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Abstract: Herein, we calculate reduction formulas for some generalized hypergeometric functions

m+1Fm(z) in terms of elementary functions as well as incomplete beta functions. For this purpose,
we calculate the n-th order derivative of the function zγ Bz(α, β) with respect to z. As corollaries, we
obtain reduction formulas of these m+1Fm(z) functions for argument unity in terms of elementary
functions, as well as beta functions.
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1. Introduction

Mathematical and physical applications of the generalized hypergeometric functions
pFq
(
a1, . . . , ap; b1, . . . bq; z

)
are abundant in the existing literature (see [1] (Sections 16.23

and 16.24) and the references therein). For instance, a variety of problems in classical
mechanics and mathematical physics lead to Picard–Fuchs equations, which are frequently
solvable in terms of generalized hypergeometric functions [2]. As a consequence, the
calculation of generalized hypergeometric functions for particular values of the parameters
a1, . . . , ap, b1, . . . bq and the argument z in terms of other special or elementary functions is
of great interest. These reduction formulas are found in several compilations of the existing
literature, such as those provided by Luke [3] (Sections 6.2 and 6.3) and Prudnikov et al. [4]
(Chapter 7). A revision, as well as an extension of the tables presented by Prudnikov et al.,
was carried out by Krupnikov and Kölbig in [5]. More recently, Brychov [6] (Chapter 8)
compiled new representations of pFq(z) hypergeometric functions. However, the number
of papers devoted to the calculation of reduction formulas of pFq(z) for arbitrary argument
z are relatively scarce (see, e.g., [7,8]), because there are many more papers devoted to
the calculation of representations of pFq(z) for particular values of z, such as [9,10] for
z = 1; [11,12] for z = 2; and [13] for z = −1.

The goal of the present note is to fill this gap by calculating some reduction formulas
of the m+1Fm(z) function for an arbitrary z in terms of elementary functions, as well as
incomplete beta functions. As corollaries, we will obtain reduction formulas of these
m+1Fm(z) functions for z = 1 in terms of elementary functions, as well as beta functions.

This paper is organized as follows: In Section 2, we present some basic definitions
and properties that we will use throughout the paper. In Section 3, we derive some n-th
derivative formulas that we will apply in Section 4 for the calculation of the reduction
formulas mentioned above. Finally, we collect our conclusions in Section 5.

2. Preliminaries

The gamma function is usually defined by the integral representation [1] (Equation 5.2.1)

Γ(z) =
∫ ∞

0
e−ttz−1dt, <(z) > 0, (1)
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and for <(z) ≤ 0 by analytic continuation. An important property of the gamma function
is [14] (Equation 1.2.1)

Γ(z + 1) = z Γ(z). (2)

The logarithmic derivative of the gamma function is [14] (Equation 1.3.1)

ψ(z) =
Γ′(z)
Γ(z)

. (3)

The Pochhammer polynomial can be defined in terms of the gamma function as [15]
(Equation 18:12:1)

(x)n =
Γ(x + n)

Γ(x)
, (4)

and it satisfies the property [15] (Equation 18:5:1)

(−x)n = (−1)n(x− n + 1)n. (5)

The incomplete beta function is defined as [1] (Equation 8.17.1)

Bz(a, b) =
∫ z

0
ta−1(1− t)b−1dt, (6)

for 0 ≤ z ≤ 1, and by analytical continuation for other real or complex values of z. For
z = 1, the incomplete beta function is reduced to the beta function [1] (Equation 5.12.1)

B(a, b) =
Γ(a) Γ(b)
Γ(a + b)

. (7)

The generalized hypergeometric function pFq(z) is usually defined by means of the
hypergeometric series [1] (Section 16.2)

pFq

(
a1, . . . , ap
b1, . . . bq

∣∣∣∣z) =
∞

∑
k=0

(a1)k · · ·
(
ap
)

k
(b1)k · · ·

(
bq
)

k

zk

k!
, (8)

whenever this series converges, and elsewhere by analytic continuation. An important
transformation formula was provided by Euler [16] (Equation 2.2.7):

2F1

(
a, b
c

∣∣∣∣z) = (1− z)−a
2F1

(
a, c− b

c

∣∣∣∣ z
z− 1

)
. (9)

Finally, Gauss’s summation formula reads as follows [16] (Theorem 2.2.2):

2F1

(
a, b
c

∣∣∣∣1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

, (10)

for <(c− a− b) > 0.

3. Formulas for n-th Order Derivatives

Following the notation given in [6] (Chapter 1), we denote the n-th order derivative of
a function f (z) with respect to its argument z as

Dn[ f (z)] =
dn f (z)

dzn .

According to this notation, Leibniz’s differentiation formula [1] (Equation 1.4.2) is
written as

Dn[ f (z)g(z)] =
n

∑
k=0

(
n
k

)
Dk[ f (z)] Dn−k[g(z)]. (11)
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Also, it is easy to prove that (see [6] (Equation 1.1.2 [1]))

Dn[zα] = (α− n + 1)nzα−n = (−1)n(−α)nzα−n, (12)

Dn[(1− z)α] = (−1)m(α− n + 1)n(1− z)α−n = (−α)n(1− z)α−n. (13)

Further, according to [1] (Equation 16.3.2), for n = 0, 1, 2, . . ., we have

p+1Fq+1

(
a + n, a1, . . . , ap

a, b1, . . . bq

∣∣∣∣z) (14)

=
z1−a

(a)n
Dn
[

zn+a−1
pFq

(
a1, . . . , ap
b1, . . . bq

∣∣∣∣z)].

Theorem 1. For n = 0, 1, 2, . . ., the following n-th derivative formulas hold true:

Hn(α, β, γ; z) := Dn[zγ Bz(α, β)] (15)

= (−1)nzγ−n

{
(−γ)n Bz(α, β)− zα

(1− z)1−β

n−1

∑
k=0

(
n

k + 1

)
(−γ)n−k−1(1− α)k 2F1

(
−k, 1− β

α− k

∣∣∣∣ z
z− 1

)}
(16)

= (−1)nzγ−n
{
(−γ)n Bz(α, β)− zα

n−1

∑
k=0

(
n

k + 1

)
(−γ)n−k−1(1− α)k 2F1

(
α, 1− β

α− k

∣∣∣∣z)
}

. (17)

Proof. Applying Leibniz’s differentiation formula (11) and the property (12), we obtain

Dn[zγ Bz(α, β)]

=
n

∑
k=0

(
n
k

)
Dn−k[zγ] Dk[Bz(α, β)]

= Dn[zγ]Bz(α, β) +
n

∑
k=1

(
n
k

)
Dn−k[zγ] Dk[Bz(α, β)]

= (−1)n(−γ)n zγ−n Bz(α, β) (18)

+
n−1

∑
k=0

(
n

k + 1

)
(−1)n−k−1(−γ)n−k−1zγ−n+k+1 Dk+1[Bz(α, β)].

According to the definition of the incomplete beta function (6), and applying again
Leibniz’s differentiation formula (11), as well as the formulas given in (12) and ( 13), we
arrive at

Dk+1[Bz(α, β)] = Dk
[
zα−1(1− z)β−1

]
=

k

∑
s=0

(
k
s

)
Ds
[
(1− z)β−1

]
Dk−s

[
zα−1

]
=

(−1)k zα−1−k

(1− z)1−β

k

∑
s=0

(
k
s

)
(1− β)s(1− α)k−s

(
z

z− 1

)s
. (19)



Mathematics 2023, 11, 3483 4 of 8

Note that we can recast the finite sum given in (19) in terms of a hypergeometric
function. Indeed, applying to the definition (8) the property (5) and the definition of the
Pochhammer symbol (4), we calculate

(1− α)k 2F1

(
−k, 1− β

α− k

∣∣∣∣x) (20)

= (1− α)k

∞

∑
s=0

(−k)s(1− β)s
s! (α− k)s

xs

=
k

∑
s=0

(
k
s

)
(1− β)s(1− α)k−s xs.

Therefore, applying (20) and taking into account Euler’s transformation formula (9),
we rewrite (19) as

Dk+1[Bz(α, β)]

=
(−1)k zα−1−k

(1− z)1−β
(1− α)k 2F1

(
−k, 1− β

α− k

∣∣∣∣ z
z− 1

)
(21)

= (−1)k zα−1−k(1− α)k 2F1

(
α, 1− β

α− k

∣∣∣∣z). (22)

Now, we insert (21) and (22) into (18) and simplify the result to complete the proof.

Remark 1. It is worth noting that, according to (21), theHn(α, β, γ; z) function is given in terms
of elementary functions and incomplete beta functions.

Corollary 1. For <(β) > n, we have

Hn(α, β, γ; 1) = (−1)n(−γ)n B(α, β). (23)

Proof. Considering (17) for z = 1 and applying Gauss’s summation formula (10), we obtain

Hn(α, β, γ; 1) = (−1)n
{
(−γ)n B(α, β) (24)

−
n−1

∑
k=0

(
n

k + 1

)
(−γ)n−k−1(1− α)k

Γ(α− k)Γ(β− k− 1)
Γ(−k)Γ(α + β− k− 1)

}
.

However, the finite sum given in (24) vanishes; thus, we obtain (23), as we intended
to prove.

4. Reduction Formulas

Theorem 2. For m = 1, 2, . . ., and bi 6= bj (i 6= j), the following reduction formula holds true:

m+1Fm

(
a, b1, . . . , bm

b1 + 1, . . . , bm + 1

∣∣∣∣z) =
m

∏
s=1

bs

m

∑
j=1

z−bj Bz
(
bj, 1− a

)
∏m

` 6=j
(
b` − bj

) . (25)

Proof. According to (4) and (2), we have

(x)k
(x + 1)k

=
x

x + k
. (26)
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Thus,

m+1Fm

(
a, b1, . . . , bm

b1 + 1, . . . , bm + 1

∣∣∣∣z) =
∞

∑
k=0

(a)k(b1)k · · · (bm)k zk

k!(b1 + 1)k · · · (bm + 1)k

=
m

∏
s=1

bs

∞

∑
k=0

(a)k zk

k!

m

∏
j=1

1
bj + k

. (27)

Now, if pm(x) is a polynomial of degree m, where rj (j = 1, . . . , m) are its corresponding
roots with ri 6= rj (i 6= j), then the following formula is satisfied [15] (Equation 17:13:10):

1
pm(x)

=
m

∑
j=1

1
p′
(
rj
)(

x− rj
) . (28)

If we consider the polynomial

pm(x) =
m

∏
j=1

(
x− rj

)
→ p′m

(
rj
)
=

m

∏
` 6=j

(
rj − r`

)
,

and we take rj = −bj and x = k, Equation (28) becomes

m

∏
j=1

1
bj + k

=
m

∑
j=1

1(
bj + k

)
∏m

` 6=j
(
b` − bj

) . (29)

Inserting (26) into (27) and exchanging the summation order, we obtain

m+1Fm

(
a, b1, . . . , bm

b1 + 1, . . . , bm + 1

∣∣∣∣z)
=

m

∏
s=1

bs

m

∑
j=1

1
∏m

` 6=j
(
b` − bj

) ∞

∑
k=0

(a)k zk

k!
(
bj + k

) .

Applying again (26) and recasting the result as an hypergeometric function, we obtain

m+1Fm

(
a, b1, . . . , bm

b1 + 1, . . . , bm + 1

∣∣∣∣z)
=

m

∏
s=1

bs

m

∑
j=1

1
bj ∏m

` 6=j
(
b` − bj

) 2F1

(
a, bj

bj + 1

∣∣∣∣z).

Taking into account the reduction formula [4] (Equation 7.3.1 (28))

2F1

(
a, b

b + 1

∣∣∣∣z) = b z−b Bz(b, 1− a),

we arrive at (25), as we intended to prove.

Remark 2. Particular cases of (25) are found in [4] (Equation 7.4.1 (5)) for m = 2 and [4]
(Equation 7.5.1 (2)) for m = 3 in terms of 2F1(z) hypergeometric functions. However, when we
have a parameter bi = bj for i 6= j, we obtain in (25) an indeterminate expression. Nonetheless, the
particular case m = 2 with b1 = b2 is given by the authors in [17]:

3F2

(
a, b, b

b + 1, b + 1

∣∣∣∣z) = b2z−b
{

log z Bz(b, 1− a)− ∂

∂b
Bz(b, 1− a)

}
.
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Corollary 2. For m = 1, 2, . . . and bi 6= bj (i 6= j), the following reduction formula holds true:

m+1Fm

(
a, b1, . . . , bm

b1 + 1, . . . , bm + 1

∣∣∣∣1) =
m

∏
s=1

bs

m

∑
j=1

B
(
bj, 1− a

)
∏m

` 6=j
(
b` − bj

) . (30)

Remark 3. The particular case m = 2 with b1 = b2 is given by the authors in [17]. For a 6= 1 and
< a < 2,

3F2

(
a, b, b

b + 1, b + 1

∣∣∣∣1) = b2 B(1− a, b){ψ(1 + b− a)− ψ(b)}.

Theorems 1 and 2 allow us to obtain the reduction formula presented below.

Theorem 3. For n = 0, 1, 2, . . .; m = 1, 2, . . .; and ci 6= cj (i 6= j), the following reduction
formula holds true:

m+2Fm+1

(
a + n, b, c1, . . . , cm

a, c1 + 1, . . . , cm + 1

∣∣∣∣z) (31)

=
z1−a

(a)n

m

∏
s=1

cs

m

∑
j=1

Hn(cj, 1− b, n + a− cj − 1; z
)

∏m
` 6=j
(
c` − cj

) ,

where theHn(α, β, γ; z) function is given in Theorem 1.

Proof. Taking into account (15), consider (14) for p = m + 1 and q = m, as well as the
reduction formula (25), to obtain the desired result.

Remark 4. Since Hn(α, β, γ; z) can be expressed in terms of elementary functions and the beta
incomplete function (see Remark 1), it turns out that the generalized hypergeometric function given
in (31) can also be expressed in terms of elementary functions and incomplete beta functions.

Corollary 3. For n = 0, 1, 2, . . .; m = 1, 2, . . .; ci 6= cj (i 6= j); and <(b) < 1− n, the following
reduction formula holds true:

m+2Fm+1

(
a + n, b, c1, . . . , cm

a, c1 + 1, . . . , cm + 1

∣∣∣∣1) (32)

=
1

(a)n

m

∏
s=1

cs

m

∑
j=1

(
a− cj

)
n B
(
cj, 1− b

)
∏m

` 6=j
(
c` − cj

) .

Proof. Consider (31) for z = 1, taking into account (23) and (5).

It is worth noting that the particular case m = 0 of (31) is given in the literature [4]
(Equations 7.3.1 (21 and 140)). Next, we provide a simple derivation.

Theorem 4. For n = 0, 1, 2, . . . and z 6= 1, the following reduction formula holds true:

2F1

(
a + n, b

a

∣∣∣∣z) = (1− z)−b
n

∑
k=0

(
n
k

)
(b)k
(a)k

(
z

1− z

)k
. (33)

Proof. Using Euler’s transformation formula (9) we obtain

2F1

(
a + n, b

a

∣∣∣∣z) = (1− z)−b
2F1

(
−n, b

a

∣∣∣∣ z
z− 1

)
.
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Applying the definitions given in (8) and (4), as well as the property (5), we arrive at
the desired result.

5. Conclusions

Herein, we calculated reduction formulas for the generalized hypergeometric functions

m+1Fm+2(a, b1, . . . , bm; b1 + 1, . . . , bm + 1; z)

and
m+2Fm+1(a + n, b, c1, . . . , cm; a, c1 + 1, . . . , cm + 1; z)

in terms of elementary functions and incomplete beta Bz(α, β) functions. As corollaries, we
derived expressions for these generalized hypergeometric functions for z = 1 in terms of
elementary and beta B(α, β) functions. For both purposes, we calculated the n-th order
derivative of the function zγ Bz(α, β) for arbitrary argument z, as well as for z = 1. For the
completeness of the present note, we included a simple proof of the reduction formula of
2F1(a + n, b; a; z) in terms of elementary functions. As a future research direction, it would
be interesting to investigate the singular cases of (25) and (31) for certain equal parameters
(i.e., for i 6= j, bi = bj and ci = cj, respectively). Also, the extension of the results presented in
this paper to the corresponding basic hypergeometric functions rφs(a1, . . . , ar; b1, . . . , bs; q; z)
deserves future investigations. Finally, we would like to highlight that all the results presented
in this paper were numerically checked with MATHEMATICA. This program is available at
https://shorturl.at/grsBH (accessed on 1 August 2023).

Author Contributions: Conceptualization, J.L.G.-S.; Methodology, J.L.G.-S. and F.S.L.; Formal analy-
sis, J.L.G.-S.; Writing—original draft, J.L.G.-S.; Writing—review & editing, J.L.G.-S. and F.S.L.; Funding
acquisition, F.S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press:

Cambrigde, UK, 2010.
2. Berglund, P.; Candelas, P.; De La Ossa, X.; Font, A.; Hübsch, T.; Jančić, D.; Quevedo, F. Periods for Calabi-Yau and Landau-
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