deep learning techniques, DSM aims at predicting soil classes or attributes at unvisited geographical posi-
tions by their relationship with environmental covariates. In this way, the distribution of valuable  resources24, 
or soil types in extensive geographical regions, such as  France25,26,  Italy27, or southeastern  Brazil28 have been 
studied in the last years.

Figure 1 summarizes the concepts related to the soil-landscape paradigm used in the present work in a 
pictorial way.

Results
The final results obtained with our ML analysis, performed according to the objectives stated above, are presented 
in this section. As shown below, our dataset contains sufficiently pedogenetic relationships between different 
surface and subsurface diagnostic horizons to grant a convenient way to evaluate the effectiveness of the obtained 
ML models. Indeed, our analysis has revealed non-trivial associations between the forming factors.

However, due to the limitations of prospecting and data acquisition, intrinsic to any soil survey, the factors 
have an heterogeneous level of description, our data containing few observations for some variables. We face 
therefore in this work a multi-dimensional analysis with heterogeneous variables, incomplete data, and almost 
surely non-linear relationships between them. An appropriate way to address this type of problem is through 
clustering techniques and dimensionality reduction.

Definition of variables in our dataset
The dataset used in this study consists on the observed values for the 15 variables related to the symbols in 
Eq. (1), listed in Table 1, that were collected in an extensive field study carried out in the Principado de Asturias 
(Spain). The variables have been chosen to be relevant in a context-dependent sense in a region that, although 

Figure 1.  The Jenny  equation11 relates the soil concept, S, to the forming factors: climate (c), organisms 
(o), relief (r), and parent material p, which interact over time t within the soil-landscape paradigm of Soil 
Science. Unfortunately, the function f (. . .) cannot be defined in standard mathematical terms, since the 
involved variables are often categorical, this preventing its use in a straight direct way. Jenny’s equation is an 
effort to establish the form of f (. . .) . Modern techniques in Machine Learning provide adequate algorithms 
formally defining this function by extracting knowledge from large data sets formed by different magnitudes 
characterizing the soil forming factors, in a way able to make accurate predictions.
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relatively reduced in geographic terms, shows a wide variety of soil types. However, no measurable variable was 
assigned to the forming factor time. It has been kept constant in this work since its effect can be explained by the 
other soil forming factors. More details are given in  “Methods and auxiliary calculations” and “Conclusions”.

Each observation point can be classified according to one or more diagnostic horizons, which in turn can be 
either superficial (epidedon/topsoil) or subsurface (endopedon/subsoil), as shown in Fig. 1.

Now, it is desirable a simplification in the variables on both sides of Eq. (1), so that the soil variables and 
forming factors are presented in the form of an aggregated set of (numerical and categorical) variables, while 
preserving, at the same time, their basic pedological meanings.

The most relevant associations among forming factors
For that purpose, we perform first a preliminary exploratory analysis of the data in order to unveil the existence 
or not of possible non-trivial correlations between the variables involved in Jenny’s equation. The procedure is 
as follows. Starting from the complete graph consisting of the 15 forming factors in Table 1 as vertices, we first 
prune it, by removing all edges connecting nodes lying at a distance, computed with Eq. (2), greater that the 
associated graph median. Then, the existing network communities are identified using a short random walk 
 technique29 (see full details in “Factor association: exploratory analysis”).

The result is shown in Fig. 2, where an interesting structure, consisting of four differentiated clusters, is 
clearly observed.

The first one, namely that marked in red at the top-right corner, is very obvious a priori, since it aggregates 
the epipedon (epip) and endopedon (subsup) variables, defining the l.h.s. of Jenny’s expression. This indicates 
that, from the ML point of view, they all act as valid proxies of the soil type S. In this way, we can use from a 
practical point of view the observed epipedon as a proxy of the soil state, S, which can be: ochric, mollic, umbric, 
or organic, a variable whose number of categories is very limited (only 4) compared to taxa (with a potentially 
unlimited number of categories). Let us also remark aside that this is more suitable for remote sensing analysis, 
and is consistent with the basis for the two biggest European soil datasets LUCAS and  GEMAS30,31.

The other three communities define the interactions among the variables in the r.h.s. of the equation, and 
they are not so easy to interpret, since they clearly depart from the naive conception solely in terms of the clorp 
signature. However, our result clearly indicates that they come in groups, and some interesting observations can 
be extracted from this fact. First, the p (parent material) variables only appear in the green community, mixed 
with slope related variables, r and cl. Second, no cl (climate) variable participates in the cyan cluster, which 
aggregates erosion and cover density variables, belonging to r and o, respectively. Finally, the purple community 
consists of a more heterogeneous mix of characteristics. This result reinforces our hypothesis that the forming 
factors in the Jenny equation are actually non-trivial aggregations of observables, i.e., those appearing together 
in the same cluster in Fig. 2.

In order to complement this analysis and further interpret the resulting network, we have computed partial 
correlations. The corresponding results are shown in Appendix D of the Supplemental Material (SM) S1, where 
we discuss the significant relations found with this indicator, and compare them with the results of Fig. 2.

Table 1.  Dataset variables description, indicating name and synthetic description, relationship with the 
symbols in Jenny’s equation (1), type, and range of values (numerical) or number of categories per variable 
(categorical). The endopedon variable subsup is the combination of the diagnostic subsurface horizons 1 and 2 
( subsup1 and subsup2 , respectively). See full details in “Methods and auxiliary calculations”.

Symbol in Eq. (1) Variable Description Type Levels Values

S epip Diagnostic surface horizons Factor 4 Mollic; ochric; umbric; organic

S subsup Diagnostic subsurface horizon Factor 5 Cambic-albic-no; albic-umbric-spodic-no; argilic-no; calcic-no; no-no

cl alt Altitude (a.s.l.) Numerical Range [0, 1957] (m)

cl distSea Distance to closest shore Numerical Range [0, 69] (km)

cl slopeO Slope aspect (exposure) Factor 9 N; NE; E; SE; S; SW; W; NW; no

o coverType Vegetation cover type Factor 8 Agricultural forage crop; natural woodland; eucalyptus forest; grassland meadow; 
bush; grassland bush; pine reforestation; meadows

o coverDens Vegetation cover density Numerical Range [0, 100]

r profile Hill slope profile position Factor 6 Summit; doline; flood plain; high slope; low slope; flat

r slope Slope value Numerical Range [0, 175]

r slopeShape Slope shape Factor 4 concave; concave-convex;

Convex; rectilinear

r flood Flooding or ponding potential Numerical Range [0, 2]

r erosionType Erosive forms Factor 3 Landslide; groove; no

r erosionSt Erosion intensity Factor 3 Strong; weak; no

p materialType In situ vs. transported Factor 2 In-situ; deposit

p litos Type of parent material (bedrock) Factor 11 alluvial glacial sediment; mixed siliceous; clays; sands; sandstones; limestones; 
decalcification clays; shales; quartzites; organic material; lutites
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Soil‑profile signatures for endopedon vs. epipedon
The previous result clearly discourages from attempting simple linear, or similar, regression type models to tackle 
expression (1). Having this result in mind, we further extend our research by using a multi-SOM  map20,32–34 
(see “Model building” for details).

The corresponding results, using a map of 24 neurons, are shown in Fig. 3, where we see how the map is 
able to detect the four diagnostic horizons existing in the dataset, with a fairly good prediction accuracy, which 
averages to 73% [see panel (B)] when the model is run many times. Some realizations, nevertheless, can achieve 
up to 80% accuracy, probably due to a fortunate random split between training and test data. Here, we adopt the 
conservative position in which we will take the worst-case scenario. Moreover, the confusion matrix of panel 
(B) reiterates the good predicting accuracy of our map, except for the case of the umbric and mollic epipedons 
which tend to be confused with ochric ones. This result is not expected as has been discussed, for example, in 
Ref. 35. Another interesting finding extracted from the SOM map analysis concerns the relationship predicted 
by our model between epipedon and endopedon variables, this including the case when the later is/are miss-
ing. The results are shown in Fig. 4, where a rather simple correlation is observed, i.e. organic soils appear 
mainly associated with subsup = no_no (both supsup_1 and subsup_2 missing), mollic with subsup = calcic_no 
( supsup_1 = calcic and subsup_2 missing), umbric with subsup = albic_no ( supsup_1 = albic and subsup_2 
missing), and the ochric, which is the most complicated [also responsibe of more mistakes (see Fig. 3B)], is asso-
ciated with subsup = no_no, argilic_no, and cambic_no . This indicates that either epipedons or endopedons -or 
a combination of both- can provide a valid proxy for soil characterization. This conclusion is further reinforced 
by the fact that the subsup variable is very weekly connected with the rest of variables in our model, actually 
only with litos, as can be seen in Fig. 2. Our previous hypothesis, that the epipedon is a valid signature to predict 
soils, is then supported by the analysis.

Optimal forming factors for each epipedon
A similar analysis can be performed for the forming factors, but in this case we take one step further in inter-
preting the results. In particular, we address the issue of the possibility of disregarding a significant portion of 

Figure 2.  Clusters of variables in Jenny equation (listed in Table 1) obtained by applying a median cutoff on the 
distances between variables and a community short random walk detection algorithm (see Fig. 11 in “Methods 
and auxiliary calculations” for details).

Figure 3.  Multi-SOM model obtained from the field survey dataset with the iterative procedure described 
in “Model building”. (A) SOM-map showing the aggregated classes in the diagnosis horizons layer; (B) 
Confusion matrix and accuracy of the optimal model.
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variables in Table 1, and still maintain the good predictive performance of our model, something that would 
make of Jenny’s a more workable and easy to interpret mathematical expression.

For this purpose, we perform a permutation importance  analysis36. The full procedure, described in detail 
in “Key forming factors detection”, essentially consists in ‘eliminating’ variables, one at a time, by making them 
random, and simultaneously monitoring the loss of accuracy. That is, once the variables have been ordered by 
their importance in the SOM, we randomize a set of variables of increasing size, k, starting with the least impor-
tant variables in the list. With this set, we run the model again and measure its predicting accuracy. The optimal 
value of ‘eliminated’ variables can be found by fitting the values to a bilinear model with a varying elbow  point37. 
The corresponding results are presented in Fig. 5, where we plot for each epipedon/cluster found in the SOM the 
averaged accuracy values computed from 150 samples for each random subset. This optimal k value can be found 
by fitting the values to a bilinear model with varying elbow point (vertical dashed line) and then minimizing the 
error, as described  in37. It is interesting to see that these sets are in general different; for example for the organic 
horizon the prediction accuracy regime changes to worse after 10 variables have been eliminated, and then we 
need to retain 46, while in the umbric case up to 44 variables have to be eliminated to predict the threshold, 
being then left with only 11. This constitutes a clue to find the meaningful relationships between forming factors 
and soil in the Jenny equation (1). Finally, for each optimal set of variables, the model is run again to extract the 
mean values of each variable in the different SOM classes, i.e., epipedons. This allows to interpret which are the 
most relevant values that characterize each epipedon, which is equivalent to ‘solve’ Jenny equation for our dataset.

The corresponding results are shown in Fig. 6, where the relative importance of the connections existing 
among epipedons and associated clorp variables, as quantitatively ascertain from the dataset by our SOM model, 

Figure 4.  Results from the multi-SOM model with the soil-profile signatures for endopedon vs. epipedon. 
Each bar represents the mean value of the stardarized (z-scored) subsup in each SOM cluster shown in Fig. 3. 
Positive (negative) heights represent values for that quantity above (below) the mean in the correspondig SOM 
cluster. The values of the combined variable subsup are also shown in the right panel. For example, the subsup 
value cambic_albic_no means that the two subsoil observations can achieve values subsup_1 = cambic and 
subsup_2 = no or subsup_1 = albic and subsup_2 = no.

Figure 5.  Optimal minimum number of clorp variables characterizing each epipedon in Jenny’s equation (1). It 
is interesting to see how epipedons need different subsets of variables and can be oblivion to others.
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is plot in the form of circular histograms. Notice that, since variables in the multi-SOM are standardized with 
zero mean, a negative value here means that the corresponding variable ranks below the mean computed in its 
multi-SOM cluster. The results in this figure constitute the soil-profile signatures for the key forming factors. A 
close examination of the results show that in all cases, the scenario is mostly controlled by a few variables. The 
most obvious case is the umbric horizons, where it can be seen that only 6 above and 5 below mean variables 
are the most relevant, being the rest negligible. And this also true for the rest, if one is ready to give up some 
accuracy. The worse case being the mollic horizon, for which reducing the forming factors to 6/5 implies a loss 
of accuracy of just a mere 3.4% (see Fig. 5).

To complement our study, and further interpret our model and the importance of each forming factor in the 
Jenny’s equation, we have carried out an analysis using the Shapley values  method38,39. Shapley values provide 
a measure of the importance of each forming factor by estimating the relative contribution of each factor. The 
corresponding results are reported in the Appendix E of the SM. In general terms, they are in agreement with the 
results of our permutation importance analysis, but they fail to discriminate which factors are more important 
for the epipedon.

To conclude, we take the 6/5 pattern discussed above into account, and list in Fig. 7 the most relevant selected 
variables from Table 1, as a final reference to characterize epipedons in an operational way. Notice how our 
analysis has reduced the number of forming factors necessary to fully understand Jenny’s seminal equation in a 
very substantial way, this being the most important result of our work.

Discussion
In this paper we developed a computational procedure able to effectively determine the relevance of the dif-
ferent variables associated to each of the symbols in the Jenny equation (1), as well as to uncover the structure 
of the dependencies between them, in order to elucidate an operational expression or algorithm towards the 
automatic characterization of soils. In other words, we have taken a first step to pave the road making of Jenny 
equation a real quantitative and objective expression, which application does not require the educated analysis 
and interpretation of field data by soil science experts.

Figure 6.  Relative importance of the optimal forming factors for each epipedon. Sorted standarized values of 
the subset of variables in Table 1 which are optimal for each epipedon according to the method described in 
“Key forming factors detection”. These results constitute the soil-profile signatures for the key forming factors A 
negative value here indicates a variable which ranks below the mean in its multi-SOM cluster.
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No variable has been selected to represent time, a key aspect of Jenny’s equation and pedogenesis. Time factor 
is not directly recognized in soil taxonomy. The large paleo-group is set up in soil orders such as Alfisols, Mol-
lisols and Ultisols, where it points out to the presence of horizons with an intense accumulation of alluvial clay, 
whose genesis is associated in part with the soil age but also with the climate. Podzols can be explained by using 
time as forming factor from soil types such as ultisols, but they can also be explained by using other forming 
factors. In this work, time has been taken as constant, as its cartographic representation is very difficult, and it 
can only be laid down as forming factor in genetically related soils that evolved under similar forming factors, 
such as vegetation, climate and  relief40.

For the purpose of the paper, a simple analysis of communities was first carried out. From the results, reported 
in Fig. 2, we can first conclude that there exist different clusters of variables in Table 1 indicating that certain 
combinations of soil characteristics behave as groups. In this sense, a cluster containing only the epipedon (epip) 
and endopedon (subsup) variables has been found, which strengthens our confidence that our method is cor-
rect. Second, the associations found by our analysis for the other variables are not always obvious. For example, 
the fact that distance to the sea (distSea), altitude (alt), slope (slope), and cover type (coverType) behaves as an 
independent community (see Fig. 2) leads us to believe that the geographic-climatic factors combine with the 
specific organic factors to form a complex accurate predictor. The same conclusion applies to the other two 
communities found in the analysis. These two results suggest the existence of strong interactions between the 
variables, that argue against the simple linear models often used in the literature.

For this reason, we also developed a more sophisticated supervised classification ML model, based on a multi-
layered SOM. With this approach a good accuracy rate was achieved, as shown in Fig. 3B, despite the scarcity 
of the data sample used. This result allows us to claim that the aggregation of neuron into the clusters obtained 
by the SOM learning process is a reasonable proxy for the joint probability distribution in the data. Indeed, as 
each cluster in the epipedon layer maps into many neurons in the numerical layer, the resulting SOM allows to 
establish which factors are most important for each epipedon. In particular, we have obtained in Fig. 4 quantita-
tive relationships between the different subsoil classes, i.e. values of the two layers supsup1 and subsup2 , that were 
far from trivial. For example, we observed that the organic, mollic and umbric classes prevail for those profiles 
lacking a subsoil layer, while the ochric class is more frequent for soils with a first argillic and cambic-albic sub-
layer. We stress that other relationships in Fig. 4 were previously  observed40. This confirms our ML model and 
therefore validates the reported groupings of factors into epipedon classes.

To strengthen our understanding of the relationship of the factors in Jenny’s Eq. (1), we have proceeded in 
a systematic way by gradually eliminating variables in Table 1 while simultaneously controlling the predictive 
accuracy of our model. In this way, we have found that for all epipedon classes it is possible to find a minimum, 
very low number of variables that when used, the elimination of the rest does not substantially compromise the 
accuracy of the method. This represents a big improvement, that has allowed us to obtain the relative relevance 
of the five types of variables reported in Table 1 for each epipedon, as shown in Fig. 6. Note that in this figure 
some observed relationships were a priori expected, e.g. an organic type litos is the most predominating factor 
in the organic class, this representing a further support of our method. The distributions obtained in the figure 
constitute a fingerprint—proxy—for each observable epipedon. Moreover, these quantitative refined relationships 
in Jenny’s Eq. (1) had not -at least to the authors’ knowledge- been reported before.

Figure 7.  Final variable selection. Six/Five most important variables with average values above/below the mean 
in each SOM cluster obtained from the results shown in Fig. 6 as a final reference to characterize epipedons in 
an operational way. Within each epipedon, the variables are ordered (from top to bottom) by importance.
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Notice that our SOM could have been used to produce a  DSM22,23 of the geographical region under study 
and adjacent. This is certainly an interesting topic, but not directly related to the main aim of the paper, which 
deserves future research, in which issues such as uncertainties determination or validation of our dataset will 
have to be more specifically addressed.

In conclusion, starting from a null knowledge of both what variables should appear and what inter-relation-
ships between them are relevant in Jenny’s relationship, in this work: (1) a minimum set of variables explaining 
the most common epipedons observed, and (2) the internal structure of the relationships between these variables, 
has been faithfully elucidated.

This study opens the door to further analyses that taking into account the results obtained here could inves-
tigate closed form relationships. Actually, our work represents in this sense a modest but important first step 
towards a true mathematical reinterpretation of Jenny’s seminal equation in the era of AI.

Methods and auxiliary calculations
Approach overview
In the data obtained in a soil field campaign, each observation point can be classified by one or more diagnostic 
horizons, which in turn can be either superficial (epipedons) or subsurface (endopedons), as shown in Fig. 1. A 
simplification process is required in both sides of Eq. (1), so that forming factors are then presented in the form 
of an aggregated set of (numerical and categorical) variables.

We summarize our methods in the workflow in Fig. 8. From a first data-preprocessing step, we implement 
a factor exploratory analysis by using information theory metrics. This allows to grasp the most informative 
features present in the data set. Then, feeding that subset into a Self-Organising Map (SOM) we find the most 
relevant existing clusters. To find the best model representing the data we next enforce a bootstrap cycle. The 
resulting model is then evaluated through its prediction power to classify unlabelled data. Finally, the resulting 
clustered SOM is interpreted in terms of the averaged quantities computed for each cluster. Each stage of the 
workflow is explained in more detail in the right tier of Fig. 8 and fully described in the following subsections.

Data collecting and preprocessing
The dataset used in this study consists on the experimental values for the variables listed in Table 1, that were 
collected in an extensive field study carried out in the period 2001–2012 at the 442 sites shown in Fig. 9 in the 
Autonomous Community of the Principality of Asturias, a coastal hilly region in the north of Spain. All the field 
work corresponded, essentially, to a physiographic type of sampling, based on lithological, geomorphological, 
and vegetation cover information. The variability of soils within each survey unit was determined by observa-
tions, usually made on cuts of the natural terrain, that were intended to cover the maximum possible range of 
altitudes. For a more detailed information, see Ref. 40.

For each prospection site, a record of 15 variables was obtained (see Table 1). The processing of the data (see 
right tier of Fig. 8) consists of the following steps: 

1. Subsurface variables merging on the S component of Eq. (1),

Figure 8.  Methodological workflow. The left tier corresponds to the subsections in “Methods and auxiliary 
calculations”, and in the right one details of each one of them are given.
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2. supervised factor categories collapse on the factors component of the equation, and
3. binning of the numerical variables on the factors component of the equation.

As indicated above, for the purpose of studying the relationships between both sides of Eq. (1), only soil surface 
horizons are selected. However, in addition to these surface horizons, the soil as a whole is defined, in this case, 
with one or (not often) two subsurface horizons, labeled as subsup1 or subsup2, corresponding to albic, argillic, 
calcic, cambic, or spodic  types14. The absence of any subsurface horizon, indicated as ‘no’, is indeed frequent. 
Considering the irregular presence of horizons, and in order to obtain a better predictor for deep soil horizons, 
we further merge subsurface variables subsup1 and subsup2 into a single one subsup.

In addition, during the initial phase of the data analysis we found that some of our variables had categories 
occurring with few observations ( < 10 in some cases), while others appear over-dimensioned. This is due to the 
intrinsic heterogeneity in the soil spatial distribution, which is more evident in territories, such as the one studied 
here, with a high complexity of forming factors. Variables and subsequent categories are then chosen based on 
physiographical criteria, observed in the soil profile location, and whose importance in pedogenesis has been 
previously contrasted in the literature. The values of each category therefore come from in situ raised information 
on the 442 soil sampling points. All this leads to establish simplification criteria in order to adequately treat the 
abundant information generated on such points. This simplification has been carried out based on the minimi-
zation of the number of representative variables of each forming factor, as well as merging the categories that 
characterize them. Once the categories were merged, we transformed all the numerical variables into categories 
by a cutting procedure based on quartiles, so that each bin has approximately the same number of observations. 
Our experience determines that this way of proceeding is enough to obtain an adequate representation of the 
numerical variables.

Factor association: exploratory analysis
Once the data has been pre-processed we want to know what relationships exist between the variables, and if 
so, how strong these interactions are. Due to the scarcity of data and the heterogeneous nature of the variables 
(mixture of numerical and categorical quantities), we approach this stage in two steps: 

1. Fisher/Mutual Information (MI) association tests, and
2. variable interaction network analysis.

Figure 9.  Localization in the Autonomous Community of the Principality of Asturias of the 442 sites visited 
during the 2001–2012 soil survey, where experimental values for the 15 variables listed in Table 1 were collected 
(Adapted from Fig. 5.1-01 of Ref. 40 https:// repos itorio. uam. es/ handle/ 10486/ 671738).

https://repositorio.uam.es/handle/10486/671738
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First, we observe that even with the subsoil combination and level fusion techniques described above, some 
combinations of factors have less than 5 observations. Therefore, we have used an exact Fisher test to measure 
the strength of the correlation between pairs of variables. To do this, under the null hypothesis, i.e. independent 
variables, we use the p-value as a proxy for the strength of association: the lower the p-value, the greater the cor-
relation. However, we observe that this procedure tends to overestimate the correlations, and it is not possible 
to distinguish association patterns between variables. For this reason, we have decided to use a different strategy 
based on information theory. We then use the expression given  in41

being MI(X, Y) the mutual information between variables X and Y, and H(X, Y) the associated Shannon entropy. 
In Fig. 10 we compare the results rendered by both metrics. (Notice that low values (blue) in p and high values 
(yellow) in d indicate high correlations.) As can be seen, the former metric predicts a mostly uniform highly 
correlated variables, with few interrelations. This is rather unusual and certainly not coherent with the results 
in Fig. 2. This lead us to the conclusion that d(X, Y) outperforms Fisher’s test p-value, since most false positive 
correlations detected in Fisher’s test are absent. Accordingly, we use the second criteria in the rest of the paper.

Finally, a better visualization is obtained from a directed network in which the links have a weight propor-
tional to the distance given by the Eq. (2). In Fig. 11 we show the complete network and the reduced network 
resulting from considering only those links where the distance between variables is within the first quartile. 
After this step, the factors appear segregated into two related subgroups. The smallest one is associated to ero-
sion and coverage density type variables, as it expected, while the greatest subnet shows how some variables 

(2)d(X,Y) = 1−
MI(X,Y)

H(X,Y)

Figure 10.  Factor association: comparison of the results obtained with Fisher’s p-value (A), and the metric 
introduced with Eq. (2) (B), for all possible pair of forming factor variables. These figures have been produced 
with the ggplot242 package in the R programming  language43..

Figure 11.  Factor association strength analysis: link weights are proportional to the inter-factor distance 
computed from Eq. (2): (A) complete graph, (B) reduced graph resulting from elimination of those links where 
the distance (2) between two nodes is above the median.
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like profile, litos, coverType, and floodClass are the important network connectors, i. e.,  hubs3. Once the network 
has been pruned, we use a community structure detection algorithm via short random  walks29. This allows us 
to find the existing aggregations among the relevant observables/variables, which was discussed in “Results” in 
relation to Fig. 2.

The next step, according to our workflow in Fig. 8 is to build the model that best reproduces the joint prob-
ability distribution observed in the data.

Model building
There are many techniques available for dimensionality reduction and data clustering. After experimenting 
with different methods, we have found that a self-organized multi-layer map (SOM) is very effective for our 
case. SOMs are a type of Artificial Neural Network (ANN) devised by  Kohonen20,32–34, with an architecture and 
learning mechanism that imitates the specialization by areas (vision, smelling, etc.) taking place in the brain. 
When a dataset is presented to a SOM, the processing units (neurons) undergo a competition process resulting 
in a segmentation into different regions. These regions are adapted/specialized in subsets of data that are similar 
to each other (in terms of a metric distance). For a detailed description of the SOM learning process used by us 
see Appendix A in the SM.

The most interesting feature about the SOM strategy is that it produces a mapping from a high dimensional 
space into another of low dimensionality, preserving distances. As a result, observations which are close to each 
other in terms of distance belong to regions of the SOM that are also close to each other. SOMs are popular in 
the ML community for their application to unsupervised classification problems, since they allow to find relevant 
patterns in the data without having to specify a priori the number of classes (as it happens, for example, with 
the popular k-means). In this sense SOMs have been used in very diverse areas such as medicine,  engineering44, 
and even social  sciences45.

The construction of the optimal model (see general workflow scheme in Fig. 8) goes through the following 
steps: 

1. Variable dummyfication (i.e., eliminate the effect of the variable by replacement with random values; but 
maintaining the dimensionality of the problem),

2. data training/test splitting,
3. data scaling,
4. fine tuning the SOM parameters,
5. select the winner model, and
6. classify unlabelled test data and evaluate performance.

In order to have a numerical representation of the variables in the soil-profile layer we use the technique known 
as variable dummyfication, which simply transforms each variable into a Boolean vector, 0 or 1, depending on 
whether the observation is in the class or not. Once dummyfied, the resulting data are split into 3/4 for training 
and 1/4 for model validation (see Fig. S2 in Appendix B of the SM). In addition, a scaling of the numerical layer 
is done so that the variables have mean 0 and variance 1. In this way, data with very different ranges and scales 
are more comparable. In the next step, the best possible SOM is obtained through data resampling and param-
eter optimisation. This is done by grid searching the SOM parameter space �θ  . By keeping the remaining SOM 
parameters fixed, we set η = 1− � . (For example, � = 0.1 means that the numerical component of the distances 
in Eq. (A1) of Appendix A in the SM is given a weight 9 times greater than that of the category component.) In 
our calculations, we have used a linear decreasing function fα with slope α = 0.05 , an hexagonal map topology, 
and a neighbourhood radius equal to the third quartile of the distances between units, and 100 learning periods. 
Then, for each tuple of parameters (point on the grid), 100 data sets are extracted at random with replacement 
from the training data. For each of these pieces, a SOM is trained with 3/4 of the data of that piece with the SOM 
Training algorithm 1 (see Appendix C in SM), following the scheme shown in Fig. S2(3)—Appendix B in SM—
and using the generalized distance of the Eq. (A1) of Appendix A in SM. The remaining 1/4 of the data in the 
piece is mapped to the resulting SOM, finding the accuracy of the prediction, which are shown in Fig. S2(4) and 
(5) in Appendix B of SM. This is done using the Classification and Accuracy algorithm 2 (see Appendix C of SM).

This procedure is repeated for each sample, and the average performance across all hold-out predictions are 
calculated. The result is a performance level for this set of parameters. Using a grid search technique, the optimal 
set of parameters is found, and this defines the best possible model.

We stress that during the training phase, we have enforced a data-resampling through the bootstrap method, 
which outperforms the standard cross-validation in this  case46,47. We hace used the algorithm of boot632 avail-
able in R through the package  Caret48. In Figs. S2 and  S3 of Appendix B in SM we show diagrams illustrating 
how the process is carried out to find the best model. This process takes place during phases 3 (Model Building) 
and 4 (Model Evaluation) of our workflow, that was presented in Fig. 8.

Once the best candidate model is found, the unlabelled test data is used to find the prediction accuracy. This 
is done by using again algorithm 2 in Appendix C in SM with the winning model. Results are shown in Fig. 3.

Model evaluation and interpretation: coarse‑graining the SOM
To conclude with the SOM construction, we force a clustering (or coarse-graining) in the reduced SOM  space49, 
using the procedure illustrated in Fig. 12. For this purpose, we use a hierarchical clustering of the (Tanimoto) 
distances among the unit codebooks in the diagnostic horizons layer (step 1 in the figure). The resulting den-
drogram tree, depicted in step 2, clearly shows four clusters corresponding to the mollic, ochric, umbric, and 
organic diagnostic horizons (step 3).
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One way to characterize each of these clusters is to look into the SOM codebooks containing the numerical 
information of the soil-profiles in each of the clusters. Then, by aggregating the codebooks corresponding to that 
factor over the units belonging to that cluster it is possible to find a coarser-grain description of the diagnostic 
horizons. By repeating this analysis for each of the factors, we obtain a footprint of the diagnostic horizon classes. 
For instance, in Fig. 12(4) the standardized mean values for the materialType variable are shown.

Key forming factors detection
As stressed in the last part of Results to refine our search for the key forming factors we opt for a sifting process 
in which we gradually eliminate the less important variables. The procedure is schematically shown in Fig. 13. 
We first, order the variables in a SOM cluster by their relative importance, considering their mean values in it 
(step 1). This allows to rank the variables for each epipedon according to their relevance. We then select the less 
significant ones, and monitor the global accuracy of our prediction by randomizing these set of variables—this 
being equivalent to eliminating them with increasing importance—, running at each step the model again to 
quantitatively gauge the resulting prediction accuracy (step 2). Finally, we train a new model with the surviving 
variables, and monitor the means of the forming factor values in each cluster of this new model (step 3). By 
assuming a bi-linear  model37 it is possible to estimate the optimal number of randomization variables where the 
accuracy suffers a significant change.

Figure 12.  Cluster definition and interpretation in the SOM. (1) SOM soil-profile layer is coarse-grained 
through a hierarchical clustering in the diagnosis horizon layer. (2) The resulting dendrogram tree defines 
four clusters (3) corresponding to the mollic, ochric, umbric, and organic diagnostic horizons classes. (4) Each 
cluster, i. e., diagnostic horizon, can be then interpreted by the values of the soil-profile variables in its own 
units; results for materialType is shown, as an example.

Figure 13.  Procedure to determine the optimum minimum number of variables for each epipedon. The case of 
mollic is shown here.
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