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1 Introduction

The definition of the conserved charges of the solutions of gravitational theories is a
fascinating topic of research that touches the foundations of our current understanding of
the gravitational field.1 It is our current understanding, at least at a classical level, that
the conserved charges of a spacetime that asymptotes to another one which is treated as
the vacuum, (this is the definition of an isolated system in the gravitational setting) are
associated to the isometries of that vacuum spacetime just as the constants of motion of a
point particle moving in that vacuum spacetime are. In a sense, very far away from the
strong gravity region where the system whose charges we want to compute lies, that system
can be viewed as such a particle moving in the vacuum spacetime and we know how to
define the charges of that particle.

Mathematically, this associates the conserved charges of gravitational systems to the
Killing vectors of the vacuum spacetime. However, it has long been known that particles
and fields evolving in a spacetime may have other conserved charges as well. The simplest

1See refs. [1–9] for a somewhat ad hoc selection of milestones in the history of this field of research.
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example is provided by massless particles, which have conserved charges associated to the
conformal Killing vectors of the spacetime. There are charges associated to Killing-Yano
forms (or tensors) [10, 11] as well and, in general, to conformal Killing-Yano p-forms [12].2

According to the preceding discussion, it should be possible to define conserved charges
to gravitating isolated systems associated to the conformal Killing-Yano p-forms of the
asymptotic vacuum spacetime and, indeed, in ref. [9] Kastor and Traschen found a definition
of off-shell conserved charges associated to the Killing-Yano p-forms of the asymptotic
vacuum spacetime, which did not include the more general conformal Killing-Yano p-
forms, though.

More recently and with different goals, the definition of the conserved charges of
quantum gravitational systems has been discussed in refs. [20–23]. In these references
and, without any reference to classical symmetries of the vacuum spacetime, conserved 2-
and (d − 2)-form charges were constructed in terms of the Riemann tensor linearized over
Minkowski spacetime (playing the role of vacuum). Since this construction is not connected
to previous works in the classical setting and may include new charges not considered so
far in it, it is interesting to understand them better from that point of view.

Thus, in this paper, we want to review the definitions of conserved gravitational charges
made in refs. [20–23] and relate them to already existing definitions in the classical realm.
We will refer mostly to the construction in d dimensions made in ref. [23]. We would
like to stress that our approach is purely classical and we will not be concerned with the
implications of our results in the context of the algebraic approach to Quantum Gravity.

We will start by reviewing in section 2 the definitions made in ref. [23] to reformulate
them in a coordinate- and frame-independent way. As we are going to see, it is natural
and unavoidable to generalize those definitions to p-form charges and to consider also the
p-form charged defined by Kastor and Traschen. Fortunately, we will be able to prove a
Lemma relating many of those charges, simplifying their classification and interpretation. In
section 3 we prove the conservation of those charges under different assumptions concerning
the properties of the p-form parameters used. Essentially we will be able to extend the
definition of the Kastor-Traschen charges to the case in which the parameters are more
general conformal Killing-Yano p-forms. In section 4 we apply the results of the previous
section to asymptotically-flat spacetimes using the conformal Killing-Yano p-forms of
Minkowski spacetime. In particular, we will show that all the charges constructed in ref. [23]
are associated to these mathematical objects. We present our conclusions and directions for
future work in section 5.

2 Definition of the charges and their relations

In order to illustrate certain ideas about duality in the context of generalized charges in
QFT, the authors of ref. [23] (based on previous work and ideas in ref. [20] and generalizing
the 4-dimensional case studied in refs. [21, 22]) proposed a construction of all possible 2-

2For a review with many references focused on the construction of conserved quantities of particles and
fields evolving in spacetimes admitting conformal Killing-Yano p-forms see ref. [13] and the more recent
ref. [14]. Further and later results in this area can be found in refs. [15–19].
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and (d − 2)-form charges of pure d-dimensional Einstein gravity linearized over Minkowski
spacetime. The construction uses the Cartesian coordinates of the Minkowski background,
which obscures their geometrical and physical meaning and their properties. In order to
study them it is necessary to rewrite them in a fully coordinate- and frame-independent
form first.

It is not difficult to see that all those charges are contractions of the linearized Riemann
tensor (treated as a 2-form) and its dual (treated as a (d − 2)-form) with different 2-forms
whose properties, combined with those of the linearized Riemann tensor,3 guarantee the
closedness of the charges.

In order to rewrite these charges in a fully coordinate- and frame-independent way, it
is simpler to work first in the context of the non-linear theory and linearize later on. Thus,
it is natural to consider the following 2- and (d − 2)-forms

Q[σ] ≡ Rabσab , (2.1a)

Q̃[σ] ≡ ⋆Rabσab = ⋆Q[σ] , (2.1b)

where Rab is the Lorentz curvature 2-form defined in eqs. (A.5), ⋆Rab is its Hodge dual
(d − 2)-form defined in (A.23), and σab are the components of a 2-form σ

σ = 1
2σµνdxµ ∧ dxν = 1

2σabe
a ∧ eb . (2.2)

Before we consider the conservation of these charges, some comments are in order:

1. As we are going to see, the conservation of these charges only depends on the Bianchi
identities and/or on the vacuum Einstein equations. Thus, we can replace the Riemann
tensor by any other tensor sharing similar properties. That is the case of the Riemann
tensor linearized over Minkowski spacetime, which we will consider in section 4.

2. Some of these charges may be total derivatives. At the classical level, when, for instance
Q[σ] = dX[σ] for some 1-form X[σ], integrating Q[σ] over a close 2-dimensional surface
will always give zero. However, one can integrate X[σ] over closed curves to get non-
vanishing values of charges that may be associated to strings, for instance. At the
classical level, these charges are well defined as long as X[σ] is invariant up to total
derivatives under the local symmetries of the theory. If we are dealing with linearized
gravity, this includes the spin-2 gauge transformations.

From the point of view of refs. [20–23] and in the context of linearized gravity,
though, the relevant objects are the local operators Q[σ] and X[σ], Q[σ] is strictly
gauge-invariant under the spin-2 gauge transformations because it depends on the
gauge-invariant linearized Riemann tensor. X[σ], however, may or may not be a
function of that tensor. When it is not, it will not be strictly gauge invariant and it
should not be taken into account.

3One only needs to use the same Bianchi identities that the full non-linear Riemann tensor satisfies.
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Since we are only interested in the classical charges, we will not consider these aspects
and we will consider the charges obtained by integrating a 1-form X[σ] invariant up
to total derivatives as a well-defined charge.

3. As it turns out, in the context of pure Einstein gravity, these charges can be considered
as the on-shell4 expressions of the more general charges that include terms proportional
to the Ricci scalar and the Ricci 1-form, considered by Kastor and Traschen in ref. [9]:

QKT[σ] ≡ ıbıa
[
Rab ∧ σ

]
=

(
Rabσab − 2ıaRab ∧ ıbσ + ıbıaRabσ

) .= Q[σ] , (2.3a)

Q̃KT[σ] ≡ ⋆QKT[σ]
.= Q̃[σ] , (2.3b)

These charges were not considered in ref. [23] because, on-shell, they are equivalent to
those in eqs. (2.1a) and (2.1b) but they can be relevant because it can be shown that
Q̃KT[σ] is conserved off-shell when σ is a Killing-Yano 2-form (KY2F) [9] while its
on-shell equivalent Q̃[σ] is only conserved on-shell [23]. In the context of our general
exploration of the possible conserved charges it is natural to consider their duals
QKT[σ] as well.

4. The above charges eqs. (2.3a) and (2.3b) are particular cases of the p- and (d−p)-form
charges defined by [9]

QKT[σ(p)] ≡ ıbıa
[
Rab ∧ σ(p)

]
, (2.4a)

Q̃KT[σ(p)] ≡ ⋆QKT[σ(p)] . (2.4b)

where σ(p) is a p-form (p > 0)

σ(p) = 1
p!σ

(p)
µ1···µpdxµ1 ∧ · · · ∧ dxµp . (2.5)

The charges Q̃KT[σ(p)] were shown to be conserved off-shell for σ(p)s which are
Killing-Yano p-forms (KYpFs) in ref. [9].

Notice that for p = 1
QKT[σ(1)] = −2σ(1) aGabe

b . (2.6)

In its turn, this leads us to consider the p-form generalization of the charges eqs. (2.1a)
and (2.1b)

Q[σ(p)] ≡ Rab ∧ ıbıaσ(p) , (2.7a)

Q̃[σ(p)] ≡ ⋆Q[σ(p)] , (2.7b)

4We will denote identities which only hold on-shell with .=.
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which are equivalent to the former on-shell in pure Einstein gravity:

QKT[σ(p)] .= Q[σ(p)] , (2.8a)

Q̃KT[σ(p)] .= Q̃[σ(p)] . (2.8b)

Observe the definitions eqs. (2.7a) and (2.7b) require p ≥ 2 to be non-trivial while
the Kastor-Traschen charges can be defined for all p, but vanish on-shell for p < 2.
We will not write a superscript for p = 2.

Thus, it may seem that we will have to study the charges Q[σ(p)] and QKT[σ(p)] and
their duals for all p, considering later the special case p = 2. However, the following lemma
will allow us to place limits to the apparent proliferation of charges and focus only on the
simplest of them, namely the Q[σ(p)]s and their duals.

Lemma. For p- and (d − p)-form parameters related by

σ̃(d−p) = ⋆σ(p) , (2.9)

the charges (2.4b) and the charges eqs. (2.7a) are related by

Q̃KT[σ(p)] = Q[σ̃(d−p)] . (2.10)

Proof. Using the property eq. (A.29) and the components of the curvature 2-form, we get

Q̃KT[σ(p)] = ⋆ıbıa
[
Rab ∧ σ(p)

]
= ea ∧ eb ∧ ⋆

[
Rab ∧ σ(p)

]
= 1

2Rcd
abea ∧ eb ∧ ⋆

[
ec ∧ ed ∧ σ(p)

]
= Rcd ∧ ⋆

[
ec ∧ ed ∧ σ(p)

]
,

(2.11)

where we have used the Bianchi identity eq. (A.7) in the last step. In order to use eq. (A.29)
again, we Hodge-dualize twice σ(p) taking into account eq. (A.28)

Q̃KT[σ(p)] = (−1)p(d−p)det(η)Rcd ∧ ⋆
[
ec ∧ ed ∧ ⋆2σ(p)

]
= (−1)p(d−p)det(η)Rcd ∧ ⋆2

[
ıdıc ⋆ σ(p)

]
= Rcd ∧

[
ıdıc ⋆ σ(p)

]
= Q[σ̃(d−p)] ,

(2.12)

quod erat demonstradum.

This is an important result which, among other things, together with eqs. (2.8) implies
the on-shell relation

Q̃[σ(p)] .= Q[σ̃(d−p)] . (2.13)

For p = 2 in d = 4 it relates all the Q[σ] charges to their duals on-shell.
We conclude that it is enough to consider the conservation of the Q[σ(p)]s for all values

of p ≥ 2.
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3 The conservation of Q[σ(p)]

We are going to study the conservation of the p-form charges Q[σ(p)] defined in eq. (2.7a)
assuming that σ(p) is a conformal Killing-Yano p-form (CKYpF).

By definition, a CKYpF satisfies an equation of the form (the CKYpF equation)5

Daσ
(p)
b1···bp

= 1
p + 1ℵ

(p+1)
ab1···bp

+ (−1)d(p+1) p

(d − p + 1)ηa[b1ξ
(p−1)
b2···bp] , (3.1)

for some (p + 1)- and (p − 1)-forms ℵ, ξ, which we can identify as

ℵ(p+1) = dσ(p) , (3.2a)

ξ(p−1) = ⋆d ⋆ σ(p) . (3.2b)

If ℵ(p+1) = 0, the CKYpF is a closed CKYpF (CCKYpF) and, if ξ(p−1) = 0, it is a
Killing-Yano p-form (KYpF). If both ℵ(p+1) and ξ(p−1) vanish, σ(p) is a covariantly constant
CKYpF (CCCKYpF or, better, C3KYpF). This case is a particular sub-case of the CCKYpF
and KYpF ones.

From the CKYpF equation we get

Dıbıaσ(p) = p − 1
p + 1 ıbıaℵ(p+1) . (3.3)

Then, using the Bianchi identity eq. (A.10) and the above equation we find

dQ[σ(p)] = p − 1
p + 1Rab ∧ ıbıaℵ(p+1) , (3.4)

which vanishes trivially off-shell when σ(p) is a CCKYpF. When it is not closed, we can
proceed as follows: we take the components of the dual of the above expression written in
terms of the components of the dual of ℵ(p+1)(

⋆dQ[σ(p)]
)

c1···cd−p−1
∼ 2Rf1f2

f1f2

(
⋆ℵ(p+1)

)
c1···cd−p−1

+ 4(d − p − 1)Rf1f2
[c1|f1

(
⋆ℵ(p+1)

)
f2|c2···cd−p−1]

+ (d − p − 1)(d − p − 2)Rf1f2
[c1c2

(
⋆ℵ(p+1)

)
c3···cd−p−1]f1f2

.

(3.5)

The first two terms vanish on-shell for pure Einstein gravity but the third only vanishes
in d = p + 1 or d = p + 2 dimensions.

Thus, we have shown that

1. dQ[σ(p)] = 0 for CCKYpFs.

2. dQ[σ(p)] .= 0 for KYpFs only in d = (p + 1)-dimensional spacetimes whose Ricci
scalar vanishes.

5The following definitions and properties of CKYpFs can be found in the review ref. [13] and refer-
enced therein.
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3. dQ[σ(p)] .= 0 for KYpFs only in d = (p + 2)-dimensional Ricci-flat spacetimes.

At this point, the following results become relevant to the discussion [13]:

1. If σ(p) is a CKYpF, then σ̃(d−p) = ⋆σ(p) is a CKY(d − p)F.

2. If σ(p) is a CCKYpF, then σ̃(d−p) = ⋆σ(p) is a KY(d−p)F and vice-versa. This implies
that, if σ(p) is a C3KYpF, then σ̃(d−p) = ⋆σ(p) is a C3KYpF.

3. The wedge product of a CCKYpF and a CCKYqF is a CCKY(p + q). Observe that a
CKY1F is the (metric) dual of a conformal Killing vector (CKV).

4. The maximal number of CCKYpFs is

(d + 1)!
p! · (d − p + 1)! . (3.6)

Then, according to our main result eq. (2.10), there is a one-to-one relation between the
off-shell conserved Kastor-Traschen-type p-forms Q̃KT[σ̃(d−p)] constructed with KY(d−p)Fs
σ̃(d−p) and the off-shell conserved p-forms Q[σ(p)] constructed with CCKYpFs σ(p). They
are, actually, identical.

Furthermore, in d = p + 1, p + 2, one can construct one on-shell conserved Kastor-
Traschen-type p-form Q̃KT[σ̃(d−p)] with a CCKY(d− p)Fs σ̃(d−p) for each on-shell conserved
p-form Q[σ(p)] constructed with a KYpFs σ(p). Again, they are identical.

4 Abbott-Deser currents and charges

Following refs. [2, 9] let us consider metrics g that asymptote to a given metric ḡ so that
near infinity we can express them as perturbations h over the background metric g, i.e.

gµν = ḡµν + χhµν , (4.1)

where χ2 = 16πG
(d)
N .

Since we have chosen to work with Vielbein we have to study the linearization of the
Vielbein, spin connection and Lorentz curvature tensor in this formalism first.6

4.1 Linearized gravity in the Vielbein formalism

The Vielbein ea = ea
µdxµ satisfies the relations

ηabe
a

µeb
ν = gµν , and ea

µeb
νgµν = ηab , (4.2)

and the background Vielbein field ē a = ē a
µdxµ is assumed to satisfy analogous relations

with respect to the background metric ḡµν and to the same tangent space metric ηab.
Then, we define the perturbation of the Vielbein fa = fa

µdxµ by

ea = ē a + χ

2 fa . (4.3)

6The Abbott-Deser and Kastor-Traschen charges have been written in the Vielbein formalism in refs. [25,
26].
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By definition,
gµν = ḡµν + χηabē

a
(µf b

ν) +O(χ2) , (4.4)

which requires, for consistency

ηabē
a

(µf b
ν) = f(µν) = hµν +O(χ) . (4.5)

We use the background Vielbein field to convert tangent space indices into world indices and
vice-versa, the background metric to raise and lower world indices and the flat Minkowski
metric to raise and lower tangent space indices.

Observe that fµν has an antisymmetric part

ηabē
a

[µf b
ν] = f[µν] ≡ bµν , (4.6)

which does not vanish in general.
Expanding the spin connection as

ωa
b = ω̄a

b + χωL
a

b +O(χ2) , (4.7)

the first Cartan structure equation with zero torsion leads to

ωL ab = ωL cabē
c = 1

4

{
ıc̄ıāD̄fb − ıāıb̄D̄fc + ıb̄ıc̄D̄fa

}
ē c , (4.8)

where the inner products ıā are taken with the background vector fields ēa = ēa
µ∂µ. In

components, we have

D̄fb = D̄afbcē
a ∧ ē c , ⇒ ıāıc̄D̄fb = 2D̄[c|fb|a] , (4.9)

and we find that the linearized connection is given by

ωL ab = 1
2

{
D̄[afb] + D̄[a|fc|b]ē

c + D̄f[ab]
}

, (4.10)

or
ωL ab = 1

2

{
D̄af(bc) − D̄bf(ac) + D̄cf[ab]

}
ē c , (4.11)

just to show that it does not depend on the symmetric part of fab only [27].
The linearized curvature tensor follows from the Palatini identity

RL ab = D̄ωL ab = 1
2D̄

{
D̄[afb] + D̄[a|fc|b]ē

c + D̄f[ab]
}

, (4.12)

and its components are

RL cd ab
[cd] [ab]= 1

2D̄c

{
D̄afbd + D̄afdb + D̄dfab

}
, (4.13)

where the notation [cd] [ab]= indicates that the pairs of indices cd and ab are antisymmetrized
in right-hand side. Then,

RL ab ∧ ē a = 1
2R̄b

c ∧ fc , (4.14)

– 8 –
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after use of the Bianchi identity eq. (A.6) for the Riemann tensor of the background
spacetime. Furthermore,

D̄RL
ab = −2R̄ [a|

c ∧ ωL
c|b] . (4.15)

Hence, for flat background spacetime (R̄ab = 0), we recover the Bianchi identities

D̄RL
ab = 0 , (4.16a)

RL ab ∧ ē a = 0 , (4.16b)

which we have used to construct the conserved charges in the previous section. and, therefore,
we will restrict ourselves to that case from now onwards.

We also have (using eqs. (A.24) and (A.25))

D̄⋆̄RL
ab = (−1)d−1D̄dRL ab

cdıc̄ω̄ , (4.17a)

⋆̄RL ab ∧ ea = Ric L
e
bıēω̄ , (4.17b)

both of which vanish on-shell for pure (linearized) gravity.
Under diffeomorphisms generated by vector fields ξ = ξ̄ + χ

2 ϵ, and local Lorentz
transformations generated by parameters σab = σ̄ ab + χ

2 sab to lowest order in χ we find that

δē a = −£ξ̄ ē a + σ̄ a
bē

b , (4.18a)

δfa = −£ξ̄fa + σ̄ a
bf

b − £ϵē
a + sa

bē
b . (4.18b)

Thus, both ē a and fa transform as 1-forms defined over the background spacetime under
diffeomorphisms generated by the background vector fields ξ̄ and also as Lorentz vectors with
respect to the Lorentz transformations of the tangent space of the background spacetime,
generated by σ̄ ab. On top of this, there are gauge symmetries generated by the vector fields
ϵ and local Lorentz parameters sab which act on the fa as

δfa = −£ϵē
a + sa

bē
b

= −D̄ϵa + (sa
b − ıϵω̄

a
b) ē b .

(4.19)

Observe that

δf(ab) = −D̄(bϵa) , (4.20a)

δfab = −D̄[bϵa] + (sab − ıϵω̄ab) , (4.20b)

which means that the symmetric part transforms as a spin-2 field while the antisymmetric
part transforms as a Kalb-Ramond 2-form with an additional Stückelberg transformation
with a 2-form parameter sab which can be used to remove the antisymmetric part of fab, as
expected.7 We will just fix the sab symmetry setting

sab = ıϵω̄ab , (4.21)
7In absence of local Lorentz symmetry this is not possible and theories constructed in terms of the

Vielbein describe a spin-2 and a spin-1 field. See section 4.6.1 of ref. [27].

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
1
7
4

in order to simplify the gauge transformations of fa:

δϵf
a = −D̄ϵa . (4.22)

The linearized connection transforms as a 1-form under the diffeomorphisms of the
background spacetime generated by the vector fields ξ̄ and as a Lorentz tensor under the
local Lorentz transformations of the background spacetime generated by the parameters
σ̄ ab. Under the spin-2 gauge transformations eqs. (4.22)

δϵωL d ab = −1
2

{
D̄[aD̄b]ϵd + D̄[a|D̄dϵ|b] + D̄dD̄[aϵb]

}
. (4.23)

In Minkowski spacetime this expression can be simplified

δϵωL ab = −D̄D̄[aϵb] , (4.24)

and the transformation of the linearized Riemann tensor is

δϵRL ab = D̄δϵωL ab = −D̄D̄D̄[aϵb] = 0 . (4.25)

4.2 Asymptotic AD charges

As we have stated before, we can simply replace in the definitions of the charges the Riemann
tensor by the Riemann tensor linearized over Minkowski spacetime using σ(p)s which are
CKYpFs of the background Minkowski spacetime (now denoted by σ̄(p)s) and obtain charges
which are conserved under the conditions we discussed for the charges constructed with
full Riemann tensors. Also, we have seen that it is enough to consider the Q[σ(p)] charges
for p ≥ 2.

Thus, we have to consider the p-forms

QL[σ̄(p)] ≡ Rab
L ∧ ıb̄ıāσ̄(p) , (4.26)

where the inner products ıā are taken with the background vector fields ēa = ēa
µ∂µ and we

assume that the background satisfies the linearized Einstein equations so that, in particular,

ıāRab
L = ıb̄ıāRab

L
.= 0 . (4.27)

Observe that these charges are equal to the dual linearized KT-type ones

Q̃KT L[˜̄σ(d−p)] ≡ ⋆̄ıb̄ıā
[
Rab

L ∧ ˜̄σ(d−p)
]

. (4.28)

We want to obtain the explicit form of these asymptotic AD-type charges and, in
particular, we want to know when they are total derivatives. This means that we will have
to study the duals as well.

If σ̄(p) is a CKYpF of the background metric

QL[σ̄(p)] = D̄ωab
L ∧ ıb̄ıāσ̄(p)

= d
{

ωab
L ∧ ıb̄ıāσ̄(p)

}
+ p − 1

p + 1ωab
L ∧ ıb̄ıāℵ

(p+1)
(4.29)
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where we have used eq. (3.3). The last term will always vanish for CCKYpFs and, due to
the relations that we have established, these are the charges associated to KY(d − p)Fs
in ref. [9].

Since these charges are exact p-forms, when we integrate them over compact
p-dimensional surfaces, we will always get zero. As it is well known, in these cases one has
to define the conserved quantities as integrals over closed (p − 1)-dimensional surfaces of
the background spacetime of the (p − 1)-form whose total derivative we have obtained:

Q[σ̄(p)] ∼
∫

Σ(p−1)
ωab

L ∧ ıb̄ıāσ̄(p) . (4.30)

By construction, these charges are invariant under diffeomorphisms and local Lorentz
transformations of the background spacetime but also under spin-2 gauge transformations
eq. (4.22) because the integrand is invariant up to a total derivative:

δϵQ[σ̄(p)] ∼ −
∫

Σ(p−1)
D̄D̄aϵb ∧ ıb̄ıāσ̄(p)

= −
∫

Σ(p−1)

{
d

[
D̄aϵb ∧ ıb̄ıāσ̄(p)

]
− p − 1

p + 1D̄
aϵbıb̄ıāℵ

(p+1)
}

= −
∫

Σ(p−1)
d

[
D̄aϵb ∧ ıb̄ıāσ̄(p)

]
= 0 .

(4.31)

where we have used eq. (3.3) again, we have assumed that σ(p) is a CCKYpF and we have
used Stokes’ theorem.

When the integration surface Σ(p−1) is not closed, the result of the integral depends on
the boundary conditions satisfied by the gauge parameters ϵb. This may not be acceptable
from the point of view of the algebraic approach to generalized symmetries in QFT adopted
in refs. [20–23]. As we have stated in the introduction, our approach is purely classical and
we will not discussed the implications of our results in that respect.

Thus, from the purely classical point of view, the off-shell conserved 2-forms associated
to CCKY2Fs are exact and actually lead to 1-form charges. The off-shell conserved (d − 2)-
forms are associated to non-CCKY(d − 2)Fs, including KY(d − 2)Fs and, in general, they
are not exact.

In order to get 2-form charges one may have to consider CCKY3Fs, and one could also
consider CCKY(d− 1)Fs to get (d− 2)-form charges. We will study all these possibilities in
detail in the next sections, comparing our results to those in ref. [23]. We start with the
simplest case, d = 4.

4.3 The d = 4 case

According to the previous discussion, it is not enough to consider the CKY2Fs of the
Minkowski spacetime background to construct 2-form charges: some of them will give
rise to 1-form charges, because our construction gives total derivatives and, (perhaps)
to compensate the problem, some CFKY3Fs and CKVs will give 2-forms because our
construction, again, gives total derivatives.
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We start by finding all the CKY2Fs of d = 4 Minkowski spacetime, to show that the
solutions cover all the 2-forms used in ref. [23].

4.3.1 The CKY2Fs of d = 4 Minkowski spacetime

The most general CKY2F σ satisfies the equation

Dσab = 1
3

(
ℵabc + 2ηc[aξb]

)
ec , (4.32)

where ξ = ξaea is a 1-form and ℵ = 1
3!ℵabce

a ∧ eb ∧ ec is a 3-form which characterize the
closedness and co-closedness of the CKY2F σ. If we write these equations in the form

dσ = ℵ , (4.33a)

d ⋆ σ = ⋆ξ , (4.33b)

it is evident that the most general solution to eq. (4.32) is characterized by an exact 3-form
ℵ, a co-exact 1-form ξ and a covariantly constant (hence closed and co-closed and, therefore,
harmonic) 2-form a = 1

2aabe
a ∧ eb.8 On the other hand, the interchange between σ and σ̃

corresponds to the interchange between ℵ and ⋆ξ and between a and ⋆a.
Since linear combinations of CKY2Fs with constant coefficients give CKY2Fs, we may

consider separately those which are covariantly constant σ = c, those which are closed,
ℵ = 0, and those which are KY2Fs, ξ = 0. However, not all the CKY2Fs can be constructed
as linear combinations of CKY2Fs of these three classes, basically because the integrability
conditions allow for solutions which demand for both non-vanishing ℵ and non-vanishing ξ.
This class of solutions must be closed under Hodge duality just as the class of C3KY2Fs does.

We are going to see how all this is realized in the case of the 4-dimensional Minkowski
spacetime considered in ref. [23]. Thus, we use Cartesian coordinates xµ and Vielbein
ea = δa

µdxµ. In this basis the spin connection vanishes and D = d.
We are going to consider, in this order, the covariantly constant, the closed CKY2Fs,

the KY2Fs and the case of σs which have ξ ̸= 0 and ℵ ≠ 0.

1. The covariantly constant bivectors σab = aab are purely constant bivectors with 6
independent components. σ is an exact 2-form and

σ = d
(

1
2aµνxµdxν

)
. (4.34)

In other words: the constant σabs are the Killing bivectors or momentum maps [24] of
the vectors that generate Lorentz transformations kab = kab

µ∂µ with kab
µ = ηab

µ
νxν :

∂a
(
−acdkcd

b
)
= ∂a

(
−acdηcd

b
νxν

)
= −acdηcd

ba = aab . (4.35)

This class of 2-forms is evidently closed under Hodge duality.

For each of the 6 independent as we get an off-shell conserved charge QL[a] which is
exact and which leads to non-trivial 1-form charges only. Our main result eq. (2.10)

8This is reminiscent of the Hodge decomposition of differential forms.
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applied to the charges constructed with the linearized Riemann tensors tells us that
QL[a] = Q̃KT L[ã] and that this charge is also a total derivative.

Furthermore, on-shell QL[a] = Q̃KT L[ã]
.= Q̃[ã] will have the same value on-shell and

does not give an independent charge. (This is just eq. (2.13)).

Finally, Q̃[ã] = QKT L[a] and this last charge is not independent, either.

2. The CCKY2Fs (ℵ = 0) satisfy the equation

dσab = 2
3δ[a

µξb]dxµ . (4.36)

The integrability condition is

δ[a
µδb]

νdξν ∧ dxµ = 0 , (4.37)

which is solved by vectors with constant components ξa. These are the 4 Killing
vectors that generate translations and their dual 1-forms are exact: ξaea = d(ξµxµ).

Then, redefining ξa → 3ξa the solutions are of the form

σab = 2δ[a
µξb]xµ ≡ bab , (4.38)

where the components ξb are constant, (up to constant bivectors which we have
already taken into account). Actually, we can view the 2-form b = 1

2babe
a ∧ eb as the

exterior product of (dual of) the CKVs that generates dilatations ηµνxµdxν and the
(dual 1-form) of the KVs that generate translations

b = 2
(

1
2ηµνxµdxν

)
∧ (ξρdxρ) = d

(
x2

)
∧ d (ξρxρ) , (4.39)

and are obviously exact.

The total number of CCKY2Fs (including the C3KY2Fs) is 6 + 4, in agreement with
the general result eq. (3.6). However, all these give off-shell conserved 2-form charges
which turn out to be exact. Therefore, one can only define with them 10 non-trivial
1-form charges.

3. Next, let us consider the KY2Fs (ξ = 0), which satisfy the equation

dσab = 1
3ℵabµdxµ . (4.40)

The integrability condition of this equation reads

∂[µℵν]abdxµ ∧ dxν = 0 , (4.41)

and its only non-trivial solution is a tensor with constant components, and the
components of σ are

σab = 1
3ℵabµxµ ≡ cab . (4.42)
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There are 4 constant 3-forms in 4 dimensions, and they are dual to constant 1-forms b

ℵabc ∼ εabcdξd . (4.43)

This is the duality between the KY2Fs (c) and the CCKY2Fs (b).

With the 4 KY2Fs c we can construct 4 on-shell conserved 2-form charges Q[c] which
are not total derivatives in 4 dimensions.

4. Finally, let us consider the general equation

dσab = 1
3

(
ℵabµdxµ + 2ηµ[aξb]dxµ

)
, (4.44)

whose integrability condition is(
∂[µℵν]

ab + 2η[a
[ν∂µ]ξ

b]
)

dxµ ∧ dxν = 0 . (4.45)

This equation admits solutions which are not combinations of those belonging to the
previous cases (general CKY2Fs) [23]:

ℵν
ab = ηνρx[ρaab] , ξb = 1

3ab
µxµ , (4.46)

with a constant, antisymmetric aab, and the solution of the original equation is just

σab = 1
2aabx2 + 2a[a

µδb]
νxµxν ≡ dab , (4.47)

in agreement with ref. [23]. There is an independent solution for each independent
choice of dab, that is 6 in 4 dimensions, and for each of them there is an on-shell
conserved charge QL[d] in 4 dimensions.

Thus, in d = 4 dimensions, using only CKY2Fs we can only construct 10 independent
on-shell conserved 2-form charges and no off-shell 2-forms whatsoever. However we still
have to consider the CCKY3Fs.

4.3.2 The CCKY3Fs of d = 4 Minkowski spacetime

CKY3Fs satisfy the equation
∂aσ

(3)
bcd = 3

2ηa[bξ
(2)
cd] , (4.48)

which admits two classes of solutions:

1. Constant 3-forms (ξ(2) = 0), of which there are 4 independent in 4 dimensions, dual
to constant vectors

σ
(3)
abc = εabcdξd ≡ fabc . (4.49)

These are, actually, the CCKY3Fs dual to the 4 translational KVs (KY1Fs) ξ. One
can construct with them 4 off-shell conserved 3-form charges QL[f ]

.= Q̃L[b] which
would be the 3-forms considered in [9]. They are exact and give rise to 4 off-shell
conserved 2-form charges.
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2. 3-forms associated to the dual of the Killing vectors k that generate Lorentz transfor-
mations with constant parameters aab:

σ
(3)
abc = −3ã[abηc]µxµ ≡ labc . (4.50)

Indeed, if k is such a Killing vector

(⋆k)a = σ̃ (1) a = aa
µxµ . (4.51)

On the other hand, these CCKY3Fs can be seen as the exterior product of the constant
CCKY2Fs a and the CKV that generated dilatations.
There are 6 of these and, again they give off-shell conserved 3-form charges of the
type considered in [9] QL[l] = Q̃KT L[ξ] which are exact and give rise to 6 off-shell
conserved 2-form charges.

Thus, we find 4 + 6 off-shell additional conserved 2-form charges.
It is worth discussing these charges in some more detail, because, upon integration

at infinity, they are the standard gravitational conserved charges of asymptotically-flat
spacetimes. As we have shown, the CCKY3Fs are dual to the 10 KY1Fs of the spacetime,
that is, to its Killing vectors, which we can generically denote by k̄. Then, using the duality
eq. (2.10) and eq. (2.6), we get

Q[˜̄k] = −2k̄ aGL ab ⋆ ēb . (4.52)

This expression vanishes on-shell and, if we are only interested in strictly gauge-invariant
charges constructed with the linearized Riemann tensor as in refs. [20–23], they should
not be considered. However, as we have shown,9 this expression is the total derivative of
a 2-form and the integral of this 3-form does not necessarily vanish on-shell and is also
gauge-invariant (4.31).

Q[˜̄k] ∼
∫

Σ(2)
εabcdωL e

abk̄ dē e ∧ ē c

= −1
6

∫
Σ(2)

{
2ωL c

cak̄ b + ωL c
abk̄ c

}
ıāıb̄ω̄ ,

= − 1
24

∫
Σ(2)

{
2

[
D̄cf

ac + D̄cf
ca − D̄af c

c − D̄afc
c + D̄cf

ca − D̄cf
ac

]
k̄ b

+
[
D̄af b

c + D̄afc
b − D̄bfa

c − D̄bfc
a + D̄cf

ab − D̄cf
ba

]
k̄ c

}
ıāıb̄ω̄

= − 1
24

∫
Σ(2)

{
2

[
2D̄cf

ca − D̄af c
c − D̄afc

c
]

k̄ b

+
[
2D̄af b

c + 2D̄afc
b + 2D̄cf

ab
]

k̄ c
}

ıāıb̄ω̄

= − 1
12

∫
Σ(2)

{[
2D̄cf

ca − D̄af c
c − D̄afc

c
]

k̄ b

+
[
D̄af b

c + D̄afc
b + D̄cf

ab
]

k̄ c
}

ıāıb̄ω̄ .

(4.53)

9As it has also been shown, for instance, in [2].
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If we use the gauge symmetry to eliminate the antisymmetric part of fab and identifying
fab = 2hab this expression simplifies further

Q[˜̄k] ∼ −1
3

∫
Σ(2)

{
k̄ bD̄ch

ca − k̄ bD̄ahc
c + k̄ cD̄ahb

c

}
ıāıb̄ω̄ . (4.54)

In Cartesian coordinates xµ and in the Vielbein basis ē a = δa
µdxµ (D̄a = ∂a) and for

the timelike Killing vector k̄ = ∂0

Q[˜̄k] ∼ 1
6

∫
Σ(2)

{
∂ihj

j − ∂jhi
j

}
εikldxk ∧ dxl , (4.55)

which is, up to adequate normalization, the ADM mass [1].
The charges associated to the rest of the KVs of Minkowski spacetime give the other 9

conserved quantities that characterize asymptotically-flat spacetimes.
The overall situation is summarized in table 1.

4.4 The d = 5 case

Instead of considering the arbitrary d > 4 case, we will just consider the d = 5 case which
already exhibits the main features of the general case and is somewhat easier to handle.
Using the dualities and on-shell relations we have uncovered, it is enough to focus on
the QL[σ(p)] charges with p = 2, 3, 4 if we are just interested in 2- and 3-form conserved,
independent and nontrivial charges.

It is easy to see that the CKY2Fs do not give any: for the constant (10) and closed (5)
CKY2Fs the QL[σ(2)]s are exact and only give 1-form charges. The (10) KY2Fs and the
(10) CKY2Fs which are not closed do not give any conserved charges in 5 dimensions.

The (10) constant and (10) closed CKY3Fs give the off-shell conserved nontrivial 2-form
charges studied in ref. [9] while the (10) KY3Fs and the (10) CKY3Fs which are not closed
do give on-shell conserved charges in 5 dimensions.

Finally, the (5) constant and (10) closed CKY4Fs give additional off-shell conserved
nontrivial 3-form charges while the KY4Fs and the CKY4Fs which are not closed do not
give any conserved charges in 5 dimensions. The existence of the off-shell conserved 3-form
charges does not follow the pattern of on-shell conserved (d−2)-forms and off-shell conserved
2-forms. However, since the CCKY4Fs are dual to the KVs, these are the conventional
gravitational charges of asymptotically-flat 5-dimensional spacetimes, as we showed in the
4-dimensional case.

5 Conclusions

In this paper we have managed to relate and extend the definitions of the conserved charges
of gravitating systems made in refs. [20–23] and ref. [9]. In particular, we have shown how
the definitions of conserved charges of particles and fields evolving in “vacuum” spacetimes
admitting conformal Killing-Yano p-forms can be extended to definitions of gravitational
charges of spacetimes that asymptote to them. In the construction of the Abbott-Deser-type
charges, though, we have considered only asymptotically-flat spacetimes. However, the
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BBM Here KT exact? on/off-shell? #

i A Q̃L[a] QKT L[ã]
.= QL[ã] yes on-shell 6

ii B Q̃L[b] QKT L[c]
.= QL[c] on-shell 4

iii C Q̃L[c] QKT L[b]
.= QL[b] yes on-shell 4

iv D Q̃L[d] QKT L[d̃]
.= QL[d̃] on-shell 6

v ⋆A QL[a] Q̃KT L[ã]
.= Q̃L[ã] yes off-shell 6

vi ⋆B QL[b] Q̃KT L[c]
.= Q̃L[c] yes off-shell 4

vii ⋆C QL[c] Q̃KT L[b]
.= Q̃L[b] on-shell 4

viii ⋆D QL[d] Q̃KT L[d̃]
.= Q̃L[d̃] on-shell 6

ix QL[f ] Q̃KT L[f̃ ]
.= Q̃L[f̃ ] yes off-shell 4

x QL[l] Q̃KT L[l̃]
.= Q̃L[l̃] yes off-shell 6

Table 1. In this table we represent all the charges that can be constructed with the CKY2Fs of
4-dimensional Minkowski spacetime using the linearized Riemann tensor. In the second column
we write the charge as it is referred to in ref. [23] (BBM). The form which is actually integrated
is the dual. In the third column we write the same charge in our notation and in the fourth we
write the Kastor-Traschen-type charge [9] which is strictly equivalent to the other two upon use
of eq. (2.10) and, next to it, the charge which is equivalent to it on-shell. In the next columns we
indicate whether the charge is exact, conserved on- or off-shell and the number of charges of that
kind. The charges in the rows i and v, iv and viii, ii and vii and iii and vi are related by duality and
have the same values. Only half of them are independent and a half of that half are exact. Thus,
only the pairs ii-v and iv-vii are independent, not exact, 2-form charges and they all turn out to
be conserved on-shell. The rows ix and x describe exact, off-shell conserved charges associated to
3-forms which give rise to 2-form charges.

main result in Abbott and Deser’s seminal paper ref. [2] was, precisely, the extension of
these ideas to asymptotically-ADS spacetimes. It is natural to search for a similar extension
of the charges studied here and work in this direction is currently underway.
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A Some definitions and identities

In this paper we use the conventions of ref. [27] throughout and differential-form language.
We collect here the main definitions and identities used throughout the text.

A.1 The curvature tensor and Bianchi identities

We define the Vielbein and spin connection 1-forms

ea = ea
µdxµ , ωab = ωµ

abdxµ = −ωba , (A.1)

satisfying
Dea ≡ dea − ωa

b ∧ eb = 0 , (A.2)

where D is the exterior Lorentz-covariant derivative.
The Lorentz curvature 2-form

Rab ≡ 1
2Rµν abdxµ ∧ dxν = 1

2Rcd abe
c ∧ ed , (A.3)

can be defined vie the Ricci identity

DDξa = −Ra
bξ

b , (A.4)

for an arbitrary Lorentz vector ξa, and it is given by

Rab = dωab − ωa
c ∧ ωcb . (A.5)

Acting on the Vielbein, we get the Bianchi identity

Ra
b ∧ eb = −1

2R[cd b]
aec ∧ ed ∧ eb = 0 , ⇒ R[cd b]

a = 0 , (A.6)

which also implies
Rab cd = Rcd ab . (A.7)

Acting on Dξb for an arbitrary Lorentz vector ξb, we get

DDDξa = −Ra
b ∧ Dξb , (A.8)

but acting on both sides of eq. (A.4) we get

DDDξa = −DRa
bDξb − Ra

b ∧ Dξb , (A.9)

which implies the Bianchi identity

DRab = 0 , ⇔ D[eRcd]
ab = 0 . (A.10)
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The Ricci tensor is defined by

Rµν ≡ Rµρν
ρ , (A.11)

and analogously using tangent space indices:

Rab ≡ Racb
c , (A.12)

However, in order to avoid confusion with the curvature tensor 2-form, when using tangent
space indices we will write Ric ab.

Contracting the indices d and b of eq. (A.10) the Bianchi identity takes the form

2D[eRic c]
a +DbRec

ab = 0 , (A.13)

and contracting now the indices e and a we arrive at the famous contracted Bianchi identity

DaGab = 0 , where Gab ≡ Ric
ab − 1

2gabR , (A.14)

is the Einstein tensor.
The Ricci identity for an antisymmetric Lorentz tensor is

DDσab = 2σ[a|
cR

c|b] = δσRab , (A.15)

where δσ is an infinitesimal local Lorentz transformation generated by the parameter σab.
The same transformation acts on the spin connection as

δσωab = Dσab . (A.16)

We also introduce the Levi-Civita affine connection Γµν
ρ, whose components are given

by the Christoffel symbols, and the total (Lorentz and general) covariant derivative, denoted
by ∇, which satisfies the first Vierbein postulate

∇ea = Dea − Γµν
adxµ ∧ dxν = 0 . (A.17)

As a consequence, the Riemann curvature tensor

Rµνρ
σ(Γ) ≡ 2∂[µΓν]ρ

σ + 2Γ[µ|λ
σΓ|ν]ρ

λ , (A.18)

is related to the Lorentz curvature tensor we have defined before by

Rµν ab(ω) = Rµν ρσ(Γ)ea
ρeb

σ , (A.19)

so we can treat both objects as one and the same.
The Einstein equation in vacuum can be written in terms of the curvature tensor

as follows:
3gcde

abf Rcd
ab = −2Gf

e = 0 . (A.20)

In d = 3 dimensions
gcde

abf = εcdeεabf , (A.21)
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and the above relation between the Einstein and Riemann tensors can be inverted

−2Gf
egegh

fij = 3εcdeεeghεabf εfijRcd
ab

= 12gcd
ghgab

ijRcd
ab

= 12Rgh
ij ,

(A.22)

which implies that all the 3-dimensional solutions to the vacuum Einstein equations are
locally flat.

A.2 On-shell identities involving the dual of the curvature tensor

Here we refer to the Hodge dual of the Lorentz curvature 2-form

⋆Rab ≡
εµ1···µd−2

ρσRρσ
ab

2 · (d − 2)!
√
|g|

dxµ1 ∧ · · · ∧ dxµd−2 =
εc1···cd−2

cdRcd
ab

2 · (d − 2)! ec1 ∧ · · · ∧ ecd−2 . (A.23)

as the dual curvature tensor (d − 2)-form.
Acting with the exterior Lorentz derivative on it, we get

D ⋆ Rab = (−1)d−1DdRab
cdıcω , (A.24)

where ω is the d-dimensional volume form defined in eq. (A.26) and ıc stands for the inner
product with the vector field ec = ec

µ∂µ and where we have used the identity eq. (A.27a).
The above expression vanishes on-shell for pure gravity due to the Bianchi identity eq. (A.13).

Also, using eq. (A.27a)
⋆Rab ∧ ea = Ric

e
bıeω , (A.25)

which also vanishes on-shell.

A.3 Identities involving the d-dimensional volume form ω

Another set of identities. First, the definition of the volume form:

ω ≡ e0 ∧ e1 ∧ · · · ∧ ed−1 = (−1)d−1εa1···ad

d! ea1 ∧ · · · ∧ ead . (A.26)

The (−1)d−1 factor is associated to the mostly minus signature that we are using.
Then, we can prove the following identities:

ec1 ∧ · · · ∧ ecd−1 = (−1)d−1εc1···cd−1bıbω , (A.27a)

ec1 ∧ · · · ∧ ecd−2 = −1
2εc1···cd−2b1b2ıb1ıb2ω , (A.27b)

ec1 ∧ · · · ∧ ecd−3 = −(−1)d−1

3! εc1···cd−3b1b2b3ıb1ıb2ıb3ω , (A.27c)

ec1 ∧ · · · ∧ ecd−n = (−1)[n/2](−1)n(d−1)

n! εc1···cd−nb1···bnıb1 · · · ıbnω . (A.27d)

– 20 –
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A.4 Other identities

With our conventions, for any p-form F (p),

⋆2F (p) = (−1)p(d−p)det(η)F (p) , (A.28)

where det(η) is the determinant if the tangent-space metric ηab (which equals (−1)d−1 for a
d-dimensional Lorentzian metric with mostly minus signature) and, if p ≥ n,

⋆ıa1 · · · ıanF (p) = ean ∧ · · · ∧ ea1 ∧ ⋆F (p) . (A.29)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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