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Abstract
Additive manufacturing (AM) has become a widely used technique in 3D printing, but
it has proven to be a very costly process, even when optimizing parameters in existing
models. Due to the characteristics of AM, and in order to optimize its process, a new
approach is introduced to the problem: the discretization of each layer to be printed.
This involves establishing an order relation based on the sequence in which the layers
should be printed. The valid orders for the execution of the process, referred to as
compatible with the order relation, will be characterized. Additionally, algorithms will
be provided to obtain new compatible orders from others that were already compatible,
and strategies will be presented to optimally and efficiently reorder non-compatible
orders, converting them into compatible ones.
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1 Introduction

This work is part of the result of a collaborative project with the industry to optimize
the additive manufacturing (AM) process. AM consists of printing objects in three
dimensions in layers.

In [3] or [5], we can see that the general line of action is Finite Element Modeling.
Numerical modeling can significantly reduce the cost of trial-error experimentation

to find the optimal process parameters; however, it can still be computationally very
expensive if the assumptions of the model are simplified (see [6] or [7]).

This work introduces a novel approach to addressing the challenge of discretizing
each printing layer and establishing an order relation to determine the sequence in
which the layers should be printed. The unique nature of the process necessitates the
consideration of constraints, which are modeled using partially ordered sets (POSets).

The primary goal of this study is to identify suitable orders to ensure that, upon
completion of the process, no undesirable imperfections occur. These orders, referred
to as compatible orders, will be explored within the framework of order relations.

The search for the optimal solution is carried out in such an extensive set that exhaus-
tive computation becomes impossible. This necessitates the application of genetic
algorithm techniques and its language. Therefore, it is necessary to develop tools to
obtain random compatible permutations and the calculation of compatible permuta-
tions (Offspring) based on given ones (Parents).

In Sect. 2, the framework is established, namely, the theory of order relations, where
we will review some concepts that will be useful and propose properties of the adja-
cency matrices defined for both partial and total order relations.

Section 3 is dedicated to the central concept of this study, which is compatibility, in
its different degrees and modalities. Permutations or TOSets compatible with an order
relation will be characterized by both their elements and their associated adjacency
matrix. Their existence will be proven through algorithms for their construction, and
compatible permutations will be generated from existing ones.

In Sect. 4, two ways of constructing compatible permutations are provided: one
based on the elements of the order relation and another by rearranging a non-
compatible permutation to obtain a compatible one.

Finally, the last Sect. 5 is dedicated to the conclusions of this work and considera-
tions on future research aimed at optimizing the problem posed in 3D printing.

2 Initial Definitions and Properties

In additive manufacturing, it is important to consider that certain parts need to be
printed before others. These dependencies establish a series of relations that form a
partially ordered set. In this section, we present the fundamental concepts related to
order relations upon which the subsequent results will be based. These concepts can
be further explored in texts dedicated to the study of ordered sets and lattices, both
classical (see [1]) and more contemporary ones (see [2] and [4]).
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Fig. 1 Examples of Hasse diagram of POSets

2.1 Order Relation

Initially, we will review some classic definitions widely used when dealing with order
relations and ordered sets. Likewise, we will discuss some properties of the adjacency
matrix associated with a given order relation.

Definition 2.1 A binary relationR defined on a set S is a subset of S×S. If (a, b) ∈ R
it is said to be a isR-related to b.

R is said to be an order relation or a partial order relation on S if it is:

– reflexive: (a, a) ∈ R ∀a ∈ S
– antisymmetric: ∀a, b ∈ S if (a, b) ∈ R and (b, a) ∈ R then a = b
– transitive: ∀a, b, c ∈ S if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R
A set S with a partial order relation is denoted by (S,R) and is known as Partial

Ordered Set or POSet.
If (S,R) is a POSet, then a, b ∈ S are said to be comparable if aRb or bRa.
Let R be a binary relation defined on a set S. It is said to be a total order relation

if it is an order relation and all the elements of S are comparable. IfR is a total order
(S,R) is said to be a Totally Ordered Set, or TOSet.

Example 2.1 As a set with an order relation can be univocally represented by its Hasse
diagram, we give below three examples of POSet.

2.2 Adjacency Matrix

If S is a set with card(S) = n, and R is a binary relation defined in S, it is common
to use the so-called adjacency matrix, which allows us to show the connections or
relation between elements of an ordered set. The adjacency matrix indicates when an
element is directly related to another and how they compare.

Since this matrix has a strong dependence on the established order of the elements,
it is crucial to work with indexed sets, which will be defined below.

Definition 2.2 Given a set S with n elements, and a bijection from I = {1, 2, . . . , n}
to S

I → S
i → ai
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This establishes an indexing by means I of the elements of S. Then, S is said to be
an I -indexed set or an indexed set.

Definition 2.3 Given σ a permutation of elements of I

σ : I → I
i → σ(i)

an ordering or permutation of elements of S can be generated as

I → S
i → aσ(i)

We can represent the permutation σ by the images of the bijection that σ defines
from I to itself as (σ (1), σ (2), . . . , σ (n)).

Now, for an order relation R we can define the adjacency matrix for each permu-
tation of elements of S.

Definition 2.4 Let S be an indexed set with Card(S) = n and R an order relation
defined on S. We say that a matrix M = (mi j )n×n , is the adjacency matrix of (S,R)

if it satifies:

mR,i j =
{
1 if aiRa j

0 otherwise

Obviously, the adjacency matrix depends on the ordering in which the elements are
taken. Thus, for each permutation (σ (1), σ (2), . . . , σ (n)) of elements of S, a matrix
will be obtained, denoted by Mσ

R, and whose elements are:

mσ
R,i j

=
{
1 if aσ(i)Raσ( j)

0 otherwise

When there is no doubt about the order relation, the adjacency matrix for the
permutation defined by σ can be denoted Mσ , and, for simplicity, we denote by M
the adjacency matrix for the main permutation (1, 2, 3, . . . , n).

We denote by MS(R) the set of the adjacency matrices that represent the relation
R defined on the set S.

Remark 2.1 – Matrices Mσ and M are related by

mσ
i j = mσ(i) σ ( j) or mi j = mσ

σ−1(i)σ−1( j) i, j = 1, . . . , n

– Then, obviously, the elements of the adjacency matrices Mσ and Mδ for two
permutations are also related

mσ
σ−1(i) σ−1( j) = mδ

δ−1(i) δ−1( j) i, j = 1, . . . , n
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Remark 2.2 If Mσ is the adjacency matrix for a permutation (σ (1), . . . , σ (n))

n∑
i=1

mσ
i j0 = Card{aσ(i)/ aσ(i)Raσ( j0)},

n∑
j=1

mσ
i0 j = Card{aσ( j)/ aσ(i0)Raσ( j)}

It is deduced, then, that if aσ(i0) is a maximal element (a ∈ S is a maximal element for
R if there does not exist b ∈ S such that aRb), the i0-th row of the adjacency matrix is
zero except for the position i0, which is 1, and if aσ(i0) is a minimal element (a ∈ S is
minimal element forR if there does not exist b ∈ S such that bRa), the i0-th column
of the adjacency matrix is 0 except for the position i0, which is 1.

Remark 2.3 Let’s recall that given two order relationsR1 andR2 defined on an indexed
set S and a permutation σ , the adjacency matrix of the intersection relationR1 ∩ R2
could be obtained by

Mσ
R1∩R2

= Mσ
R1

⊗ Mσ
R2

where ⊗ represents the term-by-term Boolean product of matrices.

Proposition 2.1 Let be an indexed set S = {a1, a2, . . . , an}, the total order relation
R such that

ai Ra j if and only if j ≤ i

i.e., the elements ordered from highest to lowest index, and the adjacency matrix
Mσ for R of a permutation σ = (σ (1), . . . , σ (n)) of elements of S, then for all
i0 ∈ {1, . . . , n}

n∑
j=1

mσ
j i0 = n − σ(i0) + 1

n∑
j=1

mσ
i0 j = σ(i0)

Proof In a total order relation all elements are comparable so, by definition of adja-
cency matrix, the result holds. �	
Proposition 2.2 Given an indexed set S with n elements and an order relation R

1 ≤ Card(MS(R) ≤ n!

If the order relation is total then Card(MS(R)) = n!
Proof Since there are n! permutations of elements of S, by definition there are n!
adjacency matrices. But it could happen that, for two different permutations there are
two identical adjacency matrices. For example, consider the binary relation given by
aRb ⇐⇒ a = b, where for every permutation, the adjacency matrix is always the
identity matrix. So, in this case Card(MS(R)) = 1.
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On the other hand, if we consider a total order relation R defined on S, let us see
that each permutation has a different adjacency matrix.

Let (σ (1), . . . , σ (n)) and (γ (1), . . . , γ (n)) be two different permutations. Then,
there exists i0 ∈ I such that aσ(i0) �= aγ (i0).

If Mσ = Mγ , then
∑n

j=1mi0 j = σ(i0) = γ (i0), by Proposition 2.1.
Therefore, two distinct permutations cannot have the same adjacency matrix, and
Card(MS(R)) = n!. �	
Corollary 2.1 Let S be a totally ordered indexed set, there exists a bijection between
the set of adjacency matrices and the set of permutations of the elements of S.

3 Compatibility

In the realm of 3D printing, specific dependencies or relations exist among different
components of a print job. These dependencies dictate the sequence in which various
zones, referred to themas pieces,must be printed. To address this, the relations between
these components aremodeled as a partially ordered set, where elements are compared
based on their dependencies. The process entails identifying a permutation-a specific
arrangement of elements-that adheres to the dependencies outlined in the partially
ordered set.

Definition 3.1 Given a permutation σ = (σ (1), σ (2), . . . , σ (n)) of elements of I =
{1, 2, . . . , n}, we define the relation induced by σ on S and denote it by Tσ the relation
defined as:

(ai , a j ) ∈ Tσ ⇐⇒ σ−1( j) ≤ σ−1(i)

It is easy to see that, thus defined, this is a total order relation on S.

This definition establishes a bijection between permutations and TOSets defined
in a set formed by n elements. Therefore, from now on, we will use TOSets and
permutations interchangeably.

Remark 3.1 The adjacency matrix of the relation induced by the permutation σ ,
denoted as MTσ

, is lower triangular where

mi j =
{
1 ∀ j ≤ i
0 ∀ j > i

If R is an order relation in S, the previous definition leads us to another one that
involves the relationR and the relation Tσ induced by a permutation σ of elements of
S.

Definition 3.2 Let S = {a1, a2, . . . , an} be an indexed set and let R be an order
relation defined on S. A permutation σ of the elements of S is said to be compatible
with the relation R ifR ⊆ Tσ .

We denote the set of permutations compatible with the relationR by C(S,R).
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Example 3.1 The permutation σ = (1, 2, 3, 4) induces the total order relation R3
whose Hasse diagram is that of Fig. 1c. σ is compatible with the order relation R1
(Fig. 1a) since R1 ⊂ R3 but it is not with R2 (Fig. 1b) because (a1, a2) ∈ R2 and
(a1, a2) /∈ R3 since σ−1(2) � σ−1(1).

Considering the elements of the set S, we are going to define two degrees of com-
patibility of the elements in a permutation.

Definition 3.3 Given a permutation σ = (σ (1), σ (2), . . . , σ (n)) of elements of I =
{1, 2, . . . , n} and let (S,R) be an ordered indexed set we say that ai is compatible
with a j in the permutation σ if

aiRa j ⇒ σ−1( j) ≤ σ−1(i) or, equivalently,
σ−1(i) < σ−1( j) ⇒ ai¬Ra j ,

where a¬Rb denotes that a is not related to b.

Example 3.2 Let be the permutation σ = (3, 1, 4, 2). Let us consider the POSet in
the Fig. 1a. a3 is compatible with any other element of the permutation because a3 is
not related to any of them, however a4 is not compatible with a2 because σ−1(4) =
3 < σ−1(2) = 4 and a4R1a2.

Definition 3.4 Given S an ordered indexed finite set and the permutation σ =
(σ (1), σ (2), . . . , σ (n)), we say that ai0 is totally compatible in the permutation σ

if it is compatible with all elements and all elements in the permutation are compatible
with it, i.e., if the following two conditions are met

for all j ∈ {1, . . . , n} such that ai0Ra j then σ−1( j) ≤ σ−1(i0) and

for all j ∈ {1, . . . , n} such that a jRai0 then σ−1(i0) ≤ σ−1( j).

Example 3.3 In the Example 3.2, a3 and a1 are totally compatible in σ but a2 and a4
are not.

Remark 3.2 If an element ai0 is totally compatible for σ and Mσ is its adjacency
matrix, it follows from the definition that this is equivalent to

for all j ,k with 1 ≤ j < σ−1(i0) < k ≤ n, mσ
j σ−1(i0)

= 0 and mσ
σ−1(i0) k

= 0

Example 3.4 The adjacency matrix for σ , in the Example 3.2, is

Mσ =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
1 1 1 1
0 1 0 1

⎞
⎟⎟⎠ .

As we saw, a3 were totally compatible in σ and mσ
1 k = 0 for all k such that 1 =

σ−1(3) < k ≤ n and a1 also were compatible in σ so mσ
2 k = mσ

j 2 = 0 for all j, k

such that 1 ≤ j < σ−1(1) = 2 < k ≤ n.
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But a4 is not, and as we can see mσ
σ−1(4)4

= mσ
34 �= 0.

Given the relevance that the compatible permutations will have in the remaining
parts of this paper, it is important to be able to identify them. The following result
provides us with some ways of doing it, either through its adjacency matrix or through
the ordering of the elements in the permutation.

Theorem 3.1 Let (S,R) be an ordered indexed set and σ a permutation of elements
of I . The following statements are equivalent:

(a) σ is compatible with the relation R.
(b) Mσ

R ⊗ Mσ
Tσ

= Mσ
R.

(c) Mσ
R is lower triangular.

(d) All elements ai are totally compatible in the permutation σ .

Proof

(a)⇒(b) If σ is compatible with the relation R, by Definition 3.2, it follows that
R ⊆ Tσ ; therefore, R ∩ Tσ = R. Thus, according to Remark 2.3, it follows
that Mσ

R = Mσ
R∩Tσ

= Mσ
R ⊗ Mσ

Tσ
.

(b)⇒(c) If Mσ
R ⊗ Mσ

T = Mσ
R then ∀ i, j ∈ {1, . . . , n}, mσ

R,i j ≤ mσ
Tσ ,i j

and, as Mσ
Tσ

is lower triangular (see Remark 3.1), Mσ
R is lower triangular.

(c)⇒(d) Assume, by reductio ad absurdum, that ai0 is not totally compatible in σ then

∃ j such that ai0Ra j and σ−1(i0) < σ−1( j) so mσ
R

σ−1(i0)σ−1( j)
= 1 or

a jRai0 and σ−1( j) < σ−1(i0) so m
σ
R

σ−1( j)σ−1(i0)
= 1

in both cases Mσ
R would not be lower triangular, so we have reached a con-

tradiction.
(d)⇒(a) Let’s suppose all elements are totally compatible in σ . Then, if aiRa j ⇒

σ−1( j) ≤ σ−1(i) ⇒ aiTσa j . So R ⊆ Tσ and therefore σ is a compatible
permutation.

�	

As mentioned earlier, in 3D printing, it is crucial to search for compatible TOSets
(permutations) with the POSets. The Theorem 3.1 provides a characterization that
speeds up the search process, stating that the matrix associated with the partial order
relation with respect to the permutation is lower triangular.

Example 3.5 Consider the Hasse diagram of Fig. 2 defining a certain partial order
relationR on S = {ai/1 ≤ i ≤ 9}.

We can check thatσ = (1, 2, 3, 4, 5, 6, 7, 8, 9) andω = (2, 1, 3, 5, 4, 7, 6, 8, 9) are
permutations compatible with R and, but γ = (2, 1, 3, 6, 7, 4, 5, 8, 9) is not because
a6 and a7 are not compatible with a5 and a4, respectively.
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Fig. 2 POSet (S,R)

The adjacency matrices of σ and ω with respect to the relationR are, respectively:

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
1 1 1 1 1 0 1 0 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and they are both lower triangular.
While for γ :

Mγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
1 1 1 0 1 1 1 0 0
1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 0
1 1 1 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is not a lower triangular matrix.
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3.1 Existence of Compatible TOSets

Due to the significance of compatible TOSets (permutations) with POSets, it Is nec-
essary to have algorithms that allow us to construct such TOSets. In the following
part we provide an algorithm for the construction of TOSets that are compatible with
POSets and in this way, we prove the existence of such compatible TOSets.

Theorem 3.2 Given an indexed POSet (S,R) with n elements, there is always a com-
patible permutation.

Proof In a finite POSet, there always exist maximal elements. Let’s assume there are
μ1 of these maximal elements.

Consider these maximal elements of (S,R),

M11, M12, . . . , M1μ1

denoting by M11 = aσ(1), M12 = aσ(2), . . . , M1μ1 = aσ(μ1), we construct

(σ (1), σ (2), . . . , σ (μ1))

which verifies that if i, j ∈ {1, 2, . . . , μ1}, aσ(i) and aσ( j) are not comparable.
Let us now consider the set S1 = S − {aσ(1), aσ(2), . . . , aσ(μ1)}, and the restriction

of R on S1 that we denote R1. As in the previous step, let’s suppose that there are r2
maximal elements, and, denoting μ2 = μ1 + r2 and

M21 = aσ(μ1+1), M22 = aσ(μ1+2), . . . , M2r2 = aσ(μ2),

we add them to the previously constructed permutation, obtaining

(σ (1), σ (2), . . . , σ (μ1), σ (μ1 + 1), . . . , σ (μ2))

that verifies

– If 1 ≤ i, j ≤ μ1 ⇒ aσ(i) and aσ( j) are not comparable
– If μ1 < i, j ≤ μ2 ⇒ aσ(i) and aσ( j) are not comparable
– If 1 ≤ i ≤ μ1 < j ≤ μ2 ⇒ as aσ( j) is maximal in S1, aσ(i) is maximal in S and

S1 ⊆ S therefore aσ(i) and aσ( j) are not comparable or aσ( j)Raσ(i).

Repeating the process k − 1 times considering the set Sk = S − {aσ(1), . . . , aσ(μk )}
and taking the maximal elements of the poset (Sk,Rk) being Rk , the restriction of
R to the set Sk , we will obtain, after a finite number of steps, a permutation of the n
elements of S

σ=(σ (1), σ (2), . . . , σ (μ1), σ (μ1+1), . . . , σ (μ2), . . . , σ (μk), σ (μk+1), . . . , σ (n))

which is compatible with the relation R by construction. �	
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Corollary 3.1 The adjacency matrix for the permutation constructed in the above The-
orem 3.2 Mσ is lower triangular and

1 ≤ i, j ≤ μ1 mσ
i j = I d(μ1)i j

k > 1 μk + 1 ≤ i, j ≤ μk+1 mσ
i j = I d(μk+1 − μk)i−μk j−μk ,

where Id(p) is the identity matrix of order p.

Proof Given that the elements taken at each step of the process are all the maximal
elements of each Sk , and the maximal elements at each step are not comparable, it
follows that the adjacency matrix Mσ obtained has the described form with identity
matrices on the main diagonal. �	

Corollary 3.2 The number of the permutations of elements of S compatible with the
relationR is lower bounded by

∏l
i=1 ri !with l the number of steps we have performed

in the statement and ri the number of maximal elements in each steps.
The ordered set (S,R) can be represented by a lower triangular adjacency matrix.

Corollary 3.3 (S,R) is a totally ordered set if and only if C(S,R) has a unique com-
patible permutation.

This permutation is the only one whose adjacency matrix is a lower triangular
matrix which, moreover as we said in Remark 3.1, verifies that for all 1 ≤ j ≤ i ≤ n,
mi j = 1.

Example 3.6 To construct a compatible permutation for the ordered indexed set S of
the Example 3.5 we can follow these steps:

– we take in any order the maximals of (S,R), for example σ = (1, 2, 5).
– we consider S1 = S − {a1, a2, a5} and we take in any order the maximals of

(S1,R), that is {a3, a6}, σ = (1, 2, 5, 3, 6).
– in S2 = S − {a1, a2, a5, a3, a6} there is only one maximal a4, so we get the
permutation σ = (1, 5, 2, 3, 6, 4).

– we have S3 = S − {a1, a2, a5, a3, a6, a4} whose maximals are {a7, a8} and we
could put σ = (1, 2, 5, 3, 6, 4, 7, 8).

– finally, we complete the compatible permutation with the last element and we get

σ = (1, 2, 5, 3, 6, 4, 7, 8, 9).
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And the adjacency matrix of this permutation is Mσ in which it can be checked
that on the main diagonal there are blocks of identity matrices.

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 1 0 0
1 1 0 1 0 1 0 1 0
1 1 0 1 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

However, although σ = (1, 2, 3, 4, 5, 6, 7, 8, 9) is a compatible permutation, it cannot
be constructed by the algorithm described in the previous Proposition 3.2.

A relevant issue in compatible permutations are the consequences that can be drawn
from the order that their elements occupy.

For example, the following property guarantees that if two elements appear in a
different order in two permutations that are compatible, then these elements cannot be
compared by the relation.

Proposition 3.1 Given two permutations σ and γ that are compatible with the relation
R and two elements ai �= a j of S such that σ−1(i) < σ−1( j) and γ −1( j) < γ −1(i).

Then ai and a j are not comparable by R.

Proof Given the compatibility of the first permutation we have that ai¬Ra j and for
the second one we have that a j¬Rai so ai and a j are not comparable. �	
Example 3.7 In the indexed ordered set of the Example 3.5, the permutations

σ = ( 1, 2 , 3, 4, 5 , 6, 7 , 8, 9) and ω = ( 2, 1 , 3, 5, 4 , 7, 6 , 8, 9)

are compatible and the elements a1 and a2 are not comparable, as well as a4 and a5
or a6 and a7.

Next, we will see a property that follows directly from the previous one and that is
very useful for later results.

This property ensures that given two permutations and one element of the set, the
elements that are in one of them before the element and in the other after the element
are not related to the element.

Proposition 3.2 Given an indexed ordered set (S,R), two compatible permutations
σ and γ with the relationR and an element ai0 ∈ S.

The elements a j ∈ S such that σ−1( j) < σ−1(i0) and γ −1(i0) < γ −1( j) or
σ−1(i0) < σ−1( j) and γ −1( j) < γ −1(i0) are not comparable to ai0 .

Proof It is an immediate consequence of the previous property. �	
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Example 3.8 In the indexed ordered set of the Example 3.5, the permutations σ =
(1, 2, 3, 4, 5, 6, 7, 8, 9) and γ = (1, 5, 2, 6, 3, 4, 8, 7, 9) are compatible and the ele-
mentsa2 anda5 are not comparable becauseσ−1(2) = 2 < σ−1(5) = 5 and γ −1(2) =
3 > γ −1(5) = 2; a3 is not comparable with a5 and σ−1(3) = 3 < σ−1(5) = 5
and γ −1(3) = 5 > γ −1(5) = 2 or a6, because σ−1(3) = 3 < σ−1(6) = 6 and
γ −1(3) = 5 > γ −1(6) = 4; and so on we can check with the other elements.

3.2 Finding Compatible TOSets

As we mentioned in the introduction, the application of genetic algorithms in the
search for the optimal solution leads us to the need for generating tools that allow us
to obtain a compatible order (offspring) from compatible orders previously obtained
(parents).

The following definition provides uswith a quick and simplemethod of constructing
permutations based on others given.

Definition 3.5 Let be an indexed ordered set (S,R)with n elements,σ1 andσ2, permu-
tations of elements of S and k ∈ {1, . . . , n−1}, we call the k-cut offspring permutation
of σ1 and σ2 the permutation γ defined as:

γ = (σ1(1), σ1(2), . . . , σ1(k), σ2(i1), . . . , σ2(in−k)),

where for all h ∈ {i1, i2, . . . , in−k} such that i1 < i2 < · · · < in−k then σ2(h) /∈
{σ1(1), . . . , σ1(k)}.

As the following result ensures, given two permutations compatible with the rela-
tion, the k-cut offspring permutation is also compatible.

Theorem 3.3 Given an indexed ordered set (S,R)with n elements and k ∈ {1, . . . , n−
1}, the k-cut offspring permutation of two permutations, σ1 and σ2, compatible R is
a permutation compatible withR.

Proof Let be σ1 = (σ1(1), . . . , σ1(n)), σ2 = (σ2(1), . . . , σ2(n)) two compatible
permutation and k ∈ {1, . . . , n − 1}.

The k-cut offspring permutation is

γ = (σ1(1), σ1(2), . . . , σ1(k), σ2(i1), . . . , σ2(in−k)),

where for all h ∈ {i1, i2, . . . , in−k} such that i1 < i2 < · · · < in−k then σ2(h) /∈
{σ1(1), . . . , σ1(k)}.

Let’s denote S1 = {aσ1(1), . . . , aσ1(k)} and S2 = {aσ2(1), . . . , aσ2(k)}.
– If S1 = S2, the elements belonging to S1 are compatible with each other in the
resulting permutation due to their presence in the compatible permutation σ1, and
the remaining elements S − S1 with each other as well, because they are in σ2.
The elements belonging to S1 are also compatible with those in S−S1 by verifying
the compatibility of σ2.
So, in this case we have a resulting permutation compatible with the relation.
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– If S1 �= S2

– the elements of S1 and those of S − S1, due to the compatibility of σ1 and σ2,
respectively, are compatible with each other in the resulting permutation;

– if a ∈ S1 and b ∈ (S − S1),

a = aσ1( ja) = aσ2(ia) and ja < k b = aσ1( jb) = aσ2(ib) and jb > k.

• if b /∈ S2 −→ ib > k then a and b are compatible in the resulting
permutation;

• if b ∈ S2 −→ ib < k
• if ia < ib, they are in the same order in both permutations and are
therefore compatible in the resulting permutation.

• if ib < ia , as ja < k < jb, then they are interchanged in both per-
mutations and therefore, by Proposition 3.2, they are not comparable
and, therefore, are compatible in the resulting permutation.

So, in this case, we also have a resulting permutation compatible with the order
relation.

Then we can conclude that the permutation resulting from two compatible permuta-
tions with the relation R is also a compatible one. �	
Remark 3.3 The procedure described in Definition 3.5 can be extended recursively
to the case of m > 2 permutations and a partition, k = (k1, . . . , km), of n, that is
∀i ∈ {1, . . . ,m}ki ∈ {1, . . . , n − 1} and ∑m

i=1 ki = n.
Given σi = (σi (1), σi (2), . . . , σi (n)), i ∈ {1, . . . ,m} permutations of elements of

S and k = (k1, . . . , km = n − ∑m−1
i=1 ki ), we construct γm as follow

{
γ2 = k1-cut offspring permutation of σ1 and σ2

γi = ( ∑i−1
i=1 ki

)
-cut offspring permutation of γi−1 and σi , if i ∈ {3, . . .m}

and we call it
(
k1, k2, . . . , km−1

)
-cut offspring permutation of σ1, σ2, . . . , σm .

γm is that which the elements of the positions between
∑i−1

j=1 k j and
∑i

j=1 k j are

the first ki elements of permutation σi that are not in
⋃i−1

j=1{σ j (i j1), . . . , σ j (i jk j )}.

Corollary 3.4 Given an indexed ordered set (S,R) with n elements, the resulting per-
mutation of m permutations compatible withR, k = (k1, . . . , km) a partition of n, that
is, as in the Remark 3.3,

∑m
i=1 ki = n, is a permutation compatible with the relation

R.

Proof This result is directly deduced from Theorem 3.3 and the recursive construction
of the Remark 3.3. �	

The Remark 3.3 is presented in a general form, that is, how to generate offspring
from n parents, in anticipation that it may yield better results in other problems, as
illustrated in the following example.
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Table 1 Construction of (3, 2, 2)-cut offspring permutation

Partition of 9 Permutations used Offspring permutation

(3, 6) {σ1, σ2} γ2 = (

σ1︷ ︸︸ ︷
1, 2, 3,

σ2︷ ︸︸ ︷
5, 4, 7, 6, 8, 9)

(5, 4) {γ2, σ3} γ3 = (

γ2︷ ︸︸ ︷
1, 2, 3, 5, 4,

σ3︷ ︸︸ ︷
8, 7, 9, 6)

(7, 2) {γ3, σ4} γ4 = (

γ3︷ ︸︸ ︷
1, 2, 3, 5, 4, 8, 7,

σ4︷︸︸︷
6, 9 )

Example 3.9 Continuing with the Example 3.5, for the partition k = (3, 2, 2, 2) of 9
and the following compatible permutations withR:

σ1 = (1, 2, 3, 4, 5, 6, 7, 8, 9) σ2 = (2, 1, 5, 3, 4, 7, 6, 8, 9)

σ3 = (1, 2, 5, 3, 4, 8, 7, 9, 6) σ4 = (2, 1, 3, 4, 8, 5, 6, 7, 9)

we will obtain the
(
3, 2, 2)-cut offspring permutation of σ1, σ2, σ3 and σ4 that we call

γ4.
In Table 1, we have the recursive construction performed to obtain γ4.
As corollary 3.4 assures, we can observe that γ4 is compatible withR.

4 Construction of Compatible Permutations

In this section, we present several algorithms that allow us to construct compatible
permutations from a random permutation while minimizing the number of iterations.

In the following theorem we will see that a suitable arrangement of the elements of
the set S allows us to obtain a permutation compatible with the relation.

Theorem 4.1 Given an indexed ordered set (S,R) with n elements, if Ni =
Card{a j / a jRai } for i ∈ {1, . . . n}, a permutation σ = (σ (1), σ (2), . . . , σ (n))

such that Nσ( j) ≤ Nσ(i) if i < j is compatible with the relation R.

Proof By reductio ad absurdum, let us assume that σ is not compatible with the
relation, that is, based on Proposition 3.1, ∃ i < j such that aσ(i) is non compatible
with aσ( j) then aσ(i) < aσ( j) and Nσ( j) ≤ Nσ(i).

Thus, by the transitivity of the relation, the elements smaller than aσ(i) are also
smaller than aσ( j) and therefore Nσ(i) ≤ Nσ( j), leading to a contradiction. �	
Remark 4.1 As we have seen in previous notes, this result can be interpreted in terms
of the adjacency matrix of the permutation with respect to the order relation.

With the notation of the Theorem 4.1 Nσ(i) = ∑n
j=1m j,σ (i), then by ordering the

elements of S by the sum of columns from largest to smallest we obtain a compatible
permutation.

Corollary 4.1 The set C(S,R) of the permutations of elements of S compatible with
the relation R is bounded below by

∏
p∈{Ni } Card{ai / Ni = p}.
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Example 4.1 Continuing with the same ordered set of Example 3.5,

σ = (2, 1, 3, 5, 4, 7, 8, 6, 9)

is compatible because the sequence of sums Nσ(i) = (6, 6, 5, 4, 4, 2, 2, 1, 1) is
decreasing.

The adjacency matrix Mσ is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6 6 5 4 4 2 2 1 1

Note that ifwe permute the elements 2 and 1we obtain another compatible permutation
as well as if we permute 5 and 4, 7 and 8 or 6 and 9.

Now, in order to achieve our objective, we are going to define a rearrangement of
elements within a permutation. The repeated application of this rearrangement to a
permutation that is not compatiblewith the relationwill allow us to obtain a compatible
permutation.

Definition 4.1 Let be (S,R) a poset and σ = (σ (1), σ (2), . . . , σ (n)) a non compati-
ble permutation.

Consider two elements, α and δ, such that α > 0, 1 ≤ δ < n, and that satisfy the
following conditions:

aσ(δ+1)Raσ(δ+α)

aσ(i)¬Raσ( j) if i ≤ δ, ∀ j ∈ {i + 1, . . . , n},
aσ(δ+1)¬Raσ(i) ∀ i ∈ {δ + α + 1, . . . , n}.

We select the indices J = { j1, . . . , jβ} with 1 < j1 < · · · < jβ = α such that
∀δ + α < k ≤ n, aσ(δ+ jk )¬Raσ(δ+1) and consider

I = {1, 2, . . . , α} − J = {i1, i2, . . . , iα−β}

with 1 = i1 < i2 < · · · < iα−β < α (it’s clear that aσ(δ+ik )Raσ(δ+1) and
aσ(δ+1)¬Raσ(δ+ik )).

In these conditions, the permutation

σδα = (
σ(1), . . . , σ (δ), σ (δ + j1), . . . , σ (δ + jβ),

σ (δ + i1), . . . , σ (δ + iα−β), σ (δ + α + 1), . . . , σ (n)
)
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is called the basic permutation of σ for R.

Remark 4.2 The previous definition can be interpreted in terms of the adjacencymatrix
associated with the initial permutation σ as follows.

Let be (S,R) a poset and Mσ ∈ MS(R) with σ a non compatible permutation,
that is, Mσ is not lower triangular.

We consider two elements α and δ such that α > 0, 1 < δ < n, and

mδ+1,δ+α = 1
mi, j = 0 if i ≤ δ, ∀ j ∈ {i + 1, . . . , n},
mδ+1,i = 0 ∀ i ∈ {δ + α + 1, . . . , n}.

We select the indices J = { j1, . . . , jβ} with 1 < j1 < · · · < jβ = α such that
∀δ + α < k ≤ n, mδ+ jk ,δ+1 = 0 and consider

I = {1, 2, . . . , α} − J = {i1, i2, . . . , iα−β}

with 1 = i1 < i2 < · · · < iα−β < α (it’s clear thatmδ+ik ,δ+1 = 1 andmδ+1,δ+ik = 0).

Example 4.2 Continuing with the same ordered set of Example 3.5 and taking as initial
permutation

σ = (2, 1, 3, 6, 7, 4, 5, 8, 9)

which, as can be easily checked, is not compatible with the relationR (for example it
can be seen that a9¬Ra7 and yet, a9Tσa7 with the order relation induced by the order
of the permutation).

The adjacency matrix for σ is:

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
1 1 1 0 1 1 1 0 0
1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 0
1 1 1 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we apply the basic permutation to σ we obtain the new permutation

σδα = (2, 1, 3, 7, 4, 5, 6, 8, 9)

because, taking δ = 3 and α = 4, the conditions of the Definition 4.1 are verified.

Next, we prove that, after performing each basic permutation on a permutation, we
are getting totally compatible elements.
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Theorem 4.2 Let (S, R) be a poset, σ = (σ (1), σ (2), . . . , σ (n)) a permutation of
elements of S and σδα the basic permutation of σ forR, then, with the notation of the
Definition 4.1, aσ(δ+1) is totally compatible for the permutation σδα .

Proof Firstly, if σδα is the basic permutation for σ , we note σ(δ + 1) = σδα(δ+β+1)
We are going to separate 4 cases:

1. 1 ≤ k ≤ δ ⇒ aσδα(k) = aσ(k) and aσ(k)¬Raσ(δ+1) but aσ(δ+1) = aσδα(δ+β+1)
because k ≤ δ, so aσδα(k)¬Raσδα(δ+β+1).

2. δ + 1 ≤ k ≤ δ + β ⇒ (k = k′ + δ → 1 ≤ k′ ≤ β) ⇒ aσδα(k) =
aσδα(δ+k′) = aσ(δ+ jk′ ) and aσ(δ+ jk′ )¬Raσ(δ+1) but aσ(δ+1) = aσδα(δ+β+1), so
aσδα(k)¬Raσδα(δ+β+1).

3. δ + β + 1 ≤ k ≤ δ + α ⇒ (k = k′ + δ + β → 1 ≤ k′ ≤ α − β) ⇒
aσδα(δ+β+1) = aσ(δ+1) and aσ(δ+1)¬Raσ(δ+ik′ ) but aσ(δ+ik′ ) = aσδα(δ+β+k′) =
aσδα(k), so aσδα(δ+β+1)¬Raσδα(k).

4. δ + α ≤ k ≤ n ⇒ aσδα(δ+β+1) = aσ(δ+1) and aσ(δ+1)¬Raσ(k) but aσ(k) =
aσδα(k), so aσδα(δ+β+1)¬Raσδα(k).

Therefore, ∀ j, k such that 1 ≤ j < δ + β + 1 < k ≤ n, aσδα( j)¬Raσδα(δ+β+1)
and aσδα(δ+β+1)¬Raσδα(k) then aσ(δ+1) = aσδα(δ+β+1) is totally compatible for the
permutation σδα . �	
Remark 4.3 As already mentioned in the Remark 3.2 regarding the totally compatible
elements, since bδ+β+1 is totally compatible for σδα , if Mσδα is the adjacency matrix
associated to the permutation σδα then

mi,δ+β+1 = 0 ∀i < δ + β + 1 and
mδ+β+1, j = 0 ∀δ + β + 1 < j .

The following result proves that with the performance of each basic permutation
the condition of total compatibility is not lost, i.e., that the totally compatible elements
in the initial permutation remain totally compatible in the final permutation.

Theorem 4.3 Let (S, R) be a poset, aσ(i0) totally compatible for a permutation σ

and σδα the basic permutation of σ for R then aσ(i0) is totally compatible for the
permutation σδα .

Proof Ifσδα is the basic permutation forσ ,weobserveσ(i0) �= δ+1andσ(i0) �= δ+α.
Depending on the position of the element aσ(i0) in the permutation, we will distin-

guish three cases:

1. 1 ≤ σ(i0) ≤ δ ⇒ σδα(i0) = σ(i0)

• if j < σ(i0) then aσδα( j) = aσ( j), so aσδα( j)¬Raσ(i0)

• if σ(i0) < k then σ(i0) < σ(k) ⇒ aσ(i0)¬Raσ(k) = aσδα(k).

2. δ + 1 < σ(i0) < δ + α

By the transitivity of the relation, we know that aσ(i0)¬Raσ(δ+1), since otherwise
we would reach a contradiction because, as aσ(δ+1)Raσ(δ+α), we would have that
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aσ(i0)Raσ(δ+α), but aσ(i0) is totally compatible.
Using the notation of the Definition 4.1 σ(i0) ∈ J ⇒ σ(i0) = jr0 = δ + r0.
Let t ≤ σ(i0) = δ + r0.
We will distinguish 5 cases.

(a) t ∈ {1, . . . , δ} then t = σ(t) and aσδα(t) = aσ(t)¬Raσ(i0)

(b) t ∈ {δ + 1, . . . , δ + r0 − 1} then t = jr0−δ < jr0 = σ(i0) ⇒

aσδα(t) = aσ( jr0−δ)¬Raσ( jr0 ) = aσ(i0)

since aσ(i0) is totally compatible for σ .
(c) t ∈ {δ + r0 + 1, . . . , δ + β} then σ(i0) = jr0 = δ + r0 < t = δ + r0 + ω =

jr0+ω with 1 ≤ ω ≤ β − r0 ⇒

aσ(i0)¬Raσ( jr0+ω) = aσ(t) = aσδα(t)

because aσ(i0) is totally compatible for σ .
(d) t ∈ {δ + β + 1, . . . , δ + α} then t ∈ I and aσδα(t) = aσ(δ+iω) with 1 ≤ ω ≤

α − β and aσ(i0)¬Raσδα(t) because, otherwise, as we have seen above, we
would reach a contradiction since, due to the transitivity of the relation, we
get

aσ(i0)Raσ(δ+iω)Raσ(δ+1).

(e) t ≥ δ + α + 1
Similar to case (2a) since σ(t) = t and, therefore aσ(t) = aσδα(t).

3. δ + α + 1 ≤ σ(i0) ≤ n Similar to case (2a) because also aσδα(i0) = aσ(i0)

• if j < σ(i0) then σ( j) < σ(i0) ⇒ aσδα( j) = aσ( j)¬Raσ(i0)

• if σ(i0) < k then aσ(i0)¬Raσ(k) = aσδα(k)

So aσ(i0) is totally compatible for the permutation σδα . �	
Remark 4.4 If Mσ is the adjacency matrix associated to σ and Mσδα is the adjacency
matrix associated to σδα then

mi,δ+β+1 = 0 ∀i < δ + β + 1 and
mδ+β+1, j = 0 ∀δ + β + 1 < j .

Corollary 4.2 After at most n − 1 repetitions of the basic permutation over an initial
permutation, a permutation compatible with the order relation is obtained.

In this example, we need to perform the basic permutation process n − 1 times to
obtain a compatible permutation.
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Example 4.3 Initially, we consider γ = (n, . . . , 1), and we need to perform the basic
permutation process n−1 times to obtainσ = (1, . . . , n)which is the only permutation
in which all elements are totally compatible with the relation Tσ .

Remark 4.5 When applying genetic algorithms, the search for random compatible
orders plays a crucial role. These outcomes allow us, given any random order, to
generate a compatible order in at most n − 1 iterations, where n is the number of
elements in the set.

Example 4.4 Continuing with the Example 4.2 where

σ = (2, 1, 3, 6, 7, 4, 5, 8, 9).

Applying the basic permutation to σ we obtained

σ34 = (2, 1, 3, 7, 4, 5, 6, 8, 9)

in which we can observe that, as stated in Theorem 4.2, a6 is totally compatible and,
as stated in Theorem 4.3, a2, a1, a3, a8 and a9 are still totally compatible as they were
in σ .

Its adjacency matrix is:

Mσ34 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0
1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After performing all the possible basic permutations, we obtain the permutation

γ = (2, 1, 3, 4, 5, 7, 6, 8, 9)

that we can see that all its elements are totally compatible, andwhose adjacencymatrix
is:

Mγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0
0 0 0 0 1 0 1 0 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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5 Conclusions and Future Research

As mentioned in the introduction, this work arises from a collaborative project with
the industry, with the objective to optimize the additive manufacturing (AM) process,
which involves printing three-dimensional objects in overlapping layers.

In this process, there is a factor that determines the order in which the printing of
each layer must follow.

This factor defines the process model proposed in this work, as it establishes an
order relation that must be respected for the correct printing of the objects.

In this work, results are presented that ensure the existence of such orders and
procedures to construct them. They are also characterized by both their associated
adjacency matrices and the compatibility of their elements.

Furthermore, an algorithm is provided that, starting from a random permutation,
finds the closest compatible permutation in the sense that it minimizes the number of
steps to achieve it.

In order to achieve our objective of optimizing the AM process, several lines of
future action have been considered, including: determining the optimal compatible
permutation in the sense of minimizing the printing cost of each layer; attempting to
bound or determine the number of compatible permutations for each layer; investigat-
ing the conditions under which a compatible order for one layer can be applied to the
next layer, considering that successive printing layers may have a similar arrangement
of objects; and lastly, taking into account that the solution space can be on the order of
3000!, finding strategies to simplify the solution space, i.e., organizing the information
to reduce the solution space.
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