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The rise of Adversarial Machine Learning (AML) attacks is presenting a significant challenge to Intrusion 
Detection Systems (IDS) and their ability to detect threats. To address this issue, we introduce Apollon, a novel 
defense system that can protect IDS against AML attacks. Apollon utilizes a diverse set of classifiers to identify 
intrusions and employs Multi-Armed Bandits (MAB) with Thompson sampling to dynamically select the optimal 
classifier or ensemble of classifiers for each input. This approach enables Apollon to prevent attackers from 
learning the IDS behavior and generating adversarial examples that can evade the IDS detection. We evaluate 
Apollon on several of the most popular and recent datasets, and show that it can successfully detect attacks 
without compromising its performance on traditional network traffic. Our results suggest that Apollon is a robust 
defense system against AML attacks in IDS.
1. Introduction

As computer networks continue to grow in size and complexity, the 
need for effective security measures becomes increasingly critical. In-
trusion Detection Systems (IDS) have been developed to address this 
challenge, providing a means of monitoring network traffic and iden-
tifying potential security threats. These systems can analyze network 
traffic and identify potential security threats such as malware, net-
work intrusions, and denial of service attacks. However, the increasing 
complexity and diversity of network traffic have made it difficult to 
accurately classify network traffic using traditional rule-based IDS sys-
tems (Thakkar and Lohiya, 2020).

To overcome these limitations, Machine Learning (ML) techniques 
have been widely adopted in IDS for network traffic classification. These 
techniques leverage the power of statistical models and algorithms 
to automatically learn and detect anomalous network traffic patterns, 
which are indicative of security threats.

ML-based IDS systems offer several advantages over traditional rule-
based systems, including higher accuracy, better scalability, and more 
robustness to evolving network threats (Abdallah et al., 2022; Maseer 
et al., 2021). However, they also pose new challenges, particularly in 
terms of security. One of the main challenges is the susceptibility of ML 
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models to Adversarial Machine Learning (AML) attacks (Huang et al., 
2011).

AML attacks are a type of cyber-attack that aims to manipulate ML 
models by feeding them carefully crafted input data, called adversarial 
examples. These examples are designed to cause misclassification or 
incorrect predictions, which can be exploited by attackers to bypass the 
security measures of IDS systems (Zhao et al., 2021; Lin et al., 2022; Liu 
et al., 2022).

Attackers create adversarial examples by utilizing information ob-
tained from the targeted IDS, including its responses to specific inputs. 
This information is used to train a model capable of generating adver-
sarial traffic that remains undetectable by the IDS classifier.

As ML-based IDS systems become more prevalent, the threat of 
Adversarial Machine Learning (AML) attacks becomes more signifi-
cant (Duy et al., 2021). Therefore, it is crucial to develop effective 
defense mechanisms to mitigate the impact of these attacks and ensure 
the reliability and robustness of IDS systems.

In this paper, we propose a new robust defense system against 
Adversarial Machine Learning attacks on Intrusion Detection Systems 
called Apollon. Apollon serves to safeguard IDS from attackers by ob-
structing their ability to generate adversarial traffic through learning 
from the behavior of the IDS.
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Apollon utilizes a diverse range of classifiers to detect intrusions and 
employs a Multi-Armed Bandits (MAB) with Thompson sampling to select 
the optimal classifier or a combination of classifiers in real-time for 
each input, enabling it to achieve this objective without compromising 
its performance on traditional network traffic.

In this way, Apollon can prevent attackers from learning the behavior 
of the IDS in realistic training times, adding a layer of uncertainty to the 
IDS behavior that makes it more difficult for attackers to detect the IDS 
behavior and generate adversarial traffic.

The structure of the paper is as follows. Section 2 provides an 
overview of the main concepts and techniques used in this paper. Sec-
tion 3 discusses the related work in the field of AML attacks and IDS 
classifiers. Section 4 presents the proposed defense system, Apollon. Sec-
tion 5 presents the experimental evaluation of Apollon. Finally, Section 6
concludes the paper and discusses future work.

2. Background

In this section, we will provide an overview of the background 
knowledge required to understand the rest of this work. This includes 
an introduction to the concepts of Adversarial Machine Learning and 
adversarial examples, as well as an introduction to the concepts of In-
trusion Detection Systems and the challenges they face.

2.1. Intrusion Detection Systems

Intrusion Detection Systems (IDS) are security tools designed to 
identify and prevent unauthorized access, misuse, and malicious activi-
ties in computer networks (Mukherjee et al., 1994). IDS play a critical 
role in protecting networks from various types of cyber threats, includ-
ing viruses, malware, and intrusions. IDS operate by monitoring net-
work traffic and analyzing it for suspicious behavior or patterns. There 
are two main types of IDS: Network-based Intrusion Detection Systems 
(NIDS) and Host-based Intrusion Detection Systems (HIDS) (Pharate et 
al., 2015).

NIDS monitors network traffic and analyzes packets to identify po-
tential security threats. It can detect a wide range of network-based 
attacks, such as port scans, denial-of-service attacks, and data exfiltra-
tion. NIDS can be deployed at various points within the network, such 
as at the perimeter, within the LAN, or at critical junctions within the 
network.

On the other hand, HIDS monitors the activity on individual hosts, 
such as servers or workstations. While it can also analyze network traf-
fic specific to the host, its unique strength lies in its ability to inspect 
system-specific activities, including file system modifications and sys-
tem call behaviors. This makes HIDS particularly suitable for identifying 
and detecting malware infections, as these often manifest in changes at 
the host level. Furthermore, HIDS can detect attacks that may not be 
visible to NIDS, such as attacks that occur within encrypted traffic or 
those that originate from within the network.

From this point on, and to facilitate the understanding of the docu-
ment, we will refer to Network Intrusion Detection Systems as Intrusion 
Detection Systems.

Intrusion Detection Systems are an essential component of a compre-
hensive network security strategy. They provide an additional layer of 
protection beyond firewalls, antivirus software, and other security tools. 
By detecting and alerting administrators to potential security threats, 
IDS can help organizations respond quickly and effectively to cyber at-
tacks.

Machine Learning (ML) has emerged as a powerful technique for 
improving the accuracy and effectiveness of Intrusion Detection Sys-
tems (Abdallah et al., 2022; Maseer et al., 2021; Thakkar and Lohiya, 
2020). ML algorithms can be used to analyze large volumes of network 
data and identify patterns that may be indicative of security threats. 
ML-based IDS can learn from past network activity to identify and flag 
2

potential security threats in real-time, even when the attacks are novel 
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Fig. 1. Adversarial Machine Learning (AML) attacks by ART (Nicolae et al., 
2018).

or previously unseen. ML-based IDS can also adapt and improve over 
time as they learn from new data and feedback from security analysts.

2.2. Adversarial Machine Learning

Adversarial Machine Learning (AML) attacks refer to a set of tech-
niques used to undermine the accuracy, integrity, or security of ma-
chine learning (ML) models (Huang et al., 2011). AML attacks can be 
launched by malicious actors with different objectives, such as stealing 
sensitive information, manipulating decision-making processes, or com-
promising the confidentiality and privacy of ML systems (see Fig. 1).

AML attacks can be launched against a wide range of ML models, in-
cluding deep neural networks, support vector machines, decision trees, 
and others. The success of an AML attack depends on various factors, 
such as the type and quality of the target ML model, the sophistication 
of the attack technique, and the attacker’s level of knowledge and re-
sources. According to the taxonomy of the attack, they can be classified 
into evasion attacks, poisoning attacks, extraction attacks and inference 
attacks (De Cristofaro, 2020).

2.2.1. Evasion attacks

Evasion attacks in AML refer to a type of attack where the attacker 
manipulates the input data in a way that the ML model will misclassify 
it, without changing the underlying characteristics of the data (Biggio et 
al., 2013). Evasion attacks are typically launched against classification 
models, such as those used for image recognition or spam detection, and 
they can be crafted using various techniques, including gradient-based 
methods, evolutionary algorithms, or gray/black-box attacks. The goal 
of an evasion attack is to create an adversarial example, i.e., a modified 
version of the original input data that is similar to the original but is 
misclassified by the ML model. Evasion attacks pose a significant threat 
to the security and robustness of ML systems, especially in domains such 
as malware detection, Intrusion Detection Systems and fraud detection, 
where accurate classification is critical.

2.2.2. Poisoning attacks

Data poisoning attacks in AML involve manipulating the training 
data of an ML model to introduce biases or to cause it to learn incorrect 
patterns (Koh, 2018). Poisoning attacks can be launched at different 
stages of the ML pipeline, including data collection, preprocessing, and 
training. The goal of a poisoning attack is to compromise the integrity 
and accuracy of the ML model by introducing malicious data into the 
training dataset, which can cause the model to learn incorrect patterns 
and make incorrect predictions. Poisoning attacks can be launched in 

a variety of ways, such as by injecting adversarial examples into the 
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training data, manipulating the distribution of the training data, or in-
troducing outliers into the dataset.

2.2.3. Extraction attacks

Model extraction attacks in AML refer to a type of attack where 
the attacker aims to extract the details of an ML model without direct 
access to it (Chen, 2020). This is achieved by leveraging the output 
of the target ML model to infer the underlying structure, architecture, 
or parameters of the model. Model extraction attacks can be launched 
through different channels, such as querying the model with carefully 
crafted inputs or by observing its behavior in response to various in-
puts. The goal of a model extraction attack is to steal the target model’s 
intellectual property or use it for malicious purposes such as deploy-
ing counterfeit models, stealing sensitive data, or reverse engineering 
proprietary algorithms. Model extraction attacks can be particularly 
effective against black-box models where the attacker does not have 
access to the model’s internal structure or parameters.

2.2.4. Inference attacks

AML inference attacks involve an attacker attempting to glean con-
fidential information about the input data utilized by the ML model by 
scrutinizing the model’s output (Yeom, 2017). Inference attacks can be 
launched against a wide range of ML models, including deep neural net-
works, decision trees, and support vector machines, among others. The 
goal of an inference attack is to obtain access to private or confiden-
tial information about the input data, such as personal characteristics, 
financial transactions, or medical records, without having direct access 
to the data itself. Inference attacks can be launched through different 
channels, such as analyzing the output distribution of the model, mea-
suring its response time to different inputs, or exploiting the model’s 
decision boundaries.

2.3. Multi-Armed Bandits (MAB)

The Multi-Armed Bandits (MAB) is a classic problem in probabil-
ity theory and Machine Learning, where an agent has to allocate a 
limited set of resources among competing choices that have uncertain 
rewards (Kuleshov and Precup, 2014). The agent faces a trade-off be-
tween exploiting the choices that have the highest expected rewards 
based on the current information, and exploring new choices that may 
yield higher rewards in the future.

The MAB problem has many practical applications in various do-
mains, such as clinical trials, adaptive routing, financial portfolio de-
sign, and online advertising. Several algorithms have been proposed to 
solve the MAB problem, such as optimistic initialization (Machado et 
al., 2014), upper confidence bound (UCB) (Carpentier et al., 2011), and 
Thompson sampling (Agrawal and Goyal, 2012). These algorithms dif-
fer in how they balance exploration and exploitation, and how they 
estimate the expected rewards of each choice.

Thompson sampling is a Bayesian approach that maintains a prob-
ability distribution over the unknown reward distributions of each 
choice, and chooses actions based on sampling from these distributions. 
Specifically, at each timestep, Thompson sampling samples a reward 
from each distribution, chooses the action associated with the highest 
sampled reward, and updates its beliefs about the reward distributions 
based on the observed reward. This approach has been shown to be ef-
fective in many applications, and has a strong theoretical justification 
in terms of minimizing regret.

Thompson sampling has gained popularity in recent years due to its 
ability to balance exploration and exploitation in a principled way (Park 
and Faradonbeh, 2021). By sampling from the probability distributions 
over the reward distributions, Thompson sampling encourages explo-
ration of all choices while still favoring choices with higher expected 
rewards. Additionally, the Bayesian framework allows for the incorpo-
ration of prior knowledge about the reward distributions, which can be 
3

especially useful in scenarios with limited data.
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The MAB problem is intricately connected to the realm of Reinforce-
ment Learning (RL). In RL, an intelligent agent endeavors to acquire 
knowledge and develop a strategy, known as a policy, that maximizes 
its total rewards throughout its interaction with an environment. Over 
the past few years, RL has exhibited remarkable success in diverse do-
mains. Notably, it has found significant utility in the domain of demand 
forecasting (Ramos et al., 2022a,b).

In the context of our work, we use the MAB algorithm to select 
the best (IDS) classifier for each network traffic request. This is similar 
to how MAB is used in demand forecasting to select the most optimal 
forecasting model or determine the best hyperparameters for a given 
forecasting model. By using MAB, we can balance the trade-off between 
exploiting the classifiers that have the highest expected accuracy based 
on the current information, and exploring new classifiers that may yield 
higher accuracy in the future.

3. Related work

This section will present a summary of the distinct datasets for IDS, 
along with their corresponding classifiers and performance metrics. Our 
proposed approach will make use of these classifiers. Furthermore, we 
will explore the typical types of AML attacks used in this domain.

3.1. Intrusion Detection Systems datasets

IDS datasets play a crucial role in assessing and gauging the perfor-
mance of IDSs. These datasets contain labeled instances of regular and 
anomalous network traffic that are used to train and assess the precision 
and efficiency of IDSs. A range of datasets with diverse strengths and 
features is accessible. This section will examine some of the most preva-
lent datasets, highlighting their essential qualities and applications.

3.1.1. CIC-IDS-2017

A highly utilized IDS dataset in contemporary literature is the CIC-
IDS2017 (Sharafaldin et al., 2018a), which was developed by the Cana-
dian Institute for Cybersecurity (CIC) in a simulated enterprise network 
environment, gathering network traffic data for five consecutive days. 
This dataset emulates the actions of 25 users and comprises nearly 80 
significant attributes (Ring et al., 2019). Notably, it has an 83% to 17% 
benign to malicious instance ratio, representing a significant portion 
of the dataset. The CIC-IDS2017 is considered an accurate depiction of 
normal traffic distribution in a network and can be utilized individually 
or combined with other datasets (Shroff et al., 2022).

3.1.2. CSE-CIC-IDS-2018

The CSE-CIC-IDS2018 dataset was developed using AWS resources 
in a simulated enterprise network environment in 2018 (Sharafaldin et 
al., 2018b). It consists of data on seven distinct attack categories and 
comprises nearly 79 important features. With over 450 devices, includ-
ing servers, computers, and other tools, this dataset is notably large and 
realistic (Pujari et al., 2022). It is akin to the CIC-IDS2017 dataset, ana-
lyzing bidirectional flow packet data, but with more significant features 
and greater comprehensiveness. Hence, it is widely used in the litera-
ture for assessing and benchmarking IDSs (Pujari et al., 2022).

3.1.3. CIC-DDoS-2019

To address the lack of representation of all DDoS (Distributed De-
nial of Service) attack subtypes in existing datasets, the CIC-DDoS-2019 
dataset was created (Sharafaldin et al., 2019). Although the dataset in-
cludes simulated network traffic, it strives to present realistic benign 
data. It features 13 types of DDoS attacks and over 80 significant fea-
tures. However, it is severely imbalanced, with 50,006,249 DDoS attack 
records and just 56,863 benign traffic records, making it challenging to 
train a model on both data types (Ring et al., 2019). As a result, experts 
suggest using this dataset in conjunction with other datasets (Shroff et 
al., 2022), such as CIC-IDS-2017 or CSE-CIC-IDS-2018, to train a more 

robust model.
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Table 1

Performance of the IDSs classifiers on the selected datasets.

Classifiers CIC-IDS-2017 CSE-CIC-IDS-2018 CIC-DDoS-2019 References

Accuracy F1 Score AUC Accuracy F1 Score AUC Accuracy F1 Score AUC

LR 92.96 90.87 91.50 87.96 88.99 81.54 91.72 87.27 90.23 Thiyam and Dey (2023); Akshay Kumaar et al. (2022)
FNN 99.61 99.57 99.83 93.00 92.00 100.00 95.55 95.50 95.63 Huang and Lei (2020); Thiyam and Dey (2023); Wu et 

al. (2022)
RF 99.79 99.78 99.98 92.00 94.00 100.00 99.86 99.78 99.82 Pujari et al. (2022); Huang and Lei (2020); Abdul-

hammed et al. (2019); Maseer et al. (2021); Faker and 
Dogdu (2019); Thiyam and Dey (2023)

DT 99.62 99.57 99.56 88.00 91.00 100.00 99.87 99.78 99.80 Pujari et al. (2022); Thiyam and Dey (2023); Huang 
and Lei (2020); Maseer et al. (2021)

RTIDS 99.35 99.17 98.83 - - - 98.58 98.48 98.66 Wu et al. (2022)
SVM 96.97 96.99 98.98 61.00 66.00 100.00 94.02 94.98 94.24 Pujari et al. (2022); Huang and Lei (2020); Maseer et 

al. (2021); Faker and Dogdu (2019); Wu et al. (2022); 
Sahoo et al. (2020)
3.1.4. Discarded datasets

This project did not make use of several other IDS datasets, includ-
ing Darpa 1998/99 (Mahoney and Chan, 2003), KDD 99 (Tavallaee et 
al., 2009), and NSL-KDD (Tavallaee et al., 2009). These datasets are no 
longer commonly employed for evaluating and benchmarking IDS due 
to their outdated nature. Created in the late 1990s and early 2000s, they 
do not accurately represent the current landscape of network threats 
and behaviors. KDD 99 dataset, in particular, has been criticized for its 
high false positive rate and lack of realism, thereby limiting its useful-
ness in assessing the performance of modern IDS (Hugh, 2000; Tobi and 
Duncan, 2018).

3.2. Intrusion Detection Systems ML-classifiers

ML-classifiers have emerged as a promising alternative to traditional 
IDS for detecting network attacks. This is due to the limitations of 
traditional IDS in dealing with the complex and dynamic nature of 
cyber-attacks. In the current digital era, the number and sophistication 
of malware threats are constantly growing, posing a serious challenge 
to network security. Therefore, it is essential to have reliable and ef-
fective IDS systems in place to protect network systems from potential 
damage.

Several studies have been conducted to evaluate the performance of 
various ML-classifiers in detecting network attacks. These studies use 
datasets such as CIC-IDS-2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019.

Table 1 provides a summary of the most commonly used ML-
classifiers and their scores, including accuracy, F1 Score, and AUC, for 
each of the aforementioned datasets. The ML-classifiers used in these 
studies are Logistic Regression (LR) (Wright, 1995), Fuzziness based Neu-

ral Networks (FNN) (Ashfaq et al., 2017), Random Forests (RF) (Cutler 
et al., 2012), Decision Trees (DT) (Rokach and Maimon, 2005), Robust 
transformer based Intrusion Detection System (RTIDS) (Wu et al., 2022), 
and Support Vector Machines (SVM) (Suthaharan and Suthaharan, 2016).

These classifiers were selected due to their wide adoption and 
proven effectiveness in diverse Machine Learning applications. Nonethe-
less, research continues with the development of new and enhanced 
classifiers, such as LSTM-FCNN (Sahu et al., 2022) or DCNNBiL-
STM (Hnamte and Hussain, 2023), further extending the landscape of 
ML-IDS. By examining the results presented in Table 1, researchers 
can gain a comprehensive understanding of the performance of these 
classifiers on the specific datasets, enabling informed decisions when 
choosing the most appropriate algorithm for their requirements. The 
detailed explanations of how each of the results were obtained for each 
classifier can be found in the papers listed in the References column. 
These papers provide comprehensive insights into the methodologies 
employed and offer further analysis of the performance of each ML-
classifier on the respective datasets.

Accuracy, F1 Score, and AUC are three common metrics used to 
4

evaluate the performance of machine learning models. Accuracy mea-
sures the proportion of correct predictions made by a model out of the 
total number of predictions and is defined in Equation (1),

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

where TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and FN is the number of 
false negatives.

In the context of IDS, a true positive is defined as a malicious 
network flow that is correctly identified as malicious by the IDS. Con-
versely, a true negative refers to normal network traffic that is correctly 
identified as non-malicious. It’s worth noting that in many real-world 
scenarios, the volume of normal traffic significantly outweighs mali-
cious traffic. As a result, if the positive class in our metrics refers to 
normal traffic, the values would naturally be higher due to the preva-
lence of normal traffic. However, in our evaluations, the positive class 
specifically denotes malicious traffic, ensuring that our metrics provide 
a balanced and accurate representation of the IDS’s performance.

F1 Score is a weighted average of precision and the detection rate 
(DR) (also known as recall or sensitivity on traditional ML literature), 
where precision measures the proportion of true positives out of all 
predicted positives, and the detection rate measures the proportion of 
true positives out of all actual positives. The F1 Score is defined in 
Equation (2).

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅𝐷𝑅

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝐷𝑅
(2)

where precision is defined in Equation (3) and DR is defined in Equa-
tion (4).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

𝐷𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

The Area Under the ROC Curve (AUC) is a widely used performance 
metric in ML and binary classification tasks. It quantifies the discrimi-
native power of a classification model by measuring the probability that 
the model will rank a randomly chosen positive instance higher than a 
randomly chosen negative instance. The ROC curve plots the true pos-
itive rate (DR) against the false positive rate (1-specificity) for various 
classification thresholds, where specificity is defined in Equation (5).

𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦= 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5)

The AUC represents the integral of this curve and ranges from 0 to 
1, where a value of 1 indicates a perfect classifier and a value of 0.5 
suggests a random or ineffective classifier. Higher AUC values indicate 
better model performance in distinguishing between positive and nega-
tive instances. The AUC is a popular evaluation metric as it is robust to 
class imbalance and provides a concise summary of the model’ overall 

performance.
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Among the classifiers in Table 1, Random Forest (Zhang et al., 2008) 
and Decision Trees (Amor et al., 2004) are found to be some of the 
most effective classifiers for detecting network attacks. Random Forest

has gained popularity due to its ability to handle large datasets and its 
robust performance even when the data contains noise or missing val-
ues. Decision Trees are also preferred because of their simplicity and 
interpretability. They enable clear visualization of the decision-making 
process, making them useful for understanding the factors that con-
tribute to the classification results.

Overall, these classifiers have demonstrated strong performance in 
the field of IDS and are frequently used by researchers and practition-
ers. Their effectiveness in detecting intrusions and classifying network 
traffic makes them valuable tools for maintaining the security and in-
tegrity of computer networks.

3.3. Adversarial Machine Learning attacks

ML-based IDSs can learn from data and adapt to new situations, 
unlike traditional systems that rely on predefined rules. However, ML-
based IDSs also face new challenges from attackers who use Artificial 
Intelligence (AI) to craft sophisticated attacks that can fool or com-
promise ML models. One such threat comes from the use of Artificial 
Intelligence (AI) in the form of Adversarial Machine Learning (AML), 
where attackers use sophisticated techniques to manipulate or subvert 
ML models. These attacks are attractive to cyber attackers since they 
can be challenging to detect and prevent. Furthermore, as AI techniques 
gain popularity in cybersecurity, attackers are incentivized to develop 
more sophisticated adversarial attacks to evade detection.

Adversarial Machine Learning attacks can be classified as white-box 
attacks and gray/black-box attacks, depending on the level of knowl-
edge the attacker possesses about the target model.

3.3.1. White-box attacks

White-box attacks are a powerful category of AML attacks that can 
pose challenges not only to IDS but to any Machine Learning model. 
Their potency derives from the complete knowledge they assume about 
the target model and training data. This allows the attacker to craft 
intricate attacks that can evade system defenses.

Admittedly, such thorough knowledge about the system and its 
vulnerabilities is often impossible, rendering white-box attacks quite 
unrealistic in many practical scenarios. Thus, while white-box attacks 
are potent in theory, they are seldom observed in practice. Common 
white-box attack methods, applicable to ML models in general, and 
proven to be effective against IDS, include Fast Gradient Sign Method 
(FGSM) (Goodfellow et al., 2014a), Deep-Fool (Moosavi-Dezfooli et al., 
2016), Carlini &Wagner attack (C&W) (Carlini and Wagner, 2017), Ja-

cobian based Saliency Map Attack (JSMA) (Papernot et al., 2016), Basic 
Iterative Method (BIM) (Kurakin et al., 2016), and Projected Gradient De-

scent (PGD) (Madry et al., 2017).

3.3.2. Gray/black-box attacks

Gray/black-box attacks are comparatively more practical as they do 
not necessitate knowledge about the target model. Yet, the effectiveness 
of these attacks may be limited by the attacker’s restricted knowledge, 
leading to more generic and potentially less effective techniques.

A prevalent tool used to mount such attacks is the Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2020), a machine learning 
model that can produce adversarial examples capable of evading detec-
tion systems. GANs are a type of Machine Learning model consisting 
of two neural networks: a generator network and a discriminator net-
work. The generator network is trained to produce synthetic data that 
resembles the real data, while the discriminator network is trained to 
differentiate between real and synthetic data.

In the context of black-box and gray-box attacks, the generator net-
work can generate adversarial examples that are specifically designed to 
5

evade the target system’s defenses. The attacker may have access to the 
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system’s model scores or just a binary output indicating whether the in-
put was accepted or rejected. This information can be utilized to guide 
the training of the generator network, enhancing its ability to produce 
effective adversarial examples.

Recent gray/black-box attacks proven to be effective against IDS in-
clude attackGAN (Zhao et al., 2021), DIGFuPAS (Duy et al., 2021), IDS-

GAN (Lin et al., 2022), VulnerGAN (Liu et al., 2022), ZOO attack (Chen 
et al., 2017), Boundary attack (Chen and Jordan, 2019) and the Hot-

SkipJump attack (HSJA) (Chen et al., 2020). ZOO is a score-based attack 
that estimates gradients to create adversarial traffic in gray/black-box 
settings. Boundary attack and HSJA are decision-based attacks that only 
use binary feedback to craft adversarial inputs. The IDSGAN, attackGAN, 
and DIGFuPAS are gray/blackbox attacks that employ Wasserstein-GAN

to generate adversarial traffic. Wasserstein-GAN (W-GAN) (Gulrajani et 
al., 2017) is a GAN variant that trains the generator network with a 
different objective function called the Wasserstein distance. The Wasser-
stein distance measures the distance between two probability distribu-
tions and has properties like smoothness and continuity. Some recent 
WGANs use the Gradient Penalty to enhance the training convergence.

3.4. Adversarial Machine Learning defenses

Due to the increasing number of AML attacks, researchers have de-
veloped several defense mechanisms to mitigate the impact of these 
attacks. In the IDS domain, these defenses can be classified into three 
categories (Alotaibi and Rassam, 2023): preprocessing defenses, adversar-

ial training defenses and adversarial detection defenses.
It’s crucial to briefly mention here the context of our proposed sys-

tem, Apollon, in relation to these established defenses. Rather than 
replacing or competing with these mechanisms, Apollon works in tan-
dem with them, dynamically selecting and optimizing the utilization of 
these unaltered, pre-existing models.

3.4.1. Preprocessing defenses

In order to mitigate the impact of adversarial perturbations, re-
searchers have devised carefully planned preprocessing techniques. 
These preprocessing methods aim to reduce the vulnerability of ma-
chine learning models to adversarial attacks and enhance their robust-
ness applying carefully planned transformations to the input data before 
it is fed into the model. These transformations are designed to reduce 
the vulnerability of the model to adversarial perturbations.

One example of a preprocessing defense technique is Stochastic 
Transformation-based Defenses (Kou et al., 2019). This technique in-
volves applying random transformations to the input data, such as 
rotations, translations, and scaling, before feeding it into the model. 
By introducing randomness into the input data, the model becomes less 
susceptible to adversarial perturbations that are designed to exploit spe-
cific features of the input.

Another example of a preprocessing defense technique is Gradient 
Masking (Athalye et al., 2018). This technique involves modifying the 
gradients of the model during training to make it more difficult for an 
attacker to compute the gradients needed to generate adversarial exam-
ples. This is achieved by adding noise to the gradients or by clipping 
them to a certain range.

Nevertheless, sophisticated adversarial attacks have proven the in-
adequacy of these defense mechanisms. The primary shortcomings of 
these strategies are rooted in their approach: they tend to “confound” or 
confuse adversaries instead of outright eradicating the presence of ad-
versarial examples (Xu et al., 2020). This means that while they might 
momentarily disrupt or delay an attacker, they don’t provide a long-
term solution or a foolproof barrier against these threats.

3.4.2. Adversarial training defenses

Adversarial training is a widely researched topic within the realm 
of visual computing. Goodfellow et al. (2014b) demonstrated that by 

retraining a neural network with a dataset comprising both original 
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and adversarial samples, the network’s capability to counter adversarial 
samples can be markedly improved.

One of the salient features of adversarial training, as detailed in He 
et al. (2023), is its operational efficiency. Unlike some other defense 
mechanisms, adversarial training can function seamlessly without im-
posing any additional processing overhead during its operation.

However, the practical implementation of adversarial training in IDS 
presents its set of challenges. The foremost among these is the intricate 
task of obtaining authentic network attack traffic and crafting tailored 
adversarial attacks against sophisticated IDS setups. Even with a more 
accommodating threat model that provides defenders with access to 
malicious datasets, the seamless integration and success of adversarial 
training remain non-trivial (He et al., 2023).

The data-intensive nature of this approach adds another layer of 
complexity. As highlighted in Wang et al. (2023), adversarial training 
techniques have an insatiable appetite for extensive datasets. Given the 
proprietary nature of many datasets and the challenges associated with 
data collection, this becomes a significant roadblock. Most IDS systems, 
in their current configurations, lean heavily on anomaly detection algo-
rithms that focus predominantly on benign data. This data bias makes 
the infusion of adversarial training into IDS systems a challenging en-
deavor, primarily due to the limited availability of attack-centric data.

A critical consideration in this discourse is the delicate equilibrium 
between adversarial resilience and the fidelity of model predictions 
on clean data (Bai et al., 2021). While the primary aim of adversar-
ial training is to fortify IDS defenses against adversarial threats, there’s 
an inherent risk of diminishing the system’s performance on regular, 
non-adversarial traffic. This trade-off is central to our ongoing research, 
as the ultimate objective is not just robust defense but also unwavering 
accuracy and reliability across all data inputs in IDS systems.

3.4.3. Adversarial detection defenses

An alternative approach to combat adversarial attacks involves the 
implementation of detection mechanisms capable of identifying the 
presence of adversarial samples (Zizzo et al., 2019). These mechanisms 
utilize various techniques such as direct classification, neural network 
uncertainty, or input processing.

In the rapidly evolving landscape of cybersecurity, current detection 
mechanisms, though promising, have shown limitations in their abil-
ity to robustly defend against AML attacks (Zizzo et al., 2019). These 
mechanisms, developed based on previous threat models, are now being 
outpaced by the ingenuity of advanced adversarial techniques (Athalye 
et al., 2018).

One of the core vulnerabilities of these detection systems is their 
struggle to adapt to the dynamic and ever-changing nature of adversar-
ial attacks. Crafted with precision, adversarial samples are specifically 
designed to elude and mislead detection systems. This makes it exceed-
ingly difficult to differentiate between genuine and adversarial inputs, 
especially when the threat landscape is in constant flux (He et al., 2023). 
As the digital world becomes more interconnected and complex, there’s 
an imperative need to not only enhance our detection capabilities but 
also to anticipate and preemptively address the next wave of adversarial 
strategies.

4. Apollon

In this paper, we propose a robust defense system called Apollon, 
which is designed to protect an IDS against AML attacks. Apollon is 
composed of multiple layers to provide better security than traditional 
IDS and previous works. The proposed system combines multiple clas-
sifiers, a Multi-Armed Bandits (MAB) algorithm, and requests clustering 
to provide robust defense against AML attacks.

The first layer of Apollon involves using multiple classifiers instead 
of a single classifier that is traditionally used in IDS. The concept behind 
utilizing multiple classifiers is to increase the difficulty for potential 
6

attackers attempting to replicate the IDS model. This is because they 
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Cluster 0: Len of request 274888
Training arm 0 on cluster 0
Training arm 1 on cluster 0
Training arm 2 on cluster 0
Cluster 1: Len of request 358525
Training arm 0 on cluster 1
Training arm 1 on cluster 1
Training arm 2 on cluster 1

Setting reward_sums arm 0 on cluster 0
Setting reward_sums arm 1 on cluster 0
Setting reward_sums arm 2 on cluster 0
Setting reward_sums arm 0 on cluster 1
Setting reward_sums arm 1 on cluster 1
Setting reward_sums arm 2 on cluster 1

Listing 1: Apollon training process example.

cannot predict which specific model will be responsible for classifying 
a given request.

To dynamically select the optimal classifier or set of classifiers for 
each input, Apollon involves using a Multi-Armed Bandits (MAB) with 
Thompson sampling. The MAB is responsible for selecting the arm (clas-
sifier) to use for each request based on the current state of the system.

Finally, requests are clustered, and there is a version of each classi-
fier for each cluster, trained only with the information of that cluster. 
Clustering is used to add another layer of uncertainty to the system, 
as the attacker cannot predict in a simple way which cluster a request 
belongs to.

Apollon stands as a groundbreaking approach in the realm of in-
trusion detection. Unlike traditional adversarial training methods that 
necessitate extensive adversarial data, Apollon is ingeniously designed 
to function effectively without such data. This strategic design not only 
streamlines the training process but also ensures that Apollon remains 
resilient and adaptable in ever-changing network environments. By 
eliminating the need for adversarial data, Apollon offers a more prag-
matic and scalable solution for intrusion detection.

Furthermore, Apollon doesn’t alter the underlying models. Instead, 
it refines their application for peak efficiency. This harmonizes with es-
tablished defense mechanisms, allowing for a seamless integration and 
enhancing its adaptability. By selecting the most appropriate classifiers 
for each request type, Apollon maintains the performance standards of 
conventional IDSs in non-AML network traffic scenarios. Moreover, it 
devises a strategic methodology to prevent attackers from easily un-
derstanding the behaviors of our classifiers using AML techniques. This 
robust framework ensures that while Apollon augments the overall effi-
cacy of existing models, it also fortifies its defenses against AML attacks.

In the face of challenges posed by adversarial training, our proposal, 
Apollon, presents a unique advantage, setting a new standard in the 
field.

Fig. 2 shows the architecture of Apollon, and the flow that a network 
traffic request follows until it is classified.

Listing 1 shows the output of an Apollon training process example 
with two clusters and three classifiers. As can be seen, the training data 
is first divided between the two clusters, the classifiers are trained for 
each cluster and finally, the rewards are assigned. The Listing 2 shows 
a selection process example of the classifier for each request, the pre-
dicted value and the real value.

In the following, each of the layers that influence the final classifi-
cation of a network traffic request will be detailed.

4.1. Multiple classifiers

The first layer of Apollon involves using multiple classifiers instead 

of a single classifier, which is typically used in traditional IDS. The 
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Fig. 2. Apollon Architecture.
Selected arm: 0.0 Predicted:0 Actual:0

Selected arm: 0.0 Predicted:0 Actual:0

Selected arm: 2.0 Predicted:0 Actual:0

Selected arm: 0.0 Predicted:0 Actual:0

Selected arm: 1.0 Predicted:1 Actual:1

Selected arm: 2.0 Predicted:0 Actual:0

Listing 2: Apollon classifier selection process example.

idea of using multiple classifiers is to make it more difficult for the 
attacker to replicate the IDS model, as he is not able to predict which 
model is going to classify the request. By utilizing a greater number 
of diverse classifiers, the system becomes more resilient by introducing 
greater uncertainty, and better classifiers imply better performance in 
the Apollon system score.

In Apollon, we can use any type of classifier. These classifiers can 
be either the most common ones based on Deep Learning or Machine 
Learning, or classifiers based on network traffic request forecasting 
techniques, or the more classical ones based on rule systems.

4.2. Multi-Armed Bandit

The second layer of the Apollon defense system involves the use of 
a Multi-Armed Bandits (MAB) algorithm to select the appropriate clas-
sifier or set of classifiers for each network traffic request. The MAB is 
responsible for selecting the best classifier or set of classifiers to evalu-
ate whether a request is benign or malicious. This approach avoids the 
need for manual tuning of thresholds or weights for each classifier.

The MAB algorithm works by selecting the arm, or classifier, that 
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has the highest probability of providing the correct classification. In 
Apollon, we use Thomson Sampling, which is a popular algorithm for 
solving the MAB problem. Thomson Sampling balances exploration and 
exploitation of the available classifiers, ensuring that the system selects 
the optimal classifier or set of classifiers while still being responsive to 
new and unknown types of traffic.

The MAB algorithm in Apollon is designed to take into account the 
different types of classifiers used in the system. For instance, if the 
Random Forest classifier has a high probability of being correct, but 
the Naive Bayes and Logistic Regression classifiers have lower probabili-
ties, the MAB algorithm will select the Random Forest classifier for that 
particular request. In this way, the MAB algorithm ensures that the sys-
tem selects the optimal set of classifiers for each request, improving the 
overall accuracy of the classification.

The MAB algorithm is constantly updating the probabilities of the 
different classifiers based on their previous performance, allowing the 
system to adapt to changes in the traffic patterns over time and ensuring 
that the system is always updated with the latest types of attacks.

This update process is described in Algorithm 1. Here, 𝑆𝑖 and 𝐹𝑖 are 
the number of observed successes and failures for arm 𝑖, respectively, 
and 𝑡ℎ𝑒𝑡𝑎𝑖 is the estimated probability of obtaining a positive reward 
from arm 𝑖. The algorithm uses the Beta distribution as an a priori dis-
tribution for the parameters 𝑡ℎ𝑒𝑡𝑎𝑖, and updates it with the observed 
data using Bayes’ theorem.

The MAB algorithm samples the posterior distribution and generates 
a value for each arm, following which the arm with the highest value 
is selected. However, in cases where there is a tie, indicating that mul-
tiple classifiers have an equally high probability of being the best, we 
resort to an ensemble method, specifically Bootstrap Aggregating, com-
monly known as Bagging (Lee et al., 2020), to combine the outputs of 

these selected models. This approach ensures that even when there are 
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Fig. 3. Apollon Multi-Armed Bandits algorithm with multiple classifiers.

multiple ‘best’ classifiers, the decision-making process remains robust 
and effective.

Our choice of Bagging as the ensemble method stems from its in-
herent properties that align well with our objectives. Bagging works 
by generating multiple versions of a predictor through bootstrapped 
samples of the training set and then aggregates their predictions. This 
process inherently reduces variance, making the ensemble less sensi-
tive to the idiosyncrasies of individual classifiers. In the context of 
our MAB-based system, where ties among classifiers indicate closely 
matched performance, Bagging offers a natural way to harness the col-
lective strength of these classifiers without introducing undue bias.

Algorithm 1 Apollon Thompson Sampling.
Intit 𝑆𝑖 = 0 y 𝐹𝑖 = 0 for each arm 𝑖
for 𝑡 = 1, 2, … do

For each arm 𝑖, sample 𝜃𝑖 of Beta distribution (𝑆𝑖 + 1, 𝐹𝑖 + 1)
Choose the arm 𝐼𝑡 that maximizes 𝜃𝑖
Observe the reward 𝑋𝑡 of the arm 𝐼𝑡 .
if 𝑋𝑡 = 1 then

Increment 𝑆𝐼𝑡
by one

else

Increment 𝐹𝐼𝑡
by one

end if

end for

By using a Multi-Armed Bandits algorithm, Apollon can dynamically 
select the optimal classifier or set of classifiers for each network traf-
fic request, making the system more responsive to new types of attacks. 
The use of Thomson Sampling ensures that the system is balanced be-
tween exploration and exploitation, improving the overall attacks de-
tection rate of the classification.

The primary reason for our choice of MAB over traditional ensem-
ble algorithms is its dynamic adaptability. In the context of defending 
against AML attacks in IDS, the threat landscape is constantly evolving. 
MAB provides us with the flexibility to adapt over time, allowing us 
to explore and exploit different classifiers based on their historical per-
formance. This dynamic selection mechanism ensures that our system 
remains robust even as adversaries adapt their strategies. Traditional 
ensemble methods, while powerful, operate on a more static combina-
tion of models and might not be as agile in responding to changing 
adversarial tactics.

Fig. 3 shows the diagram of the MAB algorithm with multiple clas-
sifiers.

4.3. Traffic requests clustering

The final layer of the Apollon defense system involves clustering the 
8

network traffic requests based on their features, and then training a sep-
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arate version of each classifier for each cluster. While this may seem to 
add computational complexity without directly improving traditional 
performance metrics such as accuracy or detection rate, it plays a cru-
cial role in increasing the robustness of our system against adversarial 
attacks.

This layer enriches the overall diversity of our system, ensuring the 
existence of multiple models trained on different clusters of data. This 
added variation serves to complicate an attacker’s task when trying to 
replicate the behavior of our system through black/gray box attacks. It 
essentially increases the system’s unpredictability, forming a key part 
of Apollon’s robust defense against such attempts.

The traffic requests are clustered using the K-Means algorithm 
(Sinaga and Yang, 2020), which is a popular clustering algorithm that 
is used in many Machine Learning applications. The K-Means algorithm 
works by randomly selecting 𝑘 points as the initial centroids, and then 
iteratively updating the centroids until the clusters converge. In Apol-

lon, we use the K-Means algorithm to cluster the network traffic requests 
based on their features, ensuring that requests with similar features are 
grouped together. These features are the same ones used by the classi-
fiers to evaluate the requests, ensuring that the clustering is based on 
the same information that the classifiers use to make their decisions.

Each cluster has its dedicated version of every classifier, trained ex-
clusively on the traffic requests in that cluster. This specific tuning to 
distinct traffic patterns significantly contributes to the system’s com-
plexity and enhances its defense against adversarial learning.

When a new network traffic request arrives at Apollon, it is classified 
into the appropriate cluster based on its features. The Multi-Armed Ban-

dits algorithm then selects the optimal set of classifiers for that cluster, 
factoring in the performance of each classifier within that specific clus-
ter. The selected classifier or set of classifiers then evaluate the request 
to determine if it is benign or malicious.

The use of clustering in Apollon, together with the individual train-
ing of each classifier on each cluster, allows the Multi-Armed Bandit

algorithm to generate multiple probability distributions for each classi-
fier, depending on the type of request received. This blend of strategies 
amplifies the challenge for potential attackers to identify the responding 
classifier, thereby reducing the probability of successful system imita-
tion.

4.4. Apollon limitations

While Apollon offers a novel and robust approach to defending 
against adversarial attacks in Intrusion Detection Systems, it is crucial 
to discuss its limitations to provide a well-rounded understanding of its 
applicability, strengths, and areas for future improvement.

• Increased Model Training Time: One of the notable limitations 
of Apollon is the increased computational time required during the 
model training phase. Although Apollon is designed to be compu-
tationally efficient during the prediction phase—where it merely 
samples from pre-defined distributions to select an appropriate 
model—the training phase is more computationally intensive. This 
is because Apollon needs to generate these distributions for each 
model in the pool, which can be a time-consuming process. This 
limitation is particularly relevant in scenarios where rapid model 
training and deployment are crucial.

• Model Pool Diversity: The second limitation pertains to the diver-
sity of the model pool. The efficacy of Apollon is intrinsically linked 
to the diversity and quality of the models it has at its disposal. A 
pool that lacks diversity in terms of the types of models, their archi-
tectures, or their training data may not fully exploit the potential 
of the Multi-Armed Bandits mechanism. This could result in sub-
optimal performance and may reduce Apollon’s overall robustness 
against a wide array of adversarial attacks.

These limitations offer avenues for future research and development 
to further enhance the real-world applicability and effectiveness of Apol-
lon.
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5. Evaluation

In this section, we present the methodology and results of our eval-
uation, which assesses the performance of Apollon in traditional and 
AML attack environments. The code that was used and created during 
the evaluation of our proposal is completely open and accessible. It can 
be found on GitHub.1

5.1. Methodology

We designed two scenarios to assess the performance of our pro-
posed solution. In the first scenario, we tested our solution on three 
datasets: CIC-IDS-2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019. These 
datasets are comprised of network traffic and web attacks and are com-
monly used in the evaluation of IDSs. The reason for selecting these 
datasets is that they are the most popular and widely used in the evalua-
tion of IDSs. Additionally, they are generated to be as similar as possible 
to real-world network traffic and attacks. Therefore, they are ideal for 
evaluating the performance of our solution in a traditional IDS environ-
ment. However, it is important to note that real-world network traffic 
and attacks are constantly evolving and becoming more complex, and 
as such, these datasets may not be representative of the current state of 
network traffic and attacks.

These datasets are comprised of flow features in a CSV format which 
were used as inputs to our Machine Learning models. The process 
of feature selection was undertaken prior to model training. For the 
CIC-DDoS-2019 dataset, we followed the feature selection process as 
described in work (Thiyam and Dey, 2023). For the CSE-CIC-IDS-2018 
dataset, we referred to the methodology outlined in work (Pujari et al., 
2022) for feature selection. Lastly, for the CIC-IDS-2017 dataset, we ad-
hered to the approach recommended in work (Faker and Dogdu, 2019) 
for selecting features. This systematic feature selection approach en-
abled us to optimize the performance of our models, enhancing their 
accuracy, and reducing overfitting and training time.

Due to our lack of powerful machines, we opted to use a represen-
tative subset of the datasets instead of the complete data to efficiently 
train and test our models. For the dataset CIC-DDoS-2019 the whole 
dataset has been used, while for the dataset CSE-CIC-IDS-2018 the 
subset from 02-15-2018 has been used. Finally, for the CIC-IDS-2017 
dataset, the following subsets of data have been selected:

• Friday WorkingHours Afternoon DDoS

• Friday WorkingHours Afternoon PortScan

• Friday WorkingHours Morning

• Monday WorkingHours

• Thursday WorkingHours Afternoon Infilteration

• Thursday WorkingHours Morning WebAttacks

• Tuesday WorkingHours

We compared the results of our solution with the classifiers extracted 
from related work. In the second scenario, we used several gray/black-
box Adversarial Machine Learning attacks to evaluate the ability of our 
solution to defend against such attacks. In this scenario, the test data 
exclusively comprise attack instances. Conversely, for the first scenario, 
the test data are extracted from the respective dataset and incorporate 
a mix of benign and malicious instances.

The classifiers scores used to compare our solution may be differ-
ent than those reported in related work due to several factors. Firstly, 
the machine on which the training is performed may differ from that 
of related work. This can impact the speed and efficiency of the train-
ing process, which in turn can affect the final accuracy of the classifiers. 
Secondly, the pre-processing of the data may be different between our 
solution and related work. Pre-processing techniques can greatly im-
pact the quality of the data and hence the performance of the classifiers. 
9

1 https://github .com /antonioalfa22 /apollon.
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Therefore, differences in pre-processing techniques can lead to varying 
levels of accuracy in the classifiers. It is important to take into account 
these differences when comparing our solution to related work, and to 
consider the impact of these factors on the performance of the classi-
fiers.

All the experiments were performed on a Ubuntu 20.04.5 LTS ma-
chine with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor and 
16 GB of RAM memory.

5.1.1. Traditional network traffic and attacks

In this test scenario, we utilized the CIC-IDS-2017, CSE-CIC-IDS-
2018, and CIC-DDoS-2019 datasets to train a set of classifiers to com-
pare with our proposed solution. Our goal was to assess the performance 
of our solution with the traditional network traffic and web attacks.

We have utilized default hyperparameters of the classifiers because 
the objective of this scenario is not to maximize the performance of 
these classifiers but rather to compare them with our solution. The clas-
sifiers used in this scenario are the following:

• Multilayer Perceptron (MLP): hidden_layer_sizes = (32), max_iter = 
200

• Random Forest (RF): n_estimations = 100
• Decision Trees (DT)

• Naive Bayes (NB)

• Logistic Regression (LR)

5.1.2. Adversarial Machine Learning attacks

In this test scenario, we used several gray/black-box Adversarial Ma-
chine Learning attacks to evaluate the ability of our solution to defend 
against such attacks. To simplify the evaluation process, we used the 
CIC-IDS-2017 dataset to train the classifiers and our proposed solution 
because it is the most popular dataset. We compare the accuracy and the 
detection rate of the classifiers and our proposed solution against the 
gray/black-box Adversarial Machine Learning attacks. As we mentioned 
before, we only test with gray/black-box attacks because white-box at-
tacks are not realistic in real-world scenarios.

The attacks used in this scenario are the following:

• Zeroth-order optimization attack (ZOO) (Chen et al., 2017)
• HopSkipJump attack (HSJA) (Chen et al., 2020)
• W-GAN based attacks (Lin et al., 2022)

We opted for these particular attacks because they encompass a 
broad spectrum of potential Adversarial Machine Learning evasion 
strategies and are among the most widely used and successful.

The adversarial network traffic used in this scenario was generated 
by modifying real attack traffic while preserving the key characteristics 
of the attacks. This method ensures that the adversarial traffic maintains 
the legitimate semantics of the original traffic, an approach adopted 
from M. Usama et al.’s methodology (Usama et al., 2019).

5.2. Results

Throughout the development of the evaluation we have decided to 
set a seed, so that the results can be replicated: the seed = 42.

Before training the classifiers, a common pre-processing step was 
performed on the data from all datasets. This step is essential in stan-
dardizing the datasets, ensuring that we are working uniformly with 
each of them. To achieve this, a combination of sklearn functions such 
as RobustScaler and Normalizer was utilized. To make features less sen-
sitive to outliers, the RobustScaler subtracts the median and adjusts the 
data based on the quantile range. The Normalizer scales the input data 
set to have a norm of 1 and values between 0 and 1.

In addition to standardizing the datasets, additional steps were taken 

to further prepare the data for training our classifiers. We avoided ex-

https://github.com/antonioalfa22/apollon


A. Paya, S. Arroni, V. García-Díaz et al.

cessive pre-processing, to preserve as much data as possible, so we only 
eliminated duplicate elements and attributes that had only unique data.

We also encountered some data with missing values (NaN) and ex-
plored various methods to handle this issue: filling in missing values 
with a fixed value, with the mean or median of the feature’s non-missing 
values, with a prediction based on the other features and with a predic-
tion based on k-nearest neighbors. Our experiments revealed that using 
a constant value of 0 to fill in missing values achieved the best perfor-
mance in the training step.

We apply this pre-processing to all datasets equally. For validating 
the results, we employed the Walk-Forward Cross-Validation method, 
which is particularly suitable for time-series data, ensuring that there’s 
no data leakage from the future into the training set. The specifics of 
our approach are as follows:

• Step Size: After each iteration, we expanded the training set by 8% 
of the total dataset size. This ensures that the model is trained on an 
increasing amount of past data while leaving room for validation.

• Validation Set Size: In each iteration, the model was validated on 
the subsequent 2% of the dataset. This size was chosen to provide 
a balance between the number of training and validation iterations 
and the granularity of validation.

• Total Iterations: Given the initial training size, step size, and vali-
dation set size, the process was carried out in 5 iterations, ensuring 
that the model is validated across all possible contiguous training-
validation splits.

By using Walk-Forward Cross-Validation, we ensure that the results 
obtained are representative of the model’s ability to predict future data 
points based on past observations, eliminating the risk of inadvertently 
training the model on future data. This approach provides a more re-
alistic and robust evaluation of the model’s performance on time-series 
data.

The results of our experiments in the two evaluation scenarios are 
presented below.

5.2.1. Traditional network traffic and attacks

In this scenario, we trained the selected classifiers on the CIC-IDS-
2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019 datasets. Additionally, 
we trained our proposed solution on the same datasets and with the 
same classifiers. To train Apollon, we use the K-Means (Likas et al., 
2003) algorithm to cluster the data into 2 clusters. For each cluster, 
we train the selected classifiers and we update the Multi-Armed Bandits

algorithm with the results.
The results obtained from the experiments are presented in the Ta-

bles 2, 3, and 4.
In our experiments across different datasets, the Multi-Armed Ban-

dit algorithm showed a preference for specific models or combinations 
thereof. For instance, in the CIC-IDS-2017 dataset, the most frequently 
chosen combination by MAB was Random Forest (RF) and Decision Tree 
(DT), accounting for approximately 40% of the selections, followed by 
RF alone at 28%. In the CIC-DDoS-2019 dataset, DT was the choice 
in 60% of the selections. Similarly, in the CSE-CIC-IDS-2018 dataset, 
RF was chosen 42% of the time, followed by the combination of RF 
and DT at approximately 27%. Intriguingly, the models or combina-
tions selected by MAB are generally those that individually exhibit high 
performance. This observation underscores the efficacy of MAB in dy-
namically selecting optimal models, thereby enhancing the robustness 
and adaptability of our IDS.

Based on these results, our solution demonstrates high detection 
rate and accuracy scores, comparable to the classifiers chosen for com-
parison. It’s important to mention that among all the datasets, Apollon

doesn’t achieve the best or the worst scores. This is due to the fact that 
Apollon internally selects from the same classifiers. Hence, the highest 
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score that Apollon can achieve is limited to the best classifier’s maxi-
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Table 2

Results of the traditional network traffic and attacks scenario on the CIC-IDS-
2017 dataset.

Metrics CIC-IDS-2017

MLP NB RF DT LR Apollon

Accuracy 0.9766 0.6694 0.9996 0.9980 0.9516 0.9740

Detection rate 0.9731 0.8049 0.9996 0.9962 0.8360 0.9420

F1 0.9760 0.6118 0.9991 0.9959 0.8858 0.7699

AUC 0.9998 0.8289 1.0000 0.9972 0.9902 0.9420

Table 3

Results of the traditional network traffic and attacks scenario on the CSE-CIC-
IDS-2018 dataset.

Metrics CSE-CIC-IDS-2018

MLP NB RF DT LR Apollon

Accuracy 0.9916 0.7280 0.9993 0.9939 0.9593 0.9064

Detection rate 0.9367 0.8563 0.9967 0.9961 0.6008 0.9419

F1 0.9545 0.5507 0.9963 0.9968 0.6556 0.7303

AUC 0.9945 0.8605 0.9993 0.9984 0.9592 0.9419

Table 4

Results of the traditional network traffic and attacks scenario on the CIC-DDoS-
2019 dataset.

Metrics CIC-DDoS-2019

MLP NB RF DT LR Apollon

Accuracy 0.9998 0.9990 0.9999 0.9999 0.9970 0.9996

Detection rate 0.8985 0.8709 0.9932 0.9999 0.7930 0.9691

F1 0.9186 0.7148 0.9957 0.9991 0.8541 0.8521

AUC 0.9817 0.9753 0.9999 0.9999 0.9796 0.9691

mum score, while it can never perform as poorly as the worst classifier 
since it has other better options.

Our results demonstrate that even with the integration of new secu-
rity mechanisms, Apollon can still provide high accuracy and detection 
rate scores in traditional network traffic classification environments. 
Therefore, Apollon is capable of preserving the fundamental functional-
ity of an IDS.

5.2.2. Adversarial Machine Learning attacks

In this scenario, we have launched three types of Adversarial Ma-
chine Learning attacks on the selected classifiers and against our so-
lution. These attacks are Zeroth-order optimization attack (ZOO), Hop-

SkipJump attack (HSJA) and W-GAN based attacks.
The classifiers and the Apollon implementation used as targets of 

the attacks are the ones trained in the previous environment with the 
CIC-IDS-2017 dataset.

Starting with the Zeroth-order optimization attack (ZOO), we have 
used the open source implementation provided by ART (Nicolae et al., 
2018), and created a Classifier class so that Apollon can be used as a 
model. The attack was launched with the following parameters for each 
classifier:

• classifier: the Classifier class instance with the classifier to be at-
tacked.

• targeted: True.
• learning_rate: 0.01.
• max_iter: 100.

The attack was launched against the classifiers and the results are 
shown in Table 5. The most frequently chosen combination was RF and 
DT, making up approximately 39% of the selections, followed by RF 
alone at 28%. According to the findings, the attack was effective in 
every scenario, resulting in reduced detection rates across all classifiers. 

Nonetheless, even though the Apollon implementation’s accuracy and 
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Table 5

Results of the ZOO AML attack.

Metrics ZOO attack

MLP NB RF DT LR Apollon

Accuracy 0.7200 0.7300 0.7250 0.7400 0.5200 0.9304

Detection rate 0.5260 0.5500 0.5460 0.5780 0.0420 0.8772

F1 0.5329 0.5550 0.5505 0.5815 0.0457 0.8835

AUC 0.7300 0.7400 0.7350 0.7500 0.5300 0.9400

Table 6

Results of the HopSkipJump AML attack.

Metrics HopSkipJump attack

MLP NB RF DT LR Apollon

Accuracy 0.5002 0.4301 0.5001 0.5051 0.5900 0.7550

Detection Rate 0.0000 0.0000 0.0000 0.0100 0.1800 0.5260

F1 0.0000 0.0000 0.0000 0.0133 0.2091 0.5607

AUC 0.5002 0.4907 0.5000 0.5121 0.6200 0.7760

Table 7

Results of the W-GAN based AML attack.

Metrics W-GAN based attack

MLP NB RF DT LR Apollon

Accuracy 0.5002 0.4398 0.5001 0.4280 0.3230 0.6260

Detection Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.4250

F1 0.0000 0.0000 0.0000 0.0000 0.0000 0.4595

AUC 0.5000 0.4903 0.5004 0.4887 0.4604 0.7000

detection rate scores also declined, they remained considerably superior 
to those of the other classifiers, with high accuracy and detection rate 
scores.

To launch the HopSkipJump attack (HSJA), we have used the open 
source implementation provided by ART, and created a Classifier as in 
the ZOO attack. The attack was launched with the following parameters 
for each classifier:

• classifier: the Classifier class instance with the classifier to be at-
tacked.

• targeted: True.
• max_iter: 100.
• norm: inf.

The results of the attack are shown in Table 6. In this scenario, the 
RF and DT combination accounted for approximately 36% of the se-
lections, followed by RF at 33%. The attack was very effective in all 
the classifiers, resulting in reduced detection rates to scores close to 
zero. The exception was the Apollon implementation, which was able to 
maintain a detection rate > 0.5.

Finally, the Wasserstein Generative Adversarial Network (W-GAN)

based attack was launched with a custom implementation available in 
the Apollon repository on GitHub. This implementation was based on 
the IDSGAN attack (Lin et al., 2022), updated to the needs of the se-
lected dataset. The results in Table 7 were obtained after launching the 
attack with 100 epochs. Much like in prior experiments, the RF and DT 
combination was chosen in approximately 48% of the cases, followed 
by RF at 20%.

The W-GAN based attack was the most effective attack, reducing the 
detection rate to zero in all the classifiers. Our solution, on the other 
hand, was able to maintain a detection rate > 0.4.

Interestingly, the MAB choices for these three types of AML attacks 
closely resemble those observed in the previous scenario conducted on 
the same dataset. This consistency can be attributed to the fact that 
Apollon starts each experiment with the same initial distributions for 
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the models. As a result, the selection patterns across different types of 
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attacks are highly similar, with the same models being chosen more 
frequently than others.

Apollon’s improved accuracy and detection rates in AML attacks can 
be attributed to the inclusion of an uncertainty component in its model 
selection process. This renders it difficult to train a model solely based 
on its responses.

The experimental results of the scenario reveal that our solution 
exhibits greater robustness in comparison to the other classifiers used 
individually.

However, we also observed that while our solution effectively re-
duces the effectiveness of the attacks, it does not completely nullify 
them. This means that there is still room for improvement in terms of 
enhancing the solution’s robustness to further strengthen its resistance 
against such attacks.

In particular, if we were to generate the attacks with more time, such 
as by increasing the number of iterations or epochs, it is likely that the 
effectiveness of these attacks against our solution would increase. It’s 
important to note that we are realistic about the limitations of our pro-
posal. While crafting an impenetrable defense is nearly impossible, our 
solution aims to significantly increase the time and resources required 
for a potential attacker to successfully execute an attack. In real-world 
scenarios, this increase in time and computational cost can render an at-
tack unfeasible or economically unviable, thereby serving as a deterrent 
and adding an extra layer of security.

6. Conclusions and future work

In conclusion, this paper presents Apollon, a new robust defense 
system against Adversarial Machine Learning attacks on Intrusion De-
tection Systems. Apollon utilizes a Multi-Armed Bandits model to select 
the best-suited classifier in real-time for each input with Thompson sam-
pling, adding a layer of uncertainty to the IDS behavior, that makes it 
more difficult for attackers to replicate the IDS and generate adversarial 
traffic.

Our experimental evaluation on several datasets shows that Apollon

can successfully detect attacks without compromising its performance 
on normal network traffic data, and can prevent attackers from learning 
the IDS behavior in realistic training times. These results demonstrate 
that Apollon is an effective defense system against AML attacks in IDS, 
which can help to enhance the security of critical systems.

Nevertheless, Apollon does not completely eliminate the risk of AML 
attacks; rather, it mitigates the threat by significantly increasing the 
time and effort required by attackers to generate adversarial traffic. By 
doing so, Apollon adds a layer of complexity that attackers must navi-
gate, thereby serving as a deterrent. This increased time and effort can 
often translate into higher computational and financial costs for the 
attacker, making the attack less appealing or even economically unfea-
sible. While this doesn’t make the system entirely impervious to AML 
attacks, it does raise the bar for what constitutes a successful attack, 
providing an additional layer of security and resilience in real-world 
applications.

With the aim of improving the performance and robustness of Apol-

lon, we plan to explore the use of other MAB models and implementa-
tions, such as Bayesian Optimization or Deep Bayesian Bandits. We also 
plan to explore the use of other classifiers and ML models, such as re-
quests forecasting models, which can be used to predict the expected 
number of requests in the next time window and compare it with the 
actual number of requests. Finally, we plan to test Apollon with AML at-
tacks on other datasets, such as CSE-CIC-IDS-2018 and CIC-DDoS-2019

datasets, and explore the use of other datasets, to evaluate the perfor-
mance of Apollon in different network environments.
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