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Abstract: With the increasing construction activities in dry or degraded lands affected by wind-
driven particle action, the deterioration of metal structures in such environments becomes a pressing
concern. In the design and maintenance of outdoor metal structures, the emphasis has mainly been
on preventing corrosion, while giving less consideration to abrasion. However, the importance of
abrasion, which is closely linked to the terrain, should not be underestimated. It holds significance
in two key aspects: supporting the attainment of sustainable development goals and assisting in
soil planning. This study aims to address this issue by developing a predictive model that assesses
potential material loss in these terrains, utilizing a combination of the literature case studies and
experimental data. The methodology involves a comprehensive literature analysis, data collection
from direct impact tests, and the implementation of a machine learning algorithm using multivariate
adaptive regression splines (MARS) as the predictive model. The experimental data are then validated
and cross-verified, resulting in an accuracy rate of 98% with a relative error below 15%. This
achievement serves two primary objectives: providing valuable insights for anticipating material loss
in new structure designs based on prospective soil conditions and enabling effective maintenance of
existing structures, ultimately promoting resilience and sustainability.

Keywords: wind erosion; degraded land; metal structures; abrasion; machine learning

1. Introduction

Wind erosion is a natural process that involves removal, transport and deposition
of coarse and fine particles, primarily sand, by the wind [1]. Differences in atmospheric
pressure generate air movements capable of eroding surface materials (also known as abra-
sion) when velocities reach sufficient levels [2]. The scientific community has increasingly
recognized the significance of wind erosion due to its impact on soil health, agricultural
production, climate and structures resilience [3]. Efforts have been devoted to simulating
and predicting wind-driven effects, including soil erosion, to control land degradation and
implement appropriate agricultural management practices [4]. Various methods, ranging
from empirical equations for average soil erosion [5,6] to advanced models predicting crop
yields and conservation of natural resources [7–9], have been developed.

However, wind erosion is gaining increasing relevance in other fields that have not
been extensively studied. The durability of metal structures is greatly influenced by
damage caused by wind erosion, particularly in degraded areas where wind-driven particle
movement is more intense [10]. While the degradation of metal structures in outdoor
conditions, both chemically and physically, is directly influenced by their geographical
location [11], the attention has predominantly been on studying corrosion [12–14], with
less emphasis on terrain-related abrasion, which holds relevance for achieving sustainable
development goals and effective land planning.

Identifying and determining suitable soils for construction would facilitate their
classification, allowing for redirection to alternative uses or assigning specific wear values,
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aligning with the objectives of sustainable development, and minimizing material wastage.
This process results in significant economic, social, and environmental losses, affecting
various metal constructions.

Windblown sand transport is characterized by three types of movement based on grain di-
ameter (d): suspension (d < 0.07 mm); saltation (0.07 < d < 0.5 mm); and creep (d > 0.5 mm) [15]
(Figure 1). Among these, saltation plays a crucial role in the total mass of sand transported,
driven by wind shear forces on the land surface that lead to the rebound of sand particles and
horizontal sand mass flow in the downwind direction [16,17].
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Although wind erosion can occur in all climates, it is more prevalent in semi-arid
and arid environments characterized by extensive land degradation or dry conditions [18].
As a result, metal structures were historically not exposed to this problem. However, the
proliferation of constructions in these areas, including new cities [19] and the development
of renewable energy projects [20,21], has brought wind erosion into focus. Approximately
one-fifteenth of the Earth’s surface is susceptible to significant sand blowing [16] and the
expansion of wind erosion-prone areas is expected due to climate change [22].

Factors influencing the movement of sand and hazardous particles by wind include
specific particle size distribution, extensive plain lands without vegetation or wind barriers,
high wind speeds combined with low relative humidity and elevated concentrations of
total suspended particulate matter [23]. In contrast, as height increases, the negative impact
of the process becomes less severe due to its inherent characteristics, as higher altitudes
result in fewer particles reaching the area [24,25]. The parameters that influence erosion
can be categorized into three main groups.

1. Impact conditions, which include the velocity and angle of impact;
2. Characteristics of the eroding particle, such as its size, shape, and other parameters;
3. Properties of the material being eroded, including its ductility, hardness, density, and

other relevant factors.

Understanding how land conditions affect infrastructure in the long term is crucial
for the design and maintenance of both new and historic buildings. The maintenance
of structures in aggressive environments, such as the north-west coast of Egypt exposed
to sandstorms, presents significant challenges [26]. Wind erosion implications for high-
speed lines in Saudi Arabia are also garnering attention [27]. Researchers at the Inner
Mongolia University of Technology have studied the impact of wind erosion on steel
structure coatings in central and western regions of Mongolia affected by sandstorms [28,29].
However, the design, analysis, and evaluation of wind erosion processes are still in the
early stages of study.

Common responses to wind erosion include increasing protection and coating of
materials, which is prevalent in the wind and aeronautics industry, with research exploring
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multilayer coatings and alloys [30,31]. Prior knowledge during the design or engineering
phase is essential for sustainability as it facilitates calculations that help to mitigate the
economic and environmental implications of excessive material waste [32]. Other stud-
ies have focused on soil treatment solutions, such as protective barriers [33] or surface
treatments [34–36], but implementing these solutions on larger surfaces is challenging.
The current approach to studying wind erosion often relies on localized and case-specific
investigations, compounded by a lack of standardized terminology in the literature. These
factors pose challenges in unifying the research efforts and effectively addressing the issue.
Therefore, it is imperative to establish methods for determining and predicting the extent of
wind erosion-induced abrasion on structures to enable the implementation of appropriate
preventive measures.

The objective of this study is to develop a predictive machine learning model capable
of determining the erosion rate experienced by metal structures based on their geographical
location. By integrating data from various sources, including existing studies and exper-
imental data, the model aims to provide insights into potential degradation associated
with the surrounding land. These insights enable to design environmentally conscious
structures, optimize material usage, and extend the lifespan of metal structures through
careful maintenance planning and preventive measures.

This paper presents a detailed description of the methodology employed, starting with
the creation of a robust database serving as the foundation for training the predictive models.
The database comprises information sourced from existing studies in the literature. Given
the limited literature data available, a specific and comprehensive dataset was generated,
incorporating a wider range of materials and measurable variables obtained through direct
impact tests conducted in a laboratory setting. Subsequently, the modelling techniques and
evaluation methods utilized throughout this study are elucidated. Finally, the results are
thoroughly analysed, and the conclusions drawn from this research are presented.

2. Materials and Methods

The methodology employed in this study is outlined in Figure 2 and encompasses
three key phases. The initial phase involved the creation of a database, which serves as the
key point for the application of predictive algorithms that facilitate the estimation of erosion
rates for specific metals under different conditions and types of terrain. Subsequently, in the
second phase, the model was developed based on the analysis of the compiled data. Finally,
in the third phase, the model’s efficacy was evaluated through validation procedures, and
the obtained results were assessed.
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2.1. Phase 1: Database Creation

For this first phase, two main sources of data were used: external data derived from
international literature, and internal data acquired from experimental laboratory tests. The
first source involved assembling the cases and analysis of the relevant information in the
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literature related to the study topic. Additionally, several laboratory tests were carried out
in order to expand the information with our own experimental data.

2.1.1. Literature Review

Erosion is a phenomenon influenced by multiple factors, including the properties
of both the material being eroded and the material causing the erosion, as well as the
conditions under which the phenomenon occurs. Table 1 summarises the most significant
variables considered in the literature.

Table 1. Most significant variables of the direct impact test.

Process Parameters Eroded Material Parameters

Impact angle [37] Hardness [38]
Particle diameter of impacting particles [39] Fracture toughness [38]

Impact velocity [40] Elastic modulus [37]

However, to attempt a macroscopic approach and ensure that the model is truly useful
and applicable to any case study, the variables that form the model should be readily
available or easily obtainable. Therefore, the variables collected were selected based on
their availability and significance according to the literature.

1. Material hardness (HL): Studies agree that material hardness is a highly influential
variable in calculating wind erosion [41];

2. Particle velocity (v): It is key point to determine the force with which particles impact
the structure, as abrasion increases with higher particle velocities [41];

3. Amount of erodent material (m): The quantity of material impacting the structure
directly influences the level of abrasion [41];

4. Impact angle (θ): Studies have shown that for ductile materials as metallic structures,
the highest abrasion damage occurs at impact angles between 15 and 30 degrees and
decreases towards 90 degrees [42];

5. Erosion rate (ER): The majority of scientific literature describes wind erosion using
the erosion ratio which is usually measured as follows (1) [43,44]:

ER =
Mass o f material lost due to erosion

Mass o f material eroded
(1)

Measuring the impact in this way, instead of using mass loss, has the advantage
of allowing better comparison of erosion between different materials [45]. At this point,
all experimental studies in the literature that aim to characterize the effect of different
parameters on erosion and erosion resistance of various materials were collected. These
studies typically involve conducting tests with sand or other particles and measuring the
impact [42,46].

The database consists of 778 data points. The dataset, comprising data from different
laboratory tests, undergoes thorough pre-processing to handle missing values, outliers, and
inconsistencies. Standardisation of measurement units is applied to facilitate meaningful
comparisons, while min-max scaling rescales the variables for analysis. Categorical data
are appropriately encoded, and the normalized data from various sources are integrated
into a unified dataset stored as relational data in a CSV (comma-separated values) format.

2.1.2. Experimental Test

Experimental data were obtained by conducting various laboratory tests. The analysed
and collected variables were the same as those identified as relevant in the literature review.
The procedure for obtaining each of these experimental data is specified below.
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Material Hardness (HL)

Hardness tests were performed on plates made of different materials using the Leeb
hardness test. The Leeb hardness (HL) [47] relates the rebound velocity to the impact
velocity of a spherical device, with a diameter of 3 mm or 5 mm (2).

HL =
rebound velocity
impact velocity

× 1000 (2)

The tests were performed according to the following standards: ASTM A956/A956m–
17a, Standard Test Method for Leeb Hardness Testing of Steel Products and ISO 16859-
1/2/3:2015, and Metallic materials–Leeb hardness test [48,49].

Particle Velocity (v)

Velocity can be adjusted based on factors such as the pressure of the compressor,
atmospheric pressure, and the diameter of the nozzle. By measuring the air velocity, we
can estimate the particle velocity and determine its range of values. According to studies in
the literature, the relationship with the velocity of the carrier fluid itself is estimated to be
less than one-third [42].

Amount of Erodent Material (m)

The material impacting the structure can be estimated based on the concentration of
erodent material in the air (expressed in micrograms per cubic meter) (ma), multiplied by
the wind velocity (in meters per second) (vw); the duration of impact per year (in hours)
(d); and the surface area (in square meters) (s) (3). At a laboratory level, the amount of sand
is determined via weighing.

m = ma ∗ vw ∗ d ∗ s (3)

Impact angle (θ)

The impact angle (θ) can be determined by comparing the orientation of the structure
with the dominant wind direction. At a laboratory level, the impact angle can be set by
sample’s colocation.

Erosion Rate (ER)

Erosion rate was determined by conducting direct impact tests according to the ASTM
G76-2013 standard [50]. A total of 216 tests were conducted, involving 12 different types of
materials, including bare steel, stainless steel, galvanized steel, aluminium, and tinplate.
Each material underwent 3 repetitions of the test. The tests were performed using 3 batches
of 300 g of sand, resulting in a total of 900 g of eroding particles. Two different sizes of sand
were used (150 and 300 µm).

All these tests were carried out in a sandblasting cabin (CHC60, PA, Spain) equipped
with a sandblasting gun operated with ceramic nozzles. The required airflow rate of
340 L/min was achieved using a compressor (METALWORKS 458804090, PA, Spain).
Figure 3 shows an outline of the testing procedure. To separate the sand into different
particle sizes, a sieve shaker (CISA BA200N, PA, Spain) was employed.
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The plates were weighed before and after each sand batch using Laboratory Precision
Balance (Raswag AS 310 R2 PLUS, PA, Spain) to determine the mass loss. By comparing
the final weight with the initial weight, the mass loss caused by the impact was determined,
providing valuable information about the energy absorption capacity of the samples and
the erosion ratio (ER).

2.2. Phase 2: Modelling

Once all the data are collected, complementing the information from the literature
with experimental test, the modelling stage began. The collected data from both sources
underwent a thorough cleaning and pre-processing process to ensure data quality and
consistency. An exploratory analysis was conducted to understand the data structure and
identify patterns. Relevant variables were selected for predictive models. Two methods
are used to determine the importance of each variable in the model: generalized cross-
validation (GCV) and residual sum of squares (RSS).

- Generalized cross-validation (GCV): It involves fitting the model with all variables, cal-
culating GCV scores by temporarily excluding each variable, and ranking them based
on their scores. Variables with higher GCV scores are considered more important;

- Residual sum of squares (RSS): It calculates the sum of the squared differences be-
tween the observed values and the predicted values obtained by the model. The RSS
represents the overall amount of unexplained variation in the data. A lower RSS
indicates a better fit of the model to the data.

The database was then prepared for model construction by partitioning the data and
handling missing values. These steps ensured the integrity of the data and facilitated the
construction of accurate predictive models.

The modelling stage is carried out using the MARS algorithm (multivariate adaptive
regression splines). This algorithm is an effective tool for constructing accurate and robust
predictive models from complex datasets. MARS algorithm enables the identification of
nonlinear and nonparametric relationships among variables, which is particularly useful
in the study of direct impact where relationships can be highly nonlinear. This machine
learning technique combines linear regression with non-linear functions called splines. It
begins by constructing an initial linear model and then adds splines to capture non-linear
relationships in the data. It uses an iterative approach to improve the fit and selects the
most relevant variables [51]. Ultimately, a flexible model is obtained that combines both
linear and non-linear terms to predict a continuous response variable [52].

The MARS algorithm is capable of predicting the amount of material that can be lost
due to abrasion, as shown in Equation (4) in the following form:

Loss (g) = f (v, θ, m, HL) (4)

where

- v : Particle velocity (m/s);
- θ: Impact angle (◦);
- m: Mass of sand (g);
- HL: Material hardness.

2.3. Phase 3: Validation

Validating the obtained results is crucial to ensure the reliability and generalizability
of the developed models. In this methodology, two validation phases are conducted: data
validation and model validation.

2.3.1. Data Validation

To validate the obtained results, it is proposed to employ an empirical semi-mechanistic
erosion equation [37]. This formula is based on theoretical principles and physical laws
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related to direct impact. By comparing the data with the values calculated, the consistency
and validity of the obtained results can be evaluated.

The erosion damage is caused by two mechanisms: cutting (ERC) (5) and deformation
(ERD) (6). Therefore, the total erosion damage is given by the sum of both terms.

ERC =

{
C1Fs

U2.41sin(θ)[2 Kcos(θ)−sin (θ)]
2K2 θ < tan−1(K)

C1Fs
U2.41cos2(θ)

2 θ > tan−1(K)
(5)

ERD = C2Fs
(U sin(θ)− Utsh)

2

2
(6)

where

- Utsh is the threshold velocity below which deformation is negligible;
- Fs is the angularity factor of the particle, ranging from 0.25 for completely rounded

particles to 1 for very angular particles. In this case, Fs was considered as 0.5;
- K is the ratio between the contact area in the x-direction and the contact area in the

y-direction of the particle with the material. In most materials eroded by sand, it is 0,
so is the ratio used in this study;

- C is the cutting constant, which depends on the hardness of the material. It has been
shown to be proportional to the inverse square root of materials hardness [42];

- U is the initial velocity of the particle. According to experimental studies, the average
relationship between particle velocity and gas velocity is 3.1739 [42];

- θ is the impact angle, considered perpendicular in this case.

2.3.2. Model Validation

Cross-validation is a widely used technique for evaluating the performance of predic-
tive models. In this context, the dataset is divided into training (75%) and testing (25%)
subsets. The model is trained using the training subset, and its performance is evaluated
using the testing subset. This process is repeated several times (6 blocks), alternating the
training and testing subsets, and an average performance measure is calculated to assess
the model’s generalization capability, based on the following.

- The root mean square error (RMSE) measures the average magnitude of the residuals
(differences between predicted and actual values). A lower RMSE indicates a better fit
between the model and the observed data;

- Relative error measures the percentage difference between the predicted and actual
values, providing insight into the relative accuracy of the model’s predictions;

- Absolute error represents the absolute difference between predicted and actual values,
giving an indication of the magnitude of the prediction errors;

- Mean directly compares the values, indicating the overall bias of the model.

3. Results

The results are presented in detail throughout the different phases of the
proposed methodology.

3.1. Phase 1: Database Creation

After an exhaustive study of the scientific literature and analysis of direct impact tests
from research such as [46,53,54], the data and variables that align with the context of the
object of this study are collected, analysed, identified, and added. A total of 778 initial
data points were collected before eliminating and cleaning the database. The collected
parameters and the range of values studied are summarised in the following Table 2.



Land 2023, 12, 1503 8 of 16

Table 2. Values in the study variables: range, mean and standard deviation (Sd).

Material
Hardness [-] Particle Velocity [m/s] Amount of

Erodent Material [g] Impact Angle [◦]

Range Mean Sd Range Mean Sd Range Mean Sd Range Mean Sd

395–710 193.64 87.49 9.2–32.56 19.35 7.29 300–1800 670.65 343.25 15–90 49.22 25.71

The distribution of these variables is shown in the form of box plots in Figure 4.
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On the other hand, the experimental tests were conducted under normal pressure and
temperature conditions. The eroding material particles, in this case sand, had diameters of
150 µm and 300 µm and were propelled at a velocity ranging between 13 and 14 m/s.

Upon the completion of the impact tests, clear surface deformation was observed in
the samples. Furthermore, evident surface changes were measured, indicating the influence
on the structure and external appearance of the samples, suggesting the need for further
detailed analysis. Some examples of the experimental test results are shown in Figure 5.
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Figure 5. Metal samples before and after direct impingement tests. (a) Stainless steel, (b) galvanized steel.

It was observed that some plates, such as aluminium, showed mass gains of up to
0.05%. This phenomenon can be attributed not only to the absence of significant wear
but also to the embedding of sand particles in the material. This phenomenon was also
observed in tinplate samples. The remaining plates exhibited mass losses ranging from
approximately 0.20% to 0.30%, except for galvanized steel, which showed losses of 0.99%.

The radial chart in Figure 6 displays the average values of each of the 12 materials
under different test conditions. Mass loss after impact for the three defined amounts of
sand, as well as the total mass loss, is shown in four different colours. In this following
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chart, the axes extend outward from the centre and the magnitude of the mass loss is
represented on each axis using dots or lines.
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Figure 6. Representation of the average mass change in each study condition.

By comparing the mass losses among the different amounts of sand (300 g (∆m1),
600 g (∆m2) and 900 g (∆m3)), patterns or trends can be identified. The chart shows that as
the amount of sand increases, the mass loss also increases, except for materials where sand
particles become embedded due to their low hardness. Additionally, the chart presents the
total mass loss as a consolidated measure across all amounts of sand.

On the other hand, Figure 7 provides information about the distribution and variability
of hardness values. It can be observed that the majority of values are within a close range,
with a single outlier, corresponding to aluminium.
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The Pearson correlation coefficient obtained between mass change and hardness is
0.28, indicating a moderate positive correlation between hardness data and mass loss. The
p-value of 0.361 suggests that this correlation is not statistically significant at a significance
level of 0.05. It is important to note that other factors or variables not considered in
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this analysis could have a more relevant influence on the results. Therefore, further
comprehensive studies are recommended to better understand the nature and strength of
the relationship between the variables in question.

3.2. Phase 2: Modelling

Once the database is prepared, the predictive algorithm is applied to create a model
for predicting the material loss (mass loss) that a metal structure will experience under
those conditions.

Two methods are used to determine the importance of each variable in the model:
generalized cross-validation (GCV) and residual sum of squares (RSS). The most significant
variables, in order, are shown in Table 3.

Table 3. Importance of each variable determined via GCV and RSS.

GCV RSS

Velocity 100 100
Impact Angle 76.2 76.2

Amount of Sand 62.9 62.9
Material Hardness 27 27.8

Velocity of impact is the most relevant factor according to both methods. Furthermore,
the values obtained for each of the variables according to the two methods are similar and
coherent with each other. Hence, these variables can be deemed as valid and integrated
into the predictive model.

3.3. Phase 3: Validation

Figure 8 displays the results after validating the data obtained empirically through
experimental trials and the data calculated using well-established equations in the scientific
community. The dashed line represents the ideal situation for these values. Each set of
experiments samples is represented by a unique colour. It can be observed that there are no
significant deviations between the theoretical and practical values, and the differences are
acceptable (R2 = 0.9207). Therefore, these results can be considered valid and incorporated
into the predictive model.
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In Figure 9, the predicted values are represented on the vertical axis, while the actual
values are shown on the horizontal axis.
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Figure 9. Abrasion model results.

Ideally, the points in this plot should be distributed along the diagonal line, indicating
an exact correspondence between the model’s predictions and the actual values. In this
case, a high correlation is observed between the predicted and actual values, as most of the
points are close to the diagonal line (R2 = 0.9083). This demonstrates that the MARS model
is capable of generating accurate estimations of mass loss based on the study parameters.

The proximity of the points to the diagonal line also suggests that the model generalizes
well, meaning it can provide accurate predictions even for data not used during the model’s
training. This ability to generalize is essential to ensure the applicability and reliability of
the model in practical situations.

The residuals represent the differences between the predicted and actual values of
mass loss based on the study parameters. In a precise and reliable model, the residuals
should be randomly distributed around zero and show no systematic trend.

In Figure 10, a homogeneous distribution of residuals around zero is observed, indi-
cating that the MARS model can capture the variability in the data, adequately adjusting to
the patterns of mass loss.
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The root mean square error (RMSE) used in this case to measure the differences
between the predicted values of the model and the actual values has a value of 0.005587.
Table 4 shows a comparison between the relative error, absolute error, the percentage
predicted through the model, and an example of what it would be using the mean value.

Table 4. Relative error, absolute error, and mean error of the model.

Relative Error (%) Absolute Error Mean (%) Model (%)

1 0.000292 1.12 25.7
5 0.00146 15.08 77.09
10 0.00292 38.55 94.41
14 0.004088 58.1 97.77
20 0.00584 85.47 98.88
25 0.0073 86.59 100
Inf Inf 100 100

These results provide an assessment of the model’s performance in predicting the abra-
sion values. The RMSE value indicates the average difference between the predicted and
actual values, with lower values indicating better accuracy. The table presents the relative and
absolute errors for different percentages, comparing the model’s predictions to the mean value.
It can be observed that the model’s predictions have significantly lower errors compared to
using the mean value, demonstrating its effectiveness in estimating the abrasion values. For a
relative error of less than 15%, the model shows an efficiency of 98% accuracy.

4. Discussion
4.1. Interpretation of Results

The results of this study highlight the importance of considering the conditions and
characteristics of the surrounding terrain when designing and maintaining outdoor metal
structures on dry and degraded lands. This study emphasizes that wind erosion can
lead to significant degradation of metal structures in such environments, a factor often
overlooked during the design process. The developed predictive model incorporating data
from various sources provides valuable insights into the potential material degradation
and erosion experienced by these structures. The findings underscore the significance of
including terrain-related parameters as essential factors in the design and maintenance
practices for outdoor metal structures.

The compilation of a comprehensive database from the existing literature and the
inclusion of experimental data from direct impingement tests on metal plates subjected to
high-pressure air and sand impacts the study’s findings. The experimental tests revealed
mass losses ranging from 0.20% to 0.99% for different metal plates. It was interesting to
observe that certain plates, such as aluminium and various types of tinplate, showed mass
gains, likely due to minimal wear and the embedding of sand particles. These observations
underscore the complexity of abrasion processes and highlight the need for a more nuanced
understanding of material responses under different impact conditions.

4.2. Implications and Applications

The study’s implications are significant for the construction industry and outdoor
metal structure maintenance. By incorporating information about the land and drylands
circumstances and environmental factors into the design process, engineers and designers
can better anticipate and mitigate potential material loss and degradation. Understanding
the impact of wind-driven particle action on metal structures will facilitate more informed
decision-making in product development and material selection, ultimately leading to
more durable and resilient structures.

The developed predictive model using the multivariate adaptive regression splines
(MARS) algorithm holds great promise for practical applications. The model’s accuracy in
predicting material mass loss based on parameters such as hardness, impact angle, impact
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velocity, and sand quantity makes it a valuable tool in assessing material performance and
durability under different impact conditions. Designers and engineers can use this model
to optimize the design of metal structures and select appropriate materials, considering the
specific environmental conditions they will be exposed to. Moreover, the model’s efficiency
of 98% accuracy for a relative error of less than 15% indicates its reliability and suitability
for real-world applications.

4.3. Limitations and Future Research

The present study offers valuable insights into the relationship between terrain con-
ditions and material degradation, focusing on outdoor metal structures in a controlled
environment. Although this study acknowledges certain limitations, it could be further
enhanced to explore the significance of its findings in dryland regions, where the impact of
environmental factors is more pronounced.

One aspect that could be clarified is how dryland conditions were specifically modelled
in the lab. Understanding the methodology used to replicate these conditions would add
depth to the study and provide insight into the relevance of the findings to real-world
desert environments.

To enhance the study’s applicability, future research should consider in situ challenges
that may be encountered in actual deserts. Factors such as extreme temperature fluctuations,
the presence of abrasive particles in winds, and limited water resources for structure
maintenance can significantly affect material degradation in dryland areas.

Moreover, investigating the long-term performance of the predictive model under
cyclic weather patterns and varying wind velocities in dryland conditions would provide
valuable information about its practical reliability.

Overall, expanding the study to encompass a broader range of dryland scenarios
and addressing the in situ challenges faced in actual deserts would contribute to a more
comprehensive understanding of material degradation in these regions.

5. Conclusions

With the proliferation of constructions on dry and degraded lands, it is crucial to
consider the conditions and characteristics of the surrounding terrain when designing
and maintaining outdoor metal structures due to the potential problems caused by wind
erosion. However, these parameters are often overlooked during the design process. To
address this issue, this study emphasizes the importance of incorporating information
about land circumstances in the design and maintenance of metal structures exposed to
outdoor conditions.

By developing a predictive model that considers data from diverse sources, it provides
valuable insights into the potential degradation and erosion experienced by such structures.
The findings underscore the need to include terrain-related parameters as essential factors
in the design and maintenance practices for outdoor metal structures.

A comprehensive database was compiled from the existing literature and supple-
mented with experimental data collected for this study. The tests evaluated the mass loss
experienced by metal plates subjected to high-pressure air and sand impacts using direct
impingement tests. Sample plates exhibited mass losses ranging from 0.20% to 0.99%.
Notably, some plates, such as aluminium and different types of tinplate, showed mass
gains, likely due to minimal wear and sand particle embedding.

Based on the literature review and experimental data, a predictive model was developed
using the multivariate adaptive regression splines (MARS) algorithm. This model accurately
predicted material mass loss based on parameters such as hardness, impact angle, impact
velocity, and sand quantity. The practical application of the MARS model was demonstrated
in assessing the material performance and durability under different impact conditions, aiding
in informed decision-making for product development and material selection. For a relative
error of less than 15%, the model shows an efficiency of 98% accuracy.
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Future research should focus on studying the influence of wind speed and its parame-
terization in this context, further enhancing our understanding of material degradation,
and enabling more precise modelling and predictions.
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