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Gracias a mi amigo Gabriel por acompañarme durante este último año, lloviese o hiciese

Sol.

Sense cap d’aquestes persones hagués sigut possible disfrutar de la f́ısica com ho he fet.

Gracias, gràcies.
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Chapter 1

Introduction

The fact that we are able to detect gravitational waves (GWs) since recently [1] largely

broadens our observational ambition on the universe. GWs carry information about compact

objects in the universe and also about cosmological parameters that would ideally give infor-

mation about the early universe (prior to the recombination encoded on the cosmic microwave

background). Indeed, prior to recombination, matter was ionized in a plasma state at a certain

temperature, and such a matter state emits gravitational radiation, as we will see. Since we

receive no electromagnetic radiation from prior to recombination, it is a big deal to study the

only information that could possibly be travelling towards us from the very early universe.

However, the fact that those GWs would reach us from that long ago traduces into a low

frequency radiation (too low to be detected) due to gravitational redshift [2]. Moreover, there

are other sources of thermal GWs that reach us in the frequency range and hence blur the

spectrum [3].

An example of a compact object that can emit gravitational radiation is found at the cores

of neutron stars, where very high densities exist. The case we are going to focus on is can be

applied to such objects. However, neutron stars emit thermal GWs at frequencies that are

much higher than the ones we are able to detect [4].

Such plasma state is of course formed by strongly-coupled particles, and in such coupling

regime computational issues appear. The aim of this work is to guide the reader through a

comprehensive road leading to the computation of a correlation function on a strongly-coupled

thermal field theory (henceforth denoted as ThFT). This correlator will almost directly give
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the emission rate of GWs from a thermal source. If we mean to be self-consistent, this is not an

easy nor a short road, and requires a lot of exploration of all the topics that merge together to

allow the computation of an strongly-coupled correlator. This work has been greatly inspired

on a similar paper by L. Castells-Tiestos [2], but with the addition of finite density for the

emitting body.

The beginning of the road is a sufficiently deep exploration of the duality between periodic

imaginary time quantum mechanics (QM) and quantum statistical mechanics (QSM). We will

see that we can compute quantities in QSM through a path integral approach to QM. Statistical

physics naturally lead to the first appearance of the star of the show: finite temperature. Once

this temperature is identified with imaginary time, we will consider real time in this same

formalism to find that we can define causal propagators on a thermal theory. Chapter 2 of the

book on thermal field theory by Le Bellac complements the given information very well [13].

To get to a quantum field theory (QFT from now on) from QM one just adds spatial

dimensions and specifies an harmonic potential. Thus, the QSM/QM duality can be extended

to describe quantum fields at finite temperature, and also at finite chemical potential. From

here, a coupling for an spin-2 graviton (completely analog to a GW) with an energy-momentum

tensor in a field theory can be derived. This is logical since GWs are sourced by stress-energy

tensors.

The second part of the work begins with a review of the celebrated AdS/CFT (AdS stands

for anti de-Sitter spacetime and CFT for conformal field theory) conjecture [5] with a compu-

tational goal. This means that we will loosely cover the most intuitive ideas behind the duality

so that the reader may sense the connection between quantum, strongly coupled conformal

field theories and classical field theories living in anti-de Sitter spacetime. In particular, we will

relate the imaginary time QFT developed through the first part of the work to an AdS+black

hole (BH) theory, where the Hawking temperature is dual to the temperature of the field

theory. The chemical potential of a charged BH is also found to be dual to a U(1) current on

the QFT side. This part of the work is covered with brilliant accuracy on the book about the

gauge/gravity duality by M. Ammon and J. Erdmenger [15].

Once this is done, we will compute at strong coupling the the two-point function for the

source of GWs, the stress-energy tensor and we will study its high density limit.
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Throughout the work we will use the Minkowski metric as η = diag = (−,+,+,+). The

indices in capital letters M,N, . . . refer to five-dimensional coordinates or higher, the Greek

letters µ, ν, . . . refer to four-dimensional coordinates, and the indices i, j, . . . refer to purely

spatial components.
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Chapter 2

Quantum Statistical Mechanics

Our story begins by connecting Minkowski and Euclidean metrics. This is easily done if one

considers the continuation t→ −iτ , as it yields t2 − x2 → −(τ2 + x2), which is an Euclidean

metric up to a sign. This is called Wick rotation, and it is just a fancy way of saying that

time is now purely imaginary, given that τ ∈ R. In the following we will see how this analytic

continuation yields a crucial connection in order to study quantum fields at finite temperature.

In particular, we will connect quantum statistical mechanics (QSM) with a (1+0)-dimensional

quantum field theory (QFT), which is nothing but quantum mechanics (QM).

2.1 Quantum-mechanical path integral in imaginary time

In conventional quantum mechanics (with one spatial direction for simplicity), the proba-

bility amplitude associated with finding a particle (subject to a time-independent potential)

at position q′ and time t′ knowing that it was at position q at time t is given by (Û(t′ − t) is

a time evolution operator)

F (q′, t′; q, t) = ⟨q′|Û(t′ − t)|q⟩ = ⟨q′|e−iĤ(t′−t)|q⟩ , (2.1)

which can be continued to imaginary values of time (t −→ −iτ):

F (q′,−iτ ′; q,−iτ) = ⟨q′|Û(−i(τ ′ − τ))|q⟩ = ⟨q′|e−Ĥ(τ ′−τ)|q⟩ . (2.2)

Now, the key to translate this quantity to a path integral comes from noticing that the

imaginary-time evolution operator can be understood as a concatenation of operators in the
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style of

Û(−iτ ′,−iτ) = Û(−iτn+1,−iτn)Û(−iτn,−iτn−1)...Û(−iτ1,−iτ0) (2.3)

with τn+1 = τ ′ and τ0 = τ . Now, if we take ϵ = (τj+1 − τj) = (τ ′−τ)
(n+1) −→ 0 (that is, if we

take infinite time subdivisions), we can write the infinitesimal time evolution operators and

insert n identity operators in the style of
∫
dqj |qj⟩ ⟨qj | = 1 at times τ1, ..., τn between each

time evolution operator to find that

Û(−iτ ′,−iτ) = lim
ϵ→0

∫
dq1...dqnÛ(−iϵ) |qn⟩ ⟨qn| ...Û(−iϵ) |q1⟩ ⟨q1| Û(−iϵ), (2.4)

which finally yields

F (q′,−iτ ′; q,−iτ) = lim
ϵ→0

∫
dq1...dqn ⟨qn+1| Û(−iϵ) |qn⟩ ... ⟨q2| Û(−iϵ) |q1⟩ ⟨q1| Û(−iϵ) |q0⟩ .

(2.5)

Now we can write the explicit Hamiltonian and work on the matrix elements separately, giving

⟨qj+1| Û(−iϵ) |qj⟩ ≈
∫
dpj ⟨qj+1| e−ϵ p̂2

2m |pj⟩ ⟨pj | e−ϵV (q̂) |qj⟩ . (2.6)

Using that ⟨qi|pj⟩ = 1√
2π
eiqipj and performing Gaussian integration in (2.6) one gets

⟨qj+1| Û(−iϵ) |qj⟩ =
√

m

2πϵ
e−m(qj+1−qj)

2/2ϵe−ϵV (qj), (2.7)

which introduced in (2.5) finally yields

F (q′,−iτ ′; q,−iτ) = lim
ϵ→0

( m

2πϵ

)1/2 ∫ n∏
j=1

[( m

2πϵ

)1/2
dqj

]
e−ϵ

∑n
j=0 s(qj+1,qj), (2.8)

with s(qj+1, qj) =
m(qj+1−qj)

2

2ϵ2
+ V (qj) ∼ 1

2mq̇(τj) + V (q(τj)). Now we clearly see that the

quantity in the exponent reduces to

ϵ

n∑
j=0

s(qj+1, qj) =

∫ τ ′

τ
dτ ′′

[
1

2
mq̇2(τ ′′) + V (q(τ ′′))

]
= SE(τ

′ − τ), (2.9)

which is finally our long awaited Euclidean action. The integration measure is formally

summed up as Dq(τ ′′), so that the probability amplitude can be cast in the form of a path

integral:

F (q′,−iτ ′; q,−iτ) =
∫

Dq(τ ′′)e−SE(τ ′−τ) (2.10)

with boundary conditions q(τ) = q, q(τ ′) = q′.
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As a final comment, since the action coming from the Hamiltonian with real, ordinary time

is S(t) =
∫ t
0 dt

′ [1
2mq̇

2(t′)− V (q(t′))
]
, one can easily derive that

S(−iτ) =
∫ −iτ

0
dt′
[
1

2
mq̇2(t′)− V (q(t′))

]
=

∫ τ

0
d(−iτ ′)

[
−1

2
mq̇2(−iτ ′)− V (q(−iτ ′))

]
,

(2.11)

which gives the relation

S(−iτ) = iSE(τ). (2.12)

2.2 Connection with quantum statistical mechanics

Let us briefly recall the basis of QSM. According to the laws of quantum mechanics, a given

system will be in an state |ψi⟩ with probability pi. Given this situation, we can write the

expectation value of an operator as

⟨Â⟩ =
∑
i

pi ⟨ψi|Â|ψi⟩ =
∑
i,j

pi ⟨ψi|ψj⟩ ⟨ψj |Â|ψi⟩ = Tr

{(∑
i

pi |ψi⟩ ⟨ψi|

)
Â

}
, (2.13)

where in the last step we just commuted the two factors to obtain a trace. The term inside

the parenthesis will define the density operator ρ̂ which describes the system. In a canonical

ensemble (in which the number of particles is fixed), the probability of occupation of the

i-th energy level (corresponding to a state |ψi⟩ which satisfies Ĥ |ψi⟩ = Ei |ψi⟩) is given by

pi = Ne−βEi , with β = T−1 (kB = 1, T is the temperature) and N a normalization factor.

The normalization factor is obtained by observing that, if we set Â to be the identity operator,

Â = Î, the condition Tr{ρ̂} =
∑

i pi = 1 arises, yielding

∑
i

pi = N
∑
i

e−βEi = 1 −→ Z−1(β) ≡ N =
1∑

i e
−βEi

. (2.14)

In (2.14) we have defined Z(β), which is the partition function of the system. Now we can

use the fact that {|ψi⟩} is a complete basis to rewrite the partition function as

Z(β) =
∑
j

⟨ψj | e−βĤ |ψj⟩ = Tr
{
e−βĤ

}
. (2.15)

Now we can write the density operator as

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| =
e−βĤ

∑
i |ψi⟩ ⟨ψi|∑

j ⟨ψj |e−βĤ |ψj⟩
=
e−βĤ

Z(β)
, (2.16)
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which now allows writing the thermal average of an operator as

⟨Â⟩β =
1

Z(β)
Tr
{
e−βĤÂ

}
. (2.17)

The trick to connect with (2.10) is to consider e−βĤ = Û(−iβ) as an evolution operator in

imaginary time, so that we can write

Z(β) = Tr
{
e−βĤ

}
=

∫
dq ⟨q|e−βĤ |q⟩ =

∫
dqF (q,−iβ; q, 0). (2.18)

Putting the dq inside the measure Dq(τ ′′) yields

Z(β) =

∫
Dq(τ)e−

∫ β
0 dτ( 1

2
mq̇2(τ)+V (q(τ))) =

∫
Dq(τ)e−SE(β) (2.19)

with the boundary condition q(β) = q(0). Now, (2.19) reveals a deep connection: ordinary

quantum mechanics with β-periodic imaginary time is equivalent to a system in quantum sta-

tistical mechanics at T = β−1. This is in fact the simplest case of a more general statement,

given that QM is nothing but a (1 + 0)-dimensional QFT. Generally, a d-dimensional Eu-

clidean QFT with periodic boundary conditions in time is equivalent to QSM in d-spacetime

dimensions1. We will clearly see this in the next chapter, but for now let us develop the basics

of this connection with no spatial dimensions.

As it is done in every QFT, we can define a generating functional in order to obtain the

correlation functions of the theory:

Z(β; j) =

∫
Dq(τ)e−SE(β)+

∫ β
0 dτ j(τ)q(τ). (2.20)

The correlation functions are obtained through functional differentiation. For example, we

can extract the propagator in imaginary time from

1

Z(β)

δ2Z(β; j)

δj(τ1)δj(τ2)

∣∣∣∣
j=0

=
1

Z(β)

∫
Dq(τ)q(τ1)q(τ2)e

−SE(β). (2.21)

The generating functional (2.20) represents the QFT point of view, while the thermal average

(2.17) represents the QSM point of view. In fact, one can show that if Â = T [q̂(−iτ1)q̂(−iτ2)],

1This is enough for us, although if one was to consider fermionic behaviour encoded in anticommuting

position operators (Grassman variables), boundary conditions emerge antiperiodic q(β) = −q(0).
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(2.17) and (2.20) are equivalent. The time ordering in imaginary time we used to define the

operator is

T [q̂(−iτ1)q̂(−iτ2)] = θ(τ1 − τ2)q̂(−iτ1)q̂(−iτ2) + θ(τ2 − τ1)q̂(−iτ2)q̂(−iτ1). (2.22)

If we write q̂(−iτ) = eĤτ q̂e−Ĥτ , with q̂ = q̂(0) the position operator in the Schrödinger picture,

it is pretty straightforward to show that (2.17) and (2.20) are saying the same thing, given

that (for τ1 > τ2)

Tr
{
e−βĤ q̂(−iτ1)q̂(−iτ2)

}
=

∫
dqdq1dq2q1q2 ⟨q|e−(β−τ1)Ĥ |q2⟩ ⟨q2|e−(τ1−τ2)Ĥ |q1⟩ ⟨q1|e−τ2Ĥ |q⟩ ,

(2.23)

which is the beginning of the procedure we followed to obtain (2.10). All in all, we can

state that the thermal average of two position operators at (imaginary) times τ1, τ2 gives the

propagator of the theory. The time ordering appears naturally because the positions commute

inside of the path integrals, and the operators effectively do so inside of the T [. . . ].

We can define the propagator in imaginary time in a handier way as

∆(τ − τ ′) = ⟨T [q̂(−iτ)q̂(−iτ ′)]⟩β , (2.24)

which satisfies this periodicity condition in imaginary time

∆(τ − β) = ∆(τ). (2.25)

One proves (2.25) almost directly using the periodicity of the trace and writing q̂(−iβ) =

eĤβ q̂(0)e−Ĥβ. Bear in mind that up to now τ ∈ [0, β]. We can Fourier transform the imaginary

time propagator ∆(τ) taking into account the periodicity condition (2.25), that is

∆(iωn) =

∫ β

0
dτeiωnτ∆(τ), (2.26)

with the inverse

∆(τ) =
1

β

∑
n

e−iωnτ∆(iωn), (2.27)

and the discrete frequencies

ωn =
2πn

β
, (2.28)

which are called Matsubara frequencies. The imaginary time propagator is usually referred

to as the Matsubara propagator.
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2.3 The harmonic oscillator

In order to make the connection with a free field, we introduce the harmonic oscillator

potential (for a particle of mass m = 1)

V (q) =
1

2
ω2q2. (2.29)

Now we can write the Euclidean action as

SE(β) =

∫ β

0
dτ

[
1

2
q̇2(τ) +

1

2
ω2q2(τ)

]
, (2.30)

where the first term can be integrated by parts as∫ β

0
dτ q̇2(τ) =

∫ β

0
dτ

[
d

dτ
(q̇(τ)q(τ))− q̈(τ)q(τ)

]
= −

∫ β

0
dτ q̈(τ)q(τ) (2.31)

because the first term cancels (this is a crucial detail in order to perform Gaussian integra-

tion) due to q(0) = q(β). This allows writing the generating functional as

Z(β : j) =

∫
Dq(τ) exp

{
−
∫
dτ ′
∫ β

0
dτ

1

2
q(τ)

[
δ(τ − τ ′)

(
− d2

dτ ′2
+ ω2

)]
q(τ ′)

}
× exp

{∫
dτ ′
∫ β

0
dτj(τ)q(τ ′)δ(τ − τ ′)

}
.

(2.32)

Fortunately, (2.32) is now a Gaussian integral that can be easily computed considering that∫
dx1...dxn exp

{
−1

2
xTAx+ JTx

}
=

∫
dx1...dxn exp

{
−1

2
xiδijAjjxj + Jixjδij

}
= C exp

{
1

2
JTA−1J

}
,

(2.33)

where C does not depend on J . Note that in our caseA−1 is the inverse of
[
δ(τ − τ ′)

(
− d2

dτ ′2 + ω2
)]

in the sense of the operators, so that our A−1 is really a function A−1(τ, τ ′) ≡ K(τ, τ ′) defined

by (
− d2

dτ2
+ ω2

)
K(τ, τ ′) = δ(τ − τ ′), (2.34)

while the final form of the generating functional is given by

Z(β; j) = Z(β) exp

{
1

2

∫ ∫
dτdτ ′j(τ)K(τ, τ ′)j(τ ′)

}
. (2.35)

Note that (2.34) tells us that K(τ, τ ′) is a Green function for the equation of motion of an

harmonic oscillator in imaginary time (if τ −→ it, we recover the usual equation for an harmonic
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oscillator). The interpretation of K(τ, τ ′) as a propagator could not come in a more natural

way.

If one plugs (2.35) into (2.20) it is immediate to notice that K(τ, τ ′) = ∆F (τ − τ ′) is a

propagator in imaginary time, where the F (Free) is a consequence of our choice of potential.

Now one happily solves (2.34) with the periodic boundary condition ∆(τ) = ∆(τ − β) and

τ ∈ [0, β] a priori. An strategy to solve (2.34) is to separate the problem into two regions,

separated by the δ barrier in τ = 0, allowing τ ∈ [−β, β]. It turns out that the solution is

perfectly fine for negative values of τ and it is given by

∆F (τ) =
1

2ω

[
(1 + n(ω))e−ωτ + n(ω)eωτ

]
, (2.36)

with n(ω) the Bose-Einstein distribution

n(ω) =
1

eβ|ω| − 1
. (2.37)

2.4 What if we let time to be complex?

Now we want to let time to be complex (t ∈ C) rather than purely imaginary. The first

limitation that comes to mind is time ordering. We will need new criteria for ordering complex

times. This criteria cannot be the obvious ones of ordering times attending only to their

real/imaginary parts, but we will rather need a ”sense” of ordering: a path in complex time.

This is a beautiful but rather technical way to face the problem and we will not consider here.

It is known as the real-time formalism. If the reader is interested, Le Bellac chapter 3 [13]

delivers a very enlightening discussion.

From now on we will work with t ∈ C / t = Re{t} + i Im{t}. On this basis we can define

the following thermal correlation functions

D>(t, t′) = ⟨q̂(t)q̂(t′)⟩β ,

D<(t, t′) = ⟨q̂(t′)q̂(t)⟩β = D>(t′, t),
(2.38)

which are called Wightman propagators. Taking the traces in (2.38) as a sum over Hamil-

tonian eigenstates Ĥ |n⟩ = En |n⟩ and inserting a resolution of the identity
∑

m |m⟩ ⟨m|, we
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can rewrite the expressions as

D>(t, t′) =
1

Z(β)

∑
n,m

eiRe{t−t′}(En−Em)e−(β+Im{t−t′})EneIm{t−t′}Em

× | ⟨n|q̂(0)|m⟩ |2,

D<(t, t′) =
1

Z(β)

∑
n,m

e−iRe{t−t′}(En−Em)e−(β−Im{t−t′})Ene− Im{t−t′}Em

× | ⟨n|q̂(0)|m⟩ |2,

(2.39)

which depend solely on time differences (t− t′), and hence there exists translation invariance.

From (2.39) we can extract the domain in which the correlation functions are well defined,

that is, we need to impose boundaries to the imaginary part of the time difference so that the

exponentials do not explode for high energies. For D>(t, t′) one easily finds that, in order for

it to be well defined we need

−β ⩽ Im
{
t− t′

}
⩽ 0, (2.40)

and for D<(t, t′) one needs

β ⩾ Im
{
t− t′

}
⩾ 0. (2.41)

(2.40) and (2.41) state the domain of definition of (2.38).

If we write the thermal weight operator as an imaginary time evolution operator for a

complex-timed position operator, that is

q̂(t+ iβ) = e−βĤ q̂(t)eβĤ , (2.42)

we can derive a periodic property for (2.38) by inserting an identity (Î = e−βĤeβĤ), namely

D>(t, t′) =
1

Z(β)
Tr
{
e−βĤ q̂(t)eβĤe−βĤ q̂(t′)

}
=

1

Z(β)
Tr
{
q̂(t′)q̂(t+ iβ)e−βĤ

}
= D<(t+ iβ, t′).

(2.43)

As we see in (2.43), the periodicity in imaginary time is still encoded there, defining the

so-called Kubo-Martin-Schwinger (KMS) relation:

D>(t, t′) = D<(t+ iβ, t′), (2.44)

which is the extension of the periodicity property of the Matsubara (2.25) propagator for

complex times. Indeed, (2.44) for purely imaginary times (take t′ = 0, Re{t} = 0, τ =

− Im{t}) reads

D>(−iτ, 0) = D<(−i(τ − β), 0), (2.45)
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which is nothing but the Matsubara propagator (2.25), namely

D>(−iτ, 0) = ∆(τ) (2.46)

for τ ∈ [0, β]. As an aside note meant for later reference, we write the purely real time-ordered

propagator, which is of course the usual

D(t, t′) = ⟨T
[
q̂(t), q̂(t′)

]
⟩
β
= θ(t− t′)D>(t, t′) + θ(t′ − t)D<(t, t′). (2.47)

2.5 The spectral function

Now let us consider the Fourier transforms of the Wightman propagators in (2.38). Since

they only depend on time differences, we will use a handier notation by defining D>(<)(t, 0) =

D>(<)(t). The Fourier transform of both quantities is defined as (recall that t ∈ C)

D>(k0) =

∫
dteik0tD>(t),

D<(k0) =

∫
dteik0tD<(t) =

∫
dteik0tD>(t− iβ).

(2.48)

The expressions in (2.48) for t ∈ C would have to be integrated along a complex path C

covering Re{t} ∈ ]−∞,+∞[ and Im{t} ∈ [0, β], and they would have to take into account the

domains of definition (2.40) and (2.41). This is of course easier said than done, and it is based

in the imaginary time formalism we cited earlier. Since we are mainly interested in real times,

let us tiptoe this detail. Note that the second equation in (2.48) is just the Fourier extension

of the KMS relation (2.44).

According to the definitions in (2.38), we have that, for real values of time t ∈ R (which are

the ones that suit our interests), D>(t)∗ = D>(−t) = D<(t), and that this implies the reality

of D>(<)(k0), D
>(<)(k0)

∗ = D>(<)(k0). Now that we know this, a simple calculation gives

D>(t)∗ = D<(t) −→ D>(k0) = D<(−k0)∗ = D<(−k0) (2.49)

and

D<(k0) =

∫
dt eik0tD>(t− iβ) = e−βk0

∫
dt eik0(t−iβ)D>(t− iβ) = e−βk0D>(k0), (2.50)

which can be summed up in a compact expression giving the relation

D<(k0) = D>(−k0) = e−βk0D>(k0), (2.51)
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which will prove to be of great importance in the following.

The previous reasoning gives a natural intuition of the following definition,

ρ(k0) = D>(k0)−D<(k0), (2.52)

which is called spectral function. The spectral function in (2.52) is in fact nothing but the

Fourier transform of the thermal average of the position operators commutator, namely

ρ(k0) =

∫
dteik0t ⟨[q̂(t), q̂(0)]⟩β . (2.53)

The spectral function is an odd function of k0,

ρ(k0) = −ρ(−k0). (2.54)

From (2.53) we can extract the free spectral function by writing the expansion of the position

operator in terms of the creation/annihilation operators ([â, â†] = 1)

q̂(t) =
1√
2ω

(
âe−iωt + â†eiωt

)
, (2.55)

which almost directly gives the expression

ρF (k0) = 2πε(k0)δ(k
2
0 − ω2) (2.56)

with ε(k0) the sign function. Note that (2.56) does not have any β-dependence, and thus it

does not present any thermal characteristics.

In a general theory, we need not to specify the character of the spectral function, and the

general result follows from using (2.51) in the definition (2.52), giving

ρ(k0) = D>(k0)−D<(k0) = D>(k0)(1− e−βk0), (2.57)

which directly yields

D>(k0) = (1 + f(k0))ρ(k0),

D<(k0) = f(k0)ρ(k0);
(2.58)

with (note from (2.37) that n(k0) = f(|k0|))

f(k0) = (eβk0 − 1)−1. (2.59)

Needless to say that k0 ∈ R.
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It is also interesting to study the extremal limits of f(k0). The low temperature limit T → 0

yields

T → 0 ⇐⇒ f(k0) → 0. (2.60)

It is particularly interesting to take the T → 0 limit on the Wightman propagators (2.58). In

doing so, one finds that

T → 0 ⇐⇒ D<(k0) → 0, (2.61)

so that in the low temperature limit ρ(k0) → D>(k0). The classical (low energy) limit k0 ≪ T

gives

k0 ≪ T ⇐⇒ f(k0) →
T

k0
≫ 1. (2.62)

2.6 Extending the Matsubara propagator

Around (2.48), we got a flavour of the difficulties that arise when considering complex times

in the formalism. We need to order complex times, and so we need a (non-trivial) path to

give them a sense of order. Think about how you would order random points inside a circle.

A kind of spiral from the center to the border would roughly do the job. That is roughly the

idea behind the real-time formalism we named earlier.

However, the Fourier side of the coin provides, as always, a shortcut. We can make use of

the quantities we defined in the previous section to extend the Matsubara propagator (2.48)

to a continuum of frequencies, abandoning the discrete Matsubara frequencies (2.28) which

are a consequence of considering purely imaginary times. Having said this, let us work with

the Matsubara propagator in the interval τ ∈ [0, β], that is,

∆(τ) = D>(−iτ) =
∫
dk0
2π

e−k0τD>(k0), (2.63)

where we have used (2.46) and the inverse of (2.48). Now we can use (2.26) and (2.58) in

order to write the preceding equation in terms of the spectral function, that is,

∆(iωn) =

∫ β

0
dτ

∫
dk0
2π

e(iωn−k0)τ (1 + f(k0))ρ(k0)

= −
∫
dk0
2π

ρ(k0)

iωn − k0
,

(2.64)

where the integration is simple. If we take the free spectral function (2.56), the k0-integral is

also simple enough thanks to the δ-terms that stem from the decomposition

δ(k20 − ω2) =
1

2ω
[δ(k0 − ω) + δ(k0 + ω)] . (2.65)
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All in all, we can write

∆F (iωn) =
1

ω2
n + ω2

, (2.66)

which is indeed the Fourier transform of the solution to (2.34).

However, this procedure is clearly limited to purely imaginary times and tells nothing new.

Imagine if we allowed iωn → −i(iq0 − η) = q0 + iη ≡ z. In other words, imagine that iωn

becomes a continuous complex variable. In doing so, one extends the Matsubara propagator

to arbitrary values of complex time (or conversely, energy). If one is interested in purely real

values of time (like we do), then η can be sent to 0, as we will see in a moment. In order for this

continuation to be analytic, we obviously have to demand analyticity all along the real axis

(∆(z) is analytic for Im{z} = 0), aside from the rather obvious condition of ∆(|z| → ∞) → 0

(we cannot recieve information from infinity!). All in all, our demands seem to flow into a

single one and only analytic continuation:

∆(z) = −
∫
dk0
2π

ρ(k0)

z − k0
, (2.67)

which generalizes (2.64). Indeed, (2.67) is the key to define the physically interesting propa-

gators, which we study in the next section.

2.7 A glimpse on linear response theory

Up to this point, we have developed a solid formalism. We have connected Euclidean QFT

with QSM by making time imaginary. We have also extended the connection for complex and

real times, which is the same that saying that we have allowed the Matsubara frequencies to

be complex. We have then got to a point where writing real time causal propagators seems

realistic. The physical propagator we are mainly interested in is the retarded propagator. We

will get to this quantity and we will relate it to the Wightman propagators through linear

response theory, which allows for a very transparent and unambiguous physical interpretation.

There is a key mathematical expression for our purposes at this section, which is worth

mentioning beforehand. This identity is a form of the so-called Sokhotski-Plemelj theorem,

which states that in the limit η −→ 0 we can write

1

x± iη
= P

1

x
∓ iπδ(x), (2.68)
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where P 1
x = x

x2+η2
denotes a principal value.

2.7.1 Classical approach

Let us consider a classical damped and forced harmonic oscillator (for a particle of mass

m = 1) described by

q̈(t) + ω2q(t) + ηq̇(t) = j(t), (2.69)

which in Fourier space reads

[
−(k20 − ω2)− iηk0

]
q(k0) = j(k0). (2.70)

From (2.70) one can express the solution in terms of a so-called response function, which

regulates the effect of the external source, namely,

χ(k0) =
−1

(k20 − ω2) + iηk0
, (2.71)

and hence the solution to (2.69) is given by2

q(k0) = χ(k0)j(k0) (2.72)

We can decompose (2.71) as

χ(k0) = − (k20 − ω2)

(k20 − ω2)2 + η2k20
+

iηk0
(k20 − ω2)2 + η2k20

. (2.73)

In order to make a connection, let us take a limit on the viscous term, η −→ 0+. Now, through

(2.68), the imaginary part of (2.73) can be written in a very fancy way as

Im{χ(k0)} = ε(k0)πδ(k
2
0 − ω2), (2.74)

which gracefully gives

Im{χ(k0)} =
1

2
ρF (k0). (2.75)

2There could be a constant q(0) standing for the initial value.
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From (2.75) we can read the interpretation of the spectral function as a measure of dissipation.

This is easily seen if one computes the energy dissipated due to the action of the forcing term.

This amounts

∆E(t) =

∫
dt′q̇(t′)j(t′ − t) =

∫
dk0
2π

e−ik0t(−ik0)χ(k0)|F (k0)|2, (2.76)

and we see that in order to keep ∆E(t) real we have to consider the imaginary part of the

response function, which is the spectral function in the η → 0 limit.

2.7.2 Quantum mechanical approach

In real-time quantum mechanics, a generating functional is built by adding an external

source term to the action of the form of
∫
dtj(t)q(t), which modifies the equation of motion

of q(t). In particular, for the harmonic potential the classical equation of motion would be(
d2

dt2
+ ω2

)
q(t) = j(t), (2.77)

that is, a forced harmonic oscillator. The action of the source needs time to communicate its

presence to the system, and so we expect the retarded propagator to emerge naturally. A very

simple computation in quantum-mechanical perturbation theory (you can find it in [15]) gives

the deviation from the free expectation value that q(t) acquires from j(t)

δ ⟨q̂(t)⟩β = −i
∫ +∞

−∞
dt′j(t′)θ(t− t′) ⟨[q̂(t), q̂(t′)]⟩β . (2.78)

Hence, the source is in a convolution with a Green function: the retarded propagator

DR(t) = −i ⟨θ(t)[q̂(t), q̂(0)]⟩β , (2.79)

which causally propagates the effects of the source. The advanced propagator follows from

inverting the time arrow, yielding

DA(t) = i ⟨θ(−t)[q̂(t), q̂(0)]⟩β . (2.80)

The concept of retarded/advanced only makes sense in real time (which is our frame to say

later/earlier), and thus t ∈ R in both cases. If we take the retarded propagator defined in

(2.79), we can see that, through the Fourier transform of the very definition of the spectral

function (2.52)

DR(t) = −iθ(t)[D>(t)−D<(t)] = −iθ(t)
∫
dk0
2π

e−ik0tρ(k0). (2.81)
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In order to make some progress with (2.81), we need another representation of the Heaviside

function, namely

θ(t) = i

∫
dq0
2π

e−iq0t

q0 + iη
(2.82)

with η −→ 0+. The reader may prove (2.82) by looking for a one-pole function that is equal to

zero for t < 0. Now that we know this, (2.81) can be Fourier transformed to give

DR(k0) =

∫
dq0
2π

ρ(q0)

k0 + iη − q0
, (2.83)

which can be written in a compact way following (2.67) as

DR(k0) = −∆(k0 + iη). (2.84)

An analogous computation leads to the advanced propagator as well,

DA(k0) = −∆(k0 − iη). (2.85)

The results we have obtained confirm the physical validity of the analytic continuation per-

formed in (2.67).

Let us remark that since ρ(k0) ∈ R (given that D>(<)(k0) ∈ R), the propagators fulfill the

following property:

DA(k0) = DR(k0)
∗. (2.86)

With (2.68) we can rewrite the retarded propagator as

DR(k0) =

∫
dq0
2π

P
ρ(k0)

k0 − q0
− i

2
ρ(k0), (2.87)

which combined with (2.86) yields a very enlightening result:

Im{DR(k0)} = − Im{DA(k0)} = −1

2
ρ(k0), (2.88)

which relates to the classical case (2.75) up to a sign. It is clear that the dissipative character

is encoded in the imaginary part of the retarded/advanced propagator. Both the beauty and

the importance of (2.88) reside in a detail: dissipation owes its existence to the discontinuity

of the analytically extended Matsubara propagator. Namely,

ρ(k0) = −2 Im{DR(k0)} = − (∆(k0 + iη)−∆(k0 − iη)) = −Disc∆(k0). (2.89)
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By virtue of (2.88), we can also relate the Wightman two-point functions and the re-

tarded/advanced ones. Indeed, in agreement with (2.58), we can write the following important

identity:

D<(k0) = −2f(k0) Im{DR(k0)}, (2.90)

which is easily converted for the other Wightman propagator,

D>(k0) = −2(1 + f(k0)) Im{DR(k0)}. (2.91)

The quotient of (2.90) and (2.91) yields the ratio

D>(k0)

D<(k0)
= 1 +

1

f(k0)
, (2.92)

which for the T → 0 limit (2.61) implies

D>(k0) = −2 Im{DR(k0)}, (2.93)

and for the classical k0 ≪ T limit implies

D>(k0) = D<(k0) ≃ −2T

k0
Im{DR(k0)}. (2.94)

2.8 The time-ordered propagator

The natural extension of the previous results is obviously to consider the real-time thermal

time-ordered propagator. The real-time-ordered propagator is written in (2.47), and its Fourier

transform is

D(k0) =

∫
dteik0t

[
θ(t)D>(t) + θ(−t)D<(t)

]
. (2.95)

An adequate treatment of (2.95) allows writing the propagator as (recall that ε(t) = θ(t) −

θ(−t))

D(k0) =

∫
dteik0t

[
1

2
ε(t)

(
D>(t)−D<(t)

)
+

1

2

(
D>(t) +D<(t)

)]
=

∫
dteik0t

[
1

2
ε(t) ⟨[q̂(t), q̂(0)]⟩β +

1

2
⟨{q̂(t), q̂(0)}⟩β

]
≡ D−(k0) +D+(k0).

(2.96)

This is a very suggestive way to write the propagator, because it separates the fluctuating term

(the {. . . }-term), related to the dissipation by the so-called fluctuation-dissipation theorem.
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Note that the second term in (2.96) is nothing but a measure of symmetrized fluctuations in

a quantum thermal system. In our case, we state the fluctuation dissipation theorem as3

D+(k0) = − [1 + 2f(k0)] Im{DR(k0)}, (2.97)

given that Im{DR(k0)} = −1
2ρ(k0) is the measure of dissipation. Note that (2.97) is just one

half of the the sum of the two Wightman propagators in (2.90), (2.91). Furthermore, we can

express (2.97) in terms of n(k0) through a very short computation (separating the k0 > 0 and

k0 < 0 cases), yielding

D+(k0) = −ε(k0) [1 + 2n(k0)] Im{DR(k0)}. (2.98)

Using the representation (2.82) and the fact that ε(t) = θ(t)−θ(−t), we can very easily deduce

the following representation for the sign function

ε(t) = −i
∫
dk0
2π

P
2

k0
, (2.99)

which is very useful for the computation of (2.96). Indeed, the first term in (2.96), D−(k0),

can be written as

D−(k0) =
i

2
[DR(k0) +DA(k0)] = iRe{DR(k0)}, (2.100)

and hence we can write (2.96) in a very simple way combining (2.98) and (2.100) as

D(k0) = i (Re{DR(k0)}+ iε(k0) Im{DR(k0)})− 2ε(k0)n(k0) Im{DR(k0)}. (2.101)

The only thing left to do is to substitute the expressions for the real and imaginary parts we

gave in (2.87). Upon some manipulation, one writes (2.101) as

D(k0) = i

∫
dq0
2π

[
P

1

k0 − q0
− ε(q0)iπδ(k0 − q0)

]
ρ(k0) + ε(k0)n(k0)ρ(k0), (2.102)

and thanks to the identity (2.68), we can finally give the time-ordered propagator for a general

theory described by ρ(k0) and β:

D(k0) =

∫
dq0

i

k0 − q0 + iε(q0)η
ρ(q0) + ε(k0)n(k0)ρ(k0). (2.103)

Note that only the second term in (2.103) is β-dependent.

3You can check (2.97) simply by adding 1
2

[
D>(k0) +D<(k0)

]
using (2.90) and (2.91).
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The usual procedures in QFT use perturbation theory around a free non-interacting theory.

Therefore our main interest resides in the free form of (2.103), which is obtained by substitution

of the free spectral function (2.56), yielding

DF (k0) =
i

k20 − ω2 + iη
+ 2πn(k0)δ(k

2
0 − ω2), (2.104)

which correctly reduces to the Feynman propagator for T = 0.

2.9 The self-energy

The main object in the following discussion will be the self-energy. The self energy can be

defined as a perturbative interactive correction to the free propagator like

∆(z) = ∆F (z) + ∆F (z) [−Π(z)]∆F (z) + . . . , (2.105)

where ∆(z) is the propagator in the interactive theory. Assuming weak coupling, the series

can be resummed to give

∆−1(z) = ∆−1
F (z) + Π(z). (2.106)

The self energy corrects the free propagation by adding “self-interactions” (diagramatically,

bubbles) over the course of the propagation from one point in space-time to another.

Using the expression (2.56) for the free spectral function and the expression (2.84) for

the retarded propagator DR(k0) = ∆(k0 + iη), we can introduce the retarded self-energy as

DR(k0) = DF
R(k0) +DF

R(k0) [−ΠR(k0)]D
F
R(k0) + . . . , or more explicitly

DR(k0) =
1

k20 − (ω2 +Re{ΠR(k0)}) + i Im{ΠR(k0)}
, (2.107)

where we have separated the self-energy into its real and imaginary part and neglected the

iη term in the denominator. We can see that Re{ΠR(k0)} is just an energy correction, while

Im{ΠR(k0)} plays the role of iη. By taking a look at (2.68) and (2.88), we can see that

Im
{
DF

R(k0)
}
= ε(k0)πδ(k

2
0 − ω2) = 1

2ρF (k0) amounts to two sharp dissipative peaks. Hence,

the presence of Im{ΠR(k0)} >> η suggests that the peak opens up and becomes a wider

resonance. The fact that this happens gives an heuristic understanding of why imaginary

parts of self-energies are related with decay rates.

Indeed, since the self-energy is a correction to the free propagation (in which the initial

and final states are the same ones), one may interpret the self-energy as sum of all probability
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amplitudes that a one-particle state i evolves into a multi-particle stateX to then return to the

initial state f = i, and hence −Π = M (i −→ i) =
∑

X M (i −→ X)M (X −→ i) =
∑

X |M (i −→

X)|2, where the last step is implied by unitarity and we have left out unimportant phase space

factors. In views of this interpretation, we can use the optical theorem to write

1

2i
[M (i −→ i)− M ∗(i −→ i)] = Im{M (i −→ i)} = mi

[
Γ> − Γ<

]
≡ Γt, (2.108)

where mi is the mass of the particle (which we previously fixed to unity) and Γ>, Γ< are

respectively the decay and creation rates of one particle state i. Namely Γ> =
∑

X Γ(i −→ X),

Γ< =
∑

X Γ(X −→ i). The presence of their difference ensures that Γt is a net decay rate, or

namely an emission or production rate of i-state particles.

It is not difficult to convince oneself of the relation between the retarded and advanced

self-energies

ΠR(k0)
∗ = ΠA(k0), (2.109)

which allows us to write a central expression for our purposes:

Im{ΠR(k0)} =
1

2i
DiscΠ(k0 + iη) =

1

2i
[ΠR(k0)−ΠA(k0)] = Γ> − Γ<. (2.110)

The interpretation of (2.110) is pristine: the self-energy bubble can be “cut” to give separately

the decay and creation rates of the intermediate states of a given theory. Note the similarity

between (2.110) and (2.89).

The natural extension is to consider the time-ordered self-energy just as we did with the

propagator. Even though very interesting and instructive, this generalisation is not smooth

nor easy to explain because of the appearance of off-diagonal products mixing the real and

imaginary parts of the propagators. The most consistent approach is to work in the so-

called real time formalism, in which a complex time-ordering path is used to derive a matrix

propagator for the theory, which is then diagonalised through a Bogoliubov transformation.

For our purposes, this complications are (fortunately) avoidable, since the self-energy diagrams

we are going to compute in the field theory are indeed Wightman correlators. If the reader is

interested, useful discussion can be found on Le Bellac chapter 3 [13].
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Chapter 3

Thermal Field Theory

Now that we have developed a solid formalism with no spatial dimensions, the natural

continuation is to introduce (in our case three) spatial degrees of freedom. For the moment,

we will deal with the generalisation in the frame of scalar field theory, for which we just

have to generalise the time derivatives in the Lagrangian to 4-derivatives including the spatial

dimensions.

3.1 The scalar field

Let us introduce a scalar field through a Lagrangian density in Minkowski space, that is

S(t) =

∫ t

0
d4x

[
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 − V (φ)

]
, (3.1)

with φ(x) a real scalar field. Inspired by (2.12), we may write the corresponding Euclidean

action as

SE(β) =

∫ β

0
d4x

[
1

2
(∂µφ)

2 +
1

2
m2φ2 + V (φ)

]
, (3.2)

where (∂µφ)
2 = (∂τφ)

2 + (∇φ)2 and
∫ β
0 d

4x =
∫ β
0 dτ

∫
d3x. A straightforward generalization

of (2.20) gives a path integral representation of the partition function, namely

Z(β : j) =

∫
Dφ exp

{
−SE(β) +

∫ β

0
d4xj(x)φ(x)

}
. (3.3)

In the case of the free field (V (φ) = 0), we can integrate (3.2) by parts in order to obtain the

spatially-generalised free propagator, which responds to the following differential equation in
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imaginary time

−
(
∂2τ +∇2 −m2

)
∆F (x− y) = δ4(x− y) (3.4)

and can be used to write the free generating functional

ZF (β; j) = ZF (β) exp

{
1

2

∫
d4x

∫ β

0
d4yj(x)∆F (x− y)j(y)

}
. (3.5)

The Fourier representation of (3.4) gives a direct generalisation of (2.66), where one simply

replaces ω2 −→ k2 +m2 ≡ ω2
k so that the Matsubara propagator is written as

∆F (iωn, k) =
1

ω2
n + ω2

k

. (3.6)

Now that we know how to write the free propagator for a free theory in imaginary time, we

can compute Feynman diagrams of interacting theories perturbatively and derive the Feynman

rules. This is a simple procedure and the only change with respect to the T = 0 Feynman

rules will of course be the discretization of the integral measure concerning the Matsubara

frequencies. We will skip this since there is no real mistery to it and it does not really interest

us. Every other quantity we are interested in generalises directly with the simple rules listed

above.

Also, as an aside note, one could also describe fermionic behaviour by changing the Bose-

Einstein distribution for a Fermi-Dirac one. Since we will not use fermions, the curious reader

is referred to Le Bellac chapter 5 [13] for a thorough description of thermal fermions.

3.2 Local operators

Note that the Wightman correlators (2.38) are now written in terms of fields rather than

position operators. Namely, one has

D>(x) = ⟨φ(x)φ(0)⟩β ,

D<(x) = ⟨φ(0)φ(x)⟩β .
(3.7)

The Wightman correlators in (3.7) can also be defined for local operators of the field theory.

Local operators are defined as normal-ordered products of the fields at a fixed space-time

point. The normal ordering prescription (which we will denote as : · · · :) puts all creation

operators to the right and all destruction operators to the left. Through this process one
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can get rid of the problematic contact terms (∼ δ(0) vacuum divergent terms) and obtain

well-defined operators. For instance, in a scalar field theory, we may define local operators as

On(x) =: φn(x) : (3.8)

and hence we could define the correlation function of any local operator in the style of (3.7).

For instance, the (<) Wightman two-point function for the n = 2 local operator is

D<
2 (x) = ⟨: φ2(0) :: φ2(x) :⟩β . (3.9)

Looking at (3.9) one can very easily convince oneself that it is closely related to a Wightman

self-energy. Beyond intuition, by expanding in creation/annihilation operators one would get

to D<
2 (x) ∼ (D<(x))2 (symmetry factor aside), which is the very definition of a self-energy

bubble. Thus we find an important message: self energies may be understood as correlators of

quadratic local operators in a cubic theory (we will see). Namely, for a thermal scalar theory

and aside from symmetry factors that may appear,

Π<(x) ∼ ⟨: φ2(0) :: φ2(x) :⟩β . (3.10)

It is also worth stressing that every property of the Wightman correlators we have been

discussing also holds for the Wightman two-point functions of local operators.

This is of course an sketchy treatment of one of the many delicate corners of QFTs, and

the reader should know that this issue extends to much deeper grounds. However, for our

interests, this depth level will be enough.

3.3 Self-energies and emission rates for various theories

In this section we will combine what we know about self-energies and field theories at finite

temperature to derive a general expression to compute emission rates. We begin by illustrating

a scalar theory, and then we will generalise it to quantum electrodynamics (QED for short)

in order to make full sense of the case of coupling to gravity we are ultimately interested in.

The common playground is a system of strongly coupled thermal particles in a bath in-

teracting weakly with another kind of massive or massless particles. We will describe the

production of a weakly interacting particle in a general case for each theory.
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3.3.1 Scalar theory

In this toy scenario, the thermal particles in the bath are embedded in the field φ(x) and

the weakly interacting particles are embedded in Φ(x). We assume a cubic weak interaction

term LI ∼ λΦ(x)φ2(x) and a quartic strong coupling term gφ4(x). The transition we are

interested in is (i, 0) −→ (f, q), where i, f refer to the thermal states and q0 > 0 is the energy

of the produced Φ-particle. Let us assume no Φ-particle in the initial state for simplicity.

The interaction matrix in old-fashioned QFT is S = T
[
ei

∫
d4xLI(x)

]
, which for our interac-

tion Lagrangian yields S = 1 + iλ
∫
d4xT

[
Φ(x)φ2(x)

]
up to first order in the weak coupling

constant. If we sandwich the non-trivial term with the initial and final states, we can write

Sif (q) = iλ

∫
d4x ⟨f, q| : Φ(x)φ2(x) : |i, 0⟩ . (3.11)

Upon writing ⟨f, q| = ⟨f, 0| âΦ(q) and contracting the annihilation operator with the Φ(x)

operator inside of the : · · · : in (3.11) yields the transition amplitude

Sif (q) = iλ

∫
d4xeiqx ⟨f | : φ̂2(x) : |i⟩ , (3.12)

where we have recovered the hat for the operators and discarded the zeros in the brakets. If

we now square the modulus of (3.12) and use translational invariance, we end up with

|Sfi(q)|2 = λ2
∫
d4x

∫
d4yeiq(x−y) ⟨f | : φ̂2(x− y) : |i⟩ ⟨i| : φ̂2(0) : |f⟩

= Ωλ2
∫
d4xeiqx ⟨f | : φ̂2(x) : |i⟩ ⟨i| : φ̂2(0) : |f⟩ ,

(3.13)

which is the probability of the transition. In the last step of (3.13) we have introduced the

space-time volume in which the interaction takes place, Ω. Now we have to take into account

the statistical weight that initial states possess in a canonical ensemble. Using the fact that

e−βĤ |i⟩ = e−βEi |i⟩ and the cyclicity of the trace, we can write

1

Ω

1

Z(β)

∑
i,f

e−βEi |Sfi(q)|2 = λ2
∫
d4xeiqx ⟨: φ̂2(0) :: φ̂2(x) :⟩β . (3.14)

The Fourier transform in the r.h.s. of (3.14) is indeed a Wightman self-energy, since it loosely

amounts to ∼ (D<(x))2. Integrating for all possible momenta of the outgoing particle with

the Lorentz invariant measure yields a decay rate, which is proportional to a Wightman self-

energy, namely:
1

Ω

1

Z(β)

∑
i,f

e−βEi |Sfi(q)|2 = Π<(q). (3.15)
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Hence, we can finally write the total production rate of weakly interacting particles per unit

time and volume for this scalar model:

ΓΦ =

∫
d3q

2q0(2π3)
Π<(q), (3.16)

as well as its differential form with respect to the momentum q

q0
dΓΦ

d3q
=

1

2

Π<(q)

(2π)3
. (3.17)

Note that the self-energy is nothing but the correlation function of the local operator φ2(x),

and that this is a straightforward generalisation of the Wightman two-point functions we wrote

for O1(x) local operators in (2.38), but now with quadratic local operators. This implies that

the relation (2.90) also holds for the self-energy correlator, and hence we can write

q0
dΓΦ

d3q
=

1

2

Π<(q)

(2π)3
= −f(k0) Im{ΠR(q)}

(2π)3
. (3.18)

Note that the first expression on the r.h.s. of (3.18) is indeed the energy density emission rate

per unit time. To see this, consider the number of emitted particles per unit time and volume

ΓΦ ∼ NΦ
V∆t with NΦ the number of emitted Φ-particles and ∆t the period of time in which the

interaction takes place such that Ω = V∆t (with V the space volume). When we consider the

quantity q0NΦ
V = EΦ

V ≡ ρΦ we are indeed considering the energy density emission in the form

of Φ-particles per unit time, that is, ρΦ. Hence, from (3.16), we can write

dρΦ
dtd3q

=
1

2

Π<(q)

(2π)3
= −f(k0) Im{ΠR(q)}

(2π)3
. (3.19)

3.3.2 Quantum electrodynamics

The QED scenario is slightly more involved because it is a more realistic one. We suppose

a thermal background of strongly coupled quarks and gluons forming a plasma which interact

weakly with the photons and leptons that obey the rules of QED. The transition we are

interested in is (i, 0) −→ (f, γ), where γ describes a photon with four-momentum Q.

We attack this problem with the same strategy we used for the scalar case. In this case the

interaction Lagrangian for QED is L ∼ −ejµAµ (with jµ the U(1) conserved current and e

the QED coupling constant). We can write the transition amplitude for a certain spin state

labeled by (λ) as

S
(λ)
if (Q) = −ie

∫
d4x ⟨f,Q| : A(λ)

µ (x)jµ(x) : |i, 0⟩ . (3.20)
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The only difference with the above section is the presence of the polarization vector ϵ
(λ)
µ (Q) in

the ladder operator expression of the photon field, which accounts for the spin state {−1, 1}

of the massless photon. That is, we now use ⟨f,Q| = ⟨f, 0| âγ(Q)ϵ
(λ)∗
µ (Q). Having said this,

one just repeats the scalar case computation but now also summing over spin states and gets

1

Ω

1

Z(β)

∑
i,f,λ

e−βEi |Sfi(Q)|2 = −e2
∫
d4xeiQx

[
ηµν ⟨: jµ(0) :: jν(x) :⟩β

]
, (3.21)

where we have used that ∑
λ

ϵ(λ)µ (Q)ϵ(λ)∗ν (Q) = ηµν . (3.22)

The manifest similarity between (3.21) and (3.14) invites us to deduce that (3.21) is indeed

an expression for a Wightman self-energy. Since the QED current reads jµ(x) = ψ̄(x)γµψ(x)

(for ψ, ψ̄ the fermions of the theory), the diagramatic interpretation is a fermion/anti-fermion

bubble closing in space-time points 0, x with (<)-propagators. Hence, an expression for the

photon emission rate can be obtained upon a suitable substitution of the new QED self-energy

Π<
QED(Q) = ηµνΠ

<µν(Q) = e2
∫
d4xeiQxηµν ⟨: jµ(0) :: jν(x) :⟩β (3.23)

in the expressions (3.16) and (3.17), finally yielding the photon emission rate. Hence, the

photon differential emission rate reads

q0
dΓγ

d3q
= −1

2

Π<
QED(Q)

(2π)3
=
f(k0)η

µν Im
{
ΠR

µν(Q)
}

(2π)3
, (3.24)

where there is a minus sign difference with (3.18) because of the consideration of −e2 as

coupling constant. The expression for the photon energy density is obtained through the

same arguments that we obtained (3.19), and hence we can write

dρΦ
dtd3q

= −1

2

Π<
QED(Q)

(2π)3
=
f(k0)η

µν Im
{
ΠR

µν(Q)
}

(2π)3
, (3.25)

3.4 A lesson for the future

We have compiled comprehensive models of thermal emission of spin-0 and spin-1 weakly

interacting massless particles, and there is a manifest similarity between the expressions of

their emission rates (3.19) and (3.25).

In the scalar case, we have seen how the Fourier transform of the φ2 correlator (see (3.14),

a.k.a. Φ-particle self-energy) gives the emission rate of Φ-particles from a cubic interaction
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term of the form ∼ φ2Φ. In the QED case we have seen how the Fourier transform of the

current (jµ) correlator (see (3.21), a.k.a. photon self-energy) gives the emission rate of photons

from an interaction term of the form ∼ jµA
µ, with jµ = ψ̄γµψ a fermionic bilinear, which is

again a cubic vertex of two fermions and a photon.

These terms may also be interpreted like a source J(x) = Φ(x), Jµ(x) = Aµ(x) coupled to

a local operator of the QFT O(x) =: φ2(x) :, Oµ(x) =: jµ(x) :. They can also be derived

by functional differentiation of a generating functional with respect to the source. Take for

simplicity the scalar case. Upon defining the following functional

ZΠ[J ] = ⟨ei
∫
d4xJ(x)O(x)⟩β , (3.26)

one simply takes two functional derivatives with respect to the source and gets the desired

output: the two point function of the local operator O(x). Namely, one does

(−i)2 δZΠ[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

= ⟨O(x1)O(x2)⟩β = Π<(x2 − x1) = Π>(−x2 + x1), (3.27)

where we used translation invariance. Note how we flipped the usual source-operator character

of each factor in order to define intuitive systematics.

The case we are interested in is the spin-2 case. We want to compute the emission rate of

gravitational waves (GWs), or conversely, of gravitons, which is just the name that one gives

to a metric perturbation propagating in a background space. In this case, we can intuitively

deduce that the interactive term will amount ∼ Tµνhµν , with T
µν the local operator and hµν

the source. In the following chapter we will deduce in detail the form of the correlator that

gives the formal expression of the emission rate of GWs. The graviton case deserves a chapter

on its own, since the formalism we will develop to describe it has two uses: it describes the

physical GWs to whom our emission rate makes reference and it also describes the metric

perturbations in an AdS background.

3.5 The complex scalar field

As a final exercise, let us study a complex scalar field at finite temperature. Complex scalar

fields are invariant under global U(1) symmetry transformations. The Minkowskian action

34



Universidad de Oviedo
2024

Gravitational wave emission at high
density and strong coupling

describing a massless complex scalar field is

S =

∫
d4x∂µϕ†(x)∂µϕ(x), (3.28)

which is invariant under a transformation

ϕ(x) → ϕ′(x) = e−iαϕ(x) (3.29)

if α is a real constant parameter. Indeed, through Noether theorem one finds that there is a

conserved current

jµ(x) = i
[
ϕ†(x)∂µϕ(x)− ϕ(x)∂µϕ†(x)

]
(3.30)

and a conserved charge (which is grosso modo equivalent to the number of particles minus

antiparticles)

N =

∫
d3xj0(x) =

∫
d3x

[
π†(x)ϕ†(x)− π(x)ϕ(x)

]
, (3.31)

where π(†)(x) = ∂0ϕ(†)(x) are the canonical momenta.

If we allow for a local dependence α(x), the action (3.28) is no longer invariant under the

transformation

ϕ→ ϕ′ = e−iα(x)ϕ. (3.32)

Indeed, if we consider a local infinitesimal transformation ϕ′ ∼ ϕ − iα(x)ϕ, the variation of

the action under this transformation is (up to linear order in α)

δS = jµ(x)∂µα(x) ≡ jµ(x)Aµ(x). (3.33)

Hence, if we want a theory that is invariant under local U(1) transformations we require an

action

S =

∫
d4x

[
∂µϕ†(x)∂µϕ(x)− jµ(x)Aµ(x)

]
. (3.34)

In other words, the global U(1) current couples to a gauge field. There is another convenient

way to write the action through a covariant derivative which reads

S =

∫
d4x

[
(Dµϕ(x))†(Dµϕ(x))

]
, (3.35)

where we have defined the covariant derivative Dµ = ∂µ − iAµ(x). If one performs the

Euclidean continuation (t→ −iτ) of (3.35) with a gauge field defined by its only non-vanishing

component At ̸= 0, it can be written as

iSE(β,At) = i

∫ β

0

∫
d3xdτ ′

{
[∂τ +At]ϕ

†(−iτ,x) [∂τ −At]ϕ(−iτ ′,x)
}

+ i

∫ β

0

∫
d3xdτ ′

{
∂iϕ

†(−iτ ′,x)∂iϕ(−iτ ′,x)
}
.

(3.36)
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Since (3.34) is completely equivalent to (3.35), one may also write (for the At gauge field)

iSE(β, µ) = i

∫ β

0

∫
dτd3x

[
∂tϕ

†(−iτ,x)∂tϕ(−iτ,x) + ∂tϕ(−iτ,x)∂tϕ†(−iτ,x)
]

+ i

∫ β

0
dτAtN(−iτ,x) ≡ iS0

E(β, µ) + i

∫ β

0
dτN(τ,x)At

(3.37)

From our discussion on the previous chapter, it is clear that the Euclidean continuation

of this new action will have an interpretation in terms of QSM. Indeed, let us consider a

quantum system in the grand-canonical ensemble where the particle number is allowed to

fluctuate. From QSM we know that the partition function for such system is written as

Z(β, µ) = Tr
{
e−β(Ĥ−µN̂)

}
. (3.38)

The chemical potential appears to tell us that the system is now opened, and that is why it

couples to the number operator. In other words, now the energy Ei of a given state |ψi⟩ is

conditioned by the number of particles that may have exit the system (or entered it). The

expression of the partition function as a path integral in periodic Euclidean time is not as easy

to obtain as it was in the canonical ensemble because N̂ (the number operator that comes

from quantizing and normal-order (3.31)) depends on the time derivative of the field, and

hence one has use the Hamiltonian formalism to compute the path integral (it is done in Le

Bellac chapter 3 [13]). If one does this, one proves that the partition function (3.38) is

Z(β, µ) =

∫
Dϕ exp

{
−
∫ β

0

∫
d3xdτ ′

{
[∂τ + µ]ϕ†(−iτ,x) [∂τ − µ]ϕ(−iτ ′,x)

}}
× exp

{
−
∫ β

0

∫
d3xdτ ′

{
∂iϕ

†(−iτ ′,x)∂iϕ(−iτ ′,x)
}}

,

(3.39)

which is completely equivalent to the path integral that would emerge from e−SE(β,µ) by

exponentiating (3.36) and substituting At = µ. That the gauge field only has a temporal

component is to be expected because the chemical potential is a quantity that makes sense in

QSM where there are no spatial components. To sum up, we may write

Z(β, µ) =

∫
Dϕ exp{−SE(β, µ)} =

∫
Dϕ exp{−SE(β)} exp

{
−
∫ β

0
dτN(τ,x)µ

}
, (3.40)

where we used both (3.36) and (3.37). It is clear that we can understand µ as a source for the

particle number.

The message is thus quite clear: if the action has a local gauge symmetry with gauge field

At ̸= 0, its Euclidean continuation amounts to a system at finite temperature T and chemical
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potential At = µ. This kind of system is usually referred to as a finite temperature and

density field theory. It is said to be at finite density because the chemical potential quantifies

the number of particles that enter the system. If it is large µ≫ T , the system is said to be at

high density.
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Chapter 4

Gravitational waves

In this chapter we will properly define GWs as fluctuations to the metric and we will get

a flavour of their quasi-particle interpretation as gravitons. GWs are ondulations in space-

time that propagate at the speed of light. They are generated in strong gravity regimes, but

one can consider their propagation far from sources in the weak gravity regime in which the

GWs simply become small corrections to the flat Minkowski metric. If one develops general

relativity (GR) up to linear order in the perturbations, the output is known as linearised

gravity and it helps to interpret a GW as a particle.

We will add a thermal source to the linearised equations of motion (EOMs from now on)

and express the emission of GWs from the thermal source in terms of a correlator of the

stress-energy tensor representing the thermalized matter source. The correlator will emerge

naturally since we will have to thermally average every possible configuration of the source.

4.1 Linearised gravity

Let us consider a perturbation to a 4-dimensional Minkowski metric, namely

gµν = ηµν + hµν , (4.1)

with |hµν | ≪ 1. The indices of the perturbations hµν are lowered and raised with the η and

the inverse metric picks a minus on the h term.

With the metric (4.1) one can go all the way through the Christoffel symbols, the Riemann

38



Universidad de Oviedo
2024

Gravitational wave emission at high
density and strong coupling

tensor, the Ricci tensor and the Ricci scalar to get to the Einstein tensor up to linear order in

hµν and write the Einstein equations in linearised gravity. Recall that the Einstein equations

read

Gµν = Rµν −
1

2
Rgµν = κ2Tµν , (4.2)

with Rµν and R the Ricci tensor and scalar and Tµν the stress energy tensor representing the

matter content. Recall that κ2 = 8πGN with GN the newtonian gravitational constant. Our

Einstein equations are

Gµν = −1

2

(
□h̄µν − ∂ρ∂ν h̄

ρ
µ − ∂µ∂ρ h̄

ρ
ν + ηµν∂

ρ∂σh̄ρσ
)
= κ2Tµν , (4.3)

where the redefinition h̄µν = hµν − 1
2ηµνh

ρ
ρ has been used. At first, this expression strikes as

a bit messy. We can use the invariance under diffeomorphisms of the Einstein tensor to render

(4.3) more aesthetic. Indeed, it is easy to show that under an infinitesimal diffeomorphism

x̃µ = xµ + ξµ(x) a metric tensor transforms as

gµν (x̃) = gµν (x)
∂xρ

∂xµ
∂xσ

∂xν
= gµν (x)− gρν (x)∂µξ

ρ(x)− gµρ(x)∂ν ξ
ρ(x) + O(ξ2). (4.4)

It is also straightforward to prove that the linearized version of Gµν is invariant under such

transformations. Now we can choose a particular expression for ξµ(x) that simplifies (4.3).

We are fixing the gauge freedom. Indeed, by looking at (4.3) one can see that it would be

perfect to cancel the ∂h̄-terms from the Einstein tensor. More precisely, we would require

∂µ h̄
µν(x̃) = 0 for the transformed perturbations. Such simplification can be achieved by

choosing the so-called Lorenz gauge condition. The Lorenz gauge condition is

□ξµ(x) = ∂µ h̄
µν(x). (4.5)

With this condition, it is not hard to show that1

∂µ h̄
µν(x̃) = □ξν(x)−□ξν(x) = 0 (4.6)

is fulfilled for all ξν(x) and hence there is a residual degree of gauge freedom to be fixed by

the diffeomorphism function. We choose

□ξν(x) = 0. (4.7)

1The metric perturbation transforms as h̄µν(x̃) = hµν(x) − □ξν(x) − ∂ν∂ρξ
ρ(x), and hence using (4.5) we

find (4.6).
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With all these specifications, we can rewrite the Einstein equations (4.3) in a much simpler

way. Indeed, the resulting equation is a wave equation for the perturbations

□h̄µν(x̃) = −2κ2Tµν (x̃), (4.8)

where we have written the tilde in x̃ to emphasise that the variables have been gauge trans-

formed.

4.1.1 The TT gauge

Let us for the moment work in the vacuum, Tµν = 0. If that is the case, a plane wave

solution for the perturbation in (4.8) may be found, yielding

h̄µν(x̃) = Ãµνe
ikρx

ρ
, (4.9)

which implies that GWs propagate at the speed of light in vacuum due to the dispersion rela-

tion kρkρ = 0 that stems from the computation. We can also solve for of the diffeomorphism

vector field such that □ξµ(x) = 0. We also find a solution with kρkρ = 0 that reads

ξµ(x) = Bµeikρx
ρ
. (4.10)

Now we can use (4.4) to determine the form of Ãµν in terms of the old Aµν from (4.9), yielding

Ãµν = Aµν − iηνρkµB
ρ − iηµρkνB

ρ + iηµνkρB
ρ. (4.11)

Now we can use the freedom to choose the form of the components of Bµ. We impose that

Bµ is such that

Ãµ
µ = Aµ

µ + 2ikµB
µ = 0,

uνÃµν = uνAµν − iuρkµB
ρ − iuνηµρkνB

ρ + iuµkρB
ρ = 0.

(4.12)

In other words, we choose Bµ such thath Ãµν is traceless and transverse to a unit vector we

define as uµ which describes the direction of the four-velocity of an observer. There is yet

another constraint to the components of the tensor amplitude of the perturbation that stems

from (4.6),

kνÃµν = 0. (4.13)

Technically, (4.12) is a system of 5 equations for 4 unknowns Bµ. However, from (4.13) we

can show that a linear combination of the 4 equations in the second line of (4.12) vanishes,
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kµuνÃµν = 0, and hence only three of those equations are independent. Therefore there exists

a unique solution for Bµ. Now that we know that the system (4.12) is well defined and has a

unique solution, we can affirm that there is a certain Bµ such that

kµÃµν =0,

uµÃµν =0,

Ãµ
µ =0.

(4.14)

The conditions (4.14) define the so called transverse traceless gauge (TT gauge for short).

The tracelessness condition allows us to get rid of the bar in the notation, h̄TT
µν = hTT

µν . We

introduce the notation TT to reference the TT gauge. Now that there is no confusion possible,

we can at last suppress the tildes in the notation.

We may now choose an observer in the rest frame, uµ = (1, 0⃗) and assume that the wave

propagates along the z-axis, yielding kµ = (ω, 0, 0, ω). With these considerations, one easily

sees from (4.14) that the only non-vanishing components of the perturbations are those with

ATT
xy = ATT

yx and ATT
xx = −ATT

yy . Therefore, in the TT gauge, Einstein equations in vacuum

read

□hTT
ij (t, z) = 0, (4.15)

and they admit a simple plane wave solution

hTT
ij (t, z) = ATT

ij e
−iωt+iωz (4.16)

where the latin indices refer to the non-vanishing spatial components.

4.2 Adding a source

Now we simply want to add an energy-momentum tensor as a source for (4.15), also in the

TT gauge. Namely

□hTT
ij (t,x) = −2κ2T TT

ij (t,x), (4.17)

where we take the transverse and traceless components of the energy-momentum tensor. Latin

indices denote spatial components, since the hTT
0µ = 0. Note that the solution to (4.17) will

not be as simple as the plane wave in (4.16). We define the Fourier transform

hTT
ij (t,x) =

∫
d4k

(2π)4
e−ikxhTT

ij (ω,k), (4.18)
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which allows writing the following equation in Fourier space (we also Fourier-transform the

energy-momentum tensor)

hTT
ij (ω,k) = 2κ2

T TT
ij (ω,k)

(ω + iϵ)2 − k2 . (4.19)

In (4.19) we have picked the physical retarded solution, with ϵ→ 0. Also recall that kµkµ = 0.

Note that we have tiptoed the fact that we do not really know how to write Tµν in the TT

gauge. This can be done by defining a projector that selects the TT components of a tensor.

In order not to bomb the reader with a page of algebra, we prooflessly give the reader the

projector. The projector reads

Λµνρσ ≡ PµρPνσ − 1

2
Pµν Pρσ , (4.20)

with Pµν the transverse projector

Pij = ηij −
kikj
k2

,

P0µ = η0µ − u0uµ = 0, ∀µ.
(4.21)

From here, it is easy to see that the transverse projector gets rid of all time and z-components

of a tensor, while their combination (4.20) renders it traceless2. Now we can write the spatial

components of the TT gauge energy-momentum tensor as

T TT
ij (ω,k) = ΛijmnTmn(ω,k). (4.22)

4.2.1 The classical energy of a gravitational wave

Before going forward with the computation of the emission rate for GWs, let us make some

brief comments on how can one obtain an expression for the energy carried away from a system

by a GW, which is obviously crucial to our computation.

Up to this point we have been working up to linear order on the metric perturbations. It

turns out that in order to obtain the energy of a GW one has to consider second order terms.

Even though the computations become rather messy in doing so, the concept behind this

2It is easy to check that for any tensor V ρσ one gets ηµρηµσΛµνρσV
µν = 0.
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extension is in fact pretty simple: the energy of a GW can be deduced from the curvature

that the GW itself generates on spacetime. This is indeed the very definition of second order

calculations on linearised gravity. More concretely, up to now our Einstein equations have

been

G(1)
µν = κ2Tµν , (4.23)

but they could have been extended up to any order in hµν . Up to second order, one has

G(1)
µν +G(2)

µν = κ2Tµν , (4.24)

where G
(2)
µν can be read off as a correction to the stress-energy tensor, yielding

G(1)
µν = κ2 [Tµν + Tµν ] , (4.25)

where Tµν = −G(2)

κ2 is the so-called Isaacson stress-energy pseudo-tensor, and believe me when

I tell you it is a true pain to compute. It is called a pseudo-tensor because, for starters, it is not

even gauge invariant. However, there is a clever trick to obtain a gauge invariant quantity out

of this object. Although smart, the procedure is nothing but an average (sending fluctuations

to 0), namely

G(2) =
[
G(2) −

〈
G(2)

〉]
+ ⟨G(2)⟩ →

〈
G(2)

〉
(4.26)

Since this computation would take us far away from the main goals of this work, the reader is

referred to [14] for details. The final result is a gauge invariant quantity that can of course be

written in the TT gauge. One can deduce that, in the TT gauge, the averaged gauge-invariant

Isaacson energy-momentum pseudo-tensor can be written as

T TT
µν = ηρληστ

1

4κ2
〈
∂µh

TT
λτ ∂νh

TT
ρσ

〉
, (4.27)

where ⟨. . .⟩ denotes a time average over an observation period that is long compared to the

frequency of the wave (or conversely, over a volume that is big compared to the wavelength

of the wave). It is straightforward to read off the averaged energy density carried out by a

GW from (4.27), since it is the 00-th component of its stress-energy tensor. We denote by

dĒGW
d3x

≡ T TT
00 the energy density carried by the GW, and we write its expression in terms of

the spatial components of the metric perturbation:

dĒGW

d3x
=

1

4κ2

〈
ḣTT
ij (t,x)ḣTT

ij (t,x)
〉
. (4.28)

Needless to say that (4.28) is indeed gauge invariant.
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We can Fourier transform an integrate (4.28) to obtain

ĒGW =
1

4κ2

∫
d3k

(2π)3

〈
ḣTT
ij (t,−k)ḣTT

ij (t,k)
〉
, (4.29)

where the minus sign on ḣTT
ij (t,−k) stems from a delta integral. With (4.29) in our hands we

are ready to go forward.

4.3 Thermal emission of gravitational waves

In this section we work our way to obtaining the emission rate of GWs from a thermal

source. In order to be accurate, we consider two connecting ways of getting there. In the first

subsection, the emission rate of GWs is obtained from a purely classical approach to GWs. In

the second subsection the concept of graviton arises as we treat GWs as particles in a QFT

with κ as coupling constant.

4.3.1 Classical treatment

From (4.29) we read an expression for the classical energy that flows out of a system in

the form of GWs. We may take our solution for the perturbation that represents the GWs in

terms of the stress-energy tensor (4.19) and use it to compute the energy with (4.29). We can

write

hTT
ij (t,k) = 2κ2

∫
dω

2π
e−iωt

T TT
ij (ω,k)

(ω + iϵ)2 − k2 . (4.30)

Now we just have to plug in the Fourier transform T TT
ij (ω,k) =

∫
dt′eiωt

′
T TT
ij (t′,k) and solve

the integral through the residues in the retarded poles. In doing so, one obtains

hTT
ij (t,k) = 2κ2

∫ t

−∞
dt′

sin (ω(t− t′))

ω
T TT
ij (t′,k). (4.31)

Now we simply plug (4.31) in (4.29) and find

ĒGW = κ2
〈∫

d3k

(2π)3

∫ t

−∞
dt′
∫ t

−∞
dt′′ cos

[
ω(t− t′)

]
cos
[
ω(t− t′′)

]
T TT
ij (t′,−k)T TT

ij (t′′,k)

〉
=
κ2

2

∫
d3k

(2π)3

∫ t

−∞
dt′
∫ t

−∞
dt′′

[ 〈
cos
(
ω(2t− t′ − t′′)

)〉
+
〈
cos
(
ω(t′ − t′′)

)〉 ]
× T TT

ij (t′,−k)T TT
ij (t′′,k),

(4.32)
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where the average ⟨. . .⟩ is taken over the a long period in the variable t. The average helps

us get rid of the fast oscillating terms (fluctuations) encoded in the first term of (4.32). Since

the second term is functionally independent of t, the average throws the oscillating term away

so that we can finally write

ĒGW =
κ2

2

∫
d3k

(2π)3

∫ t

−∞
dt′
∫ t

−∞
dt′′ cos

[
ω(t′ − t′′)

]
T TT
ij (t′,−k)T TT

ij (t′′,k). (4.33)

Up to now, no assumptions on the source have been made. The expression (4.33) is valid

for any source, whether it is thermalized or not. In our case, we consider a source formed by

thermally bound particles that interact weakly with the produced GWs but strongly among

them, just like we did in the scalar and QED cases. Note that (4.33) gives the energy for only

one particular configuration of the thermal ensemble, and hence we want to thermally average

the configurations of the ensemble in order to obtain the full picture of the GW emission. Also,

note that the spectrum of the GWs will not be thermal, but rather it will contain information

about the thermal source that generates them. Hence, we will express the emission rate in

terms of a thermal correlator. Namely, we define the following quantity

C (t′ − t′′,k) ≡
〈
T TT
ij (t′,−k)T TT

ij (t′′,k)
〉
β
. (4.34)

Assuming traslational invariance, one may write (4.34) by Fourier-transforming in the spatial

coordinates as

C (t′ − t′′,k) =

∫
d3x

∫
d3y

〈
T TT
ij (t′ − t′′,x− y)T TT

ij (0, 0)
〉
β
e−ik(x−y)

= V

∫
d3x

〈
T TT
ij (t′ − t′′,x)T TT

ij (0, 0)
〉
β
e−ikx,

(4.35)

where V is the purely spatial volume of the thermal system. Now we can take the thermal

average of (4.33) to write

〈
ĒGW

〉
β
=
κ2

4

∫
d3k

(2π)3

∫ t

−∞
dt′
∫ t

−∞
dt′′
[
eiω(t

′−t′′) + e−iω(t′−t′′)
]
C (t′ − t′′,k). (4.36)

After taking a time-derivative and a derivative with respect to k in (4.36) one finds that, since

d
dx

(∫ x
a F (y)dy

)
= F (x),

d ⟨ĒGW ⟩β
dtd3k

=
1

2

κ2

(2π)3

∫ +∞

−∞
dτeiωτ

C (τ,k) + C (−τ,k)
2

=
V

2

κ2

(2π)3

∫
d4xei(ωt−kx)

〈
1

2

{
T TT
ij (t,x), T TT

ij (0, 0)
}〉

β

,

(4.37)
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since translational invariance implies that ⟨T TT
ij (−t,−x)T TT

ij (0, 0)⟩
β
= ⟨T TT

ij (0, 0)T TT
ij (t,x)⟩

β
.

Now we can finally write an expression for the energy density emission in the form of GWs

ρGW =
⟨ĒGW ⟩

β

V , that is

dρGW

dtd3k
=

1

2

κ2

(2π)3

∫
d4xeikx

〈
1

2

{
T TT
ij (t,x), T TT

ij (0, 0)
}〉

β

. (4.38)

The anticommutator {, } in (4.38) is of course a convenient computational artifact, since the

order of the operators does not matter at a classical level. The anticommutator is telling us

that the generation of GWs is a consequence of the (symmetrized) fluctuations of the energy

momentum tensor.

4.3.2 Quantum particle treatment

In order to get a quantum-particle description of the gravity coupling, we emulate the

procedure followed in section 3 and we compare the result with the previous classical treatment

of the GWs.

The natural candidate to represent the source for gravitational metric perturbations in the

TT gauge is obviously the stress energy tensor T TTµν . Hence, the interacting term in the

Lagrangian should amount LI ∼ κT TTµν(x)hTT
µν (x), so that κ is understood as a quantum-

gravitational coupling constant. Given this picture, the particle-interpretation of metric fluc-

tuations is straightforward. We have naturally given birth to the graviton, which couples to

matter through the stress-energy tensor with strength controlled by κ. Note that since the fluc-

tuations are GWs, they propagate at the speed of light and hence their particle-representation

is massless. In this fashion, we can understand a graviton as an spin 2 photon. In order not

to make things too dense, let us simply mimic the spin 1 case we depicted in 3.3.2, but now

with an identity over polarization tensors (analog to (3.22)) that gracefully yields

∑
λ

ϵ
TT (λ)
ij (k)ϵTT (λ)∗

mn (k) = Λijmn(k), (4.39)

where Λijmn is nothing but the projector over TT-components defined in (4.20).

A straightforward application of functional differentiation on (3.26) yields the graviton self-

energy. Understanding hµν(x) = Jµν(x) as source yields, after setting Jµν(x) = 0 in the final
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result,

Π<
GW (k) = κ2

∫
d4xeikx

〈
: T TT

ij (0) :: T TT
ij (x) :

〉
β

= κ2Λijmn(k)

∫
d4xeikx

〈
: T ij(0) :: Tmn(x) :

〉
β
,

(4.40)

which allows us to generalise 3.3.1 and 3.3.2. In analogy with (3.25), we can write the differ-

ential rate of graviton energy density emission from a QFT approach:

dρGW

dtd3k
=

1

2

Π<
GW (k)

(2π)3
= −

f(k0)Λijmn(k) Im
{
ΠR

ijmn(k)
}

(2π)3
. (4.41)

To check the validity of (4.41), we may compare its classical limit k0 ≪ T with (4.38). Let

us focus on the l.h.s. equality of (4.41). The classical limit of the Bose-Einstein distribution

simply implies f(k0) ≫ 1. With this information, one may easily prove (see (2.92) and apply it

for self-energy correlators in the low energy limit) that Π<(k) −→ Π>(k), and hence in this limit

the order of the operators in the correlator does not matter anymore, and the normal-ordering

also looses its meaning. Thus, (4.38) is the classical limit of (4.41).

4.4 A way forward on strong coupling computations

We finally have an expression for the graviton/GWs emission rate that is completely inde-

pendent of the thermal plasma dynamics. The case we are going to consider is a source of

strongly coupled plasma. This is very easily said, but rather difficult to accomplish at first

glance. No Dyson formula nor any other perturbative method is of any use when it comes to

a λ≫ 1 coupling constant, and hence we have to be opened to explore other less conventional

ways of computing strongly-coupled correlation functions. One of these ways makes use of the

AdS/CFT correspondence emanating from the so-called gauge/gravity duality. It turns out

(or at least it is conjectured) that a some strongly-coupled quantum theory possesses a dual

classical gravity theory that allows computing the correlators on the field theory side through

general relativistic computations. These fancy words will be dissected in the following chapter,

where we try to devise a self-consistent introduction to this kind of computations applied to

the ThFT work field. Let us without further delay dive into this fascinating corner of modern

physics.
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Chapter 5

The AdS/CFT duality in the

context of thermal field theory

In theoretical physics, dualities are a big deal. A duality emerges from a mathematical

equivalence of two theories that apparently describe different physics. In this fashion, a variety

of QFTs dual to each other exist, as well as there exist string theories with a dual string theory.

However, it was not until 1997 that Maldacena stated that a particular string theory was dual

to a particular QFT, giving birth to the celebrated AdS/CFT conjecture [5]. The AdS/CFT

conjecture in its original form exactly relates a type IIB superstring theory with string length

ls =
√
α′ and coupling constant gs in AdS5 × S5 with radius of curvature L and N units of

F(5) flux on S5 to a supersymmetric N = 4 Yang-Mills quantum theory with gauge group

SU(N) and coupling constant gYM through a realisation of the holographic principle. In fact,

both theories are said to be dinamically equivalent, and there exists a mapping between the

free parameters of the theories. No more than a year later, Witten proposed the equivalence

of the partition functions [6], which is what we want to use.

The previous paragraph may strike as both fancy and scary as well as exciting at first glance:

relating a string theory that stands as a formal candidate for describing quantum gravity to a

flat-spacetime QFT is no trivial matter. Giving a detailed explanation of the exact theoretical

correspondence between both sides would take us light-years away from our computational

goals. If the reader is interested, the first five chapters of Ammon and Erdmenger are very

instructive and detailed [15]. We will try to shed some light on the fancy looks of the first
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paragraph of this section so that the reader may sense the original idea behind the duality

without delving too deep on rigorous mathematical background. In fact, rather than string

theory, we will use another approach to explain this duality that relies on renormalization

groups of QFTs. Before going forward, we will devote some time to sketch the main ideas

concerning the necessary ingredients in order to understand the duality. We will not discuss

details on supersymmetry nor strings in this work (we are not even going to touch the compact

S5 part of the metric space). In fact, it can be shown that stringy corrections are negligible if

one takes the so-called ’t Hooft strong coupling, which very roughly stands for N → ∞ on the

gauge theory. The only equivalence between the parameters of the two theories we are going

to use is given below (admittedly ad hoc)

G5 =
πL3

2N2
, (5.1)

where G5 is the five dimensional Newton constant. For quantum chormodynamics (QCD),

N = 3.

This chapter aims to describe the most important features of CFTs and AdS spaces in the

dual context. We will see how these seemingly disconnected topics end up merging into a

two-faced coin. One of them is an apparently complicated QFT and the other belongs to a

classical gravitational theory.

5.1 Conformal field theories

The conformal symmetry group is an extension of the Poincaré group (formed by Lorentz

transformations and translations) that contains all causality-preserving transformations. In

terms of a non-trivial metric, a conformal transformation should leave it invariant up to a

positive scale factor. If we take the original metric to be flat in Lorentzian signature, conformal

transformations act on Minkowski spacetime as

xµ → x′µ(x),

ηµν → g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = Ω−2(x)ηµν ,

(5.2)

with Ω(x) some function of the coordinates and ηµν the Minkowski metric in d dimensions with

µ, ν = 0, 1, . . . , d− 1. For instance, it is very easy to see that for Ω(x) = 1 the metric remains

invariant and hence such transformations are just Poincaré transformations x′ = Λx+a. Here,
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Λ represents a Lorentz transformation ΛT ηΛ = η and a is a constant vector that represents

the translation.

In a general case, one may consider an infinitesimal transformation with ϵ(x) ≪ 1 in the

style of1

xµ → x′µ = xµ + ϵµ(x),

ηµν → g′(x′) ∼ ηµν + ∂µϵν(x) + ∂νϵµ(x).
(5.3)

We can define Ω(x) = e−σ(x) so that for an infinitesimal transformation we get Ω−2(x) ∼

1 + 2σ(x). Hence, comparing (5.2) with (5.3) we can write

ηµνσ(x) =
1

2
(∂µϵν(x) + ∂νϵµ(x)) , (5.4)

which upon taking a trace with ηµν yields ∂µϵµ(x) = ∂ · ϵ(x) = dσ(x)2. Taking a ∂ν-derivative

in (5.4) yields the condition

[ηµν□+ (d− 2)∂µ∂ν ] (∂ · ϵ(x)) = 0. (5.5)

Hence, an infinitesimal transformation is conformal if it fulfills (5.5). Obviously the case we

are interested in is the d > 2 case. A general solution to (5.5) can be obtained by noticing

that ϵ is at most of second order in x. Hence, we can write every possible combination and

write

ϵµ(x) = aµ + ωµ
νx

ν + λxµ + bµx2 − 2(b · x)xµ. (5.6)

Each of the terms in (5.6) corresponds to a kind of continuous transformation. The first two

terms are immediately recognisable as the infinitesimal parameters for translations ϵ(x) = aµ

and continuous Lorentz transformations ϵµ(x) = ωµ
νxν (with ωµν = −ωνµ), and together

they represent Poincaré symmetry. The third term ϵ(x) = λxµ is related to dilatations,

which are also called scale transformations. The last two terms ϵ(x)µ = bµx2 − 2(b · x)xµ

are meant to be read together, and they represent special conformal transformations

1Note that in the second line of (5.3) we used that ηµνdx
µdxν → ηµν (dx

µ + dϵµ) (dxν + dϵν) ∼

ηµν (dx
µdxν + dxµdϵν + dϵµdxν) = (ηµν + ∂µϵν + ∂νϵµ)dx

µdxν .

2The d here is the number of dimensions that stems from taking a trace, not a differential.
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(SCT), which is the other additional continuous symmetry aside from Poincaré symmetry and

dilatations.

Let us specify (5.6) only for dilatations. In this case, we find σ(x) = λ, for an infinitesimal

transformation. If λ is taken finite, we can express the transformation under a finite dilatation

is

xµ → x′µ = λxµ

ηµν → g′µν(x
′) =

∂xρ

∂x′µ

∂xσ

∂x′ν
ηρσ = λ−2ηµν .

(5.7)

A theory with conformal symmetry is scale invariant. It behaves equally no matter the length

or energy scale we look it at. Indeed, the first line of (5.7) is telling us that a fictitious

coordinate grid on spacetime is being enhanced. That the physics remain invariant under

such transformation is the very definition of scale invariance.

5.1.1 A word on the Lie algebra

In (5.6) we recognize the infinitesimal parameters of translations ϵµ(x) = aµ and Lorentz

transformations ϵµ(x) = ωµ
νxν (with ωµν = −ωνµ). The generators of translations and

Lorentz transformations are momentum Pµ and the angular momentum Jµν respectively (it

can be shown that Jµν = −Jνµ is an antisymmetric tensor). Both sets of generators span Lie

algebras. It is particularly interesting to define the Lie algebra of the generators of Lorentz

transformations Jµν . Their Lie algebra is denoted as so(d − 1, 1) and is characterised by the

commutator

[Jµν , Jρσ] = i (ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ) . (5.8)

A Lie algebra follows from the infinitesimal expansion of an exponential map, which denotes

the corresponding Lie group. In this case, the Lie group is formed by the more familiar finite

Lorentz transformations Λ(ω) = e
i
2
ωµνJµν

.

In order to be able to act on fields living in a flat spacetime, Lie algebras require a certain

representation depending on the character of the fields (scalar, vector, spinor. . . ) they

are meant to act on. A representation consists of a map between each algebra element and a

matrix. If the dimensions of the Lie algebra and of the matrix group match, the representation

is called faithful. A faithful representation of so(d − 1, 1) is the matrix group SO(d − 1, 1)

consisting of all d× d matrices A that fulfill AT ηA = η.
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Now, just as we did with Poincaré transformations, we can consider the full transformation

in (5.6). Just as the Poincaré generators associate to the first two terms, there will appear

two sets of generators, one for each additional type of symmetry of the conformal group. We

define the generator for dilatations as D and the generators of SCTs as Kµ. One may gather

every non-vanishing commutator between generators of continuous conformal transformations

(regardless of their concrete macroscopic expression, which may be found in [15], chapter 3)

in order to understand their Lie algebra. It is straightforward to find the conformal algebra

through every pair of non-vanishing commutators between the generators {Pµ, Jµν , D,Kµ}, (it

is a long list, [15], chapter 3). There is however a very simple yet ingenious trick that renders

the conformal group in a much more familiar shape.

We can redefine some of the generators in order to force them to fulfill an algebra similar

to the so(d − 1, 1) algebra depicted in (5.8) but with two extra dimensions, one time-like

and the other space-like. In other words, there is a way to write the conformal algebra as

so(d, 2)3. Imposing antisymmetry for the new generators J̄MM = 0, J̄MN = −J̄NM (with

N,M = 0, ...d+ 1), we only have to define

J̄d(d+1) = −J(d+1)d = −D,

J̄µd = −J̄dµ =
1

2
(Kµ − Pµ),

J̄µ(d+1) = −J̄(d+1)µ =
1

2
(Kµ + Pµ),

J̄µν = Jµν .

(5.9)

One may easily check that (5.8) is fulfilled for the new so(d, 2) generators (5.9). Hence,

the conformal group in d dimensions is isomorphic to SO(d, 2). It can be shown that, due

to antisymmetry, the number of independent generators in the SO(d, 2) representation is

(d+1)(d+2)
2 .

3The commutators are the same, with the metric on so(d − 1, 1) being η = diag(−1, 1, . . . , 1), while for

so(d, 2) the metric is η = diag(−1,−1, . . . , 1, 1), where a −1 and a +1 is added.
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5.1.2 The scaling dimension

As mentioned before, CFTs are scale-invariant and hence they cannot depend on any di-

mensionful coupling such as a mass. For instance, let us take a ξΦ4 theory in d = 4 with

action

S[Φ(x), ∂µΦ(x)] =

∫
d4x

(
−1

2
ηµν∂µΦ(x)∂νΦ(x)−

ξ

4!
Φ4(x)

)
, (5.10)

for which [ξ] = 1 and hence is scale-invariant. Under a dilatation, a CFT must remain un-

changed, and hence under xµ → x′µ = λxµ we must get S[Φ′(x′), ∂µΦ
′(x′)] = S[Φ(x), ∂µΦ(x)].

The integral measure d4x transforms with the Jacobian of the transformation as

ddx→ ddx′ =
√

−det(Ω2(x)η)ddx = Ωd(x)ddx = λdddx, (5.11)

and the derivative transforms as

∂

∂xµ
ϕ(x) → λ2

∂

∂x′µ
ϕ(x′) (5.12)

From here on it is easy to see that in order to keep (5.10) unchanged we must require that

the field transforms as

Φ′(x′) = λ−1Φ(x). (5.13)

A natural way to interpret this result is that, as the coordinate grid of the spacetime is

enhanced, the field living in it scales as a negative power of the enhancement parameter λ.

For a general conformal transformation, a so-called primary field transforms as

Φ′(x′) = Ω−∆(x)Φ(x), (5.14)

with ∆ the scaling dimension of the field. For this massless quartic scalar theory, we found

∆ = 1 under Ω(x) = λ.

In fact, in a CFT, every local operator will present a scaling dimension under conformal

transformations. That is why in CFTs primary local operators (as well as their sources) are

labeled in terms of their conformal or scaling dimension in the style of O∆(x).

5.1.3 Conformal generating functional

As it is done in every QFT, we can define a generating functional from which to obtain

correlation functions of local operators as

ZCFT [J∆] =

∫
[dO∆]e

i
∫
ddxO∆(x)J∆(x) =

〈
ei

∫
ddxO∆(x)J∆(x)

〉
CFT

, (5.15)
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where [dO∆] represents all the possible configurations of the fields that compose the local

operator O∆(x). It can be shown that (5.15) is an exponential of another more practical

generating functional W [J∆], which yields connected correlators when differenciated. In other

words, we can write

ZCFT [J∆] = eiW [J∆], (5.16)

and hence, the connected two point function is obtained as

⟨O∆(x1)O∆(x2)⟩CFT = (−i)2 δW [J∆]

δJ∆(x1)δJ∆(x2)
. (5.17)

Conformal invariance implies that, under a conformal transformation in the style of (5.14) (on

both source and operator), (5.15) remains invariant,∫
ddx′O′

∆(x
′)J ′

∆(x
′) =

∫
ddxO∆(x)J∆(x) (5.18)

Since local operators transform as (5.14)

O′
∆(x

′) = Ω−∆(x)Φ(x) (5.19)

and the integral measure dx transforms with the jacobian of the transformation as in (5.11)

one requires that sources transform as

J ′
∆(x

′) = Ω(x)−(d−∆)J∆(x). (5.20)

Hence, sources of primary operators with scaling dimension ∆ are also primary operators/fields

with scaling dimension d−∆.

5.2 Anti de Sitter spacetime

In general relativity (GR), a (d + 1)-dimensional metric space is said to be isotropic and

homogeneous if the metric gµν that defines it is invariant under translations and under SO(1, d)

Lorentz transformations respectively. Both kinds of transformations are said to be isometries

of the metric space if they preserve distances (that is, if the metric is invariant under them).

Minkowski spacetime is indeed homogeneous and isotropic since it is invariant under Poincaré

transformations, which are (d+1)(d+2)
2 independent transformations. It can be shown that this

is indeed the maximum number of isometries that a metric may have. A metric spacetime

with (d+1)(d+2)
2 isometries is called maximally symmetric spacetime. Anti-de Sitter spacetime
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is simply a maximally symmetric spacetime with Lorentzian signature and negative, constant

Ricci scalar R < 04. Since the Ricci scalar is constant, we are able to write the Riemann

tensor in therms of the Ricci scalar. A textbook computation (found on [15] chapter 2) shows

that the Riemann tensor takes the form of

Rµνρσ =
R

d(d+ 1)

(
gνσgµρ − gνρgµσ

)
, (5.21)

and from (5.21) we can then get the Ricci tensor Rµν . If we apply all these considerations to

Einstein equations in vacuum with a cosmological constant Λ,

Rµν −
1

2
Rgµν + Λgµν = 0, (5.22)

the contraction of (5.22) with gµν yields

R =
2(d+ 1)Λ

d− 1
, (5.23)

and hence AdSd+1 is a vacuum solution to Einstein equations with negative cosmological con-

stant. For the sake of completeness, we cite the concrete expression of the AdSd+1 metric that

arises from the generic procedure of finding static and isotropic metric solutions to Einstein

equations, namely

ds2 = −A−1(r)dt2 +A(r)dr2 + r2dΩd−1, (5.24)

where A(r) = 1 + r2

L2 . The coordinates that arise from (5.24) are called global coordinates,

since they cover the whole spacetime with no horizons.

Now that we are familiar with AdSd+1, we will try to properly define its boundary. In order

to imagine such thing, we embed AdSd+1 into d + 2-dimensional Minkowski spacetime (with

two timelike components) with metric

ds2 = −(dX0)2 +
d∑

i=1

(dXi)2 − (dXd+1)2 ≡ η̄MNdX
MdXN (5.25)

such that AdSd+1 is given by the following hypersurface in d+ 2 Minkowski spacetime,

η̄MNX
MXN = −L2, (5.26)

4If you think about it the curvature has to be the same at each point of the manifold in every direction due

to the symmetries.
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where L is the radius of curvature of AdSd+1. Note that the defining hypersurface (5.26) is

invariant under SO(d, 2) transformations, and hence the isometry group of AdSd+1 is indeed

SO(d, 2). There is an idealised boundary to AdSd+1 which we can best understand thanks

to the embedding (5.26). The boundary is of course formed by the set of points that are far

away, or more technically, points defined by L≪ XM . In this limit, the boundary of AdSd+1

arises, and can be written as

∂AdSd+1 =
{
[X] : X ∈ Rd,2, X ̸= 0, η̄MNX

MXN = 0
}
, (5.27)

which is defined as embedding of the hypersurface η̄MNX
MXN = 0 in Rd,2. Now we could

get extremely technical playing with (5.27). It is beautiful and recommended to do so. One

finds that the hypersurface defines a so-called conformal compactification of d-dimensional

Minkowski spacetime Rd,2, which is just a fancy way of saying that the infinities of the space-

time are included as points that allow defining finite-range coordinates. If the reader is curi-

ous, again Ammon and Erdmenger [15] are very accurate. However, alternative coordinates

to (5.24) render this concept much more physically manageable.

One of these coordinates are the so-called Poincaré patch. They cover only half of the

spacetime and hence they introduce a non-physical coordinate singularity. The concrete trans-

formation from (5.24) to the Poincaré patch can be found in many textbooks and it is a

straightforward computation. The Poincaré patch for the coordinate region r > 05 can be

written as

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 + dx2

)
=
L2

r2
dr2 +

r2

L2
ηµνdx

µdxν . (5.28)

Note that, for fixed r, the spacetime orthogonal to this direction is Minkowski with d dimen-

sions. This is why these coordinates can also be referred as flat slicing. We can perform a

final change of coordinates z = L2

r , so that the metric is written as

ds2 =
L2

z2
(
dz2 − dt2 + dx2

)
=
L2

z2
(
dz2 + ηµνdx

µdxν
)
. (5.29)

We can take a slice of (5.29) so that for each z there is a flat d-dimensional metric, namely

ds2
∣∣
z
=
L2

z2
ηµνdx

µdxν . (5.30)

5Note that, in order to cover the whole of AdS spacetime, antoher Poincaré patch is needed for r < 0.

Hence, the coordinate non-physical singularity is located at r = 0.
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Setting z −→ ∞ in (5.30) amounts to a coordinate-like singularity and hence is not very

interesting. However, the limit z −→ 0 is indeed very interesting. It is the limit in which, as

we advanced in (5.27), r ≫ L, which is inverted for the z coordinate, z ≪ L. If we manage

to render it well-behaved, the so-called conformal boundary of AdS spacetime will be located

at z = 0. Indeed, the AdS metric (5.29) is ill-defined for z = 0, and so we somehow have

to continue the metric to ensure finiteness. This can be accomplished by multiplying the flat

metric (5.29) by a so-called defining function, that has to cancel z−2 in the z = 0 limit and

has to be a positive and smooth function of all coordinates (z, xµ). With these requirements,

a defining function can be written as f2(z, x) = z2

L2Ω
2(x), so that we get not a single one but

a whole class of boundary metrics in terms of f2(z, x). Hence, the continued metric reads

ds′2
∣∣
z=0

= Ω2(x)ηµνdx
µdxν . (5.31)

There is a d-dimensional conformal structure living on the boundary z = 0 of AdSd+1.

5.2.1 Field dynamics in AdS background

In order to keep the concepts clear, we will study the dynamics of a scalar field in AdS5

with Euclidean signature. The metric of such space is given by

ds2 =
L2

z2
[
dz2 + δµνdx

µdxν
]
, (5.32)

and the determinant of this metric is g = L5

z5
. The action of a massive scalar field of mass m

fluctuating in AdS5 can be written as

Sϕ[g, ϕ] =
1

2

∫
d5x

√
g
[
gMN∂Mϕ∂Nϕ+m2ϕ2

]
. (5.33)

The EOMs of the field are easily obtained if one varies the action with respect to (w.r.t. from

now on) the scalar field,
1
√
g
∂M
[√
ggMN∂Nϕ

]
−m2ϕ = 0. (5.34)

Introducing the metric (5.32) yields the following equation for the field ϕ

∂2zϕ− 3

z
∂z + δµν∂µ∂νϕ− m2L2

z2
ϕ = 0. (5.35)

If we take the Fourier transform of ϕ on the xµ coordinates ϕ(z, x) =
∫

d4k
(2π)4

eikxϕk(z, k), we

can obtain an equation for the k-th mode that reads[
∂2z − k2 − 3

z
∂z −

m2L2

z2

]
ϕk = 0. (5.36)
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We can propose a solution to (5.36) in the form of ϕk(z) ∼ zα and solve near the boundary

z ∼ 0. The equation that emerges from introducing the ansatz in (5.36) is

[
α(α− 1)− 3α−m2L2

]
zα−2 − k2zα = 0. (5.37)

Since we are considering z ∼ 0, it is clear that the only relevant term is the ∼ zα−2 one. If we

equate the coefficient of the leading term to 0, we find that the allowed exponents are

α± = 2±
√
4−m2L2. (5.38)

A useful redefinition is

α+ ≡ ∆,

α− ≡ 4−∆.
(5.39)

In order not to have oscillating modes, we require α± ∈ R, and hence we require m2 ≥ − 4
L2 .

If this is the case, we clearly have 4−∆ ≤ ∆. This discussion will be relevant in the following,

so keep it in mind. Using (5.39), we see that the near-boundary solution behaves like

ϕk(k, z) ∼ a(k)z∆ + b(k)z4−∆, (5.40)

which Fourier transforms as

ϕ(x, z) ∼ a(x)z∆ + b(x)z4−∆. (5.41)

A scalar field in AdS transforms like a scalar under an AdS isometry. For instance, one can

easily check that under the scale transformation

xµ → x′µ = λxµ,

z → z′ = λz,
(5.42)

the metric (5.32) remains invariant. Hence, under the isometry (5.42), a scalar field in AdS

transforms as

ϕ(x, z) → ϕ′(x′, z′) = ϕ(x, z). (5.43)

If we plug the near-boundary solution (5.41) into (5.43), we can see that the functions a(x)

and b(x) are forced to transform as

a′(x′) = λ−∆a(x),

b′(x′) = λ−(4−∆)b(x).
(5.44)
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The key here is to notice that a(x) transforms like a local operator of a CFT (see e.g. (5.19)),

while b(x) transform like a source of a CFT (see e.g. (5.20)) under a conformal dilatation.

Moreover, if we take the dominant term in the near-boundary solution (5.41) with z ∼ 0,

we can write

ϕ(x, z) ∼ b(x)z4−∆ =⇒ b(x) ∼ z−(4−∆)ϕ(x, z) (5.45)

so that b(x) is

b(x) = lim
z→0

z−(4−∆)ϕ(x, z). (5.46)

This identities are very interesting because z can be understood as a variable scaling parameter.

More technically, a CFT source b(x) is related to the boundary value of an AdS field ϕ(x, z).

The coordinate z itself is associated with a scale. But, what is this scale?

5.3 The correspondence

From the previous discussion we can conclude that a d-dimensional CFT can be put to live

on the d-dimensional boundary z = 0 of AdSd+1. Although not yet very clearly, one senses

that there is an intimate relation between these two physical frameworks. In this section we

finally motivate their concrete relation. Let us motivate this connection through the Wilsonian

renormalization group. This discussion is inspired on some excellent notes by A. Ramallo [10].

The basic idea behind renormalization is to average microscopic UV degrees of freedom

from the couplings (or sources) of a given theory by decreasing the energy scale (or increasing

the length scale). This can be accomplished by considering that the spacetime where the

theory lives is realized as a lattice with spacing a. In this way, in every lattice site there is an

average of the physical variables. To state things clearly, for a lattice spacing a one writes the

generating functional of a CFT as 6

Z[J∆(ax)] =
〈
ei

∫
ddxO∆(x)J∆(ax)

〉
CFT

, (5.47)

6We talk here about a lattice although the true concept would be coarse graining, in which the details of

the theory are averaged at the scale a.
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where a indicates the energy regime at which we look at the theory. Since we can a priori

choose where to put the energy cutoff, we may interpret z = a as a concrete value of an extra

dimension labeled by the variable z, which represents a scale.

From renormalization theory we know that the QFT changes with the energy scale. Hence,

we may consider couplings J∆(zx) where z corresponds to the length scale at which we look

at the theory. Note that z → 0 corresponds to the UV limit while z → ∞ corresponds to

the IR limit. Now, if the QFT is to respect conformal symmetry, we require that couplings

transform under a dilatation xµ → zxµ as in (5.20). That is, we require:

J ′
∆(zx) = z−(d−∆)J∆(x). (5.48)

Let us take z < 1. That means that the coupling J ′
∆ is the coupling at higher energies while

the coupling J∆ is the coupling at lower energies (renormalized).

Furthermore, we can take z → 0 so that J ′
∆ represents the UV coupling of the theory. In

this case, the lattice that we were considering is not a lattice anymore since its lattice structure

is now a collection of points that are truly represented by the usual xµ. The IR coupling J∆

still represents the lattice (renormalized) theory. Therefore, the UV coupling may be written

as J
(0)
∆ (x), while the IR coupling is written as J

(z)
∆ (x), where the z remarks the fact that the

IR theory is renormalized and posseses a finite lattice parameter. Finally, the UV coupling is

written as

J
(0)
∆ (x) = lim

z→0
z−(d−∆)J

(z)
∆ (x). (5.49)

We are now on the crucial crossroads. We can see that (5.46) and (5.49) are the same expression

for d = 4. Hence, we can associate the z-direction of AdS spacetime with a renormalization

scale defining the different QFTs that live on the flat slices (see 5.1). The z = 0 boundary

theory is a CFT whose sources are boundary values of AdS fields. Applying an isometry in

AdS (5.42) amounts to a renormalization procedure in the QFT. This statement looks now

trivial, but it is not. The statement is technically the following:

AdS : (xµ, z) → (λxµ, λz) ⇐⇒ CFT : xµ → λxµ +Renormalization scale z. (5.50)

There is a matching of the symmetries of both theories when the boundary limit is taken.

Now we can get rid of every notational artifact to write a powerful statement:

J∆(x) = lim
z→0

z−(4−∆)ϕ(x, z) = b(x), (5.51)
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which says that the source of the CFT J∆(x) is related to the boundary value of an AdS

bulk field ϕ(x, z). In addition to the source, we can identify the other term ∼ a(x)z∆ in the

near-boundary AdS solution (5.41) with a local operator of the CFT. Indeed, we can write

⟨O∆(x)⟩ = lim
z→0

z−∆ϕ(x, z) = a(x). (5.52)

Note that we have used the result (5.46) and we have extended it for a(x).

Figure 5.1: A pictorical illustration of the correspondence. Different QFTs at different energy

regimes (left) are associated with slices of the AdS space (right). Taken from [10]

The AdS/CFT conjecture prescribes that the generating functional of a CFT is equal to

the generating functional of a quantum gravity field theory in AdS (see e.g. [6]), that is

ZCFT [J∆(x)] =
〈
ei

∫
ddxJ∆(x)O∆(x)

〉
CFT

= ZAdS [ϕ(z, x)]
∣∣∣
limz→0 z−(d−∆)ϕ(x,z)=J∆(x)

.
(5.53)

Note that ZAdS =
∫

DϕeiSAdS [ϕ] contains quantum corrections that, in principle, cannot be

neglected in Lorentzian signature. However, when classical gravity dominates, quantum cor-

rections to the gravitational action are negligible and hence only one path is weighted (this is

the definition of a classical theory). In this classical path, the AdS field is on-shell (it fulfills

the equations of motion). In Euclidean signature7, this classical limit is easily implemented,

7Euclidean signature is achieved through a Wick rotation t → −iτ , yielding the known relation (2.12),

S → iSE . The AdS metric becomes conformally Euclidean on the boundary, with ηµν → δµν .
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since small corrections on a negative real exponent vanish. Accordingly, the correspondence

(5.53) continued to Euclidean signature takes the form

ZE
CFT [J∆(x)] ≈ e−Son−shell

grav [ϕ(z,x)]
∣∣∣
limz→0 z−(d−∆)ϕ(x,z)=J∆(x)

, (5.54)

which suggests, for on-shell particles/fields, the proposal of the following Lorentzian signature

correspondence

ZCFT [J∆(x)] ≈ eiS
on−shell
grav [ϕ(z,x)]

∣∣∣
limz→0 z−(d−∆)ϕ(x,z)=J∆(x)

. (5.55)

Lorentzian signature is crucial in order to implement causality on the correlators we want to

derive from (5.55) by taking functional derivatives on the gravity side. However, there is an

underlying problem we need to address.

On Euclidean signature, we only have to impose that the solution for the AdS field is regular

(smooth and well-behaved) at the AdSd+1 horizon z → ∞ (in the Poincaré patch coordinates).

With this condition and taking into account the value of the field at the boundary, the AdS field

is uniquely determined. Indeed, this Euclidean strongly-coupled QFT is completely analog

to the thermal theories we have discussed in the first part of this work. In these theories,

one obtains ∼ D< and ∼ D> correlators, which are directly related to each other (see e.g.

(2.92))8. This is why generally the Euclidean formalism is more easily treated.

On the other hand, there are several two-point correlators in Lorentzian signature that put

causality into play (advanced, retarded, Feynman. . . ), and hence we will need to impose an

additional boundary condition on the AdS field in order to determine its behaviour. This

conclusion is the heart of the mathematical discussion of Son ans Starinets [11]. Since we

ultimately need the imaginary part of a retarded correlator in order to compute the emission

rate of GWs from a thermal system, this is an issue that demands careful attention.

8Note that the theories at finite temperature we have treated are given at temperature T = 1
β
, so that if

β → ∞ the theories cease to be periodic in imaginary and hence they are given at T = 0, which is the case

here.
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5.4 Black holes and broken symmetry

Note that our field theory for thermal emission of GWs is a thermal field theory (see e.g.

(4.41)). Since the theory is given for a temperature T , it is not scale invariant anymore. Hence,

a basic question pops out: how do we correspond a thermal field theory with a dual gravity

theory? The answer is both beautiful and shocking at first glance: the dual gravitational

theory to a ThFT is AdS with a black hole! In this way, we will assign a temperature to the

BH: the Hawking temperature.

Recall from chapter 2 that a bosonic ThFT is described by a partition function in periodic

imaginary time with period β. Namely, ZThFT = Tr
{
e−βĤ

}
with periodicity τ → τ + β.

Hence, the dual Euclidean gravitational theory will also have to be periodic in Euclidean

time. This is not the case of a gravity theory in pure Euclidean AdS.

Indeed, the horizon of the dual AdS gravity theory of a T = 0 QFT is located at r → 0 (see

(5.28)). Breaking the scale invariance of the theory would hence amount introducing a scale

in the r direction: a new horizon r = rH .

The metric of this periodic gravity theory is forced to introduce a scale. The scale is likely

to be introduced on the radial coordinate (r or z), leaving the other spatial coordinates xi

invariant. Moreover, if a coordinate is rescaled, it will affect the (imaginary) time coordinate.

Such metric may be obtained by generalising (5.28), yielding

ds2 = g(r)
[
f(r)dτ2 + δijdx

idxj
]
+

1

h(r)
dr2, (5.56)

where, if the metric is a generalisation of AdS, g(r) = r2

L2 as in (5.28). Also, both h(r) and

f(r) are meant to have a first order zero at the new horizon9. Hence, in the vicinity of the

new horizon rH one expands these functions as

f(r) ∼ f ′(rH)(r − rH),

h(r) ∼ h′(rH)(r − rH),
(5.57)

9Note that in the pure AdS case where the horizon is at r = 0, h−1(r) = L2

r2
explodes for r = 0 and hence

its BH generalisation must behave equally. Also, time stops running at the horizon of a BH, so it makes sense

that f(rH) = 0.
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which from (5.56) yield a near-horizon metric

ds2 ∼ g(rH)
[
f ′(rH)(r − rH)dτ2 + dx2

]
+

1

h′(rH)

dr2

(r − rH)
. (5.58)

Let us now define a new radial coordinate ρ > 0 such that

dρ2 =
1

h′(rH)

dr2

r − rH
. (5.59)

Since ρ > 0, we can take the square root of (5.59) and integrate it in the interval [rH , r] to

give the definition of ρ,

ρ = 2

√
r − rH
h′(rH)

. (5.60)

In analogy, we can define an angular coordinate as

ρ2dθ2 = g(rH)f ′(rH)(r − rH)dτ2, (5.61)

which alongside with (5.60) yields

θ = τ
1

2

√
g(rH)f ′(rH)h′(rH). (5.62)

Now the (τ, r) part of the near-horizon metric (5.58) is locally the metric of a plane in polar

coordinates dρ2 + ρ2dθ2. Hence, in order to have a well-behaved horizon ρ = 0, we require

that the angular coordinate θ is periodic with period 2π. Hence, this periodicity condition is

the gravitational equivalent to the QFT periodicity τ → τ + β. Matching both periods yields

2π =
β

2

√
g(rH)f ′(rH)h′(rH), (5.63)

which gives the final identity

β =
4π√

g(rH)f ′(rH)h′(rH)
. (5.64)

A temperature T = β−1 is assigned to a BH. Hence, there is a correspondence between the

temperature of the BH (called Hawking temperature) and the temperature of the thermal

field theory.

5.5 Euclidean vs Minkowskian correlators

Since for the computation of the GW emission we need an imaginary part of a retarded

correlator which is in turn related to a Wightman correlator, let us ilustrate how we intend

to compute it. Consider an scalar operator coupled to a source on a CFT,

Z[J ] =
〈
ei

∫
d4xO(x)J(x)

〉
, (5.65)
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so that the connected two-point function is given by

(i)2
δ logZ[J ]

δJ(x1)δJ(x2)
= ⟨O(x1)O(x2)⟩β . (5.66)

We recognise the result of (5.66): it is a Wightman correlator for a local scalar operator. We

may take without loss of generality x1 = 0, x2 ≡ x and define

G<(x) = G>(−x) = ⟨O(0)O(x)⟩β , (5.67)

where we used translational invariance. As we know, Wightman correlators are related to

imaginary parts of retarded correlators (see e.g. (2.91)), namely

G<(k) = −2f(k) Im
{
GR(k)

}
, (5.68)

which is (up to indices of course) the crucial factor on the expression for the GW emission

rate (4.41).

There is however a way around. Indeed, given the coupling

S = S0 +

∫
d4xJ(x)O(x), (5.69)

we know from linear response theory that the response of the system to the coupling is given in

terms of a convolution of a Green function with the source: the retarded propagator. Hence,

the value of the one point function over time is given by

⟨O(x)⟩ = ⟨O(0)⟩+
∫
d4xGR(x)J(x), (5.70)

with GR(x) the retarded propagator. If we managed to impose boundary conditions compat-

ible with causality, we would be able to interpret the result of a one-point function in terms

of a retarded propagator.

The source of the field theory for the coupling of interest Tµνgµν will be dual to an spin-two

field in AdS5: the metric. The boundary value of the AdS field will be the value of the source

of the field theory.

5.6 A way to correlation functions

In this section we aim to get to correlation functions through some practical cases. We

begin by studying a vector field in AdS to then apply the correspondence. The results of this

case will be used to motivate a more general formalism to find correlation functions.
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5.6.1 Vector field in AdS

A massless vector field follows an action given by

S = −
∫
d4xdz

1

4

√
−ggMNgLPFMLFNP , (5.71)

with FMN = ∂MAN − ∂NAM and the gauge fixing condition Az = 0. We consider an AdS

Minkowskian metric given by ds2 = L2

z2
(ηµνdx

µdxν + dz2), with determinant
√
−g = L5

z5
.

Varying (5.71) we get

δS =

∫
d4xdz

[
∂M
(√

−gFML
)
δAL − ∂M

(√
−gFMLδAL

)]
. (5.72)

The first term are the EOMs of the vector field, while the second term is a boundary term.

Let us consider a Fourier mode from Aµ(x, z) =
∫ d4q

(2π)4
eiqxAq

µ(q, z). If the EOMs are satisfied

(on-shell action), the z-dependence of the vector field follows from

∂2zA
q
µ(q, z)−

1

z
∂zA

q
µ(q, z) = 0. (5.73)

We may propose a near-boundary solution just like we did with the scalar field, that is

Aq
µ(q, z) ∼ zα. (5.74)

We find a solution that reads

Aq
µ(k, z) ∼ aµ(q)z

2 + bµ(q), (5.75)

which is Fourier transformed to give

Aµ(x, z) ∼ aµ(x)z
2 + bµ(x). (5.76)

Now we must require that Aµ(x, z) behaves like a vector under a diffeomorphism, that is

A′
µ(x

′, z′) =
∂xν

∂x′µ
Aν(x, z). (5.77)

Note that it is bµ(x) the term that dominates on the boundary, and hence it will be identified

with the QFT source. If that diffeomorphism is a scale transformation (xµ, z) → (λzµ, λz),

we end up finding that aµ and bµ should transform as

a′µ(x
′) = λ−3aµ(x),

b′µ(x
′) = λ−1bµ(x),

(5.78)
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and hence they can be identified as local operator and source of a CFT. In particular, ∆ = 3

corresponds to a local operator of a QFT, which will be a conserved current.

We turn our attention to the second term in (5.72), the boundary term. In fact, since the

action is considered on-shell, we can write

δSon−shell = −
∫
d4xdz∂M

√
−gFMLδAL. (5.79)

Let us consider the ∂z(. . . )-term on (5.79) (since the ∂x ones are true boundary terms in the

five dimensional space). If we use ϵ→ 0 as a cutoff in the z-direction, can write

δSon−shell = −
∫
d4x

√
−gF zµδAµ

∣∣∣∣∞
ϵ

. (5.80)

If we take the boundary contribution, we can write

δSon−shell
bound =

∫
d4x

[√
−ggzzgµν∂zAν(x, ϵ)

]
δAµ(x, ϵ). (5.81)

Note that in the boundary δAµ(x, ϵ) ∼ bµ(x), and hence it is the source of the CFT. If we

take a look a the the correspondence, we can write

logZQFT = Son−shell
bound =⇒

δ logZQFT

δbµ(x)
δbµ(x) =

δSon−shell
bound

δbµ(x)
δbµ(x) = δSon−shell

bound . (5.82)

In other and clearer words, we have found the one point correlation function of the dual CFT

local operator. There will be a term when developing (5.81) that goes like

⟨Oµ(x)⟩ =
δSon−shell

bound

δbµ(x)
=

√
ggzzgµν∂z

(
z2aν(x, ϵ)

) ∣∣∣∣
z=ϵ

, (5.83)

and that term will give the one point function of the CFT local operator. The term we will

look for will be a product something×z2aµ(x)×δbµ(x), where something×z2aµ(x) will give

the one point function. Be careful, because the limit z → 0 may not render the term finite,

and hence the action will have to be renormalized. There is of course a way to state things

more formally and much less messy.

It can be checked that

Bµ(x) ≡ − ∂L

∂ (∂zAµ)

∣∣∣∣
z=0

= −
√
−ggzzgµν∂zAν(x, z)

∣∣∣∣
z=0

, (5.84)

which allows writing

δSon−shell
bound = −

∫
d4xBµ(x)δbµ(x). (5.85)
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Bµ(x) is a sort of canonical momentum that, when renormalized, will give the one-point

function, Bµ(x) ∼ ⟨Oµ(x)⟩. For instance, in Minkowskian QFT we may have a generating

functional

ZCFT [Aµ] =
〈
ei

∫
d4xJµ(x)Aµ(x,ϵ)

〉
, (5.86)

so that the current one point function is given by

(−i)δ logZCFT [Aµ]

δAµ(x1)
= ⟨Jµ(x1)⟩ = −⟨Bµ(x1)⟩ , (5.87)

where Aµ(x) = aµ(x) from (5.78). Since Son−shell
bound ≃ ZCFT , it is clear that the source for the

current correlators is the boundary value of a vector field and that the one point function for

the vector current of the QFT is indeed Bµ(x).

Note that we have left aside all normalization matters. They will be treated in situ on the

final computation.

5.6.2 Tensor field in AdS

The only tensor field that lives in AdS is of course the metric itself. Since AdS has a

boundary, we will have to include the so-called Gibbons-Hawking-York (GHY) term to the

action principle. Namely,

S = C5

[∫
d4xdz

√
−g(R− 2Λ) + 2

∫
∂
d4x

√
−γK

]
≡ SΛ + SGHY , (5.88)

where we have a lot to explain. The line element on this spacetime reads

ds2 = g
(B)
MNdx

MdxN ≡ L2

z2
dz2 + γµνdx

µdxν , (5.89)

where the metric γµν will define the metric at a radial slice.

The constant C5 is the expected for a five-dimensional gravity theory, η = 1
2κ2

5
, where κ25

is of course related to the five-dimensional Newton constant κ25 = 8πG5. The first term is

proportional to the Einstein-Hilbert action with a cosmological constant, which as we know

is Λ = − 6
L2 for AdS5 background. The coordinates are given by xM = (z, t, x1, x2, x3).

The second term is a boundary term defined on the four-dimensional boundary z = ϵ of

AdS5. Indeed, the induced metric on the boundary is just the AdS5 metric evaluated at

z = ϵ, namely

ds2bound =
L2

ϵ2
ηµνdx

µdxν . (5.90)
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In Euclidean signature one replaces the Minkowski metric by δµν . The square root of the

determinant of the induced metric is then (in Lorentzian signature)

√
−γ =

L4

ϵ4
. (5.91)

We have to explain what K is. Technically, K is the trace of the extrinsic curvature on the

boundary. The extrinsic curvature is defined up to a unit vector perpendicular to the

boundary. In our case, this is a vector in the z-direction, nz so that nznz = 1, which leads to

the following normal vector

nz =
√
gzz =

1√
gzz

. (5.92)

The extrinsic curvature is

Kµν = ∇µnν = ∂µnν − Γ M
µν nM = −Γ z

µν nz, (5.93)

where Γ L
MN are the Christoffel symbols en the five-dimensional spacetime. In our case, the

Christoffel symbol appearing in (5.93) reduces to Γ z
µν = −1

2g
zz∂zgµν , and thus we can write

the extrinsic curvature as

Kµν =
1

2
√
gzz

∂zγµν . (5.94)

The trace of the extrinsic curvature is just

K = γµνKµν =
1

2
√
gzz

γµν∂zγµν . (5.95)

If we want to compute correlation functions of the field theory that lives on the boundary,

we are interested in varying the action (5.88). This variation can be approached by consid-

ering small metric fluctuations to our AdS5 background metric g
(B)
MN . Namely, we consider

perturbations δgMN ≡ hMN with |h| ≪ 1 so that

gMN (z) → gMN (z) + hMN (x, z), (5.96)

where we got rid of the superindex (B) for background metric. The inverse of (5.96) simply

picks a minus in the hMN . There is no formal difference between these perturbations and the

ones we considered to study GWs. They are simply defined with one extra dimension, and in

a background that is not flat, but rather it is AdS5.

If we introduce the perturbed metric (5.96) into (5.88), we will obtain terms with no de-

pendence on the perturbations ∼ h0 (background terms), and terms that depend on them up
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to linear order ∼ h1. Namely, one would get

S + δS ∼ S(h0) + δS(h1), (5.97)

so that the variation of the action is considered to first order in h. The variation of the action

reads

δS = C5

∫
d4xdz

[
δ(
√
−g)(R− 2Λ) +

√
−ggMNδRMN +

√
−gRMNδg

MN )
]

+ 2C5

∫
d4x

[
δ(
√
−γ)K +

√
−γγµνδKµν +

√
−γKµνδγ

µν
]
.

(5.98)

The terms on the first integral yield the EOMs of the system. The variation of the determinant

poses no problem and yields

δ(
√
−g) = 1

2

√
−ggMNδgMN . (5.99)

The variation of the metric with upper indices is also easily computed and yields

δgMN = −gMLgNP δgPL. (5.100)

It is very easy to see that the combination of these two variations yields

δS = C5

∫
d4xdz

√
−g
[
−RMN +

1

2
RgMN − ΛgMN

]
δgMN

+ C5

∫
d4xdz

√
−ggMNδR

MN + δSGHY .

(5.101)

We identify the Einstein tensor (up to a minus sign) on the first integral on (5.101). If the

action is given on-shell, this will be equal to 0 in vacuum and will determine the dynamics of

the perturbation. Einstein equations read now

GMN = RMN − 1

2
RgMN + ΛgMN = 0. (5.102)

These equations can be written at order h0 to describe the background or to order h1 to

describe the perturbations in a linearised regime. If we take the first order Einstein equations

from (5.102), we get

R(1)MN − 1

2
R(1)gMN(0) − 1

2
R(0)hMN + ΛhMN = 0, (5.103)

which can be written as (remember that R(0) = − 20
L2 ,Λ = − 6

L2 )

GMN(1) = RMN(1) − 1

2
R(1)gMN(0) +

4

L2
hMN = 0. (5.104)
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From (5.104) one obtains the EOMs for the perturbation.

The variation of the Ricci tensor is however much trickier when a boundary is involved. A

textbook computation yields∫
d4xdz

√
−ggMNδRMN =

∫
d4xdz

√
−g∇P

(
gMNδΓ P

MN − gPNδΓ M
MN

)
, (5.105)

which expresses the integral of a divergence on a five-dimensional volume U with measure

dV = d4xdz
√
−g. We can define a four-dimensional surface normal to the z-direction ∂U

with measure dS = d4x
√
−γ. Thus, Stokes theorem allows writing∫

U
dV∇PF

P =

∫
∂U
dSnzF

z. (5.106)

A direct identification of (5.105) and (5.106) allows writing∫
d4xdz

√
−ggMNδRMN =

∫
d4x

√
−γnz

(
gMNδΓ z

MN − gzNδΓ M
MN

)
, (5.107)

which can be simplified by writing

gMNδΓ z
MN − gzNδΓ M

MN = gzzδΓ z
zz − gzzδΓ z

zz + gµνδΓ z
µν − gzzδΓ ρ

ρz

= gµνδΓ z
µν − gzzδΓ ρ

ρz .
(5.108)

It is easy to get lost along this computation, so we will write the form of the variation of the

on-shell action up to this point

δSon−shell = C5

∫
d4x

√
−γnz

(
gµνδΓ z

µν − gzzδΓ ρ
ρz

)
+ 2C5

∫
d4x

[
δ(
√
−γ)K +

√
−γγµνδKµν +

√
−γKµνδγ

µν
]
.

(5.109)

If we vary the determinant with (5.99) and the metric with upper indices with (5.100), we can

write (using δγµν = δgµν)

δSon−shell = C5

∫
d4x

√
−γnz

(
gµνδΓ z

µν − gzzδΓ ρ
ρz

)
+ C5

∫
d4x

√
−γ [γµνKδgµν − 2Kµνδgµν + 2γµνδKµν ] .

(5.110)

The only term left to vary is the one ∼ δKµν . We can write

δKµν = −nzδΓ z
µν − Γ z

µν δnz, (5.111)

with the variation of the normal vector

δnz = δ
(
g−1/2
zz

)
= −1

2
g−3/2
zz δgzz. (5.112)
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These variations entail the following variation of the on-shell action

δSon−shell = C5

∫
d4x

√
−γ
(
−nzgµνδΓ z

µν − nzg
zzδΓ ρ

ρz −Kµνδgµν + g−3/2
zz Γ z

µν δgzz

)
+ C5

∫
d4x

√
−γ(γµνK −Kµν)δgµν .

(5.113)

One can verify with an expansion of the Christoffel symbols and the extrinsic curvature that

the first term on (5.113) cancels out (it is rather tedious and hence not shown), leading to a

final, compact result

δSon−shell = −C5

∫
d4x

√
−γ (Kµν − γµνK) δgµν . (5.114)

In (5.114) there is a symmetric tensor: the so-called Brown-York tensor. We define it as

Bµν(x) =
√
−γ (Kµν − γµνK) , (5.115)

and it fulfills
δSon−shell

δgµν(x, ϵ)
= −C5B

µν(x). (5.116)

From (5.116) it is quite clear that the Brown-York tensor is related to the one point function.

The boundary value of the gravitational perturbation in AdS5 acts like a source on the

boundary theory. Indeed, for a QFT with graviton we have

ZQFT [gµν ] =

〈
exp

{
i

∫
d4xTµν(x)gµν(x, ϵ)

}〉
, (5.117)

where the stress-energy tensor couples to the boundary metric, which acts as its source. The

one point function is then

(−i)δ logZCFT

δgµν(x, ϵ)
= ⟨Tµν(x)⟩ = −C5B

µν(x), (5.118)

up to more subtle renormalization procedures we will cover in the next section. If we managed

to impose causally compatible boundary conditions, we could identify a retarded propagator

from (5.118). Indeed, from linear response theory (see (2.78)), we can write

⟨Tµν(x)⟩ = ⟨Tµν(0)⟩+
∫
d4xG(R)µνρσ(x)gµν(x), (5.119)

and a priori we would be able to identify a retarded propagator from (5.118) to extract its

imaginary part.
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As a final comment, it is of crucial importance note that since the stress-energy tensor lives

on the boundary, the five-dimensional perturbations it can couple to do not have any z-index.

In other words, we are not going to consider any δgzµ perturbations. Moreover, since we will

take a projection on the TT gauge (see (4.41)), we can consider the waves travelling in the

x3-direction and an steady observer (just like we did with the GWs development) to rule out

any couplings with δgtµ and δgx3µ perturbations. The only possible coupling we have left is

with δgij perturbations with i, j = x1, x2. Recall from the TT gauge theory that the only

possible couplings are hence with δgx1x2 = δgx2x1 and δgx1x1 = −δgx2x2 (see e.g. (4.16)). A

more mathematical discussion of the coupling to tensor modes can be found in [2].
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Chapter 6

Computation of the emission rate

We finally address the computation of the thermal emission rate of GWs (4.41). In order to

do so, we need a dual gravity theory able to mimic the finite temperature of the field theory.

We know that this can be done with AdS+BH on the gravity side. However, there are many

kinds of BHs with different features, features that may have a dual interpretation on the field

theory side.

We are going to consider a Reissner-Nordström (RN from now on) BH on AdS background.

The horizon will be located at r = rH in Poincaré patch coordinates (5.28) and the boundary

of AdS5 at r → ∞. The RN is a charged BH. Charge is introduced on the gravity theory

through a gauge field AM (r, x). The boundary value of this field is associated with a source

on the field theory side. Namely, if A
(0)
µ (x) is the boundary value of Aµ(r, x), we will have a

term
∫
d4xA

(0)
µ (x)Jµ(x) on the generating functional of the field theory. It turns out that the

gauge field for a RN only counts with one non-vanishing component At(x, r) ̸= 0. Namely, we

will have a boundary field theory with a generating functional

Z =

〈
exp

{
i

∫
d4xJ t(x)A

(0)
t (x)

}〉
β

. (6.1)

The temporal component of the conserved current is the charge density, J t(x) ≡ ρ(x). It

can also be interpreted as the density of number of charges (number density). The conjugate

source for the number density is of course the chemical potential, which we call A
(0)
t (x) ≡ µ.

The field theory is thus charged under a U(1) current (which can be associated to any

additive charge such as baryon number, for example), that is, it has a global symmetry. The
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field theory current couples to the external gauge field on the boundary. This is exactly the

case we discussed in section 3.5. Hence, the dual QFT is at finite temperature because of the

BH and at finite density because of the external gauge field introduced on a RN that couples

to the charge density on the boundary theory. Keep in mind that these considerations are

applied to the matter that forms the plasma, whose interaction is responsible for the emission

of GWs.

6.1 Reissner-Nordström black hole

An action principle for the system BH+charge is given by

S =
1

2κ25

{∫
d5x

√
−g(R− 2Λ) + 2

∫
∂
d4x

√
−γK

}
− 1

4e2

∫
d5x

√
−ggMNgLPFMLFNP ≡ SG + SGHY + SA,

(6.2)

with κ25 = 8πG5, where G5 can be mapped to the field theory as is is shown in (5.1). When

we vary the action w.r.t. the metric1, we will get the contributions of the Einstein tensor from

the first term, the Brown-York tensor from the first and the second, and the stress-energy

tensor of the gauge field from the third term. It is easily checked that

δSA =
1

2

∫
d5x

√
−gTMN

A δgMN , (6.3)

with AMN the stress-energy tensor of AM defined by2

TMN
A =

1

e2

[
gMLFLPF

NP − 1

4
FPLF

PLgMN

]
. (6.4)

When the perturbations are entered into the stress-energy tensor, it is clear that we will have

(up to linear order in the perturbations h1)

TMN
A = T

MN(0)
A + T

MN(1)
A + . . . (6.5)

1Recall that this is done through the introduction of a perturbation to the background metric gMN →

gMN + hMN .

2Vary the gauge-term in (6.2) and contract the different combinations of metric indices that appear.
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The same thing happens for the Einstein tensor, which is expanded as

GMN = GMN(0) +GMN(1) + . . . (6.6)

Then the first order Einstein equations that describe the dynamics of the perturbations become

GMN(1) = κ25T
MN(1)
A . (6.7)

Thankfully, we have alrealdy computed GMN(1) (see (5.104)) and hence we can write the

Einstein equations of AdS+RN

RMN(1) − 1

2
R(1)gMN(0) +

4

L2
hMN = κ25T

MN(1)
A . (6.8)

The above equations describe the dynamics of the perturbations hMN . From now on it is

important that you recall that we are only interested on the dynamics of the tensor mode

represented by hx1x2 or more generally hij . On the other side, varying the action w.r.t. the

gauge field AM → AM + δAM yields its equations of motion. We also did this in the previous

chapter and the solution is

∇MF
MN = 0. (6.9)

A solution to this Einstein-Maxwell problem is given by a metric and a gauge potential.

Provided that the gauge coupling constant fulfills

e2 =
κ25
2L2

, (6.10)

the reader may check that the metric

ds2 =
L2

r2f(r)
dr2 +

r2

L2

[
−f(r)dt2 + dx2

]
(6.11)

with f(r) a function with a pole for the BH horizon given by

f(r) = 1− M

r4
+
Q2

r6
(6.12)

and the gauge potential3

A0(r) = µ

(
1−

r2H
r2

)
(6.13)

3Note that the boundary value of the gauge field A0(r → ∞) = µ is indeed the chemical potential.
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with rH the horizon radius of the BH, constitute a solution for the problem. One also finds

that the parameter µ is given by

µ =

√
3

2

Q

L2r2H
. (6.14)

The function f(r) has to vanish for r = rH , thus the relation between M and Q is

M = r4H +
Q2

r2H
. (6.15)

This relation allows rewriting the function (6.12) as

f(r) = 1−
r4H
r4

− Q2

r6H

[
r4H
r4

(
1−

r2H
r2

)]
. (6.16)

From here we can write the Hawking temperature according to our deduction (5.64), which

yields

T =
rH

2πL2

(
2− Q2

r6H

)
(6.17)

There is a convenient change of coordinates that can be done here. If we transform the radial

coordinate as

u ≡
r2H
r2

=⇒ dr2 =
r2H
4u3

du2, (6.18)

and define a new parameter

a2 ≡ Q2

r6H
(6.19)

we can rewrite the function (6.16) as

f(u) = (1− u)(1 + u− a2u2). (6.20)

There is yet another useful parameter we can define to ease the story:

b ≡ L2

2rH
. (6.21)

Now the reader may prove that the Hawking temperature can be written as

T =
1

2πb

(
1− a2

2

)
, (6.22)

and that all the pieces combined yield a u-coordinate metric

ds2 =
(πTL)2

(1− a2

2 )u
(−f(u)dt2 + dx2) +

L2

4u2f(u)
du2. (6.23)

There is yet another convenient way to write the metric, which reads

ds2 =
L2

4b2u
(−f(u)dt2 + dx2) +

L2

4u2f(u)
du2. (6.24)
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The metric written as in (6.24) is the one we are going to use to obtain the EOMs for the

perturbations hxy(u, t,x) using the first-order Einstein equations in (6.8).

As an aside note for future reference, we cite here the expression of the parameters a2 and

b in terms of the physical T and µ. One may check (see e.g. [8])

b−1 =
T

3

(
3π +

√
9π2 +

24µ2

T 2

)
,(

1− a2

2

)
= 2πbT.

(6.25)

6.2 Tensor perturbations in AdS+RN

Let us now perturb the AdS+RN metric by introducing tensor perturbations in the x1x2-

component (and in the x2x1 since the metric is symmetric). Since we argued we are in the

TT gauge and we know that the perturbations are light-like (kµkµ = 0), we can introduce the

perturbations in the boundary metric as

ds2 =
L2

4b2u

(
−f(u)dt2 + dx2 + 2hx1x2(u, t, x3)dxdy

)
. (6.26)

We can write the perturbations as

hij(u, t, x3) ≡
∫
dω

2π
ϕ(u, ω)e−iω(t−x3), (6.27)

with i, j = x1, x2.

We are now ready to tackle Einstein equations (6.7). The computation is long if done by

hand, and hence we have used the software Mathematica in order to earn some time. The

equation for ϕ(u, ω) is∫
dω

2π
e−iω(t−x3)

{
ϕ′′(u, ω) +

[
f ′(u)

f(u)
− 1

u

]
ϕ(u, ω)′

+ b2ω2 1− f(u)

uf2(u)
ϕ(u, ω) +

3a2u2

4b2
ϕ(u, ω)

}
= κ25T

(1)
Ax1x2

(u, t, x3).

(6.28)

The stress-energy tensor is (we use here the required relation between couplings (6.10))

κ25T
(1)
Ax1x2

(u, t, x3) = − κ25
2e2

L2

4b2u

∫
dω

2π
e−iω(t−x3)FutF

utϕ(u, ω)

=

∫
dω

2π
e−iω(t−x3) 3a

2u2

4b2
ϕ(u, ω).

(6.29)
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Hence, the final equation for the tensor-type perturbations reads

ϕ′′(u, ω) +

[
f ′(u)

f(u)
− 1

u

]
ϕ′(u, ω) + b2ω2 1− f(u)

uf2(u)
ϕ(u, ω) = 0. (6.30)

As an aside note we write the full boundary metric with upper indices

gµν(u, k) =
4b2u

L2


−f−1(u) 0 0 0

0 1 −ϕ(u, ω) 0

0 −ϕ(u, ω) 1 0

0 0 0 1

 . (6.31)

6.2.1 Near horizon behaviour

The first objective is to elucidate the near-horizon (u→ 1) behaviour of the perturbations.

The function f(u) possesses a first order pole in u = 1, f(u = 1) = 0, and so we have to be

careful. In the near-horizon region (6.30) can be written as 4

ϕ′′(u, ω)− 1

(1− u)
ϕ′(u, ω) +

b2ω2

4
(
1− a2

2

)2 1

(1− u)2
ϕ(u, ω) = 0, (6.32)

which is more easily treated if one defines

w ≡ bω(
1− a2

2

) =
ω

2πT
, (6.33)

where we used T = 1
2πb

(
1− a2

2

)
. Now equation (6.32) can be written as

ϕ′′(u, ω)− 1

(1− u)
ϕ′(u, ω) +

w2

4(1− u)2
ϕ(u, ω) = 0 (6.34)

We may propose a solution to (6.34) around the singular point u = 1 (known as Frobenius

series) in the form of

ϕ(u, ω) = (1− u)λF (u), (6.35)

where F (u) is regular on u = 1 and can be written as a series expansion. If we plug the ansatz

(6.35) into (6.34), we find that the allowed exponents are

λ± = ±iw
2
. (6.36)

4Note that around u ∼ 1 we can write f(u ∼ 1) = (1− u)2(1− a2

2
) and f ′(u = 1) = −2(1− a2

2
)
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Now we have to think for a second about the physical properties of the problem. Let us

write the full solution for the perturbations (6.27) with our new findings, that is

hx1x2(u, t, x3) =

∫
dω

2π
exp
{
−iωt+ iωx3 ± i

w

2
log 1− u

}
, (6.37)

where we ommited F (u) since it will be just a number on the horizon. The solution (6.37)

is just a wave. Since on the horizon there is a BH, it makes physical sense that the wave

cannot travel from the horizon, but rather it travels towards the horizon. Let us ignore the

x3 coordinate so that we can write

hx1x2(u, t) ∼ exp

{
−iω

[
t∓ 1

4πT
log(1− u)

]}
. (6.38)

Now think about the wave itself. If we stop the clock at t = t1 and take the value of hx1x2(u1, t1)

at space point u = u1, it must be that when time goes on and we stop the clock at t =

t1 +∆t > t1, there is a point u = u1 +∆u (that may be greater or smaller that u1) such that

hx1,x2(u1 +∆u, t1 +∆t) = hxy(u1, t1). Hence, it is true that (through a bit of algebra)

∓ 1

4πT
log (1− u1) = ∆t∓ 1

4πT
log (1− u1 −∆u). (6.39)

If we picked the minus sign, we would require log (1− u1 −∆u) > log (1− u1) and hence we

would require ∆u < 0. In this case the wave would move from the horizon u = 1 towards

the boundary u = 0 and thus would come out of a BH. Picking the minus sign yields the

so-called outgoing boundary condition, and leads to an advanced Green function on the

QFT side (we will see why). The reader may check that picking the plus sign yields the

correct behaviour of the wave. Picking the minus sign corresponds to choosing the ingoing

boundary condition, and it leads to a retarded Green function on the QFT side. We will

of course stick to the latter boundary condition, since it is the most sensical choice.

Now that the boundary condition has been chosen, we can write the ingoing solution of the

Fourier mode as

ϕ(u, ω) = (1− u)i
w
2 F (u). (6.40)

Do not forget that we ultimately want to find a solution near the boundary so that we can

link with the QFT. The analysis on the horizon is done to rule out the outgoing solution.
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6.2.2 Near boundary analysis

Near the boundary, the equation for the perturbations (6.30) can be written as

ϕ′′(u, ω)− 1

u
ϕ′(u, ω) = 0, (6.41)

and the ingoing solution (6.40) has to satisfy it. Since we are interested in the low frequency

regime, we may propose a series solution for the function F (u) in the form of

hx1x2(u, ω) = (1− u)i
w
2 F (u) = (1− u)i

w
2 (F0(u) + iwF1(u) + . . . ) , (6.42)

where one could consider as many terms of the w-series expansion as desired (we stay at

linear order). By plugging (6.42) into the equation (6.41), one finds a differential equation at

order w0 and another one at order w1. We will give the reader the structure of the problem

without displaying the long and tedious specific form of the equations, which we obtained with

Mathematica. The first one reads

F ′′
0 (u) + j(u)F ′

0(u) = 0, (6.43)

and the second one reads

F ′′
1 (u) + j(u)F ′

1(u) = G [F0(u), F
′
0(u)], (6.44)

where G [F0(u), F
′
0(u)] is a functional of the solution to the first differential equation. From

(6.43) we can see that the function F0(u) is just a constant that we can set to be one, namely,

F0(u) = C0 = 1. (6.45)

Given (6.45), the solution to (6.44) is given in terms of two constants C1 and C2 and reads

F1(u) = C2 +
1

4(2− a2)

{
6 (1 + 2C1)

i
√
1 + 4a2

arctan

[
−1 + 2a2u

i
√
1 + 4a2

]
− 2

(
−1 + a2 + 2C1

)
log [u− 1] + (1 + 2C1) log

[
1 + u− a2u2

]}
.

(6.46)

The constant C1 is fixed by demanding regularity at the horizon. In other words, we have to

kill the ∼ log [u− 1] term, and hence we require C1 =
1−a
2 . The other constant C2 can be fixed

by demanding F1(0) = 0. With this requirement, we ensure that F (0) = 1, and consequently

ϕ(0, ω) = 1. Thus, we fix C2 = 3
2i

1√
1+4a2

arctan
[

1
i
√
1+4a2

]
. The final solution with these nice

properties is

F1(u) =
3

2i

1√
1 + 4a2

{
arctan

[
1

i
√
1 + 4a2

]
− arctan

[
1− 2a2u

i
√
1 + 4a2

]}
+

1

4
log
[
1 + u− a2u2

]
.

(6.47)
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Now, with (6.47) in our power, we can go back to the full solution (6.42) and expand it up to

linear order in w and near the boundary up to leading order in u, which turns out to be u2.

Thus, we can write the solution as

ϕ(u, ω) = 1 +
iw

2

(
1− a2

2

)
u2 + . . . (6.48)

There is a very illuminating way to look at (6.48). Consider again the equation for the

perturbations near the boundary (6.41). In the style of what we did in chapter 5, we consider

a solution around u = 0 of the form ϕ(u, ω) ∼ uλ. This yields the following equation for the

exponents

λ(λ− 1)− λ = 0, (6.49)

which yields the following near-boundary behaviour:

ϕk(u) ∼ j(ω, k) + v(ω, k)u2. (6.50)

This is a confirmation that the solution (6.48) that we have obtained is indeed correct. The

source of the boundary QFT is equal to one, as planned.

Computations of this style can be found for the other h-components can be found in [9] for

BH without the U(1) charge.

6.3 Brown-York tensor

Now that we have a solution, we want to compute the Brown-York tensor (5.115). We know

that it is related to the one-point function (see e.g. (5.118)). We will get an structure like

δSon−shell = − 1

2κ25

∫
∂
d4xBµν(u→ 0, x)δgµν(u→ 0, x)

= − 1

2κ25

∫
d4k

(2π)4
Bµν(u→ 0, k)δgµν(u→ 0,−k).

(6.51)

However, we defined the source as δgij =
L2

4b2u
hij , and hence we have to extract this prefactor

to write

δSon−shell = − 1

2κ25

∫
d4k

(2π)4
L2

4b2u
Bij(u→ 0, k)hij(u→ 0,−k). (6.52)

Since we found hij(0, ω) = ϕ(0, ω) = 1, (see (6.27) and (6.48)), the one point function is given

by 〈
T ij(k)

〉
= − lim

u→0

1

2κ25

L2

4b2u
Bij(u, k), (6.53)
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up to renormalization.

Recall that the variation of the on-shell gravity action yields

δSon−shell = − 1

2κ25

∫
∂
d4x

√
−γ (Kµν − γµνK) δgµν , (6.54)

which has to be evaluated at the boundary u = 0. In our case we consider tensor-type

perturbations δgx1x2 . We have to compute the Brown-York tensor appearing in (6.54). The

boundary metric with upper indices was given in (6.31). The determinant of the induced

metric is
√
−γ =

L4
√
f(u)

16b2u2
. (6.55)

The extrinsic curvature can be computed from (5.94) and is given by

Kµν(u, ω) =



4b2u[f(u)−uf ′(u)]
L3f3/2(u)

0 0 0

0
−4b2u

√
f(u)

L3 Kx1x2(u, ω) 0

0 Kx1x2(u, ω)
−4b2u

√
f(u)

L3 0

0 0 0
−4b2u

√
f(u)

L3

 , (6.56)

with the off-diagonal contributions given by

Kx1x2(u, ω) =
4b2u

√
f(u)

L3

[
ϕ(u, ω) + uϕ′(u, ω)

]
. (6.57)

Now the trace of (6.56) K = γµνK
µν is easily computed (remember, up to first order in h)

K(u, ω) =
uf ′(u)− 4f(u)

L
√
f(u)

. (6.58)

Now we can write the Brown-York tensor Bµν as

Bµν(u, ω) =


− 3L

4b2u
0 0 0

0 −L[uf ′(u)−3f(u)]
4b2u

Bx1x2(u, ω) 0

0 Bx1x2(u, ω) −L[uf ′(u)−3f(u)]
4b2u

0

0 0 0 −L[uf ′(u)−3f(u)]
4b2u

 , (6.59)

where the off-diagonal contributions are given by

Bx1x2(u, ω) =
L

4b2u

[
−2f(u)ϕ(u, ω) + uf ′(u)ϕ(u, ω) + uf(u)ϕ′(u, ω) (6.60)
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Evaluating (6.59) around u ∼ 05 yields

Bµν(u→ 0, ω) ≃


− 3L

4b2u
0 0 0

0 −L[−3+(1+a2)u2]
4b2u

Bx1x2(u→ 0, ω) 0

0 Bx1x2(u→ 0, ω) −L[−3+(1+a2)u2]
4b2u

0

0 0 0 −L[−3+(1+a2)u2]
4b2u

 , (6.61)

with

Bx1x2(u→ 0, ω) =
L

4b2u

[
−2ϕ(u, ω) + uϕ′(u, ω)

]
. (6.62)

6.4 Holographic renormalization

Since the Brown-York tensor is meant to be evaluated at u = 0, it does not take much vision

to notice that (6.61) is ill defined since it presents divergent terms ∼ u−1. These terms can be

removed through holographic renormalization, which as fancy as it may sound, is a fairly

simple procedure. It consists of adding boundary terms to the action so that when we vary

them they cancel the divergences present in the Brown-York tensor. These terms go like

Sren = S + ζ1

∫
∂
d4x

√
−γ + ζ2

∫
∂
d4x

√
−γR[γ] + . . .

≡ S + Sct,

(6.63)

where ζ1,2 are tuned to cancel the divergent terms and R[γ] is the Ricci scalar for the boundary

metric. The variation of the counterterms is

δSct =
ζ1
2

∫
∂

√
−γγµνδgµν +

ζ2
2

∫
∂
d4x

√
−γ {−Gµν [γ]δgµν + gµνδRµν [γ]} , (6.64)

with Gµν [γ] = R[γ]µν − 1
2g

µνR[γ] the boundary Einstein tensor. Note that the last term

∼ δRµν [γ] is now a true boundary term (recall that it can be written as a divergence), meaning

that it is a boundary term of the boundary6, so it can be thrown away. The Einstein tensor

5We may again use f(u) ∼ 1− (1− a2)u2.

6It sounds confusing, but it is just like the regular term one throws away in the usual unbounded four-

dimensional GR.
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term has to be put on-shell. This means that it forcefully fulfills

Gµν(0)[γ] +Gµν(1)[γ] + · · · = κ25T
µν(0)
A [γ] + κ25T

µν(1)
A [γ] + . . . (6.65)

order by order in powers of the perturbation h. Since we are evaluating the terms on the

boundary, the gauge potential is a constant A0(u = 0) = µ, and hence the stress energy tensor

at order h0 vanishes (see (6.4)). However, there are contributions at first order in h. The only

first order non-vanishing components are of course the x1x2-components. Since we are in the

limit u→ 0, we may take this limit in the first order x1x2 Einstein equation we computed in

(6.28) to show that

κ25T
(1)
Ax1x2

(u) = 0, (6.66)

and hence there is no need to include a second counterterm7.

All in all, the only constant we need to tune is ζ1. This can be done very easily with

Mathematica, but we show here the procedure for the component Bxx. The renormalized

action fulfills

δSon−shell
ren =

∫
∂
d4x

[
ζ1
2

√
−γγµν − 1

2κ25
Bµν

]
δgµν , (6.67)

where the integrand is finite. If we introduce the expressions, we find that

ζ1
2

√
−γγµν − 1

2κ25
Bµν =

1

2κ25

[
−ζ1κ25

L2

4bu

1√
f(u)

− 3L

4bu
+

(1 + a2)u

4b

]
, (6.68)

and by expanding f(u) ∼ 1 + 1
2

(
1 + a2

)
u2, we get that the constant ζ1 = − 3

Lκ2
5
removes the

∼ u−1-terms. It can be equally shown that the constant ζ1 = − 3
Lκ2

5
also regularises the other

components.

Now we just have to recall the one-point function (6.53) to write (bear in mind that we

7The contribution (6.66) does not vanish in the case k ̸= ω. In that case one gets a contribution that cancels

the divergent terms ∼ h′
x1x2

that appear on (6.57). You can check this at [2].
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multiply by L2

4b2u
and we have to evaluate at the boundary)

⟨Tµν(ω)⟩ = − lim
u→0

1

2κ25

L2

4b2u
Bµν

ren(u, ω)

≃ − lim
u→0

1

2κ25



3L3(1+a2)
32b4

0 0 0

0 L3(1+a2)
32b4

L2

4b2u
Bxy

ren(u, ω) 0

0 L2

4b2u
Bxy

ren(u, ω)
L3(1+a2)

32b4
0

0 0 0 L3(1+a2)
32b4

 ,

(6.69)

with the off-diagonal components given by

⟨T x1x2(ω)⟩ ≃ − 1

2κ25

L3

32b4
[
2∂2uϕ(u, ω)− (1 + a2)ϕ(u, ω)

]
, (6.70)

and they are written in terms of the solution (6.48) at u = 0 as

⟨T x1x2(ω)⟩ ≃ − 1

2κ25

L3

32b4

[
− (1 + a2) + 2iw

(
1− a2

2

)]
. (6.71)

Indeed, the diagonal of (6.69) looks a lot like an stress-energy tensor of the field theory on a

flat Minkowski spacetime with pressure and energy density defined respectively by

−2κ25P =
L3

32b4
(1 + a2),

ρ = 3P.

(6.72)

In matrix form, the stress energy tensor can be written as

−2κ25 ⟨Tµν⟩ = L3

32b4
(1 + a2)


3 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 1

+
iwL3

16b4

(
1− a2

2

)

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 . (6.73)

What (6.73) is telling us is that we have expanded the energy-momentum tensor in a series

with derivatives of the source ϕ(u, ω), and at the boundary ϕ(0, ω) = 1. We could go all in

with hydrodynamics [9] and we could get an exact interpretation of both terms in (6.73) in

terms of energy, pressure and dissipation (∼ ∂2uϕ). We do not really have space to do so in full

detail. However, there is a very nice way to look at things that connects with linear response

theory we discussed around (2.78).

First of all, we have picked infalling boundary conditions and hence we expect a retarded

correlator to appear. Indeed, that (6.73) has an imaginary part is already telling us that we
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are not going to obtain any Wightman correlator from varying it, since they are purely real.

Indeed, if we had considered both the ingoing and the outgoing solution we would have ended

with a sum of a quantity plus its complex conjugate, that would have given a real value.

We can interpret (6.73) from linear response theory by considering the original coupling in

which

S = S0 +

∫
d4xTµν(x)hµν(x), (6.74)

with the response of the system to the presence of the source given by the retarded propagator.

In momentum space, one writes

⟨Tµν(ω)⟩ = ⟨Tµν(ω = 0)⟩+G(R)µνρσ(ω)hρσ(ω). (6.75)

By direct identification with (6.73), we can write

Im
{
G(R)x1x2,x1x2(ω)

}
= − 1

2κ25

wL3

16b4

(
1− a2

2

)
, (6.76)

which is the two point function we want to plug inside of (4.41)8. Indeed, (6.76) gives the

dissipative part (remember that Im
{
GR
}
∼ ρ, the spectral function, see (2.88)). The real part

would give the reactive or fluctuating part of the response (Wightman correlator difference,

see (2.96)).

We have to rewrite (6.76) in terms of the physical variables T and µ with the help of (6.25).

Note that we must also write the five-dimensional gravitational coupling in terms of the gauge

theory parameters through (5.1) (recall that κ25 = 8πG5). The expansion is easily done with

Mathematica and yields

Im
{
G(R)x1x2,x1x2(ω)

}
≃ −i N

2

48π
µ2ωT. (6.77)

6.5 The emission rate and some final remarks

With the imaginary part of the retarded correlator (6.77) in our hands, it is time for us to

compute the emission rate (4.41). We are going to study the the high density limit µ
T ≫ 1

8Note that if we had also considered the advanced two-point function, the final result would be real. In

other words, we would have ended with some combination of Wightman propagators.
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and the high temperature limit µ
T ≪ 1 both at linear order in ω. In both limits we will have

to take the classical limit of the Bose-Einstein function depicted in (2.62), in which f(ω) ≃ T
ω .

For the high density limit, we find that the emission rate independent of the frequency and

behaves like
dρGW

d3kdt
≃ N2GN

48π3
µ2T 2, (6.78)

where GN = 1
m2

P
and mP is the Planck mass. As an application of (6.78), we could picture

the core of a neutron star formed by quarks and gluons following the rules of QCD for which

N = 3 and the typical values of temperature and density range around T ∼ [eV, keV] and

µ ∼ [400MeV,GeV] [4].

In the same way that we expanded the correlator (6.77) for high values of µ, we could have

also done it for high temperatures. This gives the following result

dρGW

d3kdt
≃ 3N2GN

128π
T 4, (6.79)

which serves a consistency check that we have done things right as in [2].

A way forward on this work would be to embed our results in a proper neutron star model

to at least estimate the strain that the radiation would cause on a detector such as LIGO.

This is however left for a hopefully near future.
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