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ABSTRACT
This work aims to study the imprecision on the inner product of a real vector space.
It starts defining the notion of imprecise inner product. This notion can also model
the uncertainty about the variability of a multivariate random variable. The primary
goal is to introduce parameters in order to provide information about the shape and
the size of this kind of inner products.

Imprecision is inherent to any quantity which depends on the inner product (or
the covariance matrix). Useful techniques are developed by means of the introduced
parameters to obtain fast and easy approximations for that kind of quantities.

Throughout several examples, the convenience of the techniques is proven. These
techniques can be applied to a wider class of statistical problems dealing with im-
precision.

KEYWORDS
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approximations

1. Introduction

A recent trend in the statistical literature concerns imprecision. In many real situ-
ations, imprecision is related to an inner product of a vector space. Tsai and Lenz
(1989) consider a camera of a robot that needs to be calibrated. Moreover, the robot
is programmed to make some movements, and each movement depends on the calibra-
tion. A crucial factor in this problem is the speed (according to the authors, the time
for the execution of the underlying algorithms is of the order of miliseconds). Another
crucial factor is the error, that is nicely controlled, see (Tsai and Lenz 1989, Section
III). In this direction, we go further considering that the movements of the robot are
determined by solving certain complex problem that depends on the calibration. This
is not an intricate assumption, as each movement of the robot can be determined by
solving a decision problem that can be posed as a variational one, for instance. Note
that the calibration part can be formulated as certain imprecision on the inner product
of the underlying three-dimensional Euclidean space. Then, from a theoretical view-
point, we must address the problem of solving a complex problem that depends on
an imprecise inner product and under the critical factors of speed and error control.
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From a more theoretical viewpoint, the imprecision of the inner product is inherited
to any geometric quantity. When the computation of such a quantity for an exact
inner product becomes complex, then the time factor becomes quite problematic. We
want to obtain easy and fast approximations to bound all the possible values of the
quantity.

An added problem can appear if it is necessary to fuse imprecise information (see a
general introduction in Hall and Llinas (1997) and a related theoretical study in Yager
(1997), for instance). In general, the calculus become more complex and consequently,
the original problem grows in complexity.

A more general framework including the previous robot problem is the uncertainty
in spatial systems. In (Leung 2013, Sec. 1.1-1.2), the authors discuss about the im-
precision that shall to be included in the mathematical models. They also argue that
the imprecision appears even in the original approximated data. Clearly, any decision
procedure must take into account the different imprecisions that could occur. In this
kind of spatial systems, the imprecision can arise from the inner product or can be
formulated in these terms.

Summarizing, we consider an inner product under imprecision and from it we need
to compute certain geometric quantity. The crucial problem arises with the time fac-
tor. In this direction, the main goal of this work is to provide several techniques to
achieve nice and fast approximations for the geometric quantity. Throughout this work,
we borrow the terminology of estimation to clarify our mathematical elements, even
though no statistical reasoning is made (in this sense, we will say that we provide
different estimations for the geometric quantity).

In this setting, the first step is to analyze the imprecision of an inner product. The
“generalized information theory” is the field that studies the uncertainty and the re-
lated information under uncertainty. This area of study can be traced back to Klir
(1991), where the author raises the related problems as a proper research program.
From this starting point, several authors have focused on obtaining distinguished pa-
rameters for their imprecise elements. For example, the main goal of Bronevich and
Klir (2010) is to obtain several measures of specificity or uncertainty for imprecise
probabilities. For credal sets, we may highlight the work of Abellán and Klir (2005).
In the context of this work, first we introduce the notion of an imprecise inner prod-
uct (see Definition 2.1). Then, as a first approach, we introduce several parameters
to analyze such an imprecise inner product. In the spirit of the aforementioned gen-
eralized information theory, these parameters inform us about the structure of the
imprecise inner product. In fact, those parameters are related to the size and shape of
an imprecise inner product.

Now, we want to bound the values of a geometric quantity from an imprecise inner
product. We desire to obtain fast approximations about the values that such quantity
can take, since as it was already commented, the time factor plays a central role. Then,
our second aim is to provide several techniques to obtain these approximations. The
idea is to simplify the original problem so that the approximations can take place in a
simpler way. As a natural consequence, precision is the price paid for the speed. This
formulation is widely extended; in (Leung 2013, p. 4) it is argued that “(...) complexity
and precision are mutually conflicting. A higher level of precision can only be achieved
when a system is simple. The level of precision, however, decreases as our spatial
systems become more complex” [sic]. Surprisingly, the introduced parameters for an
imprecise inner product are key to obtain such approximations. The general idea is to
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evaluate the quantity from an exact inner product belonging to the imprecise inner
product (in some cases, it is better to enlarge the original imprecise inner product
to simplify the evaluation; see Example 3.11). Then, the parameters of the imprecise
inner product lead to certain error from which we calculate an interval for the values
of the geometric quantity.

In another setting, imprecision can also appear in the covariance matrix of a mul-
tivariate random variable. Mathematically, a covariance matrix can be described as
an inner product; consequently, an imprecise inner product can model a covariance
matrix under imprecision. Several authors have studied decision problems when the
covariance is imprecise (see, for instance, Cho (2011) or Chopra and Ziemba (2013)).
We can apply the developed techniques to obtain fast approximations of statistical
calculus when the covariance matrix is imprecise. Here, we find a deep connection
between Statistics and Geometry.

Finally, we may relate this work with recent topics in the literature. For instance,
Bronevich and Lepskiy (2015) studies, in a synthetic way, indices of imprecision.
Montes, Miranda, and Destercke (2020a) and Montes, Miranda, and Destercke (2020b)
consider imprecise probability models. Imprecision in the information provided by the
expert can lead to serious problems; Pai and Prabhu Gaonkar (2020) provide some
techniques to solve the problem of combining different information with a high degree
of conflict. Doria (2021) studies several new properties of coherent upper conditional
previsions. Dukes and Casey (2021) analyzes several completely general diversity met-
rics. And Li et al. (2021) studies attribute selection for heterogeneous data based on
information entropy.

This paper is organized as follows. In Section 2, the main notions are introduced. We
begin with the notion of an imprecise inner product, that generalizes the concept of an
inner product. We examine the main properties of this new notion. Then, we introduce
an order for inner products (a necessary tool throughout this work). This order arises
as a comparison between measures from different inner products. Section 3 is aimed
to introduce and analyse different parameters for an imprecise inner product. Each
of them provides different information about an imprecise inner product. We analyse
the main features of these parameters. Then, we show how these parameters serve in
estimating a quantity from an imprecise inner product. Several quantities of interest
are analysed in detail. In Section 3.1 we show how to obtain certain control on the
error in the estimations. Section 4 is devoted to consider different simulations which
illustrate the convenience of the developed techniques. Finally, a conclusion section
ends this paper.

2. Imprecise inner products

Let us begin recalling some basic concepts. Let V be an n-dimensional real vector
space. An inner product g on V is a symmetric bilinear map g : V × V → R. If
g(x, x) ≥ 0 holds for any vector x, then g is said to be semi-definite positive. When a
basis {e1, . . . , en} of V is fixed, the inner product can be represented by a matrix G,
the Gram matrix of g. The (i, j)-entry of the Gram matrix is the inner product of the
vectors ei and ej of the basis. Then, the inner product of two vectors x and y can be
obtained by matrix multiplication; namely, g(x, y) = x> G y, where the vectors x and
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y are represented by column matrices and > denotes transposition.
Now, let us denote by G(V) the collection of all semi-definite positive inner products

that V can be endowed with. At the same time, denote by G+(V) the collection of all
Euclidean inner products that V can be endowed with (that is, definite-positive inner
products).

Let us start with the notion of an imprecise inner product.

Definition 2.1. An imprecise inner product O is a (non-empty) set of G(V).

Observe that the case of an exact inner product is included in the previous notion.
Namely, O = {g}, g ∈ G(V).

The interpretation of an imprecise inner product is clear: a set of inner products
where we expect that the real one to be included. This notion arises naturally in the
estimation of an inner product Bazley and Fox (1962); Cai and Yuan (2010, 2011); Rice
and Silverman (1991). The inevitable error in this estimation supports our definition.

Remark 1. Let X be a random vector of an inner product space (V, g). Fixed an
orthonormal basis {e1, . . . , en} of V, recall that the covariance matrix of X is the
matrix whose (i, j) entry is E [g(X − E[X], ei) g(X − E[X], ej)] (since g(X − E[X], ei)
corresponds with the i-th component of the random vector X − E[X]). Clearly, in
this form, the covariance matrix is not coordinate-free, that is, the matrix depends
on the chosen basis of V. There exists an equivalent coordinate-free way to define the
covariance matrix: the covariance of the random vector X is the symmetric bilinear
map Cov : V × V → R defined by Cov(x, y) = E [g(X − E[X], x) g(X − E[X], y)].
Note that the matrix representation of Cov in a basis is identified with the covariance
matrix in such that basis. Observe also that the covariance is semi-definite positive.
Consequently, the covariance can be viewed as an inner product of V.

Example 2.2. (a) Consider the case of calibrating a camera in the plane. What we
need is to estimate the inner product of the 2-dimensional Euclidean space.

(a.1) Assume that the angles can be measured with precision, but the lengths
cannot. In this case, we can find an orthogonal basis of the corresponding vector
space. In this basis, (the Gram matrices of) an imprecise inner product adapted to
this problem is:

O =
{

diag (λ1, λ2) : λ1, λ2 ∈ L ⊂ R+,
}
.

A distinguished case occurs when the elements of the diagonal vary on the same range;
that is, we consider the same uncertainty in all the directions determined by the vectors
of the basis. We agree to say that an imprecise inner product O is round if there exists
g ∈ G(V) such that

O = {λ g : λ ∈ L ⊂ [0,∞)} .

(a.2) On the other hand, if we assume that the angles cannot be measured with
precision but there exist two directions along which any length can be measured in a
precise way. In this case, we can take a normal basis formed by two unitary vectors of
those directions. In this basis, an appropiate imprecise inner product adopts the form:

O =

{(
1 cos θ

cos θ 1

)
: θ ∈ T ⊂ (0, π)

}
.
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(b) Let (X,Y ) be a bivariate random variable whose exact joint distribution is
unknown.

(b.1) Assume that X and Y are independent random variables. Under this condi-
tion, a round imprecise covariance can be appropriate to model the uncertainty about
the covariance matrix. Observe certain analogy between ‘precision measuring angles’
(geometry) and ‘statistical independence’ (probability).

(b.2) Copulas are a useful tool to study the joint distribution of two or more
random variables (see Nelsen (2007) and references therein). Roughly speaking, given
two random variables X and Y , a copula allows us to build a bivariate random variable
whose marginals are random variables identically distributed as X and Y . In fact,
the converse is true, in the sense that the joint distribution can be decomposed into
the marginal distributions and a copula (the Sklar’s theorem, Nelsen (2007)). In this
context, assume that the distributions of X and Y are known but their copula is not.
Now, the uncertainty arising in the covariance matrix can be modelled by an imprecise
inner product as in (a.2) in certain coordinate system (specifically, the uncertainty of

the covariance matrix of (X/
√
V ar(X), Y/

√
V ar(Y )) can be given in the form of

(a.2)). Again, observe the analogy between the geometrical and probability objects.
For further discussion concerning this example, we may remit to Montes et al. (2015).

Example 2.3. The mixture models have been extensively studied (see McLachlan and
Peel (2004)). Let us consider m probability density functions on Rn, which are denoted
by ρ1, . . . , ρm. Denote by Covi the covariance matrix associated to the i-th probability
density function. For simplicity in this example, assume that all these densities share
the same expectation. Now, consider the mixed probability density function

∑m
i=1 πi ρi

where
∑m

i=1 πi = 1 and πi ≥ 0 for any i. Its covariance matrix is
∑m

i=1 πiCovi. We
have that the collection of all the possible mixtures provides an imprecise covariance:
O = {

∑m
i=1 πiCovi : 0 ≤ πi ≤ 1,

∑m
i=1 πi = 1}.

To understand the structure of an imprecise inner product, we need to introduce a
partial order in G(V), (see Salamanca (2018)):

Definition 2.4. Let g1, g2 ∈ G(V). We say that g1 is greater than g2, denoted by
g1 � g2, if it holds

g1(x, x) ≥ g2(x, x) ∀x ∈ V .

At the same time, we say that g2 is smaller than g1.

Remark 2. From two inner products, g1, g2, we can define the inner product g1 − g2
as follows: (g1− g2)(x, y) = g1(x, y)− g2(x, y) for any vectors x, y. Thus, we have that:
g1 � g2 if and only if g1−g2 ∈ G(V); namely, if g1−g2 is a semi-definite positive inner
product. It is clear that this condition can be easy to compute by means of the matrix
representation.

The previous order identifies a distinguished class of imprecise inner products.

Definition 2.5. An imprecise inner product O is said to be proper if there exist
gi, gs ∈ G+(V) such that

gs � g � gi , ∀g ∈ O . (1)

Remark 3. (a) Let O be a proper imprecise inner product. For any x ∈ V, x 6= ~0,
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there exist positive real numbers a, b (in general, depending on x) such that:

a ≥ g(x, x) ≥ b , ∀g ∈ O .

(b) Let O be an imprecise covariance. If O is proper, then the distribution along
each direction has a non-null, finite variance.

For an imprecise inner product, the existence of a minimum and a maximum can
be very useful.

Definition 2.6. An imprecise inner product O is said to be rhomboidal if there exist
gi, gs ∈ O such that

gs � g � gi , ∀g ∈ O .

Or equivalently, if a minimum and a maximum exist.

Note that if a minimum (or maximum) exists, then it is unique. The importance of
a rhomboidal imprecise inner product will be shown throughout this work.

The main technique related to the previous order is the following result by Sala-
manca (2018). It provides a comparison between measures in the corresponding affine
space Rn (see, for instance, Nomizu, Katsumi, and Sasaki (1994)). Here, we con-
sider the length of a curve, the volume of a set and the variance of a random vari-
able. Let us recall these notions formally. For this, fix a Euclidean space Rn, let-
ting g be its inner product. Given a (smooth) curve γ : I ⊆ R → Rn, its length is∫
I

√
g (γ′(t), γ′(t)) dt. Fixing a Cartesian coordinate system {x1, . . . , xn}, the volume

of a set U is
∫
U

√
det(g) dx1 · · · dxn. Finally, the variance of a random variable X is

V ar [X] := infp∈RnE[d(X, p)2] = E [g (X − E[X], X − E[X])]. Note that all these three
measures depend on the inner product g.

Proposition 2.7. Let Rn be an affine space and g1 and g2 be two semi-definite positive
inner products from which Rn can be endowed with. If g1 � g2 holds, then

(i) the g1-length of a curve is not smaller than its g2-length,
(ii) the g1-volume of a set is not smaller than its g2-volume, and

(iii) the g1-variance of a random variable is not smaller than its g2-variance.

As aforementioned, given an imprecise inner product, we wish to obtain several
parameters which provide us information about it. Then, we will be able to make
comparisons between imprecise inner products, or make decisions about them (see
Gajdos et al. (2008) and Bronevich and Klir (2010)). Hence, our primary objective
is to describe such parameters and to develop the characteristics provided by these
parameters.

In our framework, it is natural to consider a quantity Q which depends on the inner
product of the vector space, that is, a measurand Q. Assume that Q(g2) ≤ Q(g1)
whenever g1 � g2; let us focus on any of the cases of Proposition 2.7. The uncertainty
of the inner product yields to uncertainty of Q. If this uncertainty is modelled by an
imprecise inner product O, then we have several values of Q -perhaps, one for each
inner product of Q. The set {Q(g) : g ∈ O} can be provided to estimate Q. However,
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it may carry huge computational costs. In fact, we may compute

ω(Q) := infg∈OQ(g) and α(Q) := supg∈OQ(g) .

Then, [ω(Q), α(Q)] is an interval estimation for Q. From a practical viewpoint, α(Q)
and ω(Q) can be difficult or even laborious to compute (see the numerical simulation
in the last section). However, for rhomboidal imprecise inner products, there exists no
difficulty since it is enough to compute [Q(gi), Q(gs)], where gi and gs are the minimal
and maximal elements (see Proposition 2.7).

Instead, we prefer to compute Q(g) for a single, suitable, g ∈ G(V) and to give
positive numbers ei, e

s to assure that [α(Q), ω(Q)] ⊆ [eiQ(g), esQ(g)] holds. Hence,
[eiQ(g), esQ(g)] can be used to provide the interval estimation. In this case, we inter-
pret (es− ei) /(es + ei) as the relative error of Q(g) (by relative error of an interval we
mean the quotient between the semi-amplitude and the middle value). Surprisingly,
our precision parameters are related to this error (see Equation (6)).

In any case, we need to expand our initial imprecise inner product. For instance,
let O have only two inner products g1, g2 and neither g1 � g2 nor g2 � g1. Then,
g3 = 0.5 g1 + 0.5 g2 can be used to provide point estimations; notice that g3 does
not belong to O in general. Another example which supports the same idea is the
following: fix g ∈ G+(V) and let O = {λ g : λ ∈ [a, b] ∪ [c, d]} (a, c > 0) be a round
imprecise inner product. In this case, a candidate to make any estimation can be:
g′ = (0.5 a + 0.5 d) g, which may not belong to O. Another interesting example is
Example 2.9, which simplifies computations as in Example 3.11.

For these reasons, we expand O in the following sense:

Definition 2.8. Let O be an imprecise inner product. The imprecise inner product
G0(O) is

G0(O) =
{
g ∈ G(V) : infg′∈Og

′(x, x) ≤ g(x, x) ≤ supg′∈Og
′(x, x),∀x ∈ V

}
. (2)

Note that G0(O) is a convex set -which is usually larger than the convex hull of O.
More concretely, for any g1, g2 ∈ G0(O) and ρ ∈ [0, 1], it holds: ρ g1+(1−ρ) g2 ∈ G0(O).
From Equation (2), we interpret G0(O) as a convex set similar to O which does not
increase critically its imprecision; in the sense that, for a vector x, the range for its
length computed by O (that is, [infg∈O

√
g(x, x), supg∈O

√
g(x, x)]) coincides with the

range for its length computed by G0(O).

Remark 4. Let O be an imprecise inner product and g ∈ G(V). If there exist g1, g2 ∈
O such that

g1 � g and g � g2

then g ∈ G0(O).

Example 2.9. Fixed a basis {e1, e2} of a two-dimensional vector space, consider the
imprecise inner product:

O =

{(
a c
c b

)
: (a− 2)2 + (b− 2)2 + c2 = 1, |c| > 0.1

}
.
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By Remark 4, we have that

g =

(
2 0
0 2

)
belongs to G0(O). On the one hand, if we consider

g1 =

(
2 +
√

12/5 1/5

1/5 2 +
√

12/5

)
∈ O

we have that g1 � g. To prove it, it is enough to check that the matrix

(g1 − g) =

( √
12/5 1/5

1/5
√

12/5

)
is definite positive (see Remark 2). On the other hand, if we consider

g2 =

(
1.4

√
0.28√

0.28 1.4

)
∈ O

we have that g � g2. This is an immediate consequence of the matrix

(g − g2) =

(
0.6 −

√
0.28

−
√

0.28 0.6

)
being definite positive.

This example is considered again in several parts of this work. In particular, Example
3.11 reveals the importance of G0(O).

3. Precision parameters

The origin of parameters to measure imprecision goes back to the origin of imprecision
theory. Several papers (see Abellan and Masegosa (2008); Abellán and Klir (2005);
Bronevich and Klir (2010) and references therein) exemplify the necessity and utility
of this kind of parameters. In these references, different kinds of axioms are imposed.
However, we limit ourselves to a minimum set of hypotheses, since our aim is not to
provide an exhaustive synthetic approach but a more pragmatical one.

This section is aimed to introduce and study several precision parameters for im-
precise inner products. Moreover, we show how these parameters are related to the
relative error in several estimations, as commented in the previous section.

A precision parameter must fulfil some natural axioms. To state them properly, we
need the notion of more imprecise inner product,

Definition 3.1. Let O and O′ be two imprecise inner products. We say that O′ is
more imprecise than O if O ⊆ O′ holds.

The previous concept has a clear meaning: if O is a set of possible candidates to be
the exact inner product, then O′ contains such candidates and other ones.
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Now, our axioms for a precision parameter are:

(A1) It must be non-negative.
(A2) It must vanish for any exact inner product.
(A3) If O′ is more imprecise than O, then the precision parameter evaluated on O′ is

not smaller than its evaluation on O.

Given an imprecise inner product O, the map ψO : V\
{
~0
}
→ [1,∞) is defined by

ψO(x) = supg1,g2∈O
g1(x, x)

g2(x, x)
(3)

when it provides a finite value. This map gives us information about the imprecision
in each direction. Indeed, it fulfils that ψO(x) = ψO(λx) for any λ 6= 0. Moreover, if
O is proper, then ψO is a bounded map. In fact, we have:

ψO(x) ≤ gs(x, x)

gi(x, x)
, ∀g ∈ O , (4)

where gs, gi ∈ G+(V) satisfy Equation (1).

Remark 5. On V, denote by ∼ the equivalence relation: x ∼ y if and only if there
exists t 6= 0 such that x = t y. The space V/ ∼ is a projective vector space P (V).

The function ψO induces canonically a function ψ̂O : P (V) → R, ψ̂O([x]) = ψO(x).

Note that the functions ψO and ψ̂O are equivalent; in particular, they share the max-
imum values. In this context, usually a parametrization is quite helpful. Recall that
a parametrization of a topological space M is a set of variables, the coordinates,
{x1, . . . , xn}, defined on a subset U of Rn and a map φ : U → M such that φ is
bijective. For instance, the usual Cartesian coordinates of Rn or the usual geographic
coordinates of the sphere.

Now, we will introduce our first precision parameter which fulfils our requirements.

Definition 3.2. Let O be an imprecise inner product of a vector space V. Its absolute
imprecision parameter (AIP) is

AIP (O) = maxx∈VψO(x)− 1 . (5)

We can show that AIP satisfies Axioms (A1)-(A2)-(A3). Besides, we can obtain a
sufficient condition to assume a finite value.

Lemma 3.3. (i) The absolute imprecision parameter is non-negative and it is zero if
and only if the information is exact. (ii) For a proper imprecise inner product, it takes
a finite value. (iii) If O′ is more imprecise than O, then AIP (O′) ≥ AIP (O).

Proof. (i) Since O is non-empty, it must contain an inner product g. Then, ψO(x) ≥
g(x, x)/g(x, x) = 1. Therefore, AIP (O) ≥ 0. If O = {g}, then

AIP (O) = maxx∈Vg(x, x)/g(x, x)− 1 = 0 .

For the converse, let us assume that O is not exact. Hence, O must contain two different
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inner products, g1 and g2. Hence, there exists x∗ ∈ V such that g1(x
∗, x∗) 6= g2(x

∗, x∗).
Therefore, either g1(x

∗, x∗)/g2(x
∗, x∗) or g2(x

∗, x∗)/g1(x
∗, x∗) is bigger than 1, let us

say g1(x
∗, x∗)/g2(x

∗, x∗). Hence, AIP (O) ≥ g1(x
∗, x∗)/g2(x

∗, x∗) > 1. (ii) Note that
ψO(x) ≤ gs(x, x)/gi(x, x) for any x ∈ V, x 6= ~0, where gi, gs ∈ G+(V) satisfy Equation

(1). Recalling that the space P (V) is compact (see Remark 5), the function ψ̂O must
take its maximum at least at a class [x′]. Since gs(x

′, x′)/gi(x
′, x′) bounds the function

from above, and gs, gi ∈ G+(V), we have that gs(x
′, x′)/gi(x

′, x′) takes a finite value.
Finally, this fact implies that the maximum of ψO must be finite. (iii) This follows
from Equation (3).

Before giving several examples, let us interpret the meaning of the AIP. In the case
of a proper imprecise inner product, the proof of (ii) in Lemma 3.3 allows to state:
there exists x∗ ∈ V such that AIP (O) = −1 + (supg∈Og(x∗, x∗))/(infg∈Og(x∗, x∗)). In
our approach, the interval estimation for the norm of the vector x∗ (see Page 7) is[

infg′∈Og(x∗, x∗), supg∈Og(x∗, x∗)
]
.

The relative error εr (the quotient between the semi-amplitude of the interval and its
middle point) is:

εr =

(
supg∈Og(x∗, x∗)− infg′∈Og(x∗, x∗)

)
/2(

supg∈Og(x∗, x∗) + infg′∈Og(x∗, x∗)
)
/2

= 1− 2

1 + supg∈Og(x∗, x∗)/infg′∈Og(x∗, x∗)
= 1− 2

2 +AIP (O)
.

(6)

The previous equation leads to interpret the AIP as a measure of the maximum relative
error when measuring the norm of a vector.

Example 3.4. Let O = {λ g : λ ∈ L ⊂ R} be an imprecise inner product. The map
ψO is the constant map at supL/infL. Consequently, its AIP is −1 + supL/infL.

Example 3.5. Let us compute several bounds for the AIP of Example 2.9. For this
purpose, let O′ be following imprecise inner product:

O′ =

{(
a c
c b

)
: (a− 2)2 + (b− 2)2 + c2 = 1

}
.

We have that O′ is more imprecise than O. Now, define

g1 =

(
3.5 0
0 3.5

)
, g2 =

(
0.5 0
0 0.5

)
.

It is easy to prove that: g1 � g � g2 for any g ∈ O′. This fact implies that O′′ :=
O′ ∪ {g1, g2} is a rhomboidal imprecise inner product, whose maximal and minimal
elements are g1 and g2, respectively. We deduce: AIP (O) ≤ AIP (O′′) = 6. As this is a
rough approximation, no computational effort was needed. Nevertheless, we desire to
get the exact value of AIP (O′). This value serves us as an approximation to AIP (O)
for the remaining. Recall that the function ψO can be defined on P (V) without losing
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any information. We can parametrize the classes of P (V) as follows:

{cos θ e1 + sin θ e2 : θ ∈ [0, π)} .

Now, parametrize O′ by the parameters {α, β} in the following way:

O′ =

{(
2 + cosα cosβ sinα

sinα 2 + cosα sinβ

)
: α, β : α ∈ [0, π], β ∈ [0, 2π)

}
.

At this point, we compute:

AIP (O′) = −1 + max
θ∈[0,π)

supα,α′∈[0,π],β,β′∈[0,2π) φ (7)

where the function φ is

cos2 θ (2 + cosα cosβ) + sin2 θ (2 + cosα sinβ) + 2 sin θ cos θ sinα

cos2 θ (2 + cosα′ cosβ′) + sin2 θ (2 + cosα′ sinβ′) + 2 sin θ′ cos θ′ sinα′

To solve the optimization problem in Equation (7), we used R, which provides us a
solution: AIP (O′) = 2.5. Observe not only the difference with the previous rough
estimation but also the computational costs.

To show how the AIP is related to different measures and relative errors, we need
the following result.

Proposition 3.6. Let O be an imprecise inner product and let g ∈ O. For any g′ ∈
G0(O), it holds:

(i) (1 +AIP ) g′ � g, and
(ii) g � 1

1+AIP g
′.

Proof. (i) By contradiction. Assume that there exists x ∈ V such that (1 +
AIP ) g′(x, x) < g(x, x). Hence, we can write:

supg1,g2∈O
g1(x, x)

g2(x, x)
<
g(x, x)

g′(x, x)
.

Since g′ ∈ G0(O), we can find a sequence (gi)i of elements of O such that

g′(x, x) ≥ lim
i→∞

gi(x, x) .

Combining the previous two equations and recalling that g ∈ O, we have

supg1,g2∈O
g1(x, x)

g2(x, x)
< lim

i→∞

g(x, x)

g(x, x)
≤ supg1,g2∈O

g1(x, x)

g2(x, x)
.

A contradiction.
To prove (ii), we can use a similar reasoning taking now into account that we can

find a sequence fulfilling

g′(x, x) ≤ lim
i→∞

gi(x, x) .

11



Remark 6. The orders in Proposition 3.6 are sharp, as the following example shows.
Fix g ∈ G+(V), and let O = {gλ = λ g : λ ∈ [a, b]}, a > 0, be a round imprecise inner
product. We have seen that AIP = b/a − 1. Taking ga, from Proposition 3.6, we
deduce that b

a ga � gλ for any λ ∈ [a, b]; equivalently, b g � gλ for any λ ∈ [a, b], that
is, b ≥ λ for any λ ∈ [a, b]. At the same time, taking gb, the same proposition leads to:
gλ � a

b gb; equivalently, gλ � a gλ for any λ ∈ [a, b], that is, a ≤ λ for any λ ∈ [a, b].

Let us see that Proposition 3.6 can be applied to different statistical problems.

Remark 7. (See and compare with Couso et al. (2007), Dubois et al. (2008), Quaeghe-
beur (2008) and Walley (1991).) Let X and Y be two random vectors of a Eu-
clidean vector space (V, g). Assume that EX [X] = ~0, where EX denotes the expecta-
tion operator associated to X. Denote the covariance of X by CovX . Following Re-

mark 1, we have: CovX(y, y) = EX
[
g (X − E[X], y)2

]
= EX

[
g(X, y)2

]
. Consequently,

CovX(Y, Y ) = EX
[
g(X,Y )2

]
. This fact means that the variance of the random vari-

able g(X,Y ) is:

V ar[g(X,Y )] = E
[
g(X,Y )2

]
− (g (E[X],E[Y ]))2 = EY [CovX(Y, Y )] . (8)

Assume now that we have uncertainty about the distribution of X. Moreover, the un-
certainty of the covariance of X is modelled by an imprecise covariance O. Proposition
3.6 implies the following fact -that holds when E[X] = 0:

1

1 +AIP (O)
EY [Cov∗X(Y, Y )] ≤ V ar[g(X,Y )]) ≤ (1+AIP (O))EY [Cov∗X(Y, Y )] , (9)

where Cov∗X ∈ G0(O). Let us see that Equation (9) is useful. For this end, let us take
an example.

Example 3.7. Consider two random vectors X and Y of a two-dimensional vector
space, with E[X] = 0. The probability distributions are unknown. However, some
piece of information bounds the covariance matrix CovX of X, which must satisfy the
following equation:

CovX ∈ O =

{(
a c
c b

)
: (a− 2)2 + (b− 2)2 + c2 = 1

}
.

The distribution of Y is also unknown. We know that Y is atomic and uniformly
distributed at its three atoms, which are:

{z1 = sin(ω) e1 + cos(ω) e2, z2 = sin(ω + 2π/3) e1 + cos(ω + 2π/3) e2

z3 = sin(ω + 4π/3) e1 + cos(ω + 4π/3) e2 : ω ∈ [ω0, ω1] ⊂ [0, 2π)} .

We desire to know the maximum and the minimum values of the variance of g(X,Y ).
In fact, we achieve bounds for these numbers. From Equation (8), the problem for the
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maximum value of this variance can be read as follows:

max
ω∈[ω1,ω2]
a,b,c∈R

1
3 a (sin2(ω) + sin2(ω + 2π

3 ) + sin2(ω + 4π
3 ))

+1
3 b (cos2(ω) + cos2(ω + 2π

3 ) + cos2(ω + 4π
3 ))

+1
3 c (sin(2ω) + sin(2ω + 2π

3 ) + sin(2ω + 4π
3 ))

s.t. (a− 2)2 + (b− 2)2 + c2 = 1 .

Let us compact notation to solve the previous problem. Let us write it as follows:

supV ar(g(X,Y )) = maxω∈[ω1,ω2] supCovX∈O
1

3

3∑
i=1

CovX(zi, zi) .

Now, making use of Equation (9), we obtain,

supV ar(g(X,Y )) ≤ 1 +AIP (O)

3
supω∈[ω1,ω2]

3∑
i=1

CovX(zi, zi) ,

where CovX ∈ G0(O). In particular, since Cov∗X = diag(2, 2) ∈ G0(O) (see Example
2.9) and recalling that AIP (O) = 2.5, we conclude:

supV ar(g(X,Y )) ≤ 1 +AIP (O)

3
supω∈[ω1,ω2]

3∑
i=1

Cov∗X(zi, zi)

=
2 (1 +AIP (O))

3
supω∈[ω1,ω2]

3∑
i=1

g(zi, zi)

= 2 + 2AIP (O)

= 7 .

Following a similar reasoning, it can be checked that:

inf V ar(g(X,Y )) ≥ 2

3.5
.

The remaining of this section is aimed at providing results to estimate other quan-
tities of geometrical or statistical interest. Let us begin with the variance.

Theorem 3.8. Let O be an imprecise inner product and g ∈ G0(O). An interval
estimation of the variance of a random vector X is[

1

1 +AIP
V arg(X), (1 +AIP )V arg(X)

]
. (10)

That is, for any g′ ∈ O, the g′-variance of X must be contained in Equation (10).

Proof. Given a random vector X of (V, g), its variance is V arg[X] := E[g(X−µ,X−
µ)], where µ denotes the expectation of X -we assume it exists. Combining Proposition
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2.7 and Lemma 3.6, we have,

1

1 +AIP
V arg[X] ≤ V arg′ [X] ≤ (1 +AIP )V arg[X] ∀g′ ∈ O ,

which ends the proof.

Remark 8. In the case of a round imprecise inner product, the study of the variance
becomes simple. In fact, assuming O = {λ g : λ ∈ [a, b] ⊂ R+, g ∈ G(V)}, we have[

infg′∈OV arg′(X), supg′∈OV arg′(X)
]

= [a V arg(X), b V arg(X)] .

Recalling that AIP (O) = (b− a)/a, applying Theorem 3.8 to gb we obtain:

[
infg′∈OV arg′(X), supg′∈OV arg′(X)

]
⊆
[
a V arg(X),

b2

a
V arg(X)

]
.

Applying Theorem 3.8 to ga we obtain:

[
infg′∈OV arg′(X), supg′∈OV arg′(X)

]
⊆
[
a2

b
V arg(X), b V arg(X)

]
.

Combining the last two equations,[
infg′∈OV arg′(X), supg′∈OV arg′(X)

]
⊆ [a V arg(X), b V arg(X)] .

That is, the techniques work sharply.

Example 3.9. Let O be the imprecise inner product of Examples 2.9 and 3.5. Let Z
be a 2-dimensional vector which is normally distributed with covariance matrix:

Σ =

(
σ21 σ12
σ12 σ22

)
.

It is showed that g1 := diag(2, 2) belongs to G0(O) (see Example 3.5). We have that the
g1-variance of Z is 2 (σ21+σ22). In the same remark, it is also shown that AIP (O) = 2.5.
Applying Theorem 3.8, we obtain that, for any g ∈ O, the g-variance of Z must be
contained in [

2 (σ21 + σ22)

3.5
, 7 (σ21 + σ22)

]
.

Notice that no computational cost was needed.

In a more geometrical setting, let us consider the lengths of the curves:

Theorem 3.10. Let O be an imprecise inner product and g ∈ G0(O). An interval
estimation of the length of a curve γ is[

1√
1 +AIP

g − length(γ),
√

1 +AIP g − length(γ)

]
. (11)
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That is, for any g′ ∈ O, the g′-length of γ must be contained in Equation (11).

Proof. First, observe the following fact. Let g ∈ G(V) and λ ∈ (0,∞). Define ĝ = λ g.
The ĝ-length of a curve γ : I → V is related to its g-length by means of a simple
formula,

ĝ − length =

∫
I

√
ĝ(γ′(t), γ′(t)) dt =

√
λ

∫
I

√
g(γ′(t), γ′(t)) dt

=
√
λ g − length .

Denote g = (1 +AIP ) g and g = (1 +AIP )−1 g. Making use of the previous lemma
and Proposition 2.7, we have: the g-length of a curve is not smaller than its g′-length
for any g′ ∈ O; and the g-length of a curve is not bigger than its g′-length for any
g′ ∈ O. From the above observation, for any g′ ∈ O we have:

1√
1 +AIP

g − length ≤ g′ − length and
√

1 +AIP g − length ≥ g′ − length .

Example 3.11. Consider again the imprecise inner product of Examples 2.9 and 3.5.
In the corresponding basis, consider the curve: γ(t) = (sin(t), cos(t)), t ∈ [0, 1]. Its
velocity is γ′(t) = (cos(t),− sin(t)). For any

g =

(
a c
c b

)
which belongs to O, the g-length of α is:

g − length =

∫ 1

0

√
a cos2(t) + b sin2(t)− 2 c sin(t) cos(t) dt .

Note that the previous equation is hard to compute even for a single g ∈ O. In fact, it is
an elliptic integral (Abramowitz and Stegun (1965)). Nevertheless, for g1 = diag(2, 2),
g1 ∈ G0(O), the previous length is easy to obtain:

g1 − length =
√

2 .

As a consequence, for any g ∈ O, the g-length of γ must be contained in [
√

2/3.5,
√

7].
Undoubtedly, G0(O) has considerably simplified the computations.

To close this example note that, from an analytical viewpoint, we have approximated
the solutions of the following optimization problem:

Extremal values of
∫ 1
0

√
a cos2(t) + b sin2(t)− 2 c sin(t) cos(t) dt

subject to (a− 2)2 + (b− 2)2 + c2 = 1

|c| > 0.1 .
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To end this section we focus on the volume of a set. For this quantity, the corre-
sponding bound of the error can be significantly improved by means of a new precision
parameter.

Consider an imprecise inner product O of an n-dimensional vector space V.
Let W = {e∗1, . . . , e∗n} be a basis of the dual vector space of V, denoted by V∗
(we assume that the basis of V is positively oriented; that is, we measure the
volume of a set according to the order of the vectors of this basis, see O’neill
(1983) for further details). For each g ∈ O, there exists a positive number δg
such that the volume element of (V, g), dVg, is δg e

∗
1 ∧ . . . ∧ e∗n. We can define two

positive numbers, µ0|W = sup {µ > 0 : ∃g ∈ O, dVg = µ e∗1 ∧ . . . ∧ e∗n}, and µ0|W =
inf {µ > 0 : ∃g ∈ O, dVg = µ e∗1 ∧ . . . ∧ e∗n}. Clearly, µ0|W and µ0|W depend on the cho-
sen basis of V∗. However, its quotient does not. That is, µ0|W /µ0|W does not depend
on the basis of V∗ considered. To prove that, let V = {a∗1, . . . , a∗n} be another basis of
V∗ (also positively oriented). Then, e∗1∧ . . .∧e∗n = αa∗1∧ . . .∧a∗n for some positive con-
stant α. Hence, µ0|V = αµ0|W and µ0|V = αµ0|W . Finally, µ0|W /µ0|W = µ0|V /µ0|V .
We define the following parameter in an equivalent way than µ0|W /µ0|W − 1,

Definition 3.12. Let O be an imprecise inner product. Its volume precision parameter
(VPP) is

V PP (O) = supg1,g2∈O {λ : λ dVg1 = dVg2} − 1 .

Let {e1, . . . , en} be a basis of V and O be an imprecise inner product. The VPP mea-
sures the quotient between the biggest and the smallest volume of the parallelepiped
spanned by such basis when this volume is measured by the elements of O. Note again
that this is independent of the basis considered.

The VPP also provides information about the shape of an imprecise inner product.
Notice that the AIP takes into account the maximum error in a direction. In broad
terms, the VPP is a measure about the imprecision averaging on all directions.

The VPP fulfils Axioms (A1)-(A2)-(A3):

Lemma 3.13. (i) The volume precision parameter is non-negative. (ii) If the in-
formation is exact, then its value is 0. (iii) If O′ is more imprecise than O, then
V PP (O′) ≥ V PP (O).

The proof is straightforward.
Observe that a non-exact imprecise inner product can have a null volume precision

parameter:

Example 3.14. Let {e1, e2} be a basis of a vector space. Consider the following 1-
parametric family of inner products,

Oλ =

{
g
λ

: g
λ
(e1, e1) = λ, g

λ
(e1, e2) = 0, g

λ
(e2, e2) =

1

λ

}
,

where λ ∈ (1, 2). We have that the volume element of any g ∈ Oλ is e∗1 ∧ e∗2. Hence,
SPP (Oλ) = 0.

The VPP also plays a fundamental role in the volume estimations.

Theorem 3.15. Let O be an imprecise inner product of V. An interval estimation of
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the volume of a measurable set U is[
1

1 + V PP
V olg(U), (1 + V PP )V olg(U)

]
, (12)

where g ∈ G(O). That is, for any g′ ∈ O, the g′-volume of U must be contained in
Equation (12).

Proof. It follows from the definitions that, for any g, g′ ∈ O, it holds: dVg ≤ (1 +
V PP ) dVg′ , in the sense that there exists α ≥ 1 such that αdVg = (1+V PP ) dVg′ .

To close this section, we give a nice relationship between the AIP and the VPP:

Proposition 3.16. For any imprecise inner product of V, it holds:

(1 +AIP )n/2 ≥ V PP + 1 . (13)

Proof. Fix a basis {e1, . . . , en} of V. Recall that for any inner product g, dVg =√
det(g)e∗1 ∧ . . . ∧ e∗n -where the determinant is computed from the Gram matrix

of g in the fixed basis of V. Now, let g1, g2 ∈ O. From Proposition 3.6, we have:
(1 +AIP )n/2 dVg1 ≥ dVg2 . Recalling Definition 3.12, the result is proven.

3.1. Controlling the error

In all the interval estimations made, no mention about minimizing the error was made.
For instance, in Theorem 3.10, to find an interval with minimum length, we must
search for an inner product of O which minimizes the length of the curve. However,
this is another optimization problem which may be hard to solve (perhaps, worse than
computing the lengths of different inner products of the imprecise inner product).
Example 3.11 is very illustrative in this sense. Other approach consists in evaluating
the measurand with several elements of the imprecise inner product and obtaining
several intervals. In Remark 8 we did this approach. A very valuable extra strategy
consists in obtaining different intervals from different inner products of the imprecise
inner product. Then, the intersection of these intervals can be used to improve the
final estimation. Better information must be obtained.

At this point, we would need some information about the potential of improving
the estimations made by our techniques. The following note can be applied to improve
the estimations in some particular cases.

Remark 9. Let O be an imprecise inner product. Consider a curve (or a random
variable) whose support is contained in a subspace H. Instead considering AIP (O),
we can restrict this quantity onto H. More precisely, denote by πH the projec-
tion onto H. We have that πH O is an imprecise inner product of H. Observe that
AIP (πH O) ≤ AIP (O). Then, it is possible to replace the AIP with AIP (πH O) to
play its corresponding role of error for such measures.

In the general case, we do not have the structure shown in the previous remark.
Hence, we do not know how good is our interval estimation.

In another setting, observe that the previous parameter is not related to the shape
of O. We claim a parameter related to this. In the case of a round imprecise inner
product, it must vanish.
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The following notion fulfils all our claims here.

Definition 3.17. Let O be an imprecise inner product. Its shape precision parameter
(SPP) is

SPP (O) = 1− minx∈VψO(x)

maxx∈VψO(x)
.

We note that the SPP is contained in [0, 1].
Note also that any round imprecise inner product vanishes its SPP. Recall that for

the round imprecise inner products, the interval estimations are sharp. A SPP near to
0 means that the imprecise inner product is close to be like a round imprecise inner
product. From another point of view, the SPP is a measure of the anisotropy of the
imprecise inner product.

A SPP close to 0 also means that the AIP is enough as a measure of error, and
no extra study is needed. Opposite, a SPP close to 1 implies that it may be useful a
deeper study of the AIP for a particular geometric quantity, if we desire to sharpen
the error estimation. The simulations in the last section will illustrate this fact.

Example 3.18. Fix a basis of V. In this basis, consider the following collection of
imprecise inner products Ot (t ≥ 1):

O = {diag(1, s) : s ∈ [1, t]} .

Its SPP is equal to 1− 1/t. As t ≈ 1, it takes values close to 0, guaranteeing that the
estimations depend weakly on directions. As t becomes bigger, the dependence of the
error on the directions becomes stronger. Let us observe, in the first case, t ≈ 1, the
length of the vector e2 is 1 approximately, as the exact length of the vector e1; in the
second case, the length of e1 is still exact but the length of e2 has a high range: [1, t]
and, consequently, more error.

Unfortunately, increasing imprecision does not imply that the SPP increases,

Example 3.19. Consider the following imprecise inner products:

O = {diag(1, s) : s ∈ [1, 2]} , O′ = {diag(r, s) : r, s ∈ [1, 2]} .

Clearly, O′ is more imprecise than O. However, SSP (O′) = 0 and SPP (O) = 1/2.

4. Simulations

In this section, we study numerically Example 3.11 (with O′). Recall all the ingredients.
From Example 2.9, fixed a basis {e1, e2} of a two-dimensional vector space, we consider
the imprecise inner product:

O′ =

{(
a c
c b

)
: (a− 2)2 + (b− 2)2 + c2 = 1

}
.
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In Example 3.11, we consider the curve: γ(t) = (sin(t), cos(t)), t ∈ [0, 1]. Its g-length
is:

g − length(γ) =

∫ 1

0

√
a cos2(t) + b sin2(t)− 2 c sin(t) cos(t) dt . (14)

We estimated that the length of γ must be contained in [
√

2/3.5,
√

7].
In this simulation, we compute Equation (14) for different inner products of O. But

first, let us compute its SPP value. By a computer program it can be estimated in 0.9
at least.

We can parametrize O:

O =

{(
2 + cosα cosβ sinβ

sinβ cosα sinβ

)
: α ∈ [0, π], β ∈ [0, 2π]

}
.

We take a collection U of elements of O built by a grid on the parameters α and β.
For each inner product of U we compute (14). Our data satisfy Theorem 3.10, as

we show:

[min(U),max(U)] = [0.87, 1.79] ⊂ [0.75, 2.65] = Theoretical . (15)

We observe that we accurately estimate the infimum of the values of Equation (14).
Recalling the values of the SPP, we may have certain margin to improve the prediction
of the maximum of Equation (14).

Now, we show simulations of the interval estimation of the length of γ for other
imprecise inner products. We show their parameters and we can compare the predicted
interval with the obtained by several elements of each imprecise inner product.

These imprecise inner products are obtained by mixing two inner products; namely,
fixed g1, g2 ∈ G+(V), we define the mixed imprecise inner product by g1, g2, denoted
by Mi(g1, g2) by

Mi(g1, g2) :=
⋃
{ρ g1 + (1− ρ) g2 : ρ ∈ [0, 1]} .

Note that Mi(g1, g2) is proper (since g1, g2 ∈ G+(V)). Note also that, from a statistical
point of view, this corresponds to mixture models (see Example 2.3).

For all the simulations, we fix g1 = diag(1, 1). The g1-length of γ is 1. Consequently,
Theorem 3.10 implies that: for any g′ ∈ Mi(g1, g2), it holds: g′ − length(γ) ∈ [(1 +
AIP )−1/2, (1 +AIP )1/2]. The results of the simulations are presented in Table 1.

Finally, note that the bigger the SPP, the more error is made in the interval esti-
mation.

5. Conclusions

There exist real situations where imprecision of an inner product or a covariance
appears. We define the notion of an imprecise inner product as a model to deal with this
situation. More precisely, an imprecise inner product (or an imprecise covariance) is a
set of inner products (or covariances). We have introduced several precision parameters
which are related to the size and shape of an imprecise inner product. The first one,
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g2 AIP Theoretic [(1 +AIP )−0.5, (1 +AIP )0.5] Simulated interval SPP(
2 0
0 2

)
1 [0.707, 1.414] [1, 1.414] 0(

1.2 0.1
0.1 0.9

)
0.23 [0.901, 1.109] [1, 1.090] 0.186(

0.8 0.1
0.1 0.9

)
1.35 [0.859, 1.164] [0.947, 1] 0.232(

3 0.01
0.01 0.4

)
2 [0.576, 1.733] [1, 1.525] 0.662(

2 1
1 0.7

)
5.35 [0.396, 2.521] [1, 1.533] 0.84(

1.2 1
1 0.9

)
24.6 [0.197, 5.058] [1, 1.348] 0.961

Table 1. The results of the simulations.

the AIP, refers to the maximum relative error which occurs when measuring the length
of an arbitrary vector. It can also be seen as a measure of how big an imprecise inner
product is. The second and last one, the VPP refers to the error of measuring sets. It
can be seen as a measure of the relative error averaging on directions. We have also
introduced an extra parameter, the SPP, which has served us to measure the shape of
an imprecise inner product. It is not a precision parameter in our sense (since it does
not satisfy (A3)). However, important information can be derived from it; in fact, it
informs about the anisotropy of the imprecise inner product.

In another setting, we have a quantity that we desire to estimate (as a geometrical
quantity, like the length of a curve). Clearly, one approach consists in obtaining its
extremal values for the elements of the imprecise inner product. This approach can
yield high computational costs. Instead, we are able to provide an interval estimation
by means of our precision parameters. In fact, the results in Section 2 are proof of it.
The value of the SPP provides us hints about how good are our approaches.

The main advantage of our techniques is clear: the computational costs decrease
significantly. These techniques can be applied to numerous cases. Not only the quan-
tities we have focused on this article but other ones which admit a study like we have
done. Therefore, we observe a great potential in applications in this work.
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