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Abstract
We consider a decision making problem under imprecision, where the probabilistic infor-
mation is given in terms of a set of probability measures, and where finding the optimal
alternative(s) may be difficult. To ease the computation, we propose to transform the initial
model into another one that (1) belongs to some subclass with better mathematical prop-
erties, such as supermodularity or complete monotonicity; (2) is at least as informative as
the original model, while being as close as possible to it. We show that the problem can be
approached in terms of linear or quadratic programming and that it can be connected with
the one of determining the incenter of a credal set. Finally, we compare the solutions of a
decision making problem with the initial and the transformed models and illustrate how our
approach can be applied in a decision making problem under severe uncertainty.

Keywords Coherent lower probabilities · 2-Monotone capacities · Belief functions ·
Distortion models · Decision making

1 Introduction

Since the pioneering work of Anscombe and Aumann (1963), Savage (1954) and Von Neu-
mann and Morgestern (1947), probability measures are the most widespread tool in decision
making problems under uncertainty. Nevertheless, due to a number of reasons such as the
lack of information or the low quality of the data, eliciting a probability measure modelling
the uncertainty may be at times a difficult problem. This has lead to the development of alter-
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natives that are better suited to deal with these situations. Indeed, quoting a recent publication
in ANOR (Keith & Ahner, 2021, pp. 319–320),

…Over the past several decades, various theories have been developed that generalize
the theory of probability to address aspects of uncertainty that are difficult or impossible
to model in standard probability theory.

These alternative theories are usually referred to as instances of imprecise probability models
(Augustin et al., 2014), and include for instance belief functions (Shafer, 1976), possibility
measures (Dubois&Prade, 1988), coherent lower probabilities (Walley, 1991) or submodular
capacities (Choquet, 1953); they have also appeared under the name non-additive measures
or games in coalitional game theory (Grabisch 2016).

Imprecise probability models have been applied extensively in the decision making con-
text. According to (Grabisch 2016, p. 28),

…The fields of decision theory and game theory seem to be the privileged area for the
application of games and capacities.

In fact, several extensions of the expected utility paradigm that allow to model uncertainty
with non-additive measures have been proposed [see for instance Gilboa and Schmeidler
(1989), Klibanoff et al. (2005), Sarin and Wakker (1992) and the survey in Troffaes (2007)].
There have also been applications of imprecise probabilities in decision making problems
within the context of machine learning (Mattei et al., 2020), environmental engineering
(Sahlin et al., 2021) or signal processing (de Angelis et al., 2023), just to name a few. While
these references illustrate the interest and generality of imprecise probability models, we
should also signal that this greater generality also encompasses a greater complexity; thus, a
balance must be found between the expressiveness of the model and its tractability.

Coherent lower probabilities are the starting point of this paper. In addition to having an
epistemic interpretation as lower envelopes of a closed and convex set of probabilitymeasures,
they have the advantage of including as particular cases most other models within impre-
cise probability theory; therefore, the properties established for coherent lower probabilities
immediately apply to submodular capacities or belief functions, for instance. However, their
generality comes with a price: for instance, there is not an easy procedure for determining
the extreme points of the associated set of probabilities, nor is there a unique extension to
expectation operators. This hampers the use of coherent lower probabilities in decision mak-
ing problems (Troffaes, 2007), where the computation of the optimal alternatives could be
involved.

To overcome this issue, it may be sensible to look for transformations of a given coherent
lower probability into another one that is close and that at the same time belongs to a class
with better mathematical properties. Indeed, in past works (Miranda et al., 2021; Montes et
al., 2018, 2019) we considered outer approximations of a coherent lower probability, leading
to a transformed model less informative than the original one. Here we move in the opposite
direction, and look for transformations that shrink the credal set and where the associated
lower probability belongs to a subfamily of interest.We shall call these inner approximations,
since their associated set of probability measures will be included in the set of those that are
compatible with the original lower probability.

Beyond decision making under uncertainty, there are several contexts where an inner
approximation can be of interest: we may consider for instance the problem of selecting a
representative element within the credal set associated with the coherent lower probability
(Jaffray 1995; Weber 1988), or aim to reduce the imprecision inherent to the model so as
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to make more informative inferences (Antonucci et al., 2015; Dubois et al., 1993). Recently,
approximations of coherent lower probabilities in terms of belief functions have been used in
statisticalmatching (Petturiti&Vantaggi, 2022), conditional coherent riskmeasures (Petturiti
&Vantaggi, 2019) and for correcting incoherent beliefs (Petturiti &Vantaggi, 2022) [see also
(Cinfrignini et al., 2023; Petturiti & Vantaggi, 2020)].

For these reasons, in this paper we shall investigate the problem of transforming a coherent
lower probability into an inner approximation that belongs to some subfamily of interest.
Specifically, for 2-monotone capacities and belief functions, we shall show in Sect. 3 that
some interesting inner approximations may be obtained by means of linear and quadratic
programming, and shall compare the properties of the transformed models with the ones
obtained in Miranda et al. (2021) and Montes et al. (2018, 2019) as outer approximations.
Next, in Sect. 4 we shall analyse the particular case of distortion models, where we shall
characterise the existence of an inner approximation and the set of optimal ones according
to some predetermined distance. In particular, in Sect. 4.4 we shall explore the connection
between the problem at hand and that of determing the incenter of a credal set, following the
ideas in Miranda and Montes (2023) and creating also a bridge with the problem of finding
solutions of coalitional games. In Sect. 5we shall compare the performance of the original and
the transformed model with respect to different optimality criteria in the context of decision
making with sets of probabilities (Troffaes, 2007). Finally, in Sect. 6 we apply these results
on the example of decision making under severe uncertainty from Jansen et al. (2018). We
conclude the paper with some additional comments in Sect. 7. To ease the reading, proofs as
well as some supporting results have been gathered in an Appendix.

A preliminary version of this paper was presented at the the 19th International Conference
on Information Processing and Management of Uncertainty (IPMU’2022) (Miranda et al.,
2022). This expanded version includes the proofs of all the mathematical results, an extended
discussion of the implications of using inner approximations in a decision making problem,
additional examples, and an illustration on a decision making problem.

2 Preliminary concepts

Let X be a finite possibility space with cardinality n, and let P(X ) denote its power set. We
call lower probability a function P : P(X ) → [0, 1] that is monotone (A ⊆ B ⇒ P(A) ≤
P(B)) and normalised (P(∅) = 0, P(X ) = 1). Its conjugate upper probability is given by
P(A) = 1 − P(Ac) for every A ⊆ X .

For a lower probability P , the associated set of dominating probabilities, or credal set, is
given by:

M(P) = {P probability measure | P(A) ≥ P(A) ∀A ⊆ X }.
Following (Walley, 1991), we shall say that P avoids sure loss when M(P) 	= ∅, and that
it is coherent when it is the lower envelope of M(P): P(A) = minP∈M(P) P(A) for every
A ⊆ X .

As particular instances of coherent lower probabilities we have those that are 2-monotone,
meaning that P(A ∪ B) + P(A ∩ B) ≥ P(A) + P(B) for any A, B ⊆ X . They are also
referred to as supermodular or convex in the literature. On the other hand, a coherent lower
probability is said to be completely monotone, or a belief function, when
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P
(

∪k
i=1 Ai

)
≥

∑
∅	=I⊆{1,...,k}

(−1)|I |+1P
(

∩i∈I Ai

)

for every A1, . . . , Ak in P(X ) and every k ∈ N. We denote by C2 and C∞ the families of 2-
monotone lower probabilities and belief functions, respectively. The above definitions imply
that C∞ ⊂ C2.

Any lower probability P can be alternatively expressed using the Möbius transformation,
that is given by:

m P (A) =
∑
B⊆A

(−1)|A\B| P(B) ∀A ⊆ X ;

conversely, m P allows to retrieve the initial lower probability by:

P(A) =
∑
B⊆A

m P (B) ∀A ⊆ X .

It is worthmentioning that theMöbius transformation is not only an equivalent representation
of a lower probability, but it can be also used to characterise 2- or complete-monotonicity.
Indeed, P is a 2-monotone lower probability if and only if its Möbius transformation m P

satisfies (Chateauneuf & Jaffray, 1989)
∑
A⊆X

m P (A) = 1, m P (∅) = 0; (2monot.1)

∑
{xi ,x j }⊆B⊆A

m P (B) ≥ 0, ∀A ⊆ X ,∀xi , x j ∈ A, xi 	= x j ; (2monot.2)

m P ({xi }) ≥ 0, ∀xi ∈ X , (2monot.3)

and it is completely monotone if and only if it satisfies (2monot.1) and

m P (A) ≥ 0 ∀A ⊆ X . (C-monot.)

3 Inner approximations of lower probabilities

3.1 Summary of the results on outer approximations

In previous papers (Miranda et al., 2021; Montes et al., 2018, 2019) we investigated the
problem of outer approximating a coherent lower probability by means of a 2- or completely
monotone lower probability. The definition of outer approximation goes back to Bronevich
and Augustin (2009).

Definition 1 (Bronevich & Augustin, 2009) Let P be a coherent lower probability and let C
be a class of coherent lower probabilities. Q ∈ C is called an outer approximation of P in C
if Q(A) ≤ P(A) for every A ⊆ X . Moreover, Q is an undominated outer approximation if
there is no other Q′ ∈ C such that Q � Q′ ≤ P .

In terms of credal sets, Q is an outer approximation of P when M(P) ⊆ M(Q), and it is
undominated if there is no other Q′ ∈ C such that M(P) ⊆ M(Q′) � M(Q).

The quest for computing outer approximations of a coherent lower probability P seeks
to replace P with a model with better mathematical properties, such as 2-monotonicity, and
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such that any element ofM(P) is also compatible with the newmodel. This last requirement
is sensible if we give P an epistemic interpretation, as amodel for the imprecise knowledge of
a probability measure P0: if all we know about P0 is that it belongs toM(P), we would like
all the potential candidates to be also compatible with the transformed model. In addition,
this new model should be as close as possible to the original one, so that their respective
inferences are similar. A necessary condition in this regard is that the outer approximation is
undominated.

To obtain undominated outer approximations, in Miranda et al. (2021) and Montes et al.
(2018, 2019) we pursued a number of paths. The primal one was based on minimising the
Baroni and Vicig distance (BV-distance, for short) (Baroni &Vicig, 2005) between the initial
model and the outer approximation:

dBV
(
P, Q

) =
∑
E⊆X

|P(E) − Q(E)| =
∑
E⊆X

∣∣∣P(E) −
∑
B⊆E

m Q(B)

∣∣∣, (1)

which measures the amount of imprecision added to the model when replacing P by Q.
Another possibility is to consider the quadratic distance between the original and the trans-
formed model:

dq
(
P, Q

) =
∑
E⊆X

(
P(E) − Q(E)

)2 =
∑
E⊆X

(
P(E) −

∑
B⊆E

m Q(B)
)2

. (2)

Using either of these distances, we can set up an optimisation problem that gives us outer
approximations.

Proposition 1 (Montes et al., 2018, 2019)Let P be a coherent lower probability, and consider
the condition

∑
B⊆E

m Q(B) ≤ P(E) ∀E 	= X ,∅. (2monot.4)

(i) Let Coa
2 (P) be the set of coherent lower probabilities satisfying conditions (2monot.1)–

(2monot.3) and (2monot.4). The linear programming problem of minimising Eq. (1) in
Coa
2 (P) has optimal solutions that are undominated outer approximations of P in C2.

Similarly, the quadratic problem of minimising Eq. (2) in Coa
2 (P) has a unique optimal

solution that is an undominated outer approximation of P in C2.
(ii) Let Coa∞ (P) be the set of coherent lower probabilities satisfying conditions (2monot.1),

(C-monot.) and (2monot.4). The linear programming problem of minimising Eq. (1) in
Coa∞ (P) has optimal solutions that are undominated outer approximations of P in C∞.
Similarly, the quadratic problem of minimising Eq. (2) in Coa∞ (P) has a unique optimal
solution that is an undominated outer approximation of P in C∞.

Concerning the undominated outer approximations in C2, we have proven that the linear
programming approach in Proposition 1(i) may have infinite different solutions (Montes et
al., 2018, Ex.1), that the undominated outer approximations coincide with P on singletons
and on events of cardinality n −1 (Montes et al., 2018, Prop.2), and that the optimal solution
of the quadratic problem in Proposition 1(i) may not be an optimal solution of the linear
problem.

With respect to C∞, there exist undominated outer approximations that are not optimal
solutions of the linear programming problem in Proposition 1(ii) (Montes et al., 2019, Ex.2)
and the undominated outer approximations may not coincide with P on singletons or on
events of cardinality n − 1 (Montes et al., 2019, Ex.4).
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While the linear programming approach has the advantage of using an in our view more
natural distance between the initial and the transformed model, it also has the drawback of
not providing a unique solution. The opposite holds for the quadratic approach: it gives a
unique solution but the use of the quadratic distance is less natural in this context. This led
us in Miranda et al. (2021) to combine the two approaches so as to get the best from both.

Proposition 2 (Miranda et al., 2021) Let P be a coherent lower probability.

(i) The quadratic programming problem of minimising Eq. (2) in Coa
2 (P) subject also to:

dBV(P, Q) = min
Q′∈Coa

2

dBV
(
P, Q′) (2.monot-BV)

has a unique optimal solution that is an undominated outer approximation in C2.
(ii) The quadratic programming problem of minimising Eq. (2) in Coa∞ (P) subject also to:

dBV(P, Q) = min
Q′∈Coa∞

dBV
(
P, Q′) (C.monot-BV)

has a unique optimal solution that is an undominated outer approximation in C∞.

In other words, a possible approach to choose an outer approximation in C2 or C∞ is to
minimise the quadratic distance among those outer approximations minimising the BV-
distance. Other possibilities were discussed in Miranda et al. (2021).

3.2 Inner approximations

The problem of inner approximating a coherent lower probability was superficially discussed
in Montes et al. (2018, Sec. 7) as a sort of dual approach to that of outer approximations. In
this subsection, we analyse the problem in detail and compare the features of both approaches.

Definition 2 (Montes et al., 2018, Sec. 7) Let P be a coherent lower probability and let C be
a class of coherent lower probabilities. Q ∈ C is called an inner approximation of P in C if
Q(A) ≥ P(A) for every A ⊆ X . It is said to be a non-dominating inner approximation if
there is no other Q′ ∈ C such that P ≤ Q′

� Q.

In terms of credal sets, Q is an inner approximation of P if M(P) ⊇ M(Q) and Q ∈ C
is a non-dominating inner approximation of P in C if there is no other Q′ ∈ C such that
M(P) ⊇ M(Q′) � M(Q).

Taking inspiration from the work summarised in Sect. 3.1 about the outer approximations,
we can easily establish procedures for inner approximating a coherent lower probability P
by another one Q that is 2- or completely monotone; we simply need to replace (2monot.4)
by:

∑
B⊆E

m Q(B) ≥ P(E) (2monot.4-inner)

This leads at once to the following result:

Proposition 3 Let P be a coherent lower probability.

(i) Let Cia
2 (P) be the set of coherent lower probabilities satisfying conditions (2monot.1)–

(2monot.3) and (2monot.4-inner). The linear programming problem of minimising Eq. (1)
in Cia

2 (P) has optimal solutions that are non-dominating inner approximations of P in
C2. Similarly, the quadratic problem of minimising Eq. (2) in Cia

2 (P) has a unique optimal
solution that is a non-dominating inner approximation of P in C2.
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(ii) Let Cia∞(P) be the set of coherent lower probabilities satisfying conditions (2monot.1),
(C-monot.) and (2monot.4-inner). The linear programming problem of minimising Eq. (1)
in Cia∞(P) has optimal solutions that are non-dominating inner approximations of P in
C∞. Similarly, the quadratic problem of minimising Eq. (2) in Cia∞(P) has a unique
optimal solution that is a non-dominating inner approximation of P in C∞.

Example 1 Consider the possibility space X = {x1, x2, x3, x4} and let P be the coherent
lower probability given by:

A P(A) Q Bel1 Bel2 Q′ Bel3

{x1} 0 0 0.15 0 0.08 0.1
{x2} 0 0 0 0 0 0
{x3} 0 0 0.05 0 0 0.1
{x4} 0 0.2 0.25 0.3 0.12 0.2
{x1, x2} 0 0 0.15 0.1 0.08 0.1
{x1, x3} 0.3 0.3 0.3 0.3 0.3 0.3
{x1, x4} 0.4 0.4 0.4 0.4 0.4 0.4
{x2, x3} 0 0 0.05 0.1 0 0.1
{x2, x4} 0.3 0.3 0.3 0.3 0.3 0.3
{x3, x4} 0.3 0.3 0.3 0.3 0.3 0.3
{x1, x2, x3} 0.5 0.5 0.5 0.5 0.5 0.5
{x1, x2, x4} 0.5 0.5 0.5 0.5 0.58 0.5
{x1, x3, x4} 0.5 0.7 0.55 0.7 0.62 0.6
{x2, x3, x4} 0.5 0.5 0.5 0.5 0.5 0.5

P is coherent because it is the lower envelopeof the probabilitymass functions (0, 0, 0.5, 0.5),
(0.5, 0, 0, 0.5), (0.4, 0.3, 0.3, 0) and (0.2, 0.5, 0.1, 0.2). Solving the linear programming
problem from Proposition 3 in C2, we get the optimal solution Q. Note that Q satisfies
Q({x4}) 	= P({x4}), showing that the non-dominating inner approximations do not neces-
sarily coincide in the singletons with P . On the other hand, Bel1, Bel2 and Bel3 are different
optimal solutions of the linear programming problem in the class C∞. Observe that Bel2
dominates Q; thus non-dominating inner approximations in C∞ may be dominating if we
regard them as elements from C2.

In the quadratic approach, the non-dominating solution in C2 is Q′, while that in C∞ is
Bel3. The former is not an optimal solution of the linear problem in C2 while, as we have
said Bel3 is an optimal solution of the linear problem in C∞. �

Example 1 shows that a coherent lower probability may have infinite non-dominating
inner approximations in C∞: in that example, any convex combination of Bel1, Bel2, Bel3
will be a belief function that inner approximates P and is non-dominating (because it is at
the minimum BV-distance with P). Let us show that this may also be the case in C2.
Example 2 Consider the possibility space X = {x1, x2, x3, x4}, the probability mass func-
tions P1 = (0.25, 0.25, 0.25, 0.25) and P2 = (0.2, 0.2, 0.3, 0.3), and the coherent lower
probability P that is the lower envelope of {P1, P2}. P is not 2-monotone, since:

0.5 + 0.5 = P({x1, x3}) + P({x1, x4}) > P({x1, x3, x4}) + P({x1}) = 0.75 + 0.2.

Let us prove that P1, P2 are non-dominating inner approximations of P in C2; we shall
establish it for P1, the proof for P2 being similar.
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Assume that there exists a 2-monotone inner approximation Q of P such that P ≤
Q � P1. Then, there must be some event A such that Q(A) < P1(A). Consider-
ing the events where P1 and P (and consequently also Q) agree on, A must be one of
{x1}, {x2}, {x1, x2}, {x1, x2, x3} or {x1, x2, x4}. By 2-monotonicity, we have that

Q({x1}) ≥ Q({x1, x3}) + Q({x1, x4}) − Q({x1, x3, x4}) = 0.25, and similarly

Q({x2}) ≥ Q({x2, x3}) + Q({x2, x4}) − Q({x2, x3, x4}) = 0.25.

Since any coherent lower probability is super-additive (Walley, 1991, Sect. 2.7.4), we obtain

Q({x1, x2, x3}) ≥ Q({x1}) + Q({x2}) + Q({x3}) = 0.75 = P1({x1, x2, x3})
and similarly Q({x1, x2, x4}) = P1({x1, x2, x4}) = 0.75 and Q({x1, x2}) = P1({x1, x2}) =
0.5. Therefore, Q = P1, a contradiction. �

These two examples raise the need of some criteria to select a non-dominating inner
approximation of the coherent lower probability. We may follow here the same approach as
in Miranda et al. (2021): to choose the one minimising the quadratic distance among those
that minimise the BV-distance.

Proposition 4 Let P be a coherent lower probability on P(X ).

(i) The quadratic programming problem of minimising Eq. (2) in Cia
2 (P) subject also to

(2.monot-BV) has a unique solution that is a non-dominating inner approximation in C2.
(ii) The quadratic programming problem of minimising Eq. (2) in Cia∞(P) subject also to

(C.monot-BV) has a unique solution that is a non-dominating inner approximation in
C∞.

Example 3 If we apply this idea to the coherent lower probability in Example 1, Q and
Bel3 are the optimal inner approximations minimising the quadratic distance among those
minimising the BV-distance in C2 and C∞, respectively. �

In what follows, we investigate if for some subfamilies of interest of C2 it is possible
to characterise the inner approximations that minimise the BV-distance with respect to the
original model. In this respect, the following result shows that the process of obtaining
inner approximations can be made iterative. For this, given a family C of coherent lower
probabilities and a coherent lower probability P , we shall denote by C̃ia(P) the class of
non-dominating inner approximations of P in C, and by Cia

BV(P) the subclass of those that
minimise the BV-distance with respect to P . It follows that Cia

BV(P) ⊆ C̃ia(P).

Proposition 5 Let P be a coherent lower probability, and consider two classes of coherent
lower probabilities C and C′ such that C′ ⊆ C.

(i) If Q ∈ C̃′ia(P), then there exists some P ′ ∈ C̃ia(P) such that Q ∈ C̃′ia(P ′).
(ii) If moreover Q ∈ C′ia

BV(P), then also Q ∈ C′ia
BV(P ′) for some P ′ ∈ Cia

BV(P).

4 Inner approximations with distortionmodels and incenters

In this section, we investigate the inner approximations of coherent lower probabilities by
means of some distortion model (Destercke et al., 2022; Montes et al., 2020a, b). These are
imprecise models determined by a probability measure P0, a distorting function d and a
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distortion parameter δ. These three elements allow to define a set of probability measures by
means of Bδ

d(P0) = {P | d(P, P0) ≤ δ}. The set Bδ
d(P0) is closed and convex whenever d

is continuous and convex (Montes et al., 2020a, Prop.1).
Several distortion models can be found in the literature, such as the constant odds ratio

(Berger, 1990; Pericchi & Walley, 1991; Walley, 1991), the distortion models generated
by the L1 or Kolmogorov distances (Huber, 1981; Montes et al., 2020b), or those obtained
through increasing transformations of a probability measure (Bronevich, 2007). In this paper,
we focus on the linear vacuous (Walley, 1991), pari mutuel (Montes et al., 2019; Pelessoni et
al., 2010; Walley, 1991) and total variation models (Seidenfeld & Wasserman, 1993). These
classes will be denoted by CLV, CPMM and CTV. Although there is no inclusion relationship
between them, they have a connection with the classes C2 and C∞ from Sect. 3: it holds
that any pari-mutuel or total variation model is 2-monotone, but not necessarily completely
monotone, while any linear vacuous model satisfies complete monotonicity; in other words,
CLV ⊆ C∞ and CPMM, CTV ⊆ C2, but CPMM, CTV � C∞.

Throughout the section, and for the sake of simplicity, we assume that P(A) ∈ (0, 1) for
any A 	= ∅,X .

4.1 Linear vacuousmodel

Let P0 be a probability measure and δ ∈ (0, 1) a distortion parameter. The linear vacuous
model is given by the coherent lower probability

PLV(A) = (1 − δ)P0(A) if A ⊂ X and PLV(X ) = 1;
its conjugate coherent upper probability is given by PLV(A) = (1 − δ)P0(A) + δ for any
A 	= ∅. It holds that:

PLV(A) − PLV(A) = δ ∀A 	= ∅,X . (3)

The credal set M(
PLV

)
is formed by the convex combinations (1 − δ)P0 + δP of P0 with

another probability measure P , with respective weights (1−δ) and δ. Thus, we may interpret
this model by considering an experiment where the uncertainty model is the probability
measure P0, and where there is a proportion δ of contaminated data, coming from another
probability measure P . We refer to Montes et al. (2020a) for a study of the properties of the
linear vacuous as a distortion model.

In Montes et al. (2018, Prop. 8), we proved that for any coherent lower probability P
satisfying

∑n
i=1 P({xi }) > 0 there is a unique undominated outer approximation in CLV,

where P0 and δ are given by δ = 1 −∑n
j=1 P({x j }) and P0({xi }) = P({xi })

1−δ
∀i = 1, . . . , n.

Next, we investigate the inner approximations in CLV. We begin by establishing a necessary
and sufficient condition for their existence.

Definition 3 (Miranda & Montes, 2023) A coherent lower probability P on P(X ) is called
maximally imprecise when P(A) < P(A) for every A 	= ∅,X .

While the existence of inner approximations in C2 or C∞ is trivial because any element
of the non-empty set M(P) is an inner approximation of P , the same does not apply to
particular subfamilies of C2, such as CLV.

Proposition 6 Let P be a coherent lower probability. There exists a linear vacuous model
PLV that inner approximates P if and only if P is maximally imprecise.
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Consider now a maximally imprecise coherent lower probability P , and let PLV be an
inner approximation in CLV given by P0 and δ. Their BV-distance is

dBV(P, PLV) =
∑
A⊆X

|PLV(A) − P(A)| =
∑
A⊂X

PLV(A) −
∑
A⊂X

P(A)

=
∑
A⊂X

(1 − δ)P0(A) −
∑
A⊂X

P(A) = (1 − δ)
∑
A⊂X

P0(A) −
∑
A⊂X

P(A), (4)

using that P(A) ∈ (0, 1) for every A 	= ∅,X and that PLV is an inner approximation of P .
Since

∑
A⊂X P0(A) is constant for every probability measure P0, this distance is minimised

when (1 − δ) is minimised or, equivalently, when δ is maximised. With this idea in mind,
we give an example showing that there may be more than one inner approximation in CLV
minimising the BV-distance:

Example 4 Consider a three-element possibility space X = {x1, x2, x3} and the coherent
lower probability P given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P(A) 0.2 0.05 0.1 0.4 0.4 0.5

P1
LV(A) 0.2 0.2 0.3 0.4 0.5 0.5

P2
LV(A) 0.2 0.3 0.2 0.5 0.4 0.5

It is coherent because it is the lower envelope of the probabilitymass functions (0.2, 0.2, 0.6),
(0.2, 0.6, 0.2), (0.35, 0.05, 0.6), (0.5, 0.05, 0.45), (0.3, 0.6, 0.1) and (0.5, 0.4, 0.1). Any
inner approximation PLV of P in CLV defined by (P0, δ) satisfies

0.7 = 0.5 + 0.2 = P({x1}) + P({x2, x3}) ≤ PLV({x1}) + PLV({x2, x3})
= (1 − δ)P0({x1}) + (1 − δ)P0({x2, x3}) = 1 − δ,

whence δ ≤ 0.3. Consider now P1
LV = (2/7, 2/7, 3/7) and P2

LV = (2/7, 3/7, 2/7). Together with
δ = 0.3, they give rise to P1

LV and P2
LV in the table above, which are then two different

elements of CLV minimising the BV-distance. �

We look then for the largest δ > 0 such that there is some probability measure P0 such
that (1− δ)P0(A) ≥ P(A), or equivalently, P0(A) ≥ P(A)

1−δ
for any A ⊂ X . Thus, if for some

fixed δ ∈ (0, 1) we define Qδ
LV

as

Qδ

LV
(A) = P(A)

1 − δ
if A 	= X , and Qδ

LV
(X ) = 1 (5)

it is equivalent to look for the largest δ such that M(Qδ
LV

) 	= ∅, i.e., the largest δ such that

Qδ
LV

avoids sure loss. Consider the following set:

�LV =
{
δ ∈ (0, 1) | M(

Qδ

LV

) 	= ∅
}

. (6)

�LV contains all the distortion parameters for which it is possible to find a linear vacuous
model inner approximating P . Proposition 6 tells us that �LV is non-empty if and only if P
is maximally imprecise. �LV is also a directed set:

δ1 < δ2 ⇒ 1 − δ1 > 1 − δ2 ⇒ 1

1 − δ1
<

1

1 − δ2
⇒ Qδ1

LV
(A) < Qδ2

LV
(A)

for any A 	= ∅,X , meaning that M(
Qδ1

LV

) ⊃ M(
Qδ2

LV

)
. Our next result shows that �LV has

a maximum.
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Proposition 7 Let P be a maximally imprecise coherent lower probability. Then, the set �LV

defined in Eq. (6) has a maximum value δLV.

It follows from Eq. (4) that any P0 ∈ M(
QδLV

LV

)
determines a LV model that is a non-

dominating inner approximation of P in CLV.
Let us establish a more manageable expression for δLV, borrowing some notation from

Miranda and Montes (2023). Let

A(X ) =
{
A = (Ai )i=1,...,k for some k ∈ N | ∃βA ∈ N :

k∑
i=1

IAi = βA

}
(7)

be the class of all finite families of subsets of X such that every x ∈ X belongs to the same
number of elements in the family.

Theorem 8 Let P be a maximally imprecise coherent lower probability. Then:

δLV = min
A∈A(X )

(
1 − 1

βA

∑
A∈A

P(A)

)
. (8)

Next we prove that, under the assumption of 2-monotonicity, the expression above can be
simplified. Let A

∗(X ) denote the set of partitions of X .

Theorem 9 Let P be a maximally imprecise 2-monotone lower probability with conjugate
P. Then:

δLV = min
A∈A∗(X )

(
1 −

∑
A∈A

P(A),

∑
A∈A P(A) − 1

|A| − 1

)
. (9)

Example 5 Let us continue with Example 4. There, we have shown that δLV = 0.3. Since
the lower probability P in that example is defined in a 3-element possibility space, it is also
2-monotone (Walley , 1981). Hence, δLV can be obtained using Theorem 9:

A ∈ A
∗(X ) 1 −∑A∈A P(A) 1

|A|−1

(∑
A∈A P(A) − 1

)

{x1}, {x2}, {x3} 1–0.2–0.05–0.1 = 0.65 0.7/2 = 0.35
{x1}, {x2, x3} 1–0.2–0.5 = 0.3 0.3/1 = 0.3
{x2}, {x1, x3} 1–0.05–0.4 = 0.55 0.55/1 = 0.55
{x3}, {x1, x2} 1–0.1–0.4 = 0.5 0.5/1 = 0.5

The minimum value is 0.3 (attained with the partition {x1}, {x2, x3}), the same value we
obtained in Example 4. �

Theorem 9 and Proposition 5 provide a simple procedure to determine a non-dominating
linear vacuous model inner approximating P: we first obtain a 2-monotone non-dominating
inner approximation Q of P minimising the BV-distance (following the linear programming
approach described in Sect. 3.2), and then apply Theorem 9 to Q. This procedure is illustrated
in Fig. 1.
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Fig. 1 Graphical description of the procedure for obtaining a non-dominating inner approximation in CLV

4.2 Pari mutuel model

The second distortion model we consider is the pari mutuel model. Given a probability
measure P0 and a distortion parameter δ > 0, the pari mutuel model is defined as the
coherent lower probability:

PPMM(A) = max{(1 + δ)P0(A) − δ, 0} ∀A ⊆ X
with conjugate coherent upper probability PPMM(A) = min{(1+δ)P0(A), 1} for any A ⊆ X .
InMontes et al. (2018, Prop. 7), we proved that any coherent lower probability P has a unique
undominated outer approximation in CPMM which is given by:

δ =
n∑

i=1

P({xi }) − 1, P0({xi }) = P({xi })
1 + δ

∀i = 1, . . . , n.

With respect to the inner approximations, we next show that a coherent lower probability
P has an inner approximation in CPMM exactly under the same conditions as we saw in
Proposition 6.

Proposition 10 Let P be a coherent lower probability. There exists a pari mutuel model
PPMM that inner approximates P if and only if P is maximally imprecise.

Now, if PPMM is an inner approximation of P determined by (P0, δ) and with conjugate
PPMM, it holds that:

dBV(P,PPMM) =
∑
A⊆X

|PPMM(A) − P(A)| =
∑
A⊆X

|P(A) − PPMM(A)|

=
∑
A⊂X

P(A) −
∑
A⊂X

PPMM(A) =
∑
A⊂X

P(A) − (1 + δ)
∑
A⊂X

P0(A),

where the fourth equality follows from the assumption P(A) ∈ (0, 1) for every A 	= ∅,X
we are making throughout this section, which implies P(A) < 1, and since PPMM is an inner
approximation, PPMM(A) ≤ P(A) < 1 whenever A 	= X , hence PPMM(A) = (1+δ)P0(A)

for A 	= X .
Since

∑
A⊂X P0(A) is constant for every probability measure P0, the distance is min-

imised when (1 + δ) is maximised or, equivalently, when the distortion parameter δ is
maximised. Therefore, we should look for the largest δ such that there is a probability mea-

sure P0 satisfying (1 + δ)P0(A) ≤ P(A) or equivalently P0(A) ≤ P(A)
1+δ

for any A ⊆ X .

This leads us to define, for some fixed δ > 0, Q
δ

PMM as

Q
δ

PMM = P(A)

1 + δ
if A 	= X and Q

δ

PMM(X ) = 1, (10)

being Qδ
PMM

its conjugate lower probability. It follows that there is a PMM determined by

(P0, δ) inner approximating P if and only if the upper probability Q
δ

PMM in Eq. (10) avoids
sure loss.
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Wealso deduce that if there exists a PMM PPMM definedby (P0, δ) inner approximating P ,
then for any δ′ < δ there exists another PMMwith distortion parameter δ′ inner approximating
P as well. In other words, the set

�PMM =
{
δ ∈ (0, 1) | M(

Qδ

PMM

) 	= ∅
}

, (11)

is directed. It is not difficult to prove that it has a maximum.

Proposition 11 Let P be a maximally imprecise coherent lower probability. Then, the set
�PMM defined in Eq. (11) has a maximum value δPMM.

On the other hand, for any P0 ∈ M(
QδPMM

PMM

)
, the PMM determined by (P0, δPMM) is a

non-dominating inner approximation of P . This indicates that there may be more than one
inner approximation in CPMM minimising the BV-distance. The following example illustrates
this fact:

Example 6 Consider the same coherent lower probability as in Example 4. The coherent
lower probabilities Q1

PMM
and Q2

PMM
with conjugates given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}

Q
1
PMM(A) 0.5 0.4 0.4 0.9 0.9 0.8

Q
2
PMM(A) 0.5 0.35 0.45 0.85 0.95 0.8

are two different non-dominating inner approximations in CPMM that minimise the BV-

distance: Q
1
PMM is determined by P1

PMM = (0.5/1.3, 0.4/1.3, 0.4/1.3) and δ1 = 0.3, while Q
2
PMM

is determined by P2
PMM = (0.5/1.3, 0.35/1.3, 0.45/1.3) and δ2 = 0.3. �

Let us give a more manageable expression of δPMM. Using the notation from Eq. (7), we
obtain the following result.

Theorem 12 Let P be a maximally imprecise coherent lower probability with conjugate P.
Then:

δPMM = min
A∈A(X )

(
1

βA

∑
A∈A

P(A) − 1

)
. (12)

When P is 2-monotone, Eq. (12) can be simplified further.

Theorem 13 Let P be a maximally imprecise 2-monotone lower probability with conjugate
P. Then:

δPMM = min
A∈A∗(X )

(∑
A∈A

P(A) − 1,
1 −∑A∈A P(A)

|A| − 1

)
. (13)

As for the LV model, Theorem 13 together with Proposition 5 gives a simple procedure
for computing the value δPMM; it suffices to first inner approximate P by a 2-monotone lower
probability Q and then apply Eq. (13) to Q and its conjugate Q. This procedure is illustrated
in Fig. 2.

Example 7 Let us continue with Example 4. Since P is 2-monotone, the value δPMM can be
obtained by means of the computations in the following table:
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Fig. 2 Graphical description of the procedure for obtaining a non-dominating inner approximation in CPMM

A ∈ A
∗(X )

∑
A∈A P(A) − 1 1

|A|−1

(
1 −∑A∈A P(A)

)

{x1}, {x2}, {x3} 0.5+0.6+0.6–1=0.7 1/2(1–0.2–0.05–0.1)=0.325
{x1}, {x2, x3} 0.5+0.8–1=0.3 1–0.2–0.5=0.3
{x2}, {x1, x3} 0.6+0.95–1=0.55 1–0.05–0.4=0.55
{x3}, {x1, x2} 0.6+0.9–1=0.5 1–0.1–0.4=0.5

Thus, aswe have already seen in Example 6, δPMM = 0.3. Two different inner approximations
in CPMM associated with this value have been given in Example 6. �

4.3 Total variationmodel

The third and last distortionmodelwe consider is the total variationmodel.Given a probability
measure P0 and a distortion parameter δ ∈ (0, 1), the total variation model is defined by the
following coherent lower probability:

PTV(A) = max{P0(A) − δ, 0} if A 	= X and PTV(X ) = 1,

with conjugate coherent upper probability PTV(A) = min{P0(A)+ δ, 1} for any A 	= ∅. We
showed in Destercke et al. (2022) that a coherent lower probability does not have a unique
outer approximation in CTV. With respect to the inner approximations, we prove next that
there exists an inner approximation under the same conditions as for CLV and CPMM.

Proposition 14 Let P be a coherent lower probability. There exists a total variation model
PTV that inner approximates P if and only if P is maximally imprecise.

For any TVmodel PTV induced by P0 and δ that inner approximates P , their BV-distance
is given by:

dBV(P, PTV) =
∑
A⊆X

|PTV(A) − P(A)| =
∑

A 	=∅,X
|(P0(A) − δ) − P(A)| =

∑
A 	=∅,X

(P0(A) − δ) −
∑

A 	=∅,X
P(A) =

∑
A 	=∅,X

P0(A) −
∑

A 	=∅,X
P(A) − δ

(
2n − 2

)
,

where the second equality follows from our assumption P(A) ∈ (0, 1) for any A 	= ∅,X ,
which implies that PTV(A) ≥ P(A) > 0 for any A 	= ∅ because it is an inner approximation.
Hence the BV-distance is minimised when δ is maximised.

In order to find a TV inner approximation of P , we need to determine the existence of a
probability measure P0 such that P0(A) − δ ≥ P(A) for any A 	= ∅,X , which implies that
P0(A) ≥ P(A) + δ for every A 	= ∅,X . This is equivalent to showing that

Qδ

TV
(A) =

⎧⎪⎨
⎪⎩

0, if A = ∅,

P(A) + δ, if A 	= ∅,X ,

1, if A = X ,
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is a lower probability that avoids sure loss, i.e., satisfying M(
Qδ

TV

) 	= ∅. As we did for the
LV and PMM models, we define the set

�TV =
{
δ ∈ (0, 1) | M(

Qδ

TV

) 	= ∅
}

. (14)

It is immediate that this is a directed set (δ1 ∈ �TV implies that δ2 ∈ �TV for any δ2 < δ1).
It is also easy to prove that it has a maximum:

Proposition 15 Let P be a maximally imprecise coherent lower probability. Then, the set
�TV defined in Eq. (14) has a maximum value δTV.

Given the value δTV, any P0 ∈ M(
QδTV

TV

)
determines a non-dominating total variation model

that inner approximates P and minimises the BV-distance.
On the other hand, the value δTV can be rewritten as follows:

δTV = max
{
δ ∈ (0, 1) | M(

Qδ

TV

) 	= ∅}

= max
{
δ ∈ (0, 1) | ∃P0 ∈ P(X ) s.t. P0(A) − δ ≥ Qδ

TV
(A) ∀A 	= ∅,X}

= max
{
δ ∈ (0, 1) | ∃P0 ∈ P(X ) s.t. Bδ

TV(P0) ⊆ M(
Qδ

TV

)}
. (15)

Therefore, when P(A) ∈ (0, 1) for every A 	= ∅,X , it coincides with what we called in
Miranda and Montes (2023) the incenter radius,1 (with respect to the TV distance) of the
credal setM(P). Moreover, the probability measures P0 such that BδTV

TV (P0) ⊆ M(P) were
called incenters of the credal set.

Hence, looking for the inner approximations of a coherent lower probability in CTV min-
imising the BV-distance is equivalent to looking for the incenter radius and the set of incenters
(with respect to the TV distance). The results in Miranda and Montes (2023) provide then a
simple formula for δTV.

Theorem 16 (Miranda & Montes, 2023, Thms. 4 and 5) Let P be a maximally imprecise
coherent lower probability with conjugate P. Then

δTV = min
A∈A(X )

1

|A|

(
βA −

∑
A∈A

P(A)

)
. (16)

If in addition P is 2-monotone, then

δTV = min
A∈A∗(X )

1

|A|

{
1 −

∑
A∈A

P(A),
∑
A∈A

P(A) − 1

}
. (17)

With this result, we obtain a simple procedure for computing a TV inner approximation:
we first inner approximate the coherent lower probability P by means of a 2-monotone Q
(using the procedures described in Sect. 3); next compute the value δTV using Eq. (17); and
finally take any P0 ∈ M(

QδTV
TV

)
. These determine a TV model that inner approximates P .

This procedure is graphically illustrated in Fig. 3.

1 The definition of incenter radius given inMiranda andMontes (2023) is slightly different; however, as argued
in Miranda and Montes (2023, Sec. 3.3) when P(A) ∈ (0, 1) for any A 	= ∅,X , the definition coincides with
Eq. (15).
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Fig. 3 Graphical description of the procedure for obtaining a non-dominating inner approximation in CTV

Example 8 Consider again our running Example 4. Using Eq. (17), we obtain:

A ∈ A
∗(X ) 1

|A|
(
1 −∑A∈A P(A)

) 1
|A|
(∑

A∈A P(A) − 1
)

{x1}, {x2}, {x3} (1−0.2−0.05−0.1)/3 = 0.65/3 0.5+0.6+0.6/3 = 0.7/3
{x1}, {x2, x3} (1−0.2−0.5)/2 = 0.15 0.5+0.8−1/2 = 0.15
{x2}, {x1, x3} (1−0.05−0.4)/2 = 0.275 (0.6+0.95−1)/2 = 0.275
{x3}, {x1, x2} (1−0.1−0.4)/2 = 0.25 (0.6+0.9−1)/2 = 0.25

Thus, the value δTV is given by 0.15. �

4.4 Inner approximations and incenters of credal sets

The last subsection shows that computing an inner approximation of a coherent lower prob-
ability in CTV is related to the computation of an incenter with respect to the TV-distance.
This leads us to investigate the connection of the inner approximations in CLV and CPMM with
the concept of incenter.

Recalling that throughout this section we are assuming that P(A) ∈ (0, 1) for any A 	=
∅,X , we define

δLV = max
{
δ ∈ (0, 1) | ∃P0 ∈ P(X ) such that Bδ

LV(P0) ⊆ M(
P
)}

.

δPMM = max
{
δ ∈ (0, 1) | ∃P0 ∈ P(X ) such that Bδ

PMM(P0) ⊆ M(
P
)}

.

Here, Bδ
LV(P0) (resp., Bδ

PMM(P0)) denotes the credal set associated with the LV (resp.,
P M M) distortion model determined by P0 and δ.

Definition 4 Given a coherent lower probability P satisfying P(A) ∈ (0, 1) for any A 	=
∅,X , δLV and δPMM are called incenter radius with respect to the LV or PMM model,
respectively. Moreover, any P0 such that BδLV

LV (P0) ⊆ M(P) (respectively, BδPMM
PMM (P0) ⊆

M(P)) is called incenter with respect to the LV (resp., PMM) model.

Example 9 Let us continue with our running Example 4. As we have argued in Examples 4,
6 and 8, the LV, PMM and TV incenters radii are δLV = δPMM = 0.3 and δTV = 0.15.
In addition, it can be easily seen that the LV incenters are P1

LV = (2/7, 2/7, 3/7) and
P2
LV = (2/7, 3/7, 2/7), as well as their convex combinations. With respect to the PMM,

the incenters are P1
PMM = (5/13, 4/13, 4/13) and P2

PMM = (5/13, 3.5/13, 4.5/13) as well as
their convex combinations. And finally, with respect to the TV-distance, the incenters are
P1
TV = (0.35, 0.2, 0.45), P2

TV = (0.35, 0.4, 0.25) and their convex combinations. Figure4
shows a graphical representation of some of the incenters with respect to the LV (left), PMM
(center) and TV (right). �

We next investigate the connection between these three radii:

Proposition 17 In the conditions of Definition 4, it holds that δTV ≤ min{δLV, δPMM}.
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Fig. 4 Graphical representation of the incenters in Example 9

It follows from the running example that the inequality may be strict: δLV = δPMM = 0.3 >

δTV = 0.15.
Moreover, δLV and δPMM may not coincide.

Example 10 Consider the following coherent lower probabilities P1 and P2 with conjugate
P1 and P2, respectively:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
[
P1(A), P1(A)

]
[0.1,0.4] [0.25,0.5] [0.3,0.5] [0.5,0.7] [0.5,0.75] [0.6,0.9][

P2(A), P2(A)
]

[0.1,0.4] [0.2,0.4] [0.3,0.5] [0.5,0.7] [0.6,0.8] [0.6,0.9]

Since both P1, P2 are 2-monotone, we can apply Theorems 9 and 13, obtaining that in the
case of P1, δLV = 0.2 > 0.175 = δPMM, while for P2 we obtain δLV = 0.15 < 0.2 = δPMM.
On the other hand, by Theorem 16 it is δTV = 0.1 in both cases. This shows that (i) δLV, δPMM

do not coincide in general; (ii) there is not a dominance relationship between them; and (iii)
δTV, δLV, δPMM may all be different. �

We conclude this section by showing that the set of non-dominating inner approximations
by a distortion model may strictly include those that minimise the BV-distance; in other
words, there may be non-dominating inner approximations in CLV, CPMM and CTV with a
parameter smaller than δLV, δPMM and δTV, respectively. However, it is those attaining these
largest values that allow to make a connection with the notion of incenter.

Example 11 Considering again our running Example 4, we can easily check that:

• The LV model induced by P0 = (3/8, 1/2, 1/8) and δ = 0.2 is a non-dominating inner
approximation in CLV.

• The PMM determined by P0 = (7/23, 4/23, 12/23) and δ = 0.15 is a non-dominating inner
approximation in CPMM.

• TheTVmodel associatedwith P0 = (0.3, 0.5, 0.2) and δ = 0.1defines a non-dominating
inner approximation in CTV.

In all the cases, the parameter δ is smaller than δLV, δPMM and δTV, respectively. �

5 Decisionmaking with inner and outer approximations

In this section we explain how inner and outer approximations can be used to obtain the
optimal alternatives in decisionmaking problemswhere the uncertainty ismodelled bymeans
of coherent lower probabilities.
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Consider thus a finite set of alternatives D. For each d ∈ D, we assume that its utility
depends on the outcome of an experiment taking values on X , and we identify d with a
variable Jd : X → R. We aim at finding the optimal alternative(s) among those that are
Pareto optimal:

opt≥ = {d ∈ D | �e ∈ D such that Je � Jd}.

As we mentioned in the introduction, the expected utility paradigm has been extended in
a number of ways to be able to deal with scenarios of imprecision or ambiguity about the
probability measure that models the uncertainty. More specifically, we shall consider in this
section five of these generalisations (we refer to Troffaes (2007) for a survey): �-maximin,
�-maximax,maximality, interval dominance or E-admissibility.We analyse, for each of these
criteria, whether there is a connection between the set of optimal alternatives under P , and
under an inner or outer approximation, Q

in
, Q

ou
.

Since these generalisations consider the lower and upper expectations of the different alter-
natives, we must recall here some basic facts from the theory of lower and upper previsions
(Walley, 1991). Within this theory, any (bounded) mapping f : X → R is called a gamble,
and the set of all gambles on X is denoted L(X ). A lower prevision is a functional P defined
on some subset K of L(X ); its conjugate upper prevision is given by P( f ) = −P(− f )

for every f ∈ −K := {−g | g ∈ K}. In particular, given a probability measure P on X ,
its expectation operator P : L(X ) → R given by P( f ) = ∑

x∈X f (x)P({x}) is called a
coherent prevision (de Finetti, 1974–1975).

A lower prevision onL(X ) is called coherent if and only if there exists a closed and convex
set M of coherent previsions such that P( f ) = min{P( f ) | P ∈ M}; similarly, an upper
prevision P is called coherent when P( f ) = max{P( f ) | P ∈ M} for every f ∈ L(X )

for some closed and convex set of coherent previsions M. In particular, a coherent lower
probability P with associated credal set M(P) can be used to define a coherent lower and
upper prevision: these are called the natural extension of P to L(X ), and for any gamble
f : X → R, they are given by:

P( f ) := min{P( f ) | P ∈ M(P)}, P( f ) := max{P( f ) | P ∈ M(P)}. (18)

5.1 0-maximin

This criterion selects as optimal alternatives those maximising the lower prevision:

optP (D) =
{

d ∈ opt≥ | P(Jd) = max
e∈D

P(Je)

}
.

For this criterion, there is not an inclusion relationship between the optimal alternatives for
P , Q

in
and Q

ou
, as we show in the next example.

Example 12 Consider the possibility spaceX = {x1, x2, x3, x4}, the coherent lower probabil-
ity P , its undominated outer approximation Q

ou
and its non-dominating inner approximation

Q
in

in C2 minimising the BV-distance given by:
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A P(A) Qin(A) Qou(A) A P(A) Qin(A) Qou(A)

{x1} 0.1 0.1 0.1 {x2, x3} 0.3 0.3 0.2
{x2} 0 0.1 0 {x2, x4} 0.4 0.4 0.4
{x3} 0 0.1 0 {x3, x4} 0.4 0.4 0.4
{x4} 0.3 0.3 0.3 {x1, x2, x3} 0.5 0.5 0.5
{x1, x2} 0.1 0.2 0.1 {x1, x2, x4} 0.6 0.7 0.6
{x1, x3} 0.3 0.3 0.3 {x1, x3, x4} 0.7 0.8 0.7
{x1, x4} 0.6 0.6 0.5 {x2, x3, x4} 0.6 0.6 0.6

Consider the set of alternatives D = {d1, d2, d3} whose utilities, as well as their lower
previsions determined by P , Q

in
and Q

ou
using natural extension, are given by:

x1 x2 x3 x4 P(Ji ) Qin(Ji ) Qou(Ji )

J1 3 2 −9/10 3 1.44 1.73 1.34
J2 2 3 2/3 2 1.46 1.7 1.46
J3 4 −2 −2 4 1.6 1.6 1

We obtain that optP (D) = {d3}, optQ
in
(D) = {d1} and optQ

ou
(D) = {d2}, so the three

coherent lower probabilities give different results. �

5.2 0-maximax

This criterion selects as optimal alternatives those maximising the upper prevision:

optP (D) =
{

d ∈ opt≥ | P(Jd) = max
e∈D

P(Je)

}
;

it can be seen as the dual of the �-maximin. Not surprisingly, for this criterion there is not a
connection between optP (D), optQin

(D) and optQou
(D) either.

Example 13 Consider the setting in Example 12 and the set of alternatives D = {d2, d4, d5},
where d2 comes from Example 12, and d4, d5 are defined by:

x1 x2 x3 x4

J4 −1 −1 2.7 2.7
J5 3 −2 −2 4

The upper previsions of the three alternatives for P , Qin and Qou are given by:

J2 J4 J5

P(Ji ) 2.3 2.33 2
Qin(Ji ) 2.06 1.96 2
Qou(Ji ) 2.3 2.33 2.5

We observe that optP (D) = {d4}, optQin
(D) = {d2} and optQou

(D) = {d5}, whence the
three models give different solutions. �

5.3 Maximality

According to maximality, the optimal alternatives are those d satisfying P(Je − Jd) ≤ 0 for
any other alternative e ∈ D:

123



Annals of Operations Research

opt>P
= {d ∈ opt≥ | P(Je − Jd) ≤ 0 ∀e ∈ D

}
.

We obtain the following result:

Proposition 18 Let P and Q be two coherent lower probabilities such that P ≤ Q. Then
opt>P

⊇ opt>Q
.

Then, if Q
in

and Q
ou

are inner and outer approximations of P , it holds that opt>Qin
⊇

opt>P
⊇ opt>Qin

. The above inclusions may be strict:

Example 14 Consider the same setting as in Examples 12, 13, and the set of alternatives
D = {d1, d2, d6}, where d1, d2 were given in Example 12 and d6 is:

x1 x2 x3 x4

J6 0 2 3.5 0

The following table gives the values of P , Q
in

and Q
ou

for the differences between the
gambles:

J2 − J1 J6 − J1 J1 − J2 J6 − J2 J1 − J6 J2 − J6

P(Ji − J j ) −0.4 −2.1 −0.026 −1.7 0.04 0.06
Qin(Ji − J j ) −0.343 −1.66 0.03 −1.316 0.48 0.45
Qou(Ji − J j ) −0.6 −2.4 −0.226 −1.8 −0.26 −0.03

We conclude that opt>Qin
= {d1}, opt>P

= {d1, d2} and opt>Qou
= {d1, d2, d6}, and as a

consequence the inclusions between these sets are strict. �

5.4 Interval dominance

This criterion computes [P(Jd), P(Jd)] for each alternative d in D, and compares these
intervals, giving rise to the following optimal alternatives:

opt�P
= {d ∈ opt≥ | P(Jd) ≥ P(Je) ∀e ∈ opt≥

}
.

We obtain the following relationships:

Proposition 19 Let P and Q be two coherent lower probabilities such that P ≤ Q. Then
opt�P

⊇ opt�Q
.

This implies that opt�Qin
⊇ opt�P

⊇ opt�Qou
, and as we show in our next example, the

inclusions may be strict.

Example 15 Consider again the same setting as in Examples 12, 13 and 14. Consider also the
set of alternatives D = {d1, d6, d7}, where d1 was defined in Example 12, d6 was defined in
Example 14 and d7 is given by:
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x1 x2 x3 x4

J7 3 3.5 −1 −1

We obtain that:

J1 J6 J7
[
P(Ji ), P(Ji )

]
[1.44, 2.7] [0.6, 1.4] [− 0.6, 1.55][

Qin(Ji ), Qin(Ji )
]

[1.73, 2.41] [0.75, 1.25] [−0.15, 1.5][
Qou(Ji ), Qou(Ji )

]
[1.34 , 2.8] [0.4, 1.6] [−0.6, 1.55]

Hence, we obtain the following sets of optimal alternatives: opt�Qin
= {d1}, opt�P

=
{d1, d7}, and opt�Qou

= {d1, d6, d7}, and therefore the inclusions are strict. �

5.5 E-admissibility

According to E-admissibility, we choose those alternatives that maximise the expected utility
for at least one element of the credal set M(P):

optM(P) = {d ∈ opt≥ | ∃P ∈ M(P) such that EP (Je) ≤ EP (Jd) ∀e ∈ opt≥
}
.

We next prove the following connection with respect to E-admissibility.

Proposition 20 Let P and Q be two coherent lower previsions such that P ≤ Q. Then
optM(Q) ⊆ optM(P).

From this result we deduce that optM(Q
in

) ⊆ optM(P) ⊆ optM(Q
ou

).

Example 16 Let us continue with Examples 12–15. If we consider the set of alternatives
D = {d1, d5, d8}, where d8 is given by

x1 x2 x3 x4

J8 0.95 1.6 1.8 1

we obtain that optM(Q
in

) = {d1}, optM(P) = {d1, d5} and optM(Q
ou

) = {d1, d5, d8}, show-
ing that the inclusions are strict. �

5.6 Comparison between the decisions

Nextwemake a comparison between the optimal alternativeswithin a set D whenwe consider
the initial coherent lower probability P and a 2-monotone inner approximation Q, taking into
account the distance dBV(P, Q), and under any of the criteria considered previously in this
section. In this respect, a first comment is that we may assume without loss of generality that
for any alternative d its associated gamble is bounded between 0 and 1. Indeed, it follows by
coherence that for any a > 0, b ∈ R and any gamble f , it holds that P(a f +b) = a P( f )+b
and P(a f + b) = a P( f ) + b. As a consequence, given two gambles f , g, a 	= 0, b ∈ R

and a coherent lower prevision P , we obtain that:
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• P( f ) ≥ P(g) ⇔ P(a f + b) ≥ P(ag + b);
• P( f ) ≥ P(g) ⇔ P(a f + b) ≥ P(ag + b);
• P( f − g) ≤ 0 ⇔ P((a f + b) − (ag + b)) ≤ 0;
• P( f ) ≥ P(g) ⇔ P(a f + b) ≥ P(ag + b).

This implies that the set of optimal decisions is invariant under affine transformations of the
gambles associated with the alternatives. It is not difficult to establish the following2:

Proposition 21 Let P be a coherent lower probability and let Q be an inner approximation
in C2. We use the same notation P and Q to denote the natural extension to gambles defined
in Eq. (18). If f is a gamble taking values in [0, 1], then:

dBV(P, Q) ≤ δ ⇒ |P( f ) − Q( f )| ≤ δ.

As a consequence, we deduce that, if dBV(P, Q) ≤ δ, then:

• P( f ) − P(g) ≥ δ ⇒ Q( f ) − Q(g) ≥ 0.

• P( f ) − P(g) ≥ δ ⇒ Q( f ) − Q(g) ≥ 0.
• P( f − g) ≤ −δ ⇒ Q( f − g) ≤ 0.

• P( f ) − P(g) ≥ 2δ ⇒ Q( f ) − Q(g) ≥ 0.

These implications relate the optimal alternatives under�-maximin,�-maximax,maximality
and interval dominance for the original and transformed models.

6 Illustration in a decision problem under severe uncertainty

After showing how inner and outer approximations can be used in decisionmaking problems,
we illustrate its applicability in a real world toy example, following the terminology in Jansen
et al. (2018, Sec. 5). For this aim, we first summarise the context from Jansen et al. (2018).

6.1 Decisionmaking under severe uncertainty: setup

Given a non-empty set of alternatives A, and two preorders R1 ⊆ A × A and R2 ⊆ R1 × R1

on A and R1, respectively, the triple A = [A, R1, R2] is called a preference system in A. R1

and R2 are interpreted as follows: (a, b) ∈ R1 means that a is at least as preferable as b, while
((a, b), (c, d)) ∈ R2 means that exchanging b with a is at least as desirable as exchanging d
with c.

Associated with R1 and R2 we can consider the indifference and strict preference relations
IR1 , IR2 and PR1 , PR2 . Using them we can establish when the preference systems satisfies
some sort of rationality.

Definition 5 (Jansen et al., 2018, Def. 2,3) Let A = [A, R1, R2] be a preference systems.
A is consistent if there exists a function u : A → [0, 1] such that for any a, b, c, d ∈ A the
following properties hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b), with equality if and only if (a, b) ∈ IR1 .
ii) If ((a, b), (c, d)) ∈ R2, then u(a) − u(b) ≥ u(c) − u(d), with equality if and only if

((a, b)(c, d)) ∈ IR2 .

2 A similar conclusion is obtained if instead of using dBV to compare P and its transformation Q weconsidered
the TV-distance: it is easy to establish that maxA⊆X |P(A) − Q(A)| = max f :0≤ f ≤1 |P( f ) − Q( f )| when
Q is 2-monotone. We acknowledge Jasper de Bock for this remark.
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Each function u satisfying conditions (i) and (ii) above is said to weakly represent the prefer-
ence systemA, and the set of all these functions is denoted asUA. The subset ofUA formed by
the functionsu satisfying in addition infa∈A u(a) = 0 and supa∈A u(a) = 1 is denoted byNA.
Moreover, given δ ∈ (0, 1), N δ

A denotes the elements u ∈ NA satisfying u(a) − u(b) ≥ δ

for any (a, b) ∈ PR1 and u(a) − u(b) − u(c) + u(d) ≥ δ for any ((a, b)(c, d)) ∈ PR2 . N δ
A

is called the weak representation set of granularity at least δ.

The granularity δ can be seen as a control parameter, in the sense that a given value δ

guarantees that one decision is only considered preferred to another when the differences
between their utilities are above a predetermined threshold.

Definition 6 (Jansen et al., 2018, Def. 4) LetX be the states of the nature, A the consequences
and D = {X | X : X → A} the set of alternatives. Each G ⊆ D is called decision system.

Assuming that the uncertainty about the states of the nature is given by means of a coherent
lower prevision P with conjugate P , the natural approach to determine the optimal decision
is based in comparing the generalised interval expectation with granularity δ (Jansen et al.,
2018, Def.5), given by:

EDδ (X) =
[

inf
u∈N δ

A
P(u ◦ X), sup

u∈N δ
A

P(u ◦ X)
]

=
[

PDδ
(X), PDδ (X)

]
.

Then, the following criteria can be considered:

Dδ-maximin: G
δ

= {X ∈ G | ∀Y ∈ G it holds PDδ
(X) ≥ PDδ

(Y )
}
.

Dδ-maximax: Gδ = {X ∈ G | ∀Y ∈ G it holds PDδ (X) ≥ PDδ (Y )
}
.

A-admissibility: GA = {
X ∈ G | ∃u ∈ UA : ∀P ∈ M(P),∀Y ∈ G it holds EP (u ◦ X) ≥

EP (u ◦ Y )
}
.

The Dδ-maximin and Dδ-maximax criteria straightforwardly generalise �-maximin and �-
maximax from Sect. 5, while A-admissibility generalises E-admissibility. Computing the
generalised interval expectations or finding the A-admissible alternatives can be done by
solving linear programming problems, as shown in Jansen et al. (2018, Prop. 3,4). However,
this requires knowing the extreme points of the credal set, a task that simplifies considerably
under 2-monotonicity.

6.2 Example setup (Jansen et al., 2018)

Consider a decision maker that must choose among three job offers, J1, J2 and J3. Each
job offer has a salary and several additional benefits, B, which are: overtime premium (b1),
child care (b2), advanced training (b3), promotion prospects (b4) and flexible hours (b5).
Moreover, the salary and benefits depend on the economic situation for which we envisage
four scenarios:X = {x1, x2, x3, x4}. The situation is described in the following table (Jansen
et al., 2018, p.127):

x1 x2 x3 x4

J1 a1 = (5000,B) a2 = (2700, {b1, b2}) a3 = (2300, {b1, b2, b3}) a4 = (1000,∅)

J2 a5 = (3500, {b1, b5}) a6 = (2400, {b1, b2}) a7 = (1700, {b1, b2}) a8 = (2500, {b1})
J3 a9 = (3000, {b1, b2, b3}) a10 = (1000, {b1}) a11 = (2000, {b1})) a12 =

(3000, {b1, b4, b5})
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Assuming incomparability among the benefits, the information is summarised by a pref-
erence system A = [A, R1, R2], where (i) A = {a1, . . . , a12} are the consequences, where
each of them is a pair (y, B), where y ∈ R denotes the salary and B ⊆ B is the set of benefits;
(ii) R1 denotes a relation defined as:

R1 = {((y1, B1), (y2, B2)
) | y1 ≥ y2 ∧ B2 ⊆ B1

}
,

i.e., ai is preferred to a j with respect to R1 when the salary of ai is greater and all the benefits
of a j are also included in ai ; and (iii) R2 is the relation:

R2 =
{(

((y1, B1), (y2, B2)), ((y3, B3), (y4, B4))
) |

y1 − y2 ≥ y3 − y4 ∧ B2 ⊆ B4 ⊆ B3 ⊆ B1

}
.

In order to measure the uncertainty, the available information only allows to compare the
probability of occurrence of each scenario:

M(P) = {P ∈ P(X ) | P({x1}) ≥ P({x2}) ≥ P({x3}) ≥ P({x4})}.
Using the results in Miranda and Destercke (2015), the lower probability P associated with
this information is given in the following table:

A P(A) Qin Qou A P(A) Qin Qou

{x1} 1/4 7/24 1/4 {x2, x3} 0 0 0
{x2} 0 0 0 {x2, x4} 0 0 0
{x3} 0 0 0 {x3, x4} 0 0 0
{x4} 0 0 0 {x1, x2, x3} 3/4 3/4 3/4
{x1, x2} 1/2 1/2 1/2 {x1, x2, x4} 2/3 2/3 2/3
{x1, x3} 1/2 1/2 11/24 {x1, x3, x4} 1/2 13/24 1/2
{x1, x4} 1/3 1/3 7/24 {x2, x3, x4} 0 0 0

This lower probability is not 2-monotone, as it can be easily seen taking the events
A = {x1, x3} and B = {x1, x4}. Hence, we may take a 2-monotone non-dominating inner
approximation Q

in
and a 2-monotone undominated outer approximation Q

ou
. We consider

Q
in

and Q
ou

as we optimal solutions of the quadratic problem in Propositions 4 and 2,

respectively, that are at a BV-distance dBV (P, Q
in

) = 0.083 and dBV (P, Q
ou

) = 1.75.

6.3 Results

Applying Propositions 1 and 2 in Jansen et al. (2018), we obtain that the preference system
A = [A, R1, R2] is consistent, and that the maximum possible granularity degree3 is δ =
0.053. It can be easily seen that only the job offers J1 and J3 are A-admissible for the three
models: P , Q

in
and Q

ou
. The table shows the generalised interval expectations for different

granularities, all of them smaller than 0.053, for the three models:

3 In Jansen et al. (2018), the maximum granularity degree given is δ = 0.037, but we believe that there is
typo in the calculations. After a thorough analysis, we believe that in Jansen et al. (2018) it is considered that
((a9, a2), (a2, a6)) belongs to IR2 , which is incorrect, rather than to PR2 .
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δ = 0 δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

P EDδ (J1) [0.25, 1] [0.2925, 1] [0.335, 1] [0.3775, 1] [0.412, 1] [0.4625, 1]
EDδ (J2) [0, 1] [0.08, 0.93] [0.16, 0.86] [0.24, 0.79] [0.32, 0.72] [0.4, 0.65]
EDδ (J3) [0, 1] [0.056, 0.93] [0.113, 0.86] [0.17, 0.79] [0.226,0.72] [0.283, 0.65]

Q
in

EDδ (J1) [7/24, 1] [0.3304, 1] [0.3692, 1] [0.4079, 1] [0.4467, 1] [0.4854, 1]
EDδ (J2) [0, 1] [0.08, 0.93] [0.16, 0.86] [0.24, 0.79] [0.32, 0.72] [0.4, 0.65]
EDδ (J3) [0, 1] [0.0526, 0.93] [0.103, 0.86] [0.155, 0.79] [0.206,0.72] [0.2583, 0.65]

Q
ou

EDδ (J1) [0.25, 1] [0.2925, 1] [0.335, 1] [0.3775, 1] [0.412, 1] [0.4625, 1]
EDδ (J2) [0, 1] [0.078, 0.93] [0.156, 0.86] [0.235,0.79] [0.313, 0.72] [0.3916, 0.65]
EDδ (J3) [0, 1] [0.0475, 0.93] [0.095, 0.86] [0.1425, 0.79] [0.19,0.72] [0.23753, 0.65]

We obtain the same conclusion for the three models: since the lower and upper limits for
J1 are greater than those of J2 and J3, J1 is optimal with respect to Dδ-maximin and Dδ-
maximax. For a better visualisation, we graphically show these results in Figs. 5, 6 and 7 for
P , Q

in
and Q

ou
, respectively.

Fig. 5 Generalised interval expectation for different granularities with respect to the initial model P

Fig. 6 Generalised interval expectation for different granularities with respect to the non-dominating inner
approximation Qin
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Fig. 7 Generalised interval expectation for different granularitieswith respect to the undominatedouter approx-
imation Qou

6.4 Discussion

In this section we have presented a decision making problem to demonstrate that using
the initial coherent lower probability, which is not 2-monotone, a non-dominating inner
approximation Q

in
or undominated outer approximation Q

ou
yield the same results. One

of the reasons is that the approximations are “very close” to the initial model P , since for
instance in the case of the inner approximation we have dBV (P, Q

in
) = 0.083. This aligns

with our comments in Sect. 5.6: if the distance between the initial and transformed model is
small enough, there will not be much difference between the optimal decisions with the two
models.

In addition, the use of (inner or outer) has a number of benefits:

• First of all, following (Jansen et al., 2018, Props. 3,4,5), solving the decision making
problem requires the knowledge of the extreme points of the credal set. The computation
of the extreme points under the assumption of 2-monotonicity is a straightforward process
and can be achieved using the procedure described in Shapley (1971). On the other hand,
computing the extreme points of the credal set of an arbitrary coherent lower probability
is far from trivial: while the maximum number of extreme points of the credal set of a
coherent lower probability is upper bounded by |X |! (Derks & Kuipers, 2002; Wallner,
2007), their computation is not immediate except in some particular cases.

• Secondly, computing the generalised interval expectations requires solving a collection
of linear programming problems (Jansen et al., 2018, Prop. 3), as many as the number
of extreme points. In contrast, under the assumption of 2-monotonicity, these interval
expectations coincide with the Choquet integral (Choquet, 1953), as explained in Jansen
et al. (2018).

• Thirdly, some models of the imprecise probability theory induce credal sets with a non-
finite number of extreme points, as for example if the starting point are coherent lower
previsions (Walley, 1991). In that case, applying the procedure described in Jansen et al.
(2018) would not be possible. This issue could be overcome by considering the restriction
to events, which gives an outer approximation of the original model.

The spirit of these comments can be summarised by the following comment given in Jansen
et al. (2018, p. 119):
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Table 1 Properties to the inner and outer approximations in C2 and C∞
Property C2 C∞

Unique solution of the
linear

Outer approximation No (Montes et al.,
2018, Ex.1)

No (Montes et al.,
2019, Ex.1)

programming problem Inner approximation No (Ex. 2) No (Ex. 1)

P(A) = Q(A) for all A Outer approximation Yes (Montes et al.,
2018, Prop.2)

No (Montes et al.,
2019, Ex.4)

with cardinality 1 or n − 1 Inner approximation No (Ex. 1) No (Ex. 1)

The optimal solution of
the quadratic approach

Outer approximation No (Montes et al.,
2018, Ex.3)

No (Montes et al.,
2019, Ex.6)

is an optimal solution of
the linear approach

Inner approximation No (Ex. 1) No (Ex. 1)

“[This approach] …is ideal for situations where the number of extreme points is mod-
erate and where closed formulas for computing the extreme points are available. For
credal sets induced by 2-monotone lower/ 2-alternating upper probabilities such for-
mulas exist.”

7 Concluding remarks

7.1 Summary

The results in this paper show that it is possible to transform a coherent lower probability
into a more manageable model with a minimal loss of information. While in our previ-
ous studies we considered approximations not adding new information to our model (that
is, outer approximations), in this paper we have headed in the opposite direction and used
inner approximations, that are more informative than the original model. We have con-
sidered transformations into the class of 2- or completely monotone lower probabilities
(Sect. 3) and distortion models (Sect. 4). Our reasons for focusing on these models are that
(i) 2-monotone lower probabilities overcome some of the shortcomings of coherent lower
probabilities (Destercke, 2013) while being easier to handle; (ii) completely monotone lower
probabilities (or belief functions) are connected to Dempster-Shafer theory, and the approx-
imations by means of these model have proven to be quite powerful in statistical matching
(Petturiti & Vantaggi, 2022) or in the correction of incoherent beliefs (Petturiti & Vantaggi,
2022); and (iii) the inner approximations in terms of distortion models are linked with the
notion of incenter of a credal set, complementing in this way our analysis in Miranda and
Montes (2023) and showing a connection with coalitional game theory.

Table 1 summarises some features of inner and outer approximations in C2 and C∞.
We observe that the properties satisfied by the inner approximation are, in most cases,

similar to those of the outer approximations (Miranda et al., 2021;Montes et al., 2018, 2019).

7.2 Approximations of coherent lower probabilities in decisionmaking problems

As argued in some references such as Grabisch (2016), Jansen et al. (2018), Keith and
Ahner (2021), Troffaes (2007), decision making is an area where lower probabilities arise
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naturally due to the difficulty that entails at times the elicitation of the probability measure
that models the problem uncertainty. In Sect. 5 we have discussed how (inner and outer)
approximations can be used within this framework to ease the computations. Our motivation
is that the lack of 2-monotonicity hinders the computation of the optimal alternatives, because
it renders more difficult determining the natural extension of the coherent lower and upper
probabilities. We have shown that for some of the criteria (maximality, interval dominance
and E-admissibility) it is possible to establish a connection between the optimal alternatives
of the initial and transformed models, and that we can bound the error in terms of the BV-
distance between them. This establishes a kind of continuity property: if the transformed
model is close enough to the initial one, the change in the (lower or upper) expectations of
the alternatives shall be small as well, and this can be used in the estimation of the set of
optimal alternatives.

This has been exemplified in Sect. 6 where we have used inner and outer approximations
in a decision making problem where the preferences depend on both cardinal and ordinal
values and the uncertainty is given in terms of a set of probability measures. As we discussed
in Sect. 6.4, our approach simplifies computations due to the practical advantages of 2-
monotonicity.

7.3 Extension to infinite spaces

One critical assumption in this paper is that we are working with finite possibility spaces,
and the sharp reader may wonder about the extent to which our work can be applied when the
cardinality of X is infinite. While at a top level of generality the problem of approximating a
coherent lower probability by a 2-monotone one can still be formulated, a number of technical
difficulties are encountered quickly:

• One of the main advantages of using 2-monotone approximations on finite possibility
spaces is that their credal set has at most |X |! different extreme points and that they can
be easily obtained (Choquet, 1953). This is helpful because it makes computationally
easier to determine the optimal solutions of a decision problem under the main criteria
considered in the literature. If we move to infinite spaces, though, the number of extreme
points need not be finite, and the benefits of using 2-monotonicity dilute somewhat.

• The connection with incenters established in Sect. 4.4 relies on the assumption that all
proper subsets of the possibility space have strictly positive lower probability; thiswill not
hold if the possibility space is uncountable. In addition, for the geometric interpretation
we should first generalise the work in Miranda and Montes (2023).

• In order to determine the approximation that is “closest” to the original model, we have
used the distance proposed by Baroni and Vicig as well as the quadratic distance. The
expressions we have given for these distances are valid for the finite case only, and while
it is possible to give extensions to arbitrary possibility spaces, the computation of the
distance becomes more complex in that case.

• Related to the previous point, the computation of the (inner or outer) approximation
had led us to solve linear or quadratic problems, that can be done efficiently for finite
possibility spaces but becomes harder for arbitrary ones.

For all these reasons, we believe that extending our approach to infinite possibility spaces
will be challenging and may not yield results as satisfactory as those presented in this paper.

123



Annals of Operations Research

7.4 Future research

Besides the extension to non-finite possibility spaces mentioned in the previous paragraph, it
would be of interest to analyse the existence and computation of inner approximations in other
families of imprecise models, such as probability intervals, p-boxes or possibility measures.
For example, in this latter family it can be easily proved that an inner approximation exists
if and only if there is an element x ∈ X satisfying P({x}) = 1, and that in that case there is
a unique non-dominating inner approximation, given by Q(A) = maxx∈A P({x}).

It would be interesting as well to deepen in the comparison between the initial and the
transformed models, along the lines of Proposition 21. Finally, it would be interesting to
provide a geometric perspective on the transformations, along the lines of our comments in
Sect. 4.4.
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Appendix A. Proofs

Proof of Proposition 3 In all cases, the feasible region of the optimisation problem is non-
empty because any probability P ∈ M(P) is an inner approximation of P that belongs to
both C2 and C∞. From here, the result follows with a proof analogous to those of Montes et
al. (2018, Prop. 1, Sec. 5.1) and Montes et al. (2019, Prop. 2, Prop. 3). ��
Proof of Proposition 4 The proof is analogous to that of Miranda et al. (2021, Prop. 1). ��
Proof of Proposition 5 (i) First of all that Q ∈ C because C′ ⊆ C, and as a consequence it is

an inner approximation of P in C. If it is dominating, then there is some P ′ ∈ C such
that Q � P ′ ≥ P; moreover, we can assume without loss of generality that P ′ belongs
to C̃ia(P). Consequently, Q belongs to C̃′ia(P ′).

(ii) Similarly, if Q /∈ Cia
BV(P), then there exists P ′ ∈ Cia

BV(P) such that Q ≥ P ′ and then, by
construction, Q ∈ Cia

BV(P ′).
��

Lemma 22 A coherent lower probability on a finite possibility spaceX is maximally imprecise
if and only if there exists some P ∈ M(P) such that P(A) ∈ (P(A), P(A)) for every
A 	= ∅,X .
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Proof That the condition is sufficient is trivial. To see that it is also necessary, assume that
P is maximally imprecise. By coherence, for any A 	= ∅,X , there exist Q1

A, Q2
A ∈ M(P)

such that Q1
A(A) = P(A) and Q2

A(A) = P(A). Considering

P0 = 1

2(2n − 2)

∑
A 	=∅,X

(
Q1

A + Q2
A

)
,

we obtain a probability measure P0 that also belongs to M(P), because this set is convex,
and such that P(B) < P0(B) < P(B) for every B 	= ∅,X . ��
Proof of Proposition 6 To see that the condition is necessary, note that given an inner approx-
imation PLV of P Eq. (3) implies minA 	=∅,X {PLV(A)− PLV(A)} = δ > 0, hence a coherent
lower probability that is not maximally imprecise cannot have an inner approximation in CLV.

To see that the condition is also sufficient, let P0 be a probability measure satisfying
P(A) < P0(A) < P(A) for every A 	= ∅,X , existing by Lemma 22. Then

ε = min
A 	=∅,X

P0(A)

P(A)
> 1,

whence taking δ = 1 − 1/ε ∈ (0, 1), it holds that P0(A) ≥ P(A)
1−δ

for any A 	= ∅,X , and as a
consequence (1 − δ)P0(A) ≥ P(A) for every A 	= ∅,X . Hence, the LV model associated
with (P0, δ) is an inner approximation of P . ��
Lemma 23 Consider � ⊆ R and let (Q

δ
)δ∈� be a directed family of lower probabilities that

avoid sure loss. Then the intersection ∩δ∈�M(Q
δ
) is non-empty.

Proof SinceX is finite, the weak-* topology on the family of credal sets onX is equivalent to
the Euclidean topology on the sets of mass functions. Thus, we obtain that

(M(Q
δ
)
)
δ∈�

is a
directed family of non-empty compact sets.As a consequence, their intersection is non-empty.

��
Proof of Proposition 7 This follows applying Lemma 23 to (Qδ

LV
)δ∈�LV . ��

Proof of Theorem 8 Let δ ∈ (0, 1), and let Qδ
LV

be the lower probability defined in Eq. (5).
From Walley (1991), it avoids sure loss if and only if for every k ∈ N and A1, . . . , Ak ⊆ X ,
it holds that

sup
x∈X

(
k∑

i=1

IAi (x) −
k∑

i=1

Qδ

LV
(Ai )

)
≥ 0. (A.1)

Without loss of generality, we may assume that all the events A1, . . . , Ak are proper subsets
of X (IAi − Qδ

LV
(Ai ) would be constant on zero otherwise). Taking into account that X is

finite, Eq. (A.1) is equivalent to:

max
x∈X

k∑
i=1

IAi (x) − 1

1 − δ

k∑
i=1

P(Ai ) ≥ 0 ⇔ max
x∈X (1 − δ)

k∑
i=1

IAi (x) −
k∑

i=1

P(Ai ) ≥ 0

⇔ (∃x ∈ X )

(
(1 − δ)

k∑
i=1

IAi (x) −
k∑

i=1

P(Ai ) ≥ 0

)

⇔ (∃x ∈ ∪k
i=1Ai )

(
(1 − δ)

k∑
i=1

IAi (x) −
k∑

i=1

P(Ai ) ≥ 0

)
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⇔ (∃x ∈ ∪k
i=1Ai )

(
δ

k∑
i=1

IAi (x) ≤
k∑

i=1

IAi (x) −
k∑

i=1

P(Ai )

)

⇔ δ ≤ max
x∈∪k

i=1 Ai

∑k
i=1 IAi (x) −∑k

i=1 P(Ai )∑k
i=1 IAi (x)

,

where the third equivalence follows from the assumption P(Ai ) > 0 for every Ai 	= ∅. If
we consider now δLV, we deduce that for any family A1, . . . , Ak of proper subsets of X , it
must be

δLV ≤ max
x∈∪k

i=1 Ai

∑k
i=1 IAi (x) −∑k

i=1 P(Ai )∑k
i=1 IAi (x)

.

In fact, we can express it as

δLV = min
A1,...,Ak

max
x∈∪k

i=1 Ai

∑k
i=1 IAi (x) −∑k

i=1 P(Ai )∑k
i=1 IAi (x)

(A.2)

≤ min
A∈A(X )

max
x∈∪A∈AA

∑
A∈A IA(x) −∑A∈A P(A)∑

A∈A IA(x)
,

where the inequality follows because A(X ) contains finite families of subsets of X with the
additional constraint that the sum of their indicator functions is constant.

Let A1, . . . , Ak be a family where the minimum in Eq. (A.2) is attained, and take x∗ such
that

k∑
i=1

IAi (x∗) = max
x∈X

k∑
i=1

IAi (x).

Then:

δLV =
∑k

i=1 IAi (x∗) −∑k
i=1 P(Ai )∑k

i=1 IAi (x∗)
.

Complete now A1, . . . , Ak with B1, . . . , Bl so that

k∑
i=1

IAi (x) +
l∑

j=1

IB j (x) =
k∑

i=1

IAi (x∗) ∀x ∈ X .

To see that this can be done, simply observe that if we express

k∑
i=1

IAi = c1 IC1 + c2 IC2 + · · · + cm ICm

for
∑k

i=1 IAi (x∗) = c1 > c2 > · · · > cm = 0 and pairwise disjoint sets C1, . . . , Cm then
we can consider the family

{B1, . . . , Bl} := {C2, . . . , C2︸ ︷︷ ︸
c1−c2

, C3, . . . , C3︸ ︷︷ ︸
c1−c3

, . . . , Cm, . . . , Cm︸ ︷︷ ︸
c1

},

and then we obtain
k∑

i=1

IAi (x) +
l∑

j=1

IB j (x) = c1 =
k∑

i=1

IAi (x∗) ∀x ∈ X .
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Now,

max
x∈X

∑k
i=1 IAi (x) +∑l

j=1 IB j (x) −∑k
i=1 P(Ai ) −∑l

j=1 P(B j )∑k
i=1 IAi (x) +∑l

j=1 IB j (x)

=
∑k

i=1 IAi (x∗) +∑l
j=1 IB j (x∗) −∑k

i=1 P(Ai ) −∑l
j=1 P(B j )∑k

i=1 IAi (x∗) +∑l
j=1 IB j (x∗)

=
∑k

i=1 IAi (x∗) −∑k
i=1 P(Ai ) −∑l

j=1 P(B j )∑k
i=1 IAi (x∗)

≤
∑k

i=1 IAi (x∗) −∑k
i=1 P(Ai )∑k

i=1 IAi (x∗)
= δLV.

Therefore, the minimum is attained with families whose sum is constant. Moreover, given a
family A ∈ A(X ) where the minimum is attained, it holds that:

δLV = max
x∈X

∑
A∈A IA(x) −∑k

i=1 P(Ai )∑
A∈A IA(x)

= βA −∑A∈A P(A)

βA
= 1 − 1

βA

∑
A∈A

P(A)

whence Eq. (8) holds. ��
In order to prove Theorem 9, we need first to recall a couple of lemmas.

Lemma 24 Let P be a maximally imprecise coherent lower probability, and consider A ∈
A(X ) such that there exists A1 ∈ A(X ) with A1 ⊂ A. Then:

(a) A2 = A\A1 ∈ A(X ) and βA = βA1 + βA2 .
(b) For any function h : A(X ) → R satisfying

h(A1∪̇A2) = βA1

βA1 + βA2

h(A1) + βA2

βA1 + βA2

h(A2), (A.3)

it holds that h(A1∪̇A2) ≥ min{h(A1), h(A2)}. Here, A1∪̇A2 denotes the element of
A(X ) obtained by putting together the events in A1 and in A2.

Proof The proof is an extension of Miranda and Montes (2023, Lem. 18).

(a) Let A ∈ A(X ) and assume that there exists A1 ∈ A(X ) such that A1 ⊂ A. This means
that

∑
A∈A1

IA = βA1 < βA. Take A2 = A \ A1 ⊂ A. It holds that:
∑

A∈A2

IA =
∑
A∈A

IA −
∑

A∈A1

IA = βA − βA1 ∈ N,

whence A2 ∈ A(X ) and also βA = βA1 + βA2 .
(b) Trivial.

��
Lemma 25 (Miranda & Montes, 2023, Lem. 19) Let P be a maximally imprecise coherent
lower probability, and let A = (Ai )i∈I ∈ A(X ).

(i) If βA = 1, then A is a partition of X .
(ii) If βA = |A| − 1, then Ac = (Ac

i )i∈I is a partition of X .
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(iii) If 1 < βA < |A| − 1 and for every A, B ∈ A at least one of A ∩ B, A\B and B\A is
empty, then there exists A1 ∈ A

∗(X ) such that A1 ⊂ A.

For any A ∈ A(X ), let

hLV
A = 1 − 1

βA

∑
A∈A

P(A) = 1

βA

(
βA −

∑
A∈A

P(A)

)
.

It is easy to show that hLV
A satisfies Eq. (A.3).

Proof of Theorem 9 Consider an element A ∈ A(X ).
If βA = 1, then A is partition so A ∈ A

∗(X ), and moreover

hLV
A = 1 − 1

βA

∑
A∈A

P(A) = 1 −
∑
A∈A

P(A).

If βA = |A| − 1, then Ac = (Ac
i )i=1,...,k is a partition, so it belongs to A

∗(X ), and

hLV
A = 1

βA

(
βA −

∑
A∈A

P(A)

)
= 1

|A| − 1

(
|A| − 1 −

∑
A∈A

P(A)

)

= 1

|A| − 1

(
|A| − 1 −

∑
A∈A

(
1 − P(Ac)

)) = 1

|A| − 1

(∑
A∈A

P(Ac) − 1

)

= 1

|A| − 1

(∑
A∈Ac

P(A) − 1

)
= 1

|Ac| − 1

(∑
A∈Ac

P(A) − 1

)

where the last equality holds because the number of elements inA andAc is the same, hence
|A| = |Ac|. Therefore, the value δLV = minA∈A(X ) hLV

A satisfies:

δLV ≤ min
A∈A∗(X ) or Ac∈A∗(X )

hLV
A = min

A∈A∗(X )

(
1 −

∑
A∈A

P(A),

∑
A∈A P(A) − 1

|A| − 1

)
.

To see that we have the equality, let A = (Ai )i=1,...,k be an element in A(X ) where the
minimum in Eq. (8) is attained. Assume now that 1 < βA < |A| − 1, and let us prove that it
is possible to find some A∗ ∈ A

∗(X ) such that βA∗ < βA and where the value in Eq. (8) is
attained.

From item (iii) in Lemma 25 we deduce that either there is A∗ ∈ A(X ) with A∗ ⊂ A or
there are two different Ai , A j ∈ A with Ai ∩ A j 	= ∅, Ai\A j 	= ∅ and A j\Ai 	= ∅. In this
second case, applying 2-monotonicity with the sets Ai and A j above we deduce that:

hLV
A = 1

βA

(
βA −

∑
A∈A

P(A)

)

= 1

βA

⎛
⎝βA −

∑
A∈A\{Ai ,A j }

P(A) − P(Ai ) − P(A j )

⎞
⎠

≥ 1

βA

⎛
⎝βA −

∑
A∈A\{Ai ,A j }

P(A) − P(Ai ∩ A j ) − P(Ai ∪ A j )

⎞
⎠ = hLV

A1
,
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whereA1 = (A\{Ai , A j }
)∪ (Ai ∩ A j , Ai ∪ A j ), using that βA1 = βA. Thus, the minimum

in Eq. (8) is also attained in A1.
Now, if inA1 it is possible to find two different events Bi , B j with Bi ∩B j 	= ∅, Bi\B j 	= ∅

and B j\Bi 	= ∅ a similar reasoning shows that A2 = A1 ∪ (Bi ∪ B j , Bi ∩ B j
)\(Bi , B j )

also satisfies βA2 = βA1 and hLV
A = hLV

A1
= hLV

A2
. Iterating the procedure, we find after a

finite number of steps that there are no different events C and D in the family Ak such that
C ∩ D 	= ∅, C\D 	= ∅ and D\C 	= ∅. But then, applying Lemma 25 we deduce that there
is A∗ ∈ A

∗(X ) with A∗ ⊂ Ak .
Since Ak = A∗∪̇(Ak\A∗), we deduce from Lemma 24 that either hLV

Ak
= hLV

A∗ or hLV
Ak

=
hLV
Ak\A∗ . Since both βA∗ and βAk\A∗ are strictly smaller than βAk , we deduce that we can

find another element of A(X )where the value δLV is attained and with a smaller value of βA.
If we repeat this process we end up with a family A′ ∈ A(X ) such that βA′ = 1, and where
the minimum value in Eq. (8) is attained, at which point we apply the first part of the proof.

��

Proof of Proposition 10 To see that the condition is necessary, assume ex-absurdo that there
exists A 	= ∅,X such that P(A) = P(A) and let PPMM be the upper probability of a PMM
defined using (P0, δ) such that PPMM ≤ P . Then, it should be PPMM(A) = P(A) = P(A) =
PPMM(A). From the definition of the PMM, this can only hold if PPMM(A) = PPMM(A) ∈
{0, 1}, meaning that it should be P(A) ∈ {0, 1}, a contradiction with our assumption of
P(A) ∈ (0, 1) for every A 	= ∅,X .

Conversely, if P(A) > P(A) for any A 	= ∅,X then by Lemma 22 there is some P0 ∈
M(P) such that P0(A) ∈ (P(A), P(A)) for every event A 	= ∅,X . If we now consider
δ > 0 small enough such that (1 + δ)P0(A) < P(A) for any A 	= ∅,X , we obtain that the
PMM determined by (P0, δ) is an inner approximation of P . ��

Proof of Proposition 11 This follows applying Lemma 23 to (Qδ
PMM

)δ∈�PMM. ��

Proof of Theorem 12 Let δ > 0, and let Pδ be the upper probability defined in Eq. (10). From
Walley (1991), it avoids sure loss if and only if for every k ∈ N and every A1, . . . , Ak ⊆ X
it holds that:

max
x∈X

(
k∑

i=1

Q
δ

PMM(Ai ) −
k∑

i=1

IAi (x)

)
≥ 0. (A.4)

Without loss of generality, we may assume that all the events A1, . . . , Ak are proper subsets

of X (Q
δ

PMM(Ai ) − IAi would be constant on zero otherwise) and also that ∪k
i=1Ai = X

(otherwise (A.4) holds trivially taking x ∈ (∪k
i=1Ai )

c). Taking into account that X is finite,
Eq. (A.4) is equivalent to:

max
x∈X

k∑
i=1

(
P(Ai )

1 + δ
− IAi (x)

)
≥ 0 ⇔ max

x∈X

k∑
i=1

(
P(Ai ) − (1 + δ)IAi (x)

) ≥ 0

⇔ (∃x ∈ X )

(
k∑

i=1

(
P(Ai ) − (1 + δ)IAi (x)

) ≥ 0

)

⇔ min
x∈X(1 + δ)

k∑
i=1

IAi (x) ≤
k∑

i=1

P(Ai ) ⇔ δ ≤
∑k

i=1 P(Ai )

minx∈X
∑k

i=1 IAi (x)
− 1
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for any A1, . . . , Ak 	= ∅,X . In particular, given A = {A1, . . . , Ak} ∈ A(X ) with∑k
i=1 IAi = βA, it should be δ ≤ 1

βA
∑k

i=1 P(Ai ) − 1, whence:

δPMM ≤ min
A

1

βA

k∑
i=1

P(Ai ) − 1.

To see that we have the equality, consider an arbitrary family A1, . . . , Ak , and take x∗ ∈ X
so that minx∈X

∑k
i=1 IAi (x) =∑k

i=1 IAi (x∗). For each i = 1, . . . , k take Bi ⊆ Ai such that∑
i=1 IBi (x) =∑k

i=1 IAi (x∗) for every x ∈ X . Then
∑k

i=1 P(Bi )

minx∈X
∑k

i=1 IBi (x)
− 1 =

∑k
i=1 P(Bi )

minx∈X
∑k

i=1 IAi (x)
− 1 ≤

∑k
i=1 P(Ai )

minx∈X
∑k

i=1 IAi (x)
− 1.

Thus:

δPMM = min
A

{
1

βA

k∑
i=1

P(Ai ) − 1

}
.

and as a consequence Eq. (12) holds. ��
In order to prove Theorem 13, let us denote, for any A ∈ A(X ):

hPMM
A = 1

βA

∑
A∈A

P(A) − 1 = 1

βA

(∑
A∈A

P(A) − βA

)
.

It is easy to see that hPMM
A satisfies Eq. (A.3).

Proof of Theorem 13 Consider an element A ∈ A(X ).
If βA = 1, then A is partition so A ∈ A

∗(X ), and moreover

hPMM
A = 1

βA

∑
A∈A

P(A) − 1 =
∑
A∈A

P(A) − 1.

If βA = |A| − 1, then Ac = (Ac
i )i=1,...,k is a partition, so it belongs to A

∗(X ). Also:

hPMM
A = 1

βA

(∑
A∈A

P(A) − βA

)
= 1

|A| − 1

(∑
A∈A

P(A) − |A| + 1

)

= 1

|A| − 1

(∑
A∈A

(
1 − P(Ac)

)− |A| + 1

)
= 1

|A| − 1

(
1 −

∑
A∈A

P(Ac)

)

= 1

|A| − 1

(
1 −

∑
A∈Ac

P(A)

)
= 1

|Ac| − 1

(∑
A∈Ac

P(A) − 1

)

where the last equality holds because the number of elements inA andAc is the same, hence
|A| = |Ac|. Therefore, the value δPMM = minA∈A(X ) hPMM

A satisfies

δPMM ≤ min
A∈A∗(X )

hPMM
A = min

A∈A∗(X )

(∑
A∈A

P(A) − 1,
1 −∑A∈A P(A)

|A| − 1

)
.

To see that we have the equality, let A = (Ai )i=1,...,k be an element in A(X ) where the
minimum in Eq. (12) is attained. Assume now that 1 < βA < |A| − 1, and let us prove that
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it is possible to find some A∗ ∈ A
∗(X ) such that βA∗ < βA and where the value in Eq. (12)

is attained.
From item (iii) in Lemma 25 we deduce that either there is A∗ ∈ A(X ) with A∗ ⊂ A or

there are two different Ai , A j ∈ A with Ai ∩ A j 	= ∅, Ai\A j 	= ∅ and A j\Ai 	= ∅. In this
second case, applying 2-monotonicity with the sets Ai and A j above we deduce that:

hPMM
A = 1

βA

(∑
A∈A

P(A) − βA

)

= 1

βA

⎛
⎝ ∑

A∈A\{Ai ,A j }
P(A) + P(Ai ) + P(A j ) − βA

⎞
⎠

≥ 1

βA

⎛
⎝ ∑

A∈A\{Ai ,A j }
P(A) + P(Ai ∩ A j ) + P(Ai ∪ A j ) − βA

⎞
⎠ = hPMM

A1
,

whereA1 = (A\{Ai , A j }
)∪ (Ai ∩ A j , Ai ∪ A j ), using that βA1 = βA. Thus, the minimum

in Eq. (12) is also attained in A1.
Now, if inA1 it is possible to find two different events Bi , B j with Bi ∩B j 	= ∅, Bi\B j 	= ∅

and B j\Bi 	= ∅ a similar reasoning shows that A2 = A1 ∪ (Bi ∪ B j , Bi ∩ B j
)\(Bi , B j )

also satisfies βA2 = βA1 and hPMM
A = hPMM

A1
= hPMM

A2
. Iterating the procedure, we find after

a finite number of steps that there are no different events C , D in the family Ak such that
C ∩ D 	= ∅, C\D 	= ∅ and D\C 	= ∅. But then, applying Lemma 25 we deduce that there
is A∗ ∈ A

∗(X ) with A∗ ⊂ Ak .
Since Ak = A∗∪̇(Ak\A∗), we deduce from Lemma 24 that either hPMM

Ak
= hPMM

A∗ or

hPMM
Ak

= hPMM
Ak\A∗ . Since both βA∗ and βAk\A∗ are strictly smaller than βAk , we deduce that

we can find another element of A(X ) where the value δPMM is attained and with a smaller
value of βA. If we repeat this process we end up with a familyA′ ∈ A(X ) such that βA′ = 1,
and where the minimum value in Eq. (8) is attained, at which point we apply the first part of
the proof. ��
Proof of Proposition 14 To see that the condition is necessary, note that since by assumption
P(A) > 0 for every A 	= ∅, any inner approximation PTV in CTV should satisfy PTV(A) =
P0(A) − δ and PTV(A) = P0(A) + δ for any A 	= ∅,X . As a consequence, it will be
PTV(A) − PTV(A) = 2δ > 0 for any A 	= ∅,X , meaning that there cannot be any inner
approximation of P if it is not maximally imprecise.

Conversely, assume that P(A) < P(A) for any A 	= ∅,X . Applying Lemma 22, there
exists P0 ∈ M(P) such that P(A) < P0(A) < P(A) for any A 	= ∅,X . Taking δ such
that 0 < δ < minA 	=∅,X

(
P0(A) − P(A)

)
, we obtain that δ < P0(A) − P(A), so P(A) <

P0(A)−δ for any A 	= ∅,X . Hence, P0 and δ determine a TVmodel that inner approximates
P . ��
Proof of Proposition 15 This follows applying Lemma 23 to (Qδ

TV
)δ∈�TV . ��

Proof of Proposition 17 For any probabilitymeasure P0 and any δ > 0 it holds that Bδ
LV(P0)∪

Bδ
PMM(P0) ⊆ Bδ

TV(P0) (Montes et al., 2020b, Prop.5.1). Hence, Bδ
TV(P0) ⊆ M(P) implies

that Bδ
LV(P0) ⊆ M(P) and Bδ

PMM(P0) ⊆ M(P), and therefore δTV ≤ min{δLV, δPMM}. ��
Proof of Proposition 18 P ≤ Q implies that P(Je − Jd) ≤ Q(Je − Jd) for any e, d ∈ D.
Hence, Q(Je − Jd) ≤ 0 implies P(Je − Jd) ≤ 0, so any optimal alternative for Q under
maximality is also optimal for P . ��
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Proof of Proposition 19 P ≤ Q is equivalent to P ≥ Q. If d ∈ D is optimal for Q under

interval dominance, then Q(Jd) ≥ Q(Je) for every e ∈ D, but this implies that:

P(Jd) ≥ Q(Jd) ≥ Q(Je) ≥ P(Je) ∀e ∈ D,

meaning that d is optimal too for P . This implies that opt�P
⊇ opt�Q

. ��

Proof of Proposition 19 (Proof of Proposition 20) Consider d ∈ optM(Q) under E-
admissibility. Thismeans that there exists P ∈ M(Q) such that EP (Jd) = maxd ′∈D EP (Jd ′).
Since P ≤ Q, then M(P) ⊇ M(Q), whence P belongs to M(P), and as a consequence d
also belongs to optM(Q) under E-admissibility. ��

Proof of Proposition 21 Since M(Q) ⊆ M(P), it follows that P( f ) ≤ Q( f ), whence |
Q( f ) − P( f ) |= Q( f ) − P( f ).

If Q is 2-monotone, then Q( f ) coincides with the Choquet integral of f with respect to
Q, (C)

∫
f d Q, while by coherence we have that P( f ) ≥ (C)

∫
f d P (Walley, 1981).

Assume that f = ∑n
i=1 xi IAi , for x1 ≥ x2 ≥ · · · ≥ xn in [0, 1] and a partition

{A1, . . . , An} of X . Then

Q( f ) − P( f ) ≤ (C)

∫
f d Q − (C)

∫
f d P =

n∑
i=1

(xi − xi+1)(Q(Ai ) − P(Ai ))

≤
n∑

i=1

(Q(Ai ) − P(Ai )) ≤
∑
A⊆X

Q(A) − P(A) ≤ δ.

By conjugacy, we deduce that also |P( f ) − Q( f )| = P( f ) − Q( f ) ≤ δ. ��
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