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Abstract: Non-communicable diseases are particularly prevalent among low-income individuals and
are associated with the consumption of processed foods, fat, and sugars. This work aims to evaluate
the impacts of a nutrition education intervention for low socio-economic individuals on sensory
perception, health-related parameters and gut microbiota. Twenty low-income adults underwent a
4-week intervention. Dietary information (three 24 h recalls), detection thresholds and discrimination
scores (salty and sweet), and severity of depressive symptoms (Beck Depression Inventory-II (BDI-II))
were collected. Fecal microbial composition and short chain fatty acids were determined by 16S
ribosomal RNA-gene sequencing and gas chromatography, respectively. After the intervention, 35%
of subjects presented higher compliance with dietary recommendations, increased consumption of
vegetables and lignans and reduced consumption of processed meats and nitrosamines, together
with depleted levels of Actinomycetota. Higher discrimination for salty and sweet and lower BDI-II
scores were also obtained. This nutrition education intervention entailed changes in dietary intake
towards healthier food options, reduced potentially carcinogenic compounds and improved scores
for discrimination and severity of depressive symptoms. The confirmation of these results in future
studies would enable the design of strategic policies contributing to the optimal nutrition of materially
deprived families through affordable healthy plant-based interventions.

Keywords: vulnerable subjects; sensorial perception; gut microbiota; processed food; depression;
sustainable diet

1. Introduction

Solid evidence demonstrates the importance of a healthy lifelong dietary pattern for
maintaining overall health status. The growing prevalence of non-communicable diseases
worldwide has been associated with the loss of traditional eating patterns and the increased
consumption of ultra-processed foods, fat, salt, and refined sugar in the diet [1]. While this
situation is widespread among the population in developed countries, it is particularly
striking in some groups, such as those at risk of vulnerability who receive food aid [2].
Socio-economically deprived groups exhibit a suboptimal eating behavior, associated with
the higher cost of healthy foods and inadequate knowledge and skills in relation to healthy
food choice and food preparation [3–8]. In addition, poor lifestyle habits, such as sedentary
behavior or smoking, and stress have frequently been reported in these subjects [9–13].

Recent literature has shown that processed foods have a negative impact on dietary
quality and health due to the poor nutrient density, their high additive content, and

Nutrients 2023, 15, 3537. https://doi.org/10.3390/nu15163537 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15163537
https://doi.org/10.3390/nu15163537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-7519-3730
https://orcid.org/0000-0002-6155-5822
https://orcid.org/0000-0003-1435-7628
https://orcid.org/0000-0002-4677-7320
https://orcid.org/0000-0002-6834-9060
https://orcid.org/0000-0001-9396-6311
https://orcid.org/0000-0002-0192-901X
https://orcid.org/0000-0003-2602-7036
https://doi.org/10.3390/nu15163537
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15163537?type=check_update&version=2


Nutrients 2023, 15, 3537 2 of 20

association with higher intakes of sugars and trans-fatty acids [14]. Sugar-sweetened
beverages and processed meats [14,15] have been associated with an increased risk of
non-communicable diseases including colorectal cancer [16–18]. Along with that, the scarce
consumption of fruits, vegetables and whole grains may lead to a reduced intake of fiber
or (poly)phenols, which have been identified as key players in microbiota modulation in
addition to their anti-inflammatory and antioxidant properties [17,19,20].

Over the last decades, a consensus has been reached on the impact of microbiota
alteration in host health [21]. The transition from a Westernized diet to a Mediterranean-
type pattern, for 4 weeks, with constant energy intake and physical activity has shown
noticeable changes in the intestinal microbiome in people with cardiometabolic risk, with
these changes being proportional to the degree of adherence [22]. Regarding individual
dietary components, a higher intake of whole grain cereals was associated with an increase
in Bifidobacteria in healthy humans [23], whereas a high salt ingestion in experimental
animals was linked to a decrease in Lactobacillus and Prevotellaceae and to an enrich-
ment in Erysipelotrichaceae and Oscillospiraceae [24,25]. While Erysipelotrichaceae has
been associated with inflammation [26], higher levels of bifidobacteria and lactobacilli
are recognized as beneficial for human health, improving outcomes such as obesity and
depression [27–29]. Some authors have shown an increase in the microbial diversity index
with Mediterranean diet (MD) interventions, although others have found the opposite or
no association [21]. Throughout the gut–brain axis, microbial metabolites, and immune,
neuronal, and metabolic pathways could drive dietary modulation [30]. It is possible that
the high prevalence rates of stress, anxiety, and depression, described in people at risk of
socio-economic vulnerability, may be associated with unhealthy food preferences. Foods
with a high content in sugars and fats have been associated with a self-rewarding effect in
response to the increase in cortisol levels [31–33]. In this regard, dietary interventions with
a high fiber diet in obese females had a positive impact on stress [34] and depression [35]
linked to changes in the abundance of some beneficial species from the intestinal microbiota
such as Bifidobacterium longum [36].

Based on this evidence, the objective of this study was to evaluate the impact of an
educational and dietary intervention on sensorial perception, health-related parameters
and the composition and activity of the intestinal microbiota in a group of subjects in a
socio-economically vulnerable situation.

2. Materials and Methods
2.1. Participants and Recruitment

The MESAS (Economic, Healthy, and Sustainable Menus) project consists of an ed-
ucational and dietary program promoted by the Alimerka Foundation for low-income
individuals belonging to local assemblies of the Red Cross of Asturias (northern Spain).
Volunteers were recruited from the Red Cross of Asturias and informed about the objectives
of the study. An informed written consent was obtained before enrolment. Exclusion crite-
ria were to be diagnosed with any gastrointestinal chronic condition or to have consumed
antibiotics in the last month.

The Ethical Committee of the Hospital Universitario Central de Asturias (CEImPA2021.307)
approved the whole procedure and methodology of this project. The procedures were
performed in accordance with the fundamental principles set out in the Declaration of
Helsinki, the Oviedo Bioethics Convention, and the Council of Europe Convention on
Human Rights and Biomedicine, as well as in Spanish legislation on Bioethics. Directive
95/46/EC of the European Parliament and the Council of October 1995 on the protection of
individuals regarding the processing of personal data was strictly followed.

2.2. Study Design

Twenty volunteers were recruited and scheduled for a baseline face-to-face interview
conducted by trained interviewers and for blood collection in the week before the dietary
and educational intervention. For the collection of fecal samples, participants were provided
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with sterile containers and detailed instructions (Figure 1). For the initial sample size and
considering microbial relative abundances, the statistical power of our results with a type I
error probability of 0.05 was 95–98% (Power and Sample Size Calculation version 3.0.43
(Vanderlbilt University, Nashville, TN, USA)).

Nutrients 2023, 15, x FOR PEER REVIEW 3 of 22 
 

 

2.2. Study Design 

Twenty volunteers were recruited and scheduled for a baseline face-to-face interview 

conducted by trained interviewers and for blood collection in the week before the dietary 
and educational intervention. For the collection of fecal samples, participants were pro-

vided with sterile containers and detailed instructions (Figure 1). For the initial sample 
size and considering microbial relative abundances, the statistical power of our results 
with a type I error probability of 0.05 was 95–98% (Power and Sample Size Calculation 

version 3.0.43 (Vanderlbilt University, Nashville, TN, USA)). 

 

Figure 1. Scheme of study design and timeline. 

The intervention consisted of a 1 h educational intervention explaining the basis of a 
healthy and affordable diet based on the consumption of locally produced fresh products. 
This activity was complemented with financial support for the acquisition of fresh prod-

ucts provided by Alimerka Foundation, along with dietary education materials (general 
dietary recommendations, a monthly meal plan, recipes and a shopping list adjusted to 

the budget). This allowed them to complement the assistance that they receive regularly 
with non-perishable foodstuffs through the Asturias Red Cross. The material used in the 
intervention was developed specifically for the purpose of this project and is available at: 

https://www.fundacionalimerka.es/wp-content/uploads/2022/01/MESAS_guia-com-
pleta.pdf (accessed on 18 May 2022) in Spanish language. 

At baseline and at the end of the study, general characteristics of the sample popula-
tion, nutritional assessment, anthropometric determinations, blood analyses and fecal 
sample collection were assessed, together with a self-completed depression test and sen-

sory perception assays. Participants were encouraged to contact the interviewer if they 
had any questions or concerns during the study. Seventeen subjects completed the inter-

vention. 

2.3. General Characteristics 

Information about age, gender, educational level, family size, as well as questions 
related to energy expenditure, smoking habit, alcohol consumption and the presence of 

chronic conditions were included in the questionnaire. 

Figure 1. Scheme of study design and timeline.

The intervention consisted of a 1 h educational intervention explaining the basis
of a healthy and affordable diet based on the consumption of locally produced fresh
products. This activity was complemented with financial support for the acquisition of
fresh products provided by Alimerka Foundation, along with dietary education materials
(general dietary recommendations, a monthly meal plan, recipes and a shopping list
adjusted to the budget). This allowed them to complement the assistance that they receive
regularly with non-perishable foodstuffs through the Asturias Red Cross. The material
used in the intervention was developed specifically for the purpose of this project and is
available at: https://www.fundacionalimerka.es/wp-content/uploads/2022/01/MESAS_
guia-completa.pdf (accessed on 18 May 2022) in Spanish language.

At baseline and at the end of the study, general characteristics of the sample popu-
lation, nutritional assessment, anthropometric determinations, blood analyses and fecal
sample collection were assessed, together with a self-completed depression test and sensory
perception assays. Participants were encouraged to contact the interviewer if they had any
questions or concerns during the study. Seventeen subjects completed the intervention.

2.3. General Characteristics

Information about age, gender, educational level, family size, as well as questions
related to energy expenditure, smoking habit, alcohol consumption and the presence of
chronic conditions were included in the questionnaire.

The highest educational level attained by each volunteer was registered and clas-
sified into primary, secondary, technical or university higher education. The physical
activity of the previous week was quantified by using the International Physical Activity
Questionnaire (IPAQ) [37,38]. The total metabolic equivalent of task (MET) and the IPAQ
classification into three categories of physical exercise were obtained [38].

https://www.fundacionalimerka.es/wp-content/uploads/2022/01/MESAS_guia-completa.pdf
https://www.fundacionalimerka.es/wp-content/uploads/2022/01/MESAS_guia-completa.pdf
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2.4. Nutritional Assessment

Information regarding the dietary intake of the participants was collected during the
face-to-face interviews of no more than 30 min of duration through three nonconsecutive
24 h recalls. In addition, information on cooking habits (boiled, fried, grilled, baked/broiled,
or barbecued) and the part of the food that was finally consumed (breast or thigh in the case
of chicken) as well as the possible consumption and/or cooking of the skin (cooking with
skin and eating the skin; cooking with skin, but not consuming it; and cooking without
skin) were included. Standardization of the information reported was achieved by using
photographs of different serving sizes and others in which the degree of browning increased
progressively, as has been previously reported [18,39].

Food consumption was classified into food groups according to the Centre for Higher
Education in Nutrition and Dietetics (CESNID) criteria. CESNID food composition tables
were used to transform food consumption into energy and macronutrients intake [40].
United States Department of Agriculture (USDA) and Marlett and Cheung tables were
used to calculate the starch and fiber content, respectively [41,42]. (Poly)phenols were ex-
tracted from Phenol Explorer version 3.6. [43]. Regarding the consumption of food-derived
xenobiotics, the European Prospective Investigation into Cancer and Nutrition (EPIC)
Potential Carcinogen Database was the main data source for the content of heterocyclic
amines, polycyclic aromatic hydrocarbons (PAHs), nitrates, and nitrites per g of food [44].
When necessary, missing information was completed by additional sources such as the
Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease
(CHARRED) database [45], the European Food Safety Authority (EFSA) data [46], the U.S.
Food and Drug Administration (FDA) composition tables [47] and others [48–56].

The validated 14-point MD screener “PREvención con Dieta MEDiterránea” (PRED-
IMED) was used to assess adherence to a Mediterranean pattern [57,58]. The degree of
compliance with the dietary intervention was evaluated based on the number of PRED-
IMED criteria that improved with the intervention. Those subjects that improved 2 or fewer
criteria were classified as lower compliance (LC) while those who improved 3 or more
items were considered as higher compliance (HC).

2.5. Severity of Depressive Symptoms

Depressive symptoms severity was estimated using the validated 21-item Spanish
Beck Depression Inventory-II (BDI-II) [59]. Volunteers rated each item on an intensity scale
ranging from 0 to 3, with a maximum possible score of 63 points. The severity of depressive
symptoms was categorized as minimal (0–13 points), mild (14–19), moderate (20–28), or
severe (29–63) using previously established references [59,60].

2.6. Anthropometric Determinations

Height (m) and weight (kg) were assessed by standardized protocols [61] and body
mass index (BMI) was calculated using the formula: weight/(height)2. Spanish Society for
the Study of Obesity (SEEDO) criteria [62] were used to classify subjects as normal weight
(18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), and obese (≥30.0 kg/m2). For body fat
percentage, bioelectrical impedance in a calibrated TANITA device (Tanita Corporation
of America, Inc., Arlington Heights, IL, USA) was employed, and waist and hip circum-
ferences were measured using an inelastic and extensible tape, as indicated by standard
criteria [63].

2.7. Biochemical and Microbiological Analysis

Twelve-hour fasting blood samples were drawn by venipuncture and collected in
separate tubes for serum and plasma. The samples were kept on ice and centrifuged
(1000× g, 15 min) within 2–4 h after collection. Plasma and serum aliquots were stored at
−20 ◦C until analyses. From the blood samples, the biochemical parameters fasting plasma
glucose, cholesterol, high- and low-density lipoproteins (HDL and LDL), triglycerides, uric
acid, creatinine and iron were determined by standard methods in external laboratories.
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Fecal samples were collected within ±24 h of blood collection in sterile containers
supplied to each volunteer along with the instructions for sample collection. The samples
were frozen after deposition within a period not exceeding two hours and transported to
the laboratory. Fecal sample specimens were diluted 1/10 (w/v) in sterile PBS solution
and homogenized at full speed in a LabBlender 400 stomacher (Seward Medical, London,
UK) for 3 min. The samples were centrifuged for 15 min at 4 ◦C and 17,530× g and the
obtained supernatants were separated from the pellets and kept frozen at −20 ◦C until use.
From the pellet obtained, DNA was extracted in accordance with the Q Protocol for DNA
extraction defined by the International Human Microbiome Standards Consortium [64]
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Sussex, UK). The quantification of
extracted/purified DNA and the 260/280 ratio were performed using the Take3 Micro-
Volume plate and Gen5 microplate reader (BioTek Instrument Inc., Winooski, VT, USA).
The DNA obtained was kept frozen at −80 ◦C until analysis.

The variable region V3–V4 of the bacterial 16S rRNA genes present in each fecal com-
munity was amplified by PCR and the resulting amplicons were sequenced on an Illumina
NovaSeq 6000 platform instrument (San Diego, CA, USA). The obtained individual se-
quence reads were filtered to remove low quality sequences. All Illumina quality-approved,
trimmed, and filtered data were integrated to generate de novo 16S rRNA Operational
Taxonomic Units (OTUs) with ≥97% sequence homology using Uparse software (Uparse
v7.0.1090). A classification of all reads to the lowest possible taxonomic rank was performed
using Quantitative Insights Into Microbial Ecology (QIIME) and a reference dataset from
the SILVA 138 database. The whole procedure of sequencing and annotation was performed
at Novogene Bioinformatics Technology Co., Ltd., Cambridge, UK.

Short chain fatty acids (SCFA) were analyzed by gas chromatography from the su-
pernatants of 1 mL of the homogenized feces [65]. A chromatograph 6890N (Agilent
Technologies Inc., Palo Alto, CA, USA) connected to a mass spectrometry detector (MS)
5973N (Agilent Technologies) and a flame ionization detector (FID) was used for SCFA
identification and quantification, as described in previous works [66].

2.8. Salt and Sweet Sensitivity and Discrimination

Our survey was conducted in early summer in Asturias (Spain) with an average room
temperature of 20 ◦C. The sensitivity and discrimination tests were specifically designed
for this research, using concentrations already validated in the literature [67–69].

For the sensory perception tests, NaCl and sucrose were dissolved in mineral water
(low mineral content) to create salty and sweet tastes, respectively. Throughout the assess-
ment, plain water was offered for mouth rinsing and the order in which the solutions were
tasted was freely chosen. Taste solutions were kept in the dark at 5 ◦C when not in use.

A test based on exposure to 5 different concentrations of sucrose was designed, in-
cluding the detection and recognition thresholds developed by Webb et al., (0, 5, 15, 30 and
21,950 mM) [69]. Each concentration was anonymized with a random number, with volun-
teers having to report detection or not of sweet taste for the sensitivity tests and ordering
the 5 concentrations from lowest to highest in order to determine the discrimination of each
taste. For each correct answer, 1 score was given. The same procedure was carried out with
NaCl for salty taste with 5 different concentrations, including the detection and recognition
thresholds developed by Malaga et al., (0, 5, 10, 15 and 50 mM) [68].

Sensory perception tests at baseline and after the intervention were completed by 80%
of the individuals selected for this study (n = 14).

2.9. Statistical Analysis

IBM SPSS software version 25.0 (IBM SPSS, Inc., Chicago, IL, USA) was used to analyze
all the collected data. Goodness of fit to the normal distribution was checked by means of
the Kolmogorov–Smirnov test, and as normality of the variables was not achieved, non-
parametric tests were used. Categorical variables were presented as number and percentage
(n (%)) and continuous variables as the median and 25th and 75th percentiles (P25–P75)
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or mean ± SD. For categorical variables Mc Nemar and Fisher tests were performed, and
continuous variables were analyzed using the Wilcoxon and Mann–Whitney U tests with
Bonferroni correction, for comparisons within each group (T0 vs. T1) and between groups
(T0 vs. T0 and T1 vs. T1), respectively (p value < 0.05). GraphPad Prism 8 (La Jolla, CA,
USA) was used for graphical representations.

3. Results
3.1. Characteristics of the Study Sample

The general baseline characteristics of the sample are shown in Table 1. The sample
comprised 82% adult women (median age 40 years old), and 35% and 24% of the study
sample presented occasional alcohol consumption and smoking habit, respectively.

Table 1. General characteristics of the study sample.

Total Sample
n = 17

Age (years) 41 (34–50)
Gender
Female 14 (82)

Educational level
Primary 4 (24)

Secondary 4 (24)
Technical 7 (41)

University 2 (12)
Family size(n)

1–2 6 (35)
3–4 9 (53)
≥5 2 (12)

Lifestyle
Sleep (hours/day) 6 (5–7)

Physical activity (walking min/day) 60 (21–90)
IPAQ classification

Low/inactive 3 (18)
Moderate 8 (47)
Vigorous 6 (35)

Total METs 2010 (1315–2772)
Smoking status
Current smoker 4 (24)
Former smoker 2 (12)
Never smoker 11 (65)

Occasional alcohol consumption (a) 6 (35)
Chronic conditions

Respiratory diseases 9 (53)
Data are expressed as median (P25–P75) and n (%) at baseline. IPAQ, International Physical Activity Questionnaire;
METs, metabolic equivalents of task. (a) Frequency of consumption was lower than twice a week.

3.2. Effect of the Intervention on Dietary and Nutritional Intake

Differences in the adherence to MD during the study are shown in Figure 2. Higher
scores in PREDIMED were observed with intervention. The impact of the intervention
on the daily intake of energy and major food groups for both LC and HC groups is
shown in Table 2. The HC group significantly increased the daily intake of vegetables
(144 to 251 g/day) and decreased the consumption of cereal products (118 to 57 g/day)
and processed meats (12 to 0 g/day). Regarding bioactive compounds, subjects with HC
showed lower consumption of starch (35 to 2 g/day) and higher consumption of lignans
(10 to 32 g/day) after the intervention (Table 3). In addition, the intervention resulted in a
reduced level of food-derived xenobiotic compounds in the HC group (Table 4), specifically
dibenzo (a) anthracene (4 to 2 ng/day), acrylamide (8 to 3 µg/day), total PAHs (1108 to
373 ng/day) and n-nitrosopiperidine (28 to 0 ng/day). On the other hand, the consumption
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of nitrates was increased in both groups after the intervention (30 to 67 mg/day and 101 to
153 mg/day, in the LC and HC, respectively).
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Table 2. Daily intake of energy and main food groups at baseline and after the intervention according
to the degree of compliance with the dietary intervention.

LC
n = 11

HC
n = 6

T0 T1 T0 T1

Energy (Kcal/day) 1471.98 (999.59–1641.27) 1437.07
(1197.17–1576.69) 1524.55 (1262.86–1849.45) 1376.52 (1123.48–1621.64)

Food groups intake (g/day)
Cereals and cereals products 123.30 (58.33–148.07) 119.97 (94.44–146.20) 117.87 (113.29–174.66) 56.73 (41.20–92.75) * †

Whole grain cereals 0.00 (0.00–0.00) 10.00 (0.00–23.33) 0.00 (0.00–32.50) 4.33 (0.00–30.00)
Milk and dairy products 293.53 (148.23–451.66) 245.90 (179.33–530.68) 123.67 (31.67–187.50) 116.48 (84.17–204.73) †
Meat and meat products 110.00 (93.99–172.48) 94.83 (69.17–175.16) 156.58 (108.83–206.13) 102.98 (76.67–156.83)

White meat 53.58 (33.30–107.95) 55.33 (5.58–108.91) 53.58 (53.33–80.09) 79.02 (0.00–108.91)
Red meat 27.08 (5.90–63.33) 31.25 (0.00–50.00) 38.96 (5.90–110.16) 43.96 (0.00–47.92)

Proccesed meat 13.33 (0.00–31.33) 23.75 (13.33–40.00) 11.67 (6.67–23.33) 0.00 (0.00–0.00) * †
Eggs 53.33 (21.33–69.93) 42.67 (26.67–76.00) 58.30 (45.43–72.00) 34.28 (20.67–42.67)
Fish 21.67 (0.00–33.75) 59.67 (43.33–84.00) 27.97 (0.00–75.00) 61.25 (13.33–94.62)

Seafood 0.00 (0.00–29.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–26.66)
Oils and fats 14.09 (10.50–23.99) 15.53 (11.14–19.11) 21.00 (12.33–25.57) 24.01 (17.00–25.28)
Vegetables 67.71 (34.73–190.00) 98.80 (56.83–111.73) 144.48 (43.37–207.33) 251.35 (169.67–357.00) * †
Legumes 11.67 (0.00–33.33) 12.77 (0.00–46.67) 16.94 (7.77–150.00) 35.00 (0.00–200.00)

Potatoes and tubers 46.14 (8.33–88.83) 62.86 (33.33–123.00) 37.97 (23.00–59.00) 79.42 (24.60–101.00)
Fruits 96.17 (62.50–170.35) 139.35 (42.34–164.58) 151.00 (39.60–336.40) 262.08 (114.76–383.94)

Nuts and seeds 0.00 (0.00–0.00) 0.00 (0.00–0.00) 5.00 (0.00–16.67) 8.34 (0.00–16.67) †
Sugar and sweets 10.00 (0.00–20.80) 11.67 (4.17–18.67) 11.42 (7.00–64.59) 4.67 (0.00–14.00)

Snacks 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–11.67) †
Sauces and condiments 18.50 (1.70–24.30) 13.83 (2.75–20.46) 21.37 (5.37–31.13) 10.14 (1.67–21.26)

Other foods 0.00 (0.00–125.00) 0.00 (0.00–75.00) 5.00 (0.00–83.33) 15.00 (0.00–40.00)
Non alcoholic beverages (a) 268.33 (126.67–333.33) 250.00 (183.33–517.67) 345.84 (187.50–403.33) 225.00 (66.67–366.67)

Soft drinks (a) 0.00 (0.00–0.00) 0.00 (0.00–83.33) 0.00 (0.00–166.67) 0.00 (0.00–83.33)
Alcoholic beverages (a) 0.00 (0.00–0.00) 0.00 (0.00–33.33) 0.00 (0.00–0.00) 0.00 (0.00–0.00)

Data are expressed as median (P25–P75). Statistical differences were found by Wilcoxon (*) and Mann–Whitney U
tests (†) for comparisons within each group (T0 vs. T1) and between groups (T0 vs. T0 and T1 vs. T1), respectively
(p value < 0. 05). (a) (mL/day). LC, lower compliance; HC, higher compliance; T0, baseline; T1, end.
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Table 3. Daily intake of bioactive compounds at baseline and after the intervention according to the
degree of compliance with the dietary intervention.

Bioactive Compounds

LC
n = 11

HC
n = 6

T0 T1 T0 T1

Total dietary fiber 9.06 (6.77–14.45) 11.37 (9.01–15.73) 13.70 (12.44–15.06) 15.25 (12.37–19.66)
Soluble dietary fiber 1.34 (0.80–1.78) 1.25 (1.01–1.90) 2.00 (1.44–2.29) 1.51 (1.25–2.94)

Insoluble dietary fiber 5.04 (3.72–8.09) 5.85 (4.30–7.63) 9.25 (7.11–11.97) † 7.40 (5.64–12.78)
Starch 17.46 (9.07–35.87) 9.70 (7.44–18.85) 35.19 (10.07–49.84) 1.83 (0.11–14.04) *

Celulose 1.92 (1.66–3.31) 2.25 (1.70–3.30) 3.19 (2.31–3.80) † 2.93 (2.36–4.30)
Klason lignine 0.87 (0.43–1.18) 0.83 (0.73–1.21) 1.47 (1.27–2.04) † 1.15 (0.74–1.54)
Hemicellulose

Soluble hemicellulose 1.05 (0.47–1.26) 0.85 (0.65–1.31) 1.27 (1.09–1.53) † 0.62 (0.60–1.60)
Insoluble hemicellulose 1.63 (1.18–2.71) 1.87 (1.47–2.40) 2.89 (2.51–3.63) 2.09 (1.88–4.32)

Pectin
Soluble pectin 0.36 (0.26–0.47) 0.50 (0.30–0.57) 0.56 (0.32–0.65) 0.79 (0.45–1.23)

Insoluble pectin 0.61 (0.39–0.94) 0.74 (0.44–0.92) 1.05 (0.59–1.28) 1.26 (1.05–1.72)
Total (poly)phenols 346.16 (206.13–1208.90) 907.60 (552.78–1082.57) 869.88 (738.35–1211.61) 841.02 (795.02–913.25)

Flavonoids 14.70 (6.30–117.65) 61.82 (45.13–110.77) 105.13 (16.54–183.03) 57.23 (18.16–142.95)
Phenolic acids 186.24 (80.77–361.26) 271.21 (177.11–573.50) 589.79 (226.37–888.03) 324.55 (272.85–643.02)

Lignans 13.33 (4.32–27.69) 8.45 (4.79–16.00) 9.51 (8.73–14.92) 31.96 (18.06–51.23) * †
Other (poly)phenols 7.48 (2.12–16.29) 7.52 (6.05–11.87) 12.49 (9.79–22.45) 9.93 (6.85–36.28)

Stilbenes 0.00 (0.00–0.03) 0.01 (0.00–0.07) 0.01 (0.00–0.02) 0.00 (0.00–0.02)

Data are expressed as median (P25–P75). Statistical differences were found by Wilcoxon (*) and Mann–Whitney U
tests (†) for comparisons within each group (T0 vs. T1) and between groups (T0 vs. T0 and T1 vs. T1), respectively
(p value < 0.05). LC, lower compliance; HC, higher compliance; T0, baseline; T1, end.

Table 4. Daily intake of food-derived xenobiotic compounds at baseline and after the intervention
according to the degree of compliance with the dietary intervention.

Xenobiotics

LC
n = 11

HC
n = 6

T0 T1 T0 T1

Heterocyclic amines
(ng/day)

IQ 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00)
MeIQ 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–6.84)

MeIQx 47.91 (0.00–65.45) 81.47 (10.66–112.83) 36.73 (7.08–154.13) 54.63 (8.00–84.08)
DiMeIQx 2.33 (0.00–23.35) 33.20 (0.00–66.40) 1.18 (0.00–70.46) 25.00 (16.00–37.99)

PhlP 7.00 (0.00–298.97) 580.97 (10.94–1162.04) 66.50 (0.00–1743.00) 397.55 (4.00–603.31)
Polycyclic aromatic

hydrocarbons (ng/day)
B(a)P 36.30 (21.80–50.40) 46.10 (24.40–63.80) 52.20 (33.20–68.90) 36.40 (35.20–41.40)

DiB(a)A 3.20 (2.00–5.10) 4.30 (2.00–6.60) 4.30 (2.50–22.60) 2.40 (1.20–3.50) *
Total PAHs 616.10 (266.10–1190.70) 623.50 (368.60–1092.80) 1108.20 (660.70–1347.00) 372.80 (134.80–727.80) *

Nitrates. nitrites and
nitroso compounds

(ng/day)
Nitrates (mg/day) 30.62 (17.77–48.18) 67.45 (24.00–100.83) * 100.77 (27.73–119.99) 153.26 (126.99–182.58) * †
Nitrites (mg/day) 0.63 (0.31–1.06) 1.24 (0.65–1.81) 0.65 (0.43–0.78) 0.36 (0.30–0.83) †

NDMA 34.70 (3.20–85.30) 86.70 (44.20–112.70) 24.90 (19.80–34.70) 0.00 (0.00–90.50)
NPIP 25.30 (0.00–45.50) 36.10 (24.00–63.30) 15.80 (8.00–25.30) 0.00 (0.00–0.00) * †
NPYR 45.30 (0.00–68.00) 64.60 (29.00–105.30) 28.30 (11.50–45.30) 0.00 (0.00–0.00) †
Comb 0.00 (0.00–0.00) 0.00 (0.00–4.70) 0.70 (0.00–1.90) 0.00 (0.00–0.00)

Acrylamide (µg/day) 8.73 (6.44–11.62) 12.24 (7.70–20.21) 8.44 (7.22–10.44) 2.83 (1.51-6.13) * †

Data are expressed as median (P25–P75). Statistical differences were found by Wilcoxon (*) and Mann–Whitney
U tests (†) for comparisons within each group (T0 vs. T1) and between groups (T0 vs. T0 and T1 vs. T1),
respectively (p value < 0.05). B(a)P, benzo (a) pyrene; Comb, Combined nitroso compounds; DiB(a)A, dibenzo
(a) anthracene; DiMelQx, 2-amino-3,4,8 trimethylimidazo (4,5,f) quinoxaline; HC, higher compliance; IQ, 2-
amino-3-methylimidazo (4,5,f) quinoline; LC, lower compliance; MelQ, 2-amino-3,4 dimethylimidazo (4,5,f)
quinoline; MelQx, 2-amino-3,8 dimethylimidazo (4,5,f) quinoxaline; NDMA, N-nitrosodimethylamine; NPIP,
n-nitrosopiperidine; NPYR, n-nitrosopyrrolidine; PAH, polycyclic aromatic hydrocarbons; PhlP, 2-amino-1-methyl-
6-phenylimidazo (4,5,b) pyridine; T0, baseline; T1, end.
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3.3. Effect of the Intervention on Anthropometric and Biochemical Parameters, Severity of
Depressive Symptoms and Sensitivity and Discrimination for Salt and Sweet Taste

No significant changes were found in anthropometric values (Table S1) or biochemical
parameters (Table S2) after the intervention except for total body fat, which increased in
volunteers with HC (32 to 35%). The severity of depressive symptoms was improved in
both the LC and HC groups. The proportion of individuals with an ameliorated BDI-II
total score for depressive symptoms after the intervention was higher in the HC group
(83 vs. 64%), whereas a significant lower BDI-II score after the intervention was only found
in the LC group (score change from 14 to 9) (Figure 3, Table S3). Regarding the sensory
tests, no significant differences were observed in salt and sweet detection thresholds after
the intervention, whereas discrimination scores were increased in both LC and HC groups
(Figure 4, Table S4). The proportion of individuals with a higher discrimination score after
the intervention was higher in the HC group (67 vs. 50%), although the observed changes
reached statistical significance only for sweet taste in the LC (score change from 3 to 4)
(Figure 4, Table S4).
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acid was found to be 15% lower after the intervention in the LC group (Figure 6).  

 

Figure 4. Analysis of sensitivity thresholds (left Y axis) and discrimination scores (right Y axis) for
sweet (A) and salt (B) at baseline and after the intervention by the degree of compliance with the
dietary intervention. Statistical differences were found by Wilcoxon (*) for comparisons within each
group (T0 vs. T1) (*) (p value < 0.05). HC, higher compliance; LC, lower compliance; T0, baseline;
T1, end.

3.4. Effect of the Intervention on the Fecal Profile of Microbiota and SCFA

No differences were observed in the Shannon index or the observed species across
the study (Figure 5A,B). The distribution of microbiota relative abundances is shown in
Figure 5C,D) and Table S5. Those with LC presented an increase in Bacillota (51 to 61%), and
the Oscillospiraceae family in this phylum increased from 2 to 3%. This was accompanied
by a reduction in Prevotellaceae (Bacteroidota phylum) from 11 to 5%. Individuals with HC
were characterized by a depletion of Actinomycetota (27 to 17%) and, within this phylum,
of the families Bifidobacteriaceae, Coriobacteriaceae and Eggerthellaceae (12 to 7%, 9 to 5%
and 5 to 4%, respectively) after the intervention. Regarding SCFA, only caproic acid was
found to be 15% lower after the intervention in the LC group (Figure 6).
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Figure 5. Analysis of microbiota diversity indexes and microbiota relative abundance profile compo-
sition at baseline and after the intervention by the degree of compliance with the dietary intervention.
Box plot of (A) Shannon and (B) Observed species. No significant differences were found by Wilcoxon
test (p value < 0.05). Microbiota relative abundance distribution to (C) phylum and (D) family level.
Statistical differences were found by Wilcoxon for comparisons within each group (T0 vs. T1) in
the LC (†) and HC (*) (p value < 0.05). Only taxa with relative abundance greater than 1% in mean
values and in at least two samples are presented. HC, higher compliance; LC, lower compliance; T0,
baseline; T1, end.

3.5. Dietary Intake and Shifts of Microbiota Profile Composition among Individuals with Reduced
Severity of Depressive Symptoms

Both groups had improved BDI-II scores after the intervention (Figure 3). Subjects
from the LC group with better BDI-II scores presented higher consumption of oils and
fats (17 vs. 12 g/day), potatoes and tubers (96 vs. 25 g/day) (Table 5), together with a
higher relative abundance of Oscillospiraceae (2.31 to 3.47%) (Figure 7, Table S6). In the
case of the HC group, a reduced consumption of snacks (22 vs. 0 g/day) and soft drinks
(317 vs. 0 g/day) was observed for those individuals with better BDI-II scores (p value
0.083) (Table 5), together with shifts in the microbiota profile. These modifications were in
line with the general profile change observed in the whole HC group with the intervention
(Figure 5C,D): reduced abundances of Actinomycetota and the families Coriobacteriaceae
and Eggerthellaceae, and higher abundances of Ruminococcaceae (p value 0.043).
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Figure 6. Analysis of levels of fecal SCFA at baseline and after the intervention according to the degree of compliance with the dietary intervention. Box plot data are
represented as median and interquartile range. Statistical differences were found by Wilcoxon (*) for comparisons within each group (T0 vs. T1) (p value < 0.05). HC,
higher compliance; LC, lower compliance; T0, baseline; T1, end; Total SCFA, sum of acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, isovaleric
acid and caproic acid; SCFA, short-chain fatty acid.
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Table 5. Daily intake of energy and food groups at the end of the study according to the degree of
compliance with the dietary intervention and the improvement of depressive symptoms.

LC HC

Improved BDI-II
Score
n = 7

No Improvement of
BDI-II Score

n = 4

Improved BDI-II
Score
n = 5

No Improvement of
BDI-II Score

n = 1

Energy (kcal/day) 1437.07
(1977.06–1250.26)

1317.42
(1467.85–1196.86)

1255.91
(1497.14–1123.48)

2101.11
(2101.11–2101.11)

Food groups intake (g/day)
Oils and fats 17.00 (15.53–21.16) 11.46 (6.41–13.01) * 24.15 (17.00–25.28) 23.86 (23.86–23.86)

Olive oil 13.33 (11.00–17.00) 6.89 (4.06–9.83) 16.33 (11.00–17.48) 15.45 (15.45–15.45)
Cereals and cereals products 119.97 (94.44–147.27) 117.06 (67.89–139.27) 46.27 (41.20–67.19) 136.44 (136.44–136.44)

Whole grain cereals 10.00 (0.00–24.17) 12.27 (4.44–19.50) 0.00 (0.00–30.00) 8.67 (8.67–8.67)
Milk and dairy products 398.34 (215.00–545.84) 176.75 (137.84–355.01) 99.63 (84.17–133.33) 204.73 (204.73–204.73)
Meat and meat products 94.83 (69.17–175.16) 125.87 (60.53–194.29) 128.2 (77.76–156.83) 0.00 (0.00–0.00)

White meat 55.33 (5.58–69.17) 82.12 (26.79–127.42) 80.28 (77.76–108.91) 0.00 (0.00–0.00)
Red meat 31.25 (0.00–58.33) 33.33 (13.33–45.00) 47.92 (40.00–47.92) 0.00 (0.00–0.00)

Proccesed meat 33.33 (10.00–41.33) 21.88 (16.67–25.63) 0.00 (0.00–0.00) 0.00 (0.00–0.00)
Eggs 64.00 (32.00–84.67) 34.67 (13.34–46.84) 25.88 (20.67–42.67) 106.00 (106.00–106.00)
Fish 45.83 (3.00–107.33) 59.67 (53.62–71.84) 90.00 (32.50–94.62) 13.33 (13.33–13.33)

Seafood 0.00 (0.00–19.33) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 26.66 (26.66–26.66)
Vegetables 90.11 (48.83–107.67) 105.27 (77.82–112.70) 193.00 (169.67–309.70) 372.27 (372.27–372.27)
Legumes 12.77 (0.00–53.00) 11.67 (0.00–35.00) 23.33 (0.00–46.67) 200.00 (200.00–200.00)

Potatoes and tubers 95.67 (47.83–150.67) 25.00 (16.52–64.19) * 66.67 (24.60–92.17) 241.00 (241.00–241.00)
Fruits 118.68 (42.34–164.58) 144.68 (69.68–168.9) 372.20 (114.76–383.94) 151.96 (151.96–151.96)

Nuts and seeds 0.00 (0.00–0.00) 0.00 (0.00–0.00) 16.67 (0.00–16.67) 0.00 (0.00–0.00)
Sugar and sweets 11.67 (4.17–18.67) 7.00 (0.00–19.50) 9.33 (0.00–14.00) 0.00 (0.00–0.00)

Snacks 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 21.67 (21.67–21.67)
Sauces and condiments 13.83 (0.67–17.33) 22.28 (6.96–56.22) 5.10 (1.67–15.17) 27.56 (27.56–27.56)

Other foods 0.00 (0.00–83.33) 0.00 (0.00–37.50) 30.00 (0.00–40.00) 0.00 (0.00–0.00)
Non alcoholic beverages

(mL/day) 250.00 (183.33–517.67) 276.67 (135.00–462.50) 200.00 (66.67–250.00) 366.67 (366.67–366.67)

Soft drinks (mL/day) 0.00 (0.00–0.00) 41.67 (0.00–151.67) 0.00 (0.00–0.00) 316.67 (316.67–316.67)
Alcoholic beverages (mL/day) 0.00 (0.00–66.67) 2.00 (0.00–18.67) 0.00 (0.00–0.00) 0.00 (0.00–0.00)

Data are expressed as median (P25–P75). Statistical differences were found by Mann–Whitney U tests (*) for
comparisons within each (p value < 0.05). LC, lower compliance; HC, higher compliance.
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Figure 7. Relative abundance of Oscillospiraceae at baseline and after the intervention in individ-
uals with lower compliance (LC) who presented successful amelioration of severity of depressive
symptoms (n = 7). (*) Statistical differences were found by Wilcoxon test for comparisons within each
group (T0 vs. T1) (p value < 0.05). T0, baseline; T1, end.
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4. Discussion

The present work highlights the impact of a nutrition education intervention in a low-
income group of adults on different health-related parameters and gut microbiota profiles.

The starting point was marked by a dietary pattern with a low consumption of vegeta-
bles, fruits, and legumes in comparison with the recommendations (at least 400 g/day of
vegetables and fruits and 50 g/day of legumes) [70,71]. Alcohol consumption was rarely
present in the studied population (12% of the sample), in contrast to previous studies,
analyzing the consumption of this toxic as related to the socio-economic status, although a
similar proportion of regular smokers was found (24%) [9].

After the intervention, while 64% of the volunteers made between zero and two modi-
fications in the PREDIMED items, 35% increased at least three criteria. This change was
characterized by a greater intake of vegetables together with a reduction in the consump-
tion of cereals and processed meats. In consequence, higher levels of some food-derived
bioactive dietary components were achieved. Whereas the level of intake of starch was
depleted, the ingestion of (poly)phenols, such as lignans, was tripled. High intakes of
bioactive dietary components, such as fiber and (poly)phenols, are considered as possible
protective factors against non-communicable diseases [17,34], this effect being partially
linked to microbiota modulation [72]. In this regard, increased abundance of Ruminococcus
(Bacillota phylum) and a reduced proportion of Actinomycetota, and the families Bifi-
dobacteriaceae, Coriobacteriaceae and Eggerthellaceae, which belong to this phylum, were
observed in the group of volunteers showing HC to the intervention. These results are in
agreement with previous studies reporting a lower abundance of Actinomycetota with low-
fat and high-fiber diets [73]. Also, fructo-oligosaccharides, fiber and inulin derived from
flour-based products, such as cereals, have been shown to increase the relative abundance
of Bifidobacterium [74]. Therefore, it is plausible that the reduction in the consumption of
cereals and processed meat, together with the increase in lignans, could be associated with
the shifts in this microbial genus. (Poly)phenols have been shown to inhibit the growth
of this genus [75], and lower abundances have already been associated with a higher
consumption of (poly)phenols and processed meats in previous works [76].

Depleted abundances of Coriobacteriaceae could be due to the reduced consumption
of processed meats. Previous studies have also shown an association between this family,
particularly the genus Senegalimassilia (also depleted), with starch dietary consumption,
whereas starch and Slackia (Eggerthellaceae family) have also been associated in previous
works [39]. Also, the increased levels of Ruminococcaceae, among other taxa with an affinity
for polysaccharides, have been associated with an MD pattern [21]. The intervention did
not significantly affect the alpha diversity of the microbiota, which is consistent with the
results of a recent review on MD and microbiota [21].

To our knowledge, this is the first study analyzing the impact of a nutrition education
intervention on xenobiotics consumption in a sample of low-income individuals. The
intervention was effective in decreasing PAHs and nitrosamines. On the contrary, and prob-
ably resulting from the higher intake of vegetables during the intervention, an increased
intake of nitrates was observed in the entire sample. These results are of great interest
in order to strengthen healthy dietary interventions in this population group. According
to our initial hypotheses, dietary intervention affects the BDI-II score and gut microbiota
composition [77–80]. The depressive severity score was ameliorated in both the LC and HC
groups. Although the proportion of subjects showing improvement in the HC group was
higher, a significantly improved BDI-II score was only obtained in the LC group. Among
these participants, a higher intake of oils and fats, potatoes and tubers and higher relative
abundance of Oscillospiraceae were found. Although some authors have found an associa-
tion between increased relative abundances of this microbial family and depression, the
evidence in the literature is still inconsistent [81–84], and depression may remain constant
after dietary interventions, according to previous research [85]. In all groups of individuals
(LC and HC) an improvement in taste discrimination, both sweet and salty, was observed.
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The LC group showed higher discrimination for sweet after the intervention without
associated changes in microbial profile. Although it has been reported that sensitivity
and discrimination tests can be affected by alcohol consumption, smoking, age, gender, or
BMI [86–92], these variables remained constant across the intervention.

For the interpretation of our data, it is important to keep in mind that this segment of
the population is often unable to freely choose their dietary pattern. The financial budget
provided to each volunteer along with the complex low socio-economic environment in
which the people involved live, the limited sample size, and the short duration of the
dietary intervention limit the strength and the potential impact of results obtained.

5. Conclusions

In conclusion, this nutrition education intervention for materially deprived subjects
demonstrated changes in dietary intake towards healthier food options and lowered the
consumption of potentially carcinogenic compounds. Accompanied by shifts in fecal
microbiota, this work has shown the potential of a nutrition education intervention to
improve the sensitivity and the severity of depressive symptoms. Further research is
required to confirm the obtained results in this study. This would allow for the design
of future strategic policies that would contribute to the optimal nutrition of materially
deprived families through healthy, plant-based affordable interventions. Furthermore,
despite the small sample size, to our knowledge, this is the first study analyzing the
whole picture of the impact of a nutrition education intervention for materially deprived
subjects on diet, bioactive and xenobiotics consumption, fecal microbiota, sensitivity and
discrimination of flavors and mood depression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15163537/s1. Table S1: Anthropometric parameters at baseline
and after the intervention according to the degree of compliance with the dietary intervention;
Table S2: Biochemical parameters at baseline and after the intervention according to the degree of
compliance with the dietary intervention; Table S3: Beck Depression Inventory-II (BDI-II) categories
of depressive symptoms and total score at baseline and after the intervention according to the degree
of compliance with the dietary intervention; Table S4: Sensitivity thresholds and discrimination
scores for salt and sweet at baseline and after the intervention according to the degree of compliance
with the dietary intervention; Table S5: Microbiota diversity indexes and relative abundance profile
composition at baseline and after the intervention according to the degree of compliance with
the dietary intervention.; Table S6: Microbiota diversity indexes and relative abundance profile
composition at baseline and after the intervention in those individuals with LC showing amelioration
of depressive symptoms after the intervention.
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