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RESUMEN (en español) 

Esta tesis estudia cómo obtener una acción efectiva para el dual holográfico de líneas de 
Wilson en teorías de campos no conformes y fuertemente acopladas y algunas aplicaciones del 
mecanismo obtenido. Encontramos una acción efectiva para una cuerda dual a la línea de 
Wilson usando el mecanismo de renormalización de Wilson donde integramos los grados de 
libertad más próximos a la frontera de geometrías que asintóticamente se aproximan a AdS. La 
integración proporciona una contribución para la acción en el cutoff dependiente de coeficientes 
que pueden ser determinados por una ecuación del flujo del grupo de renormalización. 

Empleamos esta técnica para estudiar observables fenomenológicos como el potencial quark-
antiquark y proporcionamos dos tipos de ejemplos: Teorías en 3+1 dimensiones con un RG 
flow que acaba en un punto fijo en el infrarrojo y en las teorías confinantes de Witten QCD y el 
modelo de Klebanov-Strassler. También aplicamos este formalismo para calcular las fuerzas 
que experimenta un quark moviéndose en un plasma de quark-gluones, que modelamos con 
una cuerda moviendose en una geometría en una brana negra. 

Finalmente estudiamos como afecta este formalismo a la invarianza bajo reparametrizaciones 
de los Wilson Loops, también conocida como simetría 'zig-zag'. Probamos que las 
reparametrizaciones de los Wilson loops pueden ser identificadas con transformaciones 
conformes en la hoja de mundo de la cuerda. La integración se lleva a cabo hasta un punto de 
corte en la dirección holográfica que puede estar asociado a la geometría de fondo o a la hoja 
de mundo. Cuando empleamos el primero rompemos la simetría bajo difeomorfismos y 
transformaciones de Weyl de la hoja de mundo, pero conservamos transformaciones 
conformes, sin embargo el segundo método rompe la invarianza conforme e induce una acción 
de defecto en la escala del punto de corte. 

RESUMEN (en Inglés) 

This thesis studies how to obtain an effective theory for the holographic dual of Wilson lines in 
strongly coupled non-conformal field theories and some applications of this mechanism. An 
effective action is found for a string dual to the Wilson line using the Wilsonian renormalization 
scheme where we integrate out the degrees of freedom that are close to the boundary in 
asymptotically AdS spaces. This integration results in a contribution to the action at the cutoff 
that depends on coefficients that are determined by an RG flow equation. 

We use this technique to study some phenomenological observables such as the quark-
antiquark potential and provide two kinds of examples: 3+1 dimensional theories with an RG 
Flow that ends in an IR fixed point and confining theories, specifically Witten QCD and 
Klebanov-Strassler models. We also apply this formalism to compute the forces a quark 



                                                                 

 

experiences when moving through a quark-gluon plasma, modeled by a string moving in a black 
brane geometry. 
 
We finally study how does this affect the reparametrization invariance of Wilson loops, also 
known as 'zig-zag' symmetry. We show that Wilson loop reparametrizations can be mapped to 
conformal transformations of the string worldsheet. The integration is done up to a cutoff in the 
holographic direction that can be anchored to either the background geometry or the 
worldsheet. When we perform the former, we break worldsheet diffeomorphisms and Weyl 
invariance, but we preserve conformal transformations, however the latter breaks conformal 
invariance and induces a defect action at the cutoff scale. 
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Abstract

Esta tesis estudia como obtener una acción efectiva para el dual holográfico de ĺıneas de Wilson

en teoŕıas de campos no conformes y fuertemente acopladas y algunas aplicaciones del mecanismo

obtenido. Encontramos una acción efectiva para una cuerda dual a la ĺınea de Wilson usando el

mecanismo de renormalización de Wilson donde integramos los grados de libertad más próximos a

la frontera de geometŕıas que asintóticamente se aproximan a AdS. La integración proporciona una

contribución para la acción en el cutoff dependiente de coeficientes que pueden ser determinados

por una ecuación del flujo del grupo de renormalización.

Empleamos esta técnica para estudiar observables fenomenológicos como el potencial quark-

antiquark y proporcionamos dos tipos de ejemplos: Teoŕıas en 3+1 dimensiones con un RG flow

que acaba en un punto fijo en el infrarrojo y en las teoŕıas confinantes de Witten QCD y el modelo de

Klebanov-Strassler. También aplicamos este formalismo para calcular las fuerzas que experimenta

un quark moviéndose en un plasma de quark-gluones, que modelamos con una cuerda moviendose

en la geometŕıa de una brana negra.

Finalmente estudiamos como afecta este formalismo a la invarianza bajo reparametrizaciones de

los Wilson Loops, también conocida como simetŕıa ’zig-zag’. Probamos que las reparametrizaciones

de los Wilson loops pueden ser identificadas con transformaciones conformes en la hoja de mundo

de la cuerda. La integración se lleva a cabo hasta un punto de corte en la dirección holográfica

que puede estar asociado a la geometŕıa de fondo o a la hoja de mundo. Cuando empleamos el

primero rompemos la simetŕıa bajo difeomorfismos y transformaciones de Weyl de la hoja de mundo,

pero conservamos transformaciones conformes, sin embargo el segundo método rompe la invarianza

conforme e induce una acción de defecto en la escala del punto de corte.



Abstract

This thesis studies how to obtain an effective theory for the holographic dual of Wilson lines in

strongly coupled non-conformal field theories and some applications of this mechanism. An effective

action is found for a string dual to the Wilson line using the Wilsonian renormalization scheme where

we integrate out the degrees of freedom that are close to the boundary in asymptotically AdS spaces.

This integration results in a contribution to the action at the cutoff that depends on coefficients

that are determined by an RG flow equation.

We use this technique to study some phenomenological observables such as the qq̄ potential

and provide two kinds of examples: 3+1 dimensional theories with an RG Flow that ends in an IR

fixed point and confining theories, specifically Witten QCD and Klebanov-Strassler models. We also

apply this formalism to compute the forces a quark experiences when moving through a quark-gluon

plasma, modeled by a string moving in a black brane geometry.

We finally study how does this affect the reparametrization invariance of Wilson loops, also

known as ’zig-zag’ symmetry. We show that Wilson loop reparametrizations can be mapped to

conformal transformations of the string worldsheet. The integration is done up to a cutoff in the

holographic direction that can be anchored to either the background geometry or the worldsheet.

When we perform the former we break worldsheet diffeomorphisms and Weyl invariance, but we

preserve conformal transformations, however the latter breaks conformal invariance and induces a

defect action at the cutoff scale.
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Chapter 1

Motivation

1.1 Quantum Cromodynamics

The Standard model is, up to date, the most precise model we have in physics to describe the

behaviour of the Universe. In this description, the fundamental interactions of nature are governed

by the electroweak and strong forces, governed by symmetry groups SU(2)L × U(1) and SU(3)

respectively. The theory describing the latter is known as Quantum Chromodynamics (QCD) and

it is described by the Lagrangian:

L = −1

4
GaµνG

a
µν +

Nf∑

f=1

q̄f (iγµDµ −mf )qf (1.1)

Where qf are quark fields, Aaµ the gluon fields, Gaµν is the QCD field strength tensor and Dµ

the covariant derivative. The coupling strength appears at the field strength and the covariant

derivative. The quarks are also charged under the SU(2)×U(1), and they have 6 distinct flavours.

The quarks masses are acquired through the Higgs mechanism in the electroweak sector, with the

3 flavours (up, down and strange) being relatively light and the other 3 (charm, bottom and top)

heavier. If we approximate the first three as massless and the remaining ones as infinitely massive

as in the review [1], we get a running coupling

g2(q2) =
16π2

b0 log(q2/Λ2
QCD)

(1.2)

Where ΛQCD depends on the renormalization scheme, and takes the value ≈ 200 MeV in the

Modified Minimal Substraction. This simplified computation provides us with an insight of the

behaviour of QCD at different scales, as it features a dependence with the dimensionful parameter

ΛQCD. At low energies, we see that the theory is strongly coupled, giving rise to the characteristic

confinement of QCD (we do not find isolated quarks in nature) and it becomes weakly coupled at

high energies (asymptotic freedom).

This behaviour generates a very rich phase diagram that we have not been able to determine

either theoretically or via experiments. Experimentally, a quark-gluon plasma is produced at RHIC
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and CERN (see for example [2]), and some information can be inferred from observations of neutron

stars. Theoretically, we can use perturbation theory at high energies (or temperatures), and lattice

computations are useful when the configuration has zero chemical potential regardless of the tem-

perature. However, regions of both finite temperature and chemical potential remain unexplored.

Figure 1.1: QCD phase diagram. Extracted from: [1]

A useful probe into the properties of this phase diagram are Wilson lines, which are operators

that take this form in the fundamental representation:

W(C) =
1

N
TrP

(
ei

∮
C dτ(ẋµAµ)

)
(1.3)

This operator is analogous to an infinitely massive particle in the fundamental representation moving

along a trajectory determined by C, where Aµ are the gauge fields.

These operators are able to show us different properties of the interactions in QCD that we can

match with experimental data. One such configuration is that of an infinite rectangle in the time

direction, that can be thought of as 2 static particles separated by a distance L.

From this operator we can extract the potential between two quarks

Vqq̄ ∝ log(〈W〉) (1.4)

which in turn is a good predictor of IR confinement as we expect confining theories to have a

potential that grows linearly with the distance.

Wilson lines can also be useful to estimate how the energy of a heavy particle is dissipated when

moving through a medium. A state of quark-gluon plasma has been generated in LHCb and RHIC

by colliding two heavy nuclei (Au-Au and Pb-Pb). At the beginning of this process some on shell
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partons (quarks and gluons) can be produced, which then travel through the plasma generated

afterwards. As per usual, quarks and gluons cannot be seen isolated in nature, and after they are

produced they usually decay into a shower of particles that move at high speeds known as jets. Due

to conservation of momentum, jets are produced in pairs that carry the same amount of energy.

However, if these partons are produced somewhere inside the plasma, one of them will have to travel

through it for a longer distance and some of its energy will be lost in the process. This difference

in energy can be measured through the nuclear modification factor

RAA =
σNN
〈Nbin〉

d2NAA/dpT dη

d2σpp/dpT dη
(1.5)

which can then be used to characterize the properties of the plasma. In this expression 〈Nbin〉 is

the average number of binary nucleon-nucleon collisions and σ are the cross section for the nucleon-

nucleon collision and proton-proton collision. NAA is the yield in nucleus-nucleus collisions . pT

and η are the transverse momentum and the pseudorapidity.

1.2 Holography

Holography first appeared in the late 90’s in [3, 4] as a derivation from string theory, proposing

a duality between N = 4 Super Yang Mills theory in 4 dimensions and type II B supergravity in

AdS5 × S5. This concept was then extended to dualities between more general Quantum Field

Theories (QFTs) being associated to different geometries with a boundary, where the gravity the-

ory has one more dimension than the QFT we are dualising. This suggests a possibility: Could

holography be used to make predictions in QCD if we find an appropriate dual geometry? The

proposal is indeed interesting, as generating thermal states in the dual gravity theory can be done

by introducing a black hole in the bulk of the geometry. The holographic dictionary then states

that the temperature and entropy of the black hole are related to those of the field theory thermal

bath, while the charge of the black hole is dual to the chemical potential, therefore allowing us to

probe into different sections of the phase diagram.

There are, of course, complications to this approach, of which maybe the most clear one is that

we have not found a gravity dual to QCD, hence all of the predictions that come out of holography

can be, for the most part, qualitative in nature. In this direction, some theories such as Witten

QCD and the Klebanov Strassler model [5, 6] have been able to produce theories that present

confinement, and recent work by [7] has found a fully backreacted gravity dual to a thermodynamic

bath with baryons in 2+1 dimensions. Good predictions have also been made about a universal

contribution at large ’t Hooft coupling to the shear viscosity [8, 9, 10].

One of the possible interpretations of the AdS − CFT duality is that the extra dimension in

the gravity side is analogous to an energy scale, where the deeper you go in the bulk, the lower the

energy scale of the process is. This is interesting, as some of the properties we are interested in are

highly dependent on the deep bulk properties of the theory [11]. On the field theory side, this way

of looking only at the low energy interactions can remind us of the concept of an RG flow, which
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will be the main focus of this thesis. We expect these results to be useful in hybrid models, allowing

us to ignore the UV details of the geometry but still making it possible to generate predictions.

The thesis will then follow this structure: Chapter 2 will be a review of the tools existing in the

literature that will allow us to tackle this problem. In chapter 3 we will present the results of this

thesis: a mechanism to generate an effective action and different applications to it. Chapters 4, 5

and 6 include the articles that compose this thesis and chapter 7 provides the conclusions.
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Chapter 2

Renormalization and Wilson lines

in holography

2.1 Wilson RG Flow

Wilson renormalization starts from a theory which we will consider valid up to a certain cutoff

Λ0. For the sake of simplicity, we will focus on a theory with one scalar field with a renormalized

partition function:

Z =

∫ ∏

||p||<Λ0

dφei
∫
ddx((∂φ)2+

∑
gi(Λ0)Oi) (2.1)

Using a Fourier transformation, we can split these fields into high and low energy modes with

respect to a certain scale Λ:

φ(x) =

∫

Λ0>||p||>Λ

φ̂(p)eipx +

∫

||p||<Λ

φ̂(p)eipx = φH(x) + φl(x) (2.2)

Inserting this into (2.1), we can write the partition function as:

Z =

∫ ∏
dφHdφle

i
∫
ddx(Ll+LH+Lint) (2.3)

Where the high energy modes of the field are then considered as heavy fields and then integrated

out of the action. At tree level, this amounts to solving the equations of motion for the heavy fields

and substituting them in the original action, while loop computations can be achieved with several

approaches (see for example [12]) . The result will then be a theory valid up to the energy scale Λ

containing new couplings that depend on the cutoff.
∫ ∏

dφle
i(S0+SW ) =

∫ ∏
dφle

i
∫
ddx((∂φl)

2+gi(Λ)Oi) (2.4)

Where S0 takes the form of
∫
Ll and the operators O arise from the integration of the heavy modes

with modified couplings gi. The β functions that determine the running of the couplings are:

βi = Λ
∂gi
∂Λ

(2.5)
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2.2 AdS − CFT and Holographic renormalization

The AdS − CFT correspondence [13] states that the generating functional of the field theory is

related to the supergravity action by:

W [Φ0] = SSUGRA| lim
z→0

zA(∆,d)Φ(z,x)=Φ0(x) (2.6)

Where Φ0(x) is the source field of an operator in the field theory, ∆ is the conformal dimension of

the operator and A is a function that relates ∆, the dimensions of the theory d and the asymp-

totic behaviour of the field near the boundary in AdS. This relation is obtained by matching the

representations of the superconformal algebra to the mode expansion in the internal space in the

supergravity side. For example, chiral primary 1/2 BPS operators O∆ are sourced by scalar fields

in AdS that behave asymptotically as φ(x, z) = zd−∆φ0(x), where we are using the Poincaré patch

in AdS and z is the holographic coordinate. The boundary of AdS is at z → 0.

The process of computing correlation functions in the conformal theory can be done by finding

a classical solution of a field with appropriate boundary conditions in AdS and then computing the

variation of the on-shell partition function with respect to the boundary field. This computation is

usually divergent, but can be regularized by adding some counterterms to the action.

We then find that in order to compute correlation functions, our partition function looks like:

Z = ei(SSUGRA+Sct) (2.7)

Wilson renormalization can then be implemented in this holographic setup in quite an intuitive

way. We start by proposing that the boundary theory with a cutoff Λ0 can be identified with a

bulk geometry that extends up to a cutoff in the holographic direction z = zΛ0 . The equivalent of

performing a Wilson renormalization up to a new cutoff Λ′ is to integrate out the geometry up to a

new z(µ) < zΛ0
. This results in a boundary term SB . Notice that due to regularization requirements,

the original action in the bulk had already a boundary term, and the process of integrating out

gives out a similar bulk theory but with a new boundary and new boundary conditions. This new

boundary term can be interpreted as the Wilsonian action we described above.

The new boundary conditions are obtained by demanding the total action to be independent

from the cutoff, which leads to a group of equations over the couplings that are interpreted as the

RG flow equations.

2.3 Wilson loops in holography

When we work in the AdS − CFT duality, we can define 1/2 BPS Wilson lines in SYM that

preserve some of the symmetries of the theory. In order to get an infinitely massive particle in the

fundamental representation, we start from a configuration of N + 1 D3 branes and we take one of

them an infinite distance away. The N remaining branes generate the expected AdS5×S5 geometry,

and the original SU(N + 1) symmetry is broken to SU(N) × U(1). The separated brane is then

situated in the boundary of AdS and strings can hang from it to the other D3 branes. From a field

theory perspective, what is seen is an infinitely massive particle that generates a Wilson loop [14]
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WBPS(C) =
1

N
TrP

(
ei

∮
C dτ(ẋ

µAµ+|ẋ|θIΦI)
)
, θ2 = 1 (2.8)

In the gravity side what is seen is a string that follows the Wilson line trajectory at the boundary

and propagates into the interior of the bulk. In the large N limit, the expectation value reduces to

the on-shell action of a Nambu-Goto string:

〈W(C)〉 = e−S
NG
on−shell (2.9)

This interpretation can be extended to other geometries, where we just let a Nambu-Goto string

propagate on the bulk, and we compute its action to obtain the expectation value in the dual theory.

When we set two parallel Wilson lines in order to compute the potential between quarks our

string hangs from one of the lines at the boundary, reaching a tipping point in the IR where it turns

towards the other line as indicated in the figure:

As we are focusing on geometries that present some sort of RG-flow, the holographic dual can

have a general metric:

ds2
10 = ∆(θ, r)dr2 + Σ(θ, r)ηµνdx

µdxν + dM̃2
5 (2.10)

Where ∆ and Σ are warping factors that depend on the radial and internal space M̃5 coordinates.

We will focus on metrics that can be put in a domain wall form where the boundary is at r →∞:

ds2
10 =

dr2

f(r)
+ e2A(r)ηµνdx

µdxν + dM̃2
5 (2.11)

If we identify the metric coordinates r, t with the string coordinates σ, τ respectively, the

Nambu-Goto action is given by:

SNG = − β

2πα′

∫
dσ

eA√
f

√
1 + fe2A(x′)2 (2.12)

β is the time extension of the rectangular Wilson loop, and it is taken to β →∞. It is immediate

to see that there is a conserved quantity in the action that allows us to compute the equation of

motion for the embedding:

πx =
δSNG
δx′

=
β

2πα′
p, x′ = −p e−3A

√
f
√

1− e−4Ap2
(2.13)

Which can be related to the lowest point in the string profile, as the square root should vanish

in order to make x′ →∞.

Using (1.4) and (2.9) we can identify the on-shell Nambu-Goto action of the string with the

potential between quarks. Taking into account that the separation L between quarks varies when

we modify the boundary value of x, we can now find the force between quarks as:

Fx =
δVqq̄
δL

=
δSNG

δx(∞)
=

1

2πα′
p (2.14)

Where x(∞) is the position of the string at the boundary and the distance between quarks can be

obtained by integrating x′ in (2.13).
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Chapter 3

Results

In the thesis we analyze the properties of Wilson loops duals in effective field theories through

Wilsonian renormalization. As seen in the introduction, the classical string profile needs knowledge

of the full geometry. For large separations, however, we expect the profile of the string to be mostly

below some finite value of a certain cutoff r(µ), where as in section 2.2 we use the subindex (µ) to

identify the coordinate where we introduce the cutoff. In the regions close to the boundary (which

are analogous to high energies in the field theory) quarks should not feel each other and the profile

of the string should be that of a single isolated quark, not deviating much from a straight line

configuration. This profile should persist into the interior until far below the cutoff, where it starts

turning parallel to the boundary to meet the other end of the string. This allows us to divide the

string in the following way:

Sstring = S>string + S<NG = S>NG + Sc.t. + S<NG (3.1)

S>string is the action of the string above the cutoff, and it includes the Nambu-Goto action S>NG

and a counterterm that renormalizes the action Sc.t.. As the string does not deviate a lot from the

straight profile we can expand the action to quadratic order in x′ and write that contribution to

the action (including counterterms) as:

S>string ' −
β

2πα′

[
M(µ) +

1

2a(µ)
x2

(µ)

]
(3.2)

Where

M(µ) = lim
r(Λ)→∞

∫ r(Λ)

r(µ)

dσ
eA√
f
− eA(r(µ)) (3.3)

a(µ) =

∫ ∞

r(µ)

e−3A

√
f

(3.4)

The on-shell action should be stationary for small perturbations in the profile that do not modify

the boundary conditions. Imposing this at the cutoff fixes the conjugate momentum for the solution

below the cutoff value:

p =
x(µ)

a(µ)
(3.5)
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Figure 3.1: Profile of a string dual to a qq̄ pair separated a distance ` (blue line). The vertical

direction corresponds to the holographic radial coordinate, with the asymptotic boundary (UV) at

the top. A cutoff is introduced at an IR scale (horizontal red line) and degrees of freedom above

the cutoff are integrated out. The separation in the field theory directions between the endpoint of

the string at the boundary and at the cutoff is denoted by δx, it corresponds to x(µ) in the text.

And if we regard r(µ) as an RG scale, the RG-flow equations of the parameters M(µ) and a(µ)

are given by:

∂r(µ)
a(µ) = −e

−3A(µ)

√
f(µ)

, ∂r(µ)
Mµ = − eA(µ)

√
f(µ)

. (3.6)

The coefficients cannot be determined from the IR theory, we need to match them with a UV

theory or making a fit measuring the force at a separation L since the conditions at the cutoff imply

that:

p = e2A(σ∗), x(µ) = a(µ),
L

2
= x(µ) + p

∫ r(µ)

σ∗

e−3A

√
f
√

1− e−4Ap2
(3.7)

3.1 Effective field theory potentials

3.1.1 IR fixed point

We will first study a theory with an IR fixed point that flows towards a UV CFT through an

irrelevant operator of conformal dimension ∆. In this case the force between quarks is given by:

Fx '
R2

2πα′
c20
L2

[
1 +

2a0

c0

(
c0R

L

)3

+
2a∆−d
c0

(
c0R

L

)2(∆−d)
]
, ∆− d 6= 3

2
, (3.8)

or

Fx =
R2

2πα′
c20
L2

[
1 +

2ã0

c0

(
c0R

L

)3

+
2a3/2

c0

(
c0R

L

)3

log

(
c20R

2

p0L2

)]
, ∆− d=

3

2
, (3.9)
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The coefficients are given by:

c0 =
2
√
πΓ
(

3
4

)

Γ
(

1
4

) , a0 = 2a(µ) −
2

3
e−3r(µ)/R

(
1− 9

4

α2

2(∆− d)− 3
e−2(∆−d)(r(M)−r(µ))/R

)
,

a∆−d =
α2

2
e−2(∆−d)r(M)/R

(∆− d)
√
πΓ
(

3
4 − ∆−d

2

)

2Γ
(

5
4 − ∆−d

2

) ,

ã0 = 2a(µ) −
2

3
e−3r(µ)/R

(
1− 9α2

4
e−3(r(M)−r(µ))/R

r(µ)

R

)
,

a3/2 = −3α2

4
e−3r(M)/R, p0 = 2e−2/3.

(3.10)

Where a(µ) is defined as in (3.4), R is the AdS radius of the space corresponding to the IR fixed

point and r(M) denotes the point where the geometry deviates significantly from AdS. The first

term in both expressions is determined by the conformal length-dependence of the IR CFT, and

the last one is given by the contribution from the irrelevant operator that deforms the CFT. The

second term is a bit less intuitive, it appears as a consequence of adding the boundary action in the

effective field theory. From a defect theory perspective, this introduces a double-trace deformation

on the string. The operator producing this double trace deformation can be identified with the

electric field strength in the x direction Ex. When we are close to the IR fixed point, conformal

invariance fixes the contribution of this deformation to the potential as.

∆Vqq̄ ∝ cE2

〈
E2
x

〉
∼ cE2

L4
. (3.11)

3.1.2 Confining theories

We also applied this method to top-down confining gravity duals, namely Witten QCD and the

Klevanov-Strassler model. As stated in [11], field theories are confining if the dual geometry ends

at some point in the IR (we look for a collapsing cycle deep into the bulk). For both of these

geometries we find a cycle that collapses, and the string becomes almost paralell to the field theory

directions near the end of the geometry as long as L is large enough.

The WQCD model can be written as in (2.11) with coefficients

e2A(r) =
( r

4R

)6

, f(r) = 1− r(M)
12

r12
, (3.12)

and we find that the force between quarks is given by:

Fx = σs
(
1 + qMe

−ML
)
, (3.13)

where the string tension and the coefficient of the exponential term are

σs =
pM

2πα′
=

2

27π
λYMM

2, qM = 6
√

3e
− π

2
√

3 e−a0/c0 . (3.14)

The coefficient c0 = 2
3

(
4R
r(µ)

)
only depends on the characteristics of the geometry (R is the curvature

radius and r(M) is the lowest point of the geometry), and a0 = 2a(µ) −
(

4R
r(µ)

)8

.
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The KS model has the metric of a deformed conifold, and has a collapsing cycle in its internal

manifold. Near the end of the geometry, the metric can be written in the ansatz (2.11) with:

e2A(r) = h−1/2(ε−2/3r), f(r) = 6h−1/2(ε−2/3r)(K(ε−2/3r))2. (3.15)

Where the functions h and k are given near the limit where the geometry collapses by:

K(τ) '
(

2

3

)1/3(
1− τ2

10

)
, h(τ) =

(
2

3

)1/3

α

(
ĥM −

τ2

6

)
, (3.16)

The force computation can be written as in (3.13) with coefficients:

σs =
pM

2πα′
=

31/6

2π
ĥ

3/2
M λYMM

2, qM =
ĥM
3
e−a0/c0 . (3.17)

In this case, the glueball mass scale is defined as:

M =
ε−2/3

c0pM
=

1

(12)1/6ĥM

ε2/3

gsNcα′
. (3.18)

The first contribution to the force is the expected one for confining theories. The exponential

correction can be interpreted if we look at the string as a flux tube in the IR with sources at the

points where the string curves towards the boundary. This allows us to identify that contribution

to the force with an internal massive mode corresponding to excitations of the string along the

holographic direction.

3.2 Quark moving through plasma

The holographic dual of a strongly coupled plasma in 3+1 dimensions is realized by a 5 dimen-

sional geometry with an event horizon that extends along 4 dimensions, hence we will work with a

background metric of the form

ds2 = GMNdx
MdxN = Gzz(z)dz

2 +Gtt(z)dt
2 +Gxx(z)δijdx

idxj (3.19)

We will pick our coordinates so that there is a horizon characterized by Gtt(zh) = 0 with the

boundary located at z →∞
Our quark will be modelled by a NG string and we will only consider movement in one direction

on the field theory.

We can consider both a static trajectory in the boundary with small perturbations or a high

speed moving quark. In both cases the lagrangian can be expanded to second order as:

LNG = L0(v) + L1z(v)X ′ − L1t(v)Ẋ − 1

2
gv(z)

(
Ẋ
)2

+
1

2
fv(z) (X ′)

2
(3.20)

Where v is the velocity of the quark moving through the plasma (we will supress the subindex

from now on), the first order terms are total derivatives so they do not contribute to the equations

of motion for the fluctuations. The two L1i coefficients are also linear in v, which means they vanish

13



v

Figure 3.2: The holographic dual of a heavy quark moving at speed v is a string (red curve) ending at the

asymptotic boundary at the position of the quark (black dot). The strings extends from the asymptotic

boundary at the top to the black brane horizon at the bottom of the figure. A cutoff (dashed blue line)

is introduced and the shaded region between the boundary and the cutoff is “integrated out”. One is left

with the string in the region between the cutoff and the horizon and determined boundary conditions for

the endpoint of the string at the cutoff (blue dot).

for a slow moving quark that is perturbed around a rest frame. The equations of motion can be

written in general as:

(fX ′)′ − gẌ = 0. (3.21)

With

g(z) = (|Gtt|GxxGzz)1/2

(
|Gtt|Gxx − p2

0

)1/2

(|Gtt| −Gxxv2)
3/2

, f(z) = (|Gtt|GxxGzz)−1/2

(
GttGxx − p2

0

)3/2

(|Gtt| −Gxxv2)
1/2

.

(3.22)

These solutions can be found by expanding the profile of the string to the order in time derivatives,

the first orders are given by

X(0)(t, z) = x(t) + p(0)(t)a(z), X(1)(t, z) = p(1)(t)a(z), a(z) =

∫ z

0

du

f(u)
. (3.23)

X(n)(t, z) = p(n)(t)a(z) +

∫ z

0

du

f(u)

∫ u

z(µ)

dvg(v)Ẍ(n−2)(t, v). (3.24)

p(n)(t) are integration constants fixed by the boundary conditions:

X(t, z = 0) = x(t), ∂zX
∣∣∣
z=z(µ)

=
1

f(z(µ))

(
p(0)(t) + p(1)(t) + p(2)(t) + · · ·

)
≡ p

f(z(µ))
. (3.25)

The force can be determined from these solutions. When we work with a fast moving quark,

the linear terms in the Lagrangian add a contribution:

Fvx = −Tsp0. (3.26)
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Where we Ts = 1/(2πα′) is the tension string. The force due to perturbations can be computed in

both cases with the coefficients f and g from the quadratic terms in the expansion.

F (t) = p+ ẍA(0) + p̈B(0) +O(∂4
t x, ∂

4
t p). (3.27)

Where we have defined the functions

A(z) =
R2

z(µ)
+

∫ z

z(µ)

(
g(v)− R2

v2

)
, B(z) =

∫ z

z(µ)

g(v)a(v). (3.28)

Once the general theory parameters are defined, we can apply the effective field formalism

described previously. The action above the cutoff can be expressed as:

SUV ' Ts
∫
dt

[
M(µ) −

1

2
K(µ)ẋ

2 − 1

2a(µ)
(x(µ) − x)2 +

1

2
m(µ)(ẋ(µ) − ẋ)2 − κ(µ)ẍ(x(µ) − x) +O(∂4

t x, ∂
4
t x(µ))

]
.

(3.29)

Where we have defined the coefficients as

M(µ) =
R2

z(µ)
, K(µ) = A(0), a(µ) = a(z(µ)), m(µ) =

1

a2
(µ)

∫ z(µ)

0

dvg(v)a(v)2, κ(µ) =
1

a(µ)

∫ z(µ)

0

dvg(v)a(v).

(3.30)

with RG flow equations:

∂z(µ)
M(µ) = − R2

z2
(µ)

,

∂z(µ)
K(µ) = −g(z(µ)),

∂z(µ)
a(µ) =

1

f(z(µ))
,

∂z(µ)
m(µ) = − 2

f(z(µ))

m(µ)

a(µ)
+ g(z(µ)),

∂z(µ)
κ(µ) = − 1

f(z(µ))

κ(µ)

a(µ)
+ g(z(µ)).

(3.31)

The force can then be expressed in terms of these coefficients:

F (t) ' 1

a(µ)
(x(µ) − x) + (m(µ) − κ(µ))ẍ(µ) + (K(µ) −m(µ) + 2κ(µ))ẍ+O(∂4

t x, ∂
4
t x(µ)). (3.32)

This formalism can be applied to a theory with an IR fixed point. In this case the physics are

dominated by the IR conformal theory and we can approximate the holographic dual by an AdS5

black brane.

Gtt(z) = −R
2

z2
h(z), Gzz(z) =

R2

z2h(z)
, Gxx =

R2

z2
, h(z) = 1− z4

z4
h

. (3.33)

Then for the slow moving quark the force is given by:

F (t) =
R2

z3
h

3∑

i=1

Fi (zh∂t)
ix+O(∂4

t x). (3.34)

15



With coefficients

F1 =
s1

â(µ)
= −1,

F2 = K̂(µ) + κ̂(µ) +
s2

â(µ)
= â(µ) + K̂(µ) +H2(u(µ)),

F3 = (m̂(µ) − κ̂(µ))s1 +
s3

â(µ)
= â(µ)(2κ̂(µ) − â(µ))− (c1(u(µ)) + 2â(µ))H2(u(µ)) +H3(u(µ)).

(3.35)

Where c1(u(µ)) = − 1
4 log(1 − u4

(µ)) and the other coefficients can be written as a function of the

cutoff:

â(µ) =
1

4
log

1 + u(µ)

1− u(µ)
− 1

2
tan−1 u(µ) =

1

2

(
tanh−1 u(µ) − tan−1 u(µ)

)
+ aUV ,

K̂(µ) =
1

u(µ)
− â(µ) +KUV ,

κ̂(µ) = − 1

u(µ)
+
â(µ)

2
+

1

2â(µ)
tanh−1(u2

(µ)) +
κUV
â(µ)

,

H2(u(µ)) = − 1

u(µ)
+ 1,

H3(u(µ)) =
1

4
(π − log 4)− c1(u(µ))

uc
+ â(µ) −

1

2
tan−1 u(µ) +

1

4

(
2 log(1 + u(µ))− 3 log

(
1 + u2

(µ)

))
.

(3.36)

The integration constants aUV , KUV , κUV depend on the specific geometry of the UV region,

they are zero for the AdS5 black brane, and they could be fixed with lattice computations or

experimental data. If we identify the geometry parameters with the corresponding field theory

constants using the holographic dictionary

TsR
2 =

R2

2πα′
=

√
λ

2π
, zh =

1

πT
. (3.37)

The force acting on the heavy quark is, to third order in derivatives of the trajectory

Fx '
√
λ

2π

(
−(πT )2∂tx+ πT F2 ∂

2
t x+ F3 ∂

3
t x
)

+O(∂4
t x). (3.38)

Where the coefficient of the term proportional to ∂tx agrees with the drag force [15, 16]. The

coefficient proportional to the acceleration can be interpreted as a thermal correction to the mass

of the quark and the coefficient of the jerk ∂3
t x can be interpreted as a combination of the Abraham-

Lorentz force produced by Larmor radiation emission ([17, 18] and a viscosity contribution from

the surrounding plasma. The fast moving quark can be similarly obtained

Fx '
√
λ

2π

(
−(πT )2γv − (πT )2γ3∂tx+ πT F2 γ

7/2∂2
t x+ F3 γ

4∂3
t x
)

+O(∂4
t x). (3.39)

The γ factors appearing in higher derivative terms imply that this expansion requires time deriva-

tives to be much smaller than the temperature for very fast quarks ∂t � γ−1/2πT .
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3.3 Symmetries of the Wilson loop

3.3.1 Wilson loop reparametrization in holography

Wilson lines are determined by the holonomy of the gauge field along a closed curve C. This curve

can be parametrized in any way, resulting in the zig-zag symmetry [19]. For half BPS Wilson loops

the coupling to the scalars breaks this symmetry, but it is recovered at strong coupling [20]. In this

section we will discuss how does our Wilson renormalization mechanism in the holographic dual

affect this symmetry, we will start from the simple case of a straight Wilson line along a spatial

direction.

We will describe the dual fundamental string with the renormalized Polyakov action in the

Poincaré patch in dimensionless coordinates

ds2 = GMNdx
MdxN =

L2

z2

(
dz2 + ηµνdx

µdxν
)
.

SP =
TsL

2

2

∫
d2σ
√
hhabgab + φ0χE − TsL2

∫

σ=ε

dτ
√
hττ .

(3.40)

Where gab and hab the induced and worldsheet metrics respectively. We will work with worldsheet

coordinates (τ, σ)and embedding functions XM (τ, σ). For the straight string we will use X1 =

X, Xz = Z . χE is the Euler characteristic and has a coefficient proportional to the constant

dilaton φ0 = log gs, and the last contribution is a counterterm to regularize the action. We will

introduce an arbitrary parametrization of the line at the boundary

lim
σ→0

X = x0(τ), (3.41)

without modifying the shape of the string in the embedding space. This results in the non trivial

embedding functions X = X(τ, σ), Z = Z(τ, σ). Diffeomorphisms and Weyl transformations allow

us to fix the gauge of the worldsheet metric to the conformal gauge hab = 1
σ2 δab. Then the

embedding functions must be compatible with the induced metric and solve the equations of motion.

gab −
1

2
hach

bdgcd = 0. (3.42)

1√
h
∂a

(√
hhab

∂bX
M

Z2

)
+

2

Z
habgabδ

M
z = 0. (3.43)

The first condition is met by any conformally flat metric and both of them are solved by:

Z ′ = Ẋ, X ′ = −Ż, X ′′ + Ẍ = 0, Z ′′ + Z̈ = 0. (3.44)

When the derivatives of x0 are small compared to 1/σ the solutions to these equations can be

expanded as:

X = cos

(
σ
d

dτ

)
x0(τ) = x0 −

1

2
σ2ẍ0 +

1

24
σ4x

(4)
0 + · · · ,

Z = sin

(
σ
d

dτ

)
x0(τ) = σẋ0 −

1

6
σ3 ...
x 0 +

1

120
σ5x

(5)
0 + · · · .

(3.45)
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The conformal factor in the induced metric can be given in terms of the Schwarzian derivative:

Ω =
1

σ2
− 2

3
{x0, τ}+ σ2

(
1

15
∂2
τ{x0, τ}+

4

15
({x0, τ})2

)
+ · · · .

{x0, τ} =

...
x 0

ẋ0
− 3

2

(
ẍ0

ẋ0

)2

.

(3.46)

The Schwarzian is invariant under GL(2,R) reparametrizations of the form

x0(τ) −→ ax0 + b

cx0 + d
, a, b, c, d ∈ R, ad− bc 6= 0. (3.47)

Which are the symmetries induced by AdS2 isometries.

Full reparametrization invariance on the boundary can be reproduced however in the following

way: We start performing a worldsheet diffeomorphism

τ = τ(τ̄ , σ̄), σ = σ(τ̄ , σ̄) (3.48)

where σ̄ = Z, τ̄ = X. This transforms the induced and worldsheet metrics as:

ḡab =
1

σ̄2
δab, h̄ab = Ω̄δab, (3.49)

Then we can use a Weyl transformation to recover the original worldsheet metric, which shows that

we can use a conformal transformation to produce any arbitrary reparametrization from the trivial

embedding.

3.3.2 Induced anomalies in the cutoff action

When we work with a non-trivial embedding of the string, we have two possible choices for the

cutoff, it can either be in the worldsheet coordinate σ = 1/(LΛ) or introduce a cutoff in the radial

coordinate z = 1/(LΛ). If we take the former option, we obtain a cutoff action

SΛ = TsL
2

∫
dτ

(
−LΛ− 2

3

1

LΛ
{x0, τ}+

1

3

1

(LΛ)3

(
1

15
∂2
τ{x0, τ}+

2

5
({x0, τ})2

)
+ · · ·

)
+
φ0

2π

∫
dτLΛ.

(3.50)

which is not invariant under reparametrizations. However from the bulk perspective, the string

extended beyond this cutoff is reparametrization invariant up to boundary terms. This is compen-

sated by the action at the cutoff, allowing us to identify the terms depending on the Schwarzian

as a reparametrization anomaly at the cutoff. On the other hand, a cutoff in the radial coordinate

is readily identified with an energy scale in the field theory dual. Fixing this radial cutoff implies

integrating the string action up to a value of the coordinate given by

Z(τ, σΛ(τ)) = 1/(LΛ) (3.51)

The integrated action up to this value is just a reparametrization of the worldline coordinate

dτ → dτΛ = dτẋΛ where

xΛ = x0 +
1

2

1

(LΛ)2

ẍ0

ẋ0
+

1

72

1

(LΛ)4

4ẍ0
...
x 0 − ẋ0x

(4)
0

(ẋ0)5
+ · · · . (3.52)
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However, the contribution from the Ricci scalar in the Euler characteristic gives a non-trivial con-

tribution

SΛ = TsL
2

∫
dτΛ (−LΛ) +

φ0

2π

∫
dτΛ

(
LΛ +

2

3

1

LΛ
{t(τΛ), τΛ}+ · · ·

)
. (3.53)

Where t is the inverse of x0. This result can also be reproduced performing a worldsheet diffeomor-

phism (3.48). This indicates that there is an anomaly at the cutoff compensating the non invariance

of the string under worldsheet diffeomorphisms, but as we saw before this can be removed using a

Weyl transformation, indicating these transformations have an associated anomaly in such a way

that both anomalous terms cancel out.

This analysis can also be performed for nonzero temperatures, where we have a black brane

AdSd+1 solution.

ds2 =
L2

z2

(
dz2

f(z)
− f(z)(dx0)2 + δijdx

idxj
)
, f(z) = 1−

(
z

zH

)d
. (3.54)

Picking a new radial coordinate determined by

du =
dz√
f(z)

(3.55)

and rescaling the coordinates u→ uHu, z → zHz, xµ → uHx
µ yields the metric

ds2 =
L̃2

z(u)2

(
du2 − f [z(u)](dx0)2 + δijdx

idxj
)
, f(z) = 1− zd, z(u)d = I−1

u

(
1

d
,

1

2

)
, (3.56)

Where I−1
u (a, b) is the inverse of the regularized incomplete Beta function and L̃ = LuH/zH =

B
(

1
d ,

1
2

)
L/d, Bx(a, b) being the incomplete Beta function. Using the embedding

X1 ≡ X = τ, Xu ≡ U = σ, XM = 0,M 6= 1, u. hab =
1

σ2
δab, (3.57)

the problem is now analogous to the zero temperature case. One distinct feature, however, is that

when fixing the radial cutoff in the geometry there is a physical cutoff at the horizon of the black

brane. The effective action can then be integrated all the way to this cutoff yielding a Schwarzian

term:

SSch =
φ0

12π2

B
(

1
d ,

1
2

)

T

∫
dτ̄ {t(τ̄), τ̄} (3.58)

Where we have restored the units x0 → x0/uH and τ̄ → τ̄ /uH

3.3.3 Applications to Circular Wilson loops

In the circular Wilson loop we will work using polar coordinates

ds2 =
L2

z2

(
dz2 + dr2 + r2dθ2 +

d−1∑

µ=3

(dxµ)2

)
. (3.59)

and the generalized embedding

Θ = qτ + θ(τ, σ), R =
r0

coshS
, Z = r0 tanhS, S = qσ + s(τ, σ). (3.60)
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Where the periodicity of τ is 2πp and p, q are nonzero integers, both θ and s are periodic functions

in τ . Notice that setting q → 1, θ → 0, s→ 0 we obtain the induced metric is that of global AdS2

in conformally flat coordinates. We will select the string metric to be precisely this one:

hab =
1

sinh2 σ
δab. (3.61)

the embedding functions have to satisfy the same set of equations as in the flat case (3.44), however

in this case they have to satisfy periodic boundary conditions. The solutions can be expanded as:

Θ = cos

(
σ
d

dτ

)
Θ0(τ) = Θ0 −

1

2
σ2Θ̈0 +

1

24
σ4Θ

(4)
0 + · · · ,

S = sin

(
σ
d

dτ

)
Θ0(τ) = σΘ̇0 −

1

6
σ3

...
Θ0 +

1

120
σ5Θ

(5)
0 + · · · .

(3.62)

As in the straight case, this leads to a conformal metric, this time with a conformal factor:

Ω =
1

σ2
− 2

3

{
tan

Θ0

2
, τ

}
+ σ2

(
1

15
∂2
τ

{
tan

Θ0

2
, τ

}
+

4

15

{
tan

Θ0

2
, τ

}2
)

+ · · · . (3.63)

Where the Schwarzian terms are now
{

tan
Θ0

2
, τ

}
= {Θ0, τ}+

1

2
Θ̇2

0. (3.64)

Which is invariant under boundary reparametrizations

eiΘ0(τ) −→ αeiΘ0 + β̄

βeiΘ0 + ᾱ
, α, β ∈ C, |α|2 − |β|2 = 1. (3.65)

As in 3.3.1, this can be interpreted as the boundary limit of the isometry transformations of the

global AdS2 metric SU(1, 1). The analysis from this point onwards is analogous to the straight

Wilson line, replacing the Schwarzian in (3.50) and (3.53) with (3.64) for the cutoff in the worldsheet

coordinate σ and the geometry cutoff respectively.

3.3.4 Polyakov Loop

We can also apply this method to a finite temperature Polyakov loop. The holographic dual is a

string wrapped around the Euclidean time direction of a Wick rotated AdSd+1 black brane with

metric:

ds2 =
L2

z2

(
dz2

f(z)
+ f(z)dt2E + δijdx

idxj
)
, f(z) = 1−

(
z

zH

)d
. (3.66)

The euclidean time direction has periodicity β = 1/T . The string has the topology of a disk as in

the circular case. In this case the conformally flat metric is obtained through a change of variables

du =
dz

f(z)
, u =

1

2πzHT
r, tE =

1

2πzHT
θ (3.67)

We can then choose a non trivial embedding

Θ = qτ + θ(τ, σ), R = S = qσ + s(τ, σ). (3.68)
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that coupled with an embedding

hab =
1

sinh2 σ
δab, (3.69)

yields the same solutions for the embeddings and the symmetries of the worldsheet metric as the

ones we found in the circular Wilson loop, obtaining the same result of a Schwarzian action for the

worldsheet diffeomorphism.
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1 Introduction

The gauge/gravity correspondence [1–3], or holographic duality, has been used extensively

as a phenomenological tool to describe properties of strongly coupled systems in QCD and

condensed matter (see [4–9] for reviews on the topic). In most cases the gravity dual corre-

sponds to a theory which is microscopically different from the actual system of interest, but

whose properties at low energy/large distance compared to some characteristic scale can

be qualitatively similar. Since many relevant observables are mostly sensitive to the long

distance physics, dissimilarities at high energy/small distances are frequently inconsequen-

tial. In the holographic dual description this means that only some part of the geometry is

of relevance for those observables. More precisely, while the geometry has an asymptotic

boundary that is identified with the ultraviolet (UV) of the field theory, infrared (IR) dy-

namics are controlled by the deep interior of the geometry and long distance observables

are mostly sensitive to this region. The problem of restricting the holographic description

to the low energy effective theory has been approached multiple times in different contexts,

e.g. [10–19].

In the holographic “Wilsonian” renormalization group (RG) flow approach of [16, 17]

the effective IR description is obtained by introducing a cutoff in the holographic radial

coordinate and “integrating out” degrees of freedom between the asymptotic boundary
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and the cutoff. This results in a description consisting of the dual theory below the cutoff

plus a boundary action that determines the boundary conditions of the fields at the cutoff.

The RG flow equations are obtained from the condition that the full on-shell action has

to be independent of the cutoff. The boundary action is a functional of the values of the

field at the cutoff, and, by mapping these values to operators in the field theory dual, it

is interpreted as introducing multitrace deformations in the effective theory at the cutoff

scale. The RG flow equations then become equations for the multi-trace couplings.

A particularly significant set of observables in gauge theories for which an IR effec-

tive description would be useful are Wilson loops. Their holographic dual description is

a Nambu-Goto string with endpoints attached to the asymptotic boundary of the dual

geometry [20, 21]. Even though this is a fairly simple setup, its holographic Wilsonian RG

flow has not been worked out.1 We will partially fill in the blank by studying the expecta-

tion value of a Wilson loop corresponding to two static sources separated a fixed distance,

much larger than the characteristic scale of the theory. This is equivalent to computing

the quark-antiquark potential. In this configuration, most of the profile of the dual string

remains in the deep interior of the geometry and is mostly sensitive to IR physics. This

observation will allow us to use the inter-quark distance L as an expansion parameter to

approximate the string profile and its energy. Applying the holographic Wilsonian RG

flow approach, we will derive the effective IR behavior of the potential and determine its

most relevant long distance corrections.

We will use this method to analyze two different types of holographic constructions

with well understood IR geometries. The first type is dual to a strongly coupled field

theory that possesses an IR fixed point, such that at higher energy scales the theory flows

away from the IR fixed point in a way determined by an irrelevant scalar deformation. The

second type is dual to a confining theory. In the first case, the characteristic scale appears

in the coefficient of the irrelevant operator. At energies much lower than this scale, the

theory is very close to being conformal, with only small corrections induced by the flow. We

will introduce a cutoff much below this scale, in such a way that the dual geometry is close

to an AdS dual to the IR fixed point. In the case of a confining theory, the cutoff will be

introduced at a scale much larger than the mass gap of the theory. For the confining theory

we will use duals with explicit string theory constructions, the Witten QCD (WQCD) [24]

and Klebanov-Strassler (KS) [25] models. For the case of an IR fixed point there are

several examples in five-dimensional supergravity [26–31]. In principle these can be lifted

to ten dimensions using general reduction formulas [28, 32–39], but the examples where

this has been carried out explicitly (e.g. [40]) are even scarcer and the geometry turns out

to be more complicated than what we will be considering in this work. In both those two

families of models, the effective field theory approach we develop will allow us to determine

generic properties of the potential, independent of the details of the UV behavior of the

dual field theories.

For a flow with an IR fixed point, we observe two types of corrections. One is produced

by the non-trivial RG flow, and depends on the dimension of the leading irrelevant operator

1In [22] it was suggested that the holographic RG flow will be given by a mean-curvature RG flow of the

type described in [23]. Although we do not discard that a map to a description of this form might exist,

our results seem to correspond to a different type of flow.
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that drives the flow away from the long distance conformal field theory (CFT). The other

correction has a universal form, in the sense that it is independent of the dimensions of

the leading irrelevant operator. We propose an interpretation in terms of an effective IR

defect theory localized on the Wilson loop. In addition to the bulk RG flow, there is

an RG flow on the defect triggered by a double trace deformation, that we identify from

the boundary conditions of the string at the cutoff. The L-dependence of both kinds of

corrections depends solely on the properties of the IR field theory, and all the information

about its UV structure is restricted to the value of a single coefficient, which determines

the universal contribution.

For a flow in a confining theory we observe exponentially suppressed corrections to the

potential beyond the leading linear dependence on the quark-antiquark separation. The

exponent is proportional to the mass scale of glueballs, and it coincides with the mass

of some internal excitations of a flux tube in the dual field theory. We interpret this

result in terms of the effective IR theory as a flux tube with sources at the endpoints for

the internal modes, that have a non-vanishing profile in the ground state of the quark-

antiquark pair. Since these excitations correspond to fluctuations of the string along the

holographic direction, these type of correction are a generic property of confinement as

described by the gauge/gravity duality.

The structure of the paper is as follows: we start reviewing some basic facts about

Wilson loops and their calculation using gauge/gravity duality in § 2. In § 3 we present

general formulas for the holographic RG flow of a Wilson loop. The case with an IR fixed

point is studied in § 4 and confining theories in § 5. A summary of the results and their

interpretation from the point of view of the field theory dual is gathered in § 6.

2 Wilson loops in holography

The study of Wilson loops in holographic duals was initiated in [20, 21]. In N = 4 super

Yang-Mills (SYM), a locally BPS Wilson loop in the fundamental representation is given

by the path-ordered exponential

WBPS(C) =
1

N
TrP

(
ei

∮
C dτ(ẋ

µAµ+|ẋ|θIΦI)
)
, θ2 = 1. (2.1)

Where xµ(τ) parametrizes the closed curve C on which the loop is defined, Aµ is the gauge

field and ΦI , I = 1, · · · , 6 are the adjoint scalar fields of the N = 4 SYM theory. In the

large-N limit the expectation value of the Wilson loop can be determined at strong ’t Hooft

coupling λYM � 1 by the classical Nambu-Goto action of an open string whose boundary

is along the curve C at the asymptotic boundary of the holographic dual geometry. The

position of the string endpoints in the internal space is determined by identifying the

functions θI(τ) with coordinates on the S5 of the dual AdS5 × S5 geometry.

The identification of BPS loops with a dual string is based on the weakly coupled

D-brane construction. The N = 4 SYM theory is the low energy description of a stack

of coincident N D3 branes. When one of the branes is separated from the rest, a string

extended between the separated brane and the rest acts as a source in the fundamental
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representation. When the isolated brane is taken to infinity, the string becomes an infinitely

heavy source and therefore it is equivalent to the insertion of a Wilson loop. In the near-

horizon limit that replaces D3 branes by geometry, the isolated brane can be though as

being at the asymptotic boundary, and the string extends from it to the interior. A similar

argument can be used for any low energy effective theory on the worldvolume of a stack

of branes, so the identification of the string with a Wilson loop extends naturally to more

general gauge/gravity duals obtained from a near-horizon limit.

We will see that the holographic Wilsonian RG flow changes the boundary conditions

of the string at the cutoff. This could alter the nature of the Wilson loop, for instance it was

proposed in [41] that the holographic dual to an ordinary Wilson loop should correspond

to a string satisfying Neumann boundary conditions along the S5 directions. The logic is

that an ordinary Wilson loop does not couple to the scalars ΦI , and therefore it is invariant

under the SO(6) R-symmetry that rotates them. More generally, one could define a family

of Wilson loops with different couplings to the scalar fields [42]

Wζ(C) =
1

N
TrP

(
ei

∮
C dτ(ẋ

µAµ+ζ|ẋ|θIΦI)
)
, (2.2)

with ζ = 1 corresponding to the BPS loop and ζ = 0 to the ordinary Wilson loop. In [42]

it was shown that there can be an RG flow between the ordinary and BPS Wilson loops,

both at weak and strong coupling. For Wilson loops with intermediate values of ζ one

may expect that the dual description is a string with mixed boundary conditions. The

case at hand differs from the ζ-deformed loops in that the boundary conditions that are

modified are not along the S5, but along the field theory directions. There are however

some similarities, in that we can identify a deformation of the BPS loop and an associated

RG flow.

2.1 Calculation of the quark-antiquark potential in an RG flow

The holographic dual to a conformal field theory is an AdS5×M5 geometry, whereM5 is

a compact space. In Gaussian coordinates

ds2
10 = GMNdx

MdxN = dr2 + e2r/Rηµνdx
µdxν + dM2

5, (2.3)

where xµ = (t, x, y, z) are coordinates along the field theory directions and ηµν is the

flat Minkowski metric. The coordinates along the compact space will be denoted by θA,

A = 1, · · · , 5. The radial coordinate r characterizes the energy/distance scale in the field

theory, with r → ∞ the asymptotic boundary associated to the UV. R is the radius of

AdS space.

The potential Vqq̄ between a static quark-antiquark pair separated a distance L can

be computed from the expectation value of a time-like Wilson loop along a rectangular

contour of sides of length L along space and β along time. When β →∞,

〈W〉 ∼ e−βVqq̄(L). (2.4)

In the large-N limit, and at strong ’t Hooft coupling, the potential is determined by the

Nambu-Goto action of a string evaluated on-shell

β Vqq̄(L) = −SNG. (2.5)
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The Nambu-Goto action is

SNG = − 1

2πα′

∫
d2σ
√
−h, hab = GMN∂aX

M∂bX
N , σa = (τ, σ), (2.6)

where σa are the world-sheet coordinates, h is the determinant of the induced metric hab and

XM (τ, σ) are the embedding functions that describe the string profile in the target space.

The relevant configuration is a solution to the classical equations of motion with ap-

propriate boundary conditions, following previous works (e.g. [43]) we review here the

main points of the derivation and properties of the solutions. We can choose the following

static gauge

X0 = τ, X1 = x(σ), X2 = X3 = 0, Xr = σ, XA = θA0 , (2.7)

where θA0 are constant. The boundary conditions are

lim
σ→∞

x(σ) = 0, lim
σ→σ∗

x′(σ) =∞, lim
σ→σ∗

x(σ) =
L

2
. (2.8)

where σ∗ is a particular value of the world-sheet coordinate σ, whose value depends on L,

via the last condition. This solution actually describes a branch of the solution extending

from the asymptotic boundary to a point in the interior, there is another symmetric branch

returning to the boundary at the point x = L.

In general the action evaluated on this class of solutions is divergent, one can regularize

it by introducing a cutoff at σ = r(Λ) and adding a counter-term at the boundary of the

string, in such a way that the total action is Sstring = SNG + Sc.t., so that

Sstring = lim
r(Λ)→∞

− 1

2πα′

∫

σ≤r(Λ)

d2σ
√
−h+

cΛ

2πα′

∫
dτ
√−γ, (2.9)

where γ = hττ
∣∣
σ=r(Λ)

. For an asymptotically AdS space like (2.3), the value of the coefficient

of the counter-term is cΛ = R.

The holographic dual of a generic RG flow can be a relatively complicated geometry

with various warping factors depending on the radial coordinate and coordinates along the

internal space

ds2
10 = ∆(θ, r)dr2 + Σ(θ, r)ηµνdx

µdxν + dM̃2
5. (2.10)

In this work, we will concentrate in simpler examples, in which the ten-dimensional metric

can be put in the domain wall form

ds2
10 =

dr2

f(r)
+ e2A(r)ηµνdx

µdxν + dM̃2
5. (2.11)

Where, as the asymptotic boundary at r →∞ is approached, A(r)→∞ and f(r)→ 1.

In this case (2.7) is a consistent ansatz and the induced metric is

ds2
2 = −e2A(σ)dτ2 +

[
1

f(σ)
+ e2A(σ)(x′)2

]
dσ2. (2.12)
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Figure 1. Profile of a string dual to a qq̄ pair separated a distance ` (blue line). The vertical

direction corresponds to the holographic radial coordinate, with the asymptotic boundary (UV) at

the top. A cutoff is introduced at an IR scale (horizontal red line) and degrees of freedom above

the cutoff are integrated out. The separation in the field theory directions between the endpoint of

the string at the boundary and at the cutoff is denoted by δx, it corresponds to x(µ) in the text.

The action becomes

SNG = − β

2πα′

∫
dσ

eA√
f

√
1 + fe2A(x′)2. (2.13)

Again, one needs to add a counter-term of the form given in (2.9) to render it finite.

Since it depends only on the derivative of the embedding function x′, the conjugate

momentum is constant

πx =
δSNG

δx′
=

β

2πα′
p = constant. (2.14)

This leads to the equation √
fe3Ax′√

1 + fe2A(x′)2
= −p, (2.15)

or, solving for x′, we obtain the equation of motion for the embedding

x′ = −p e−3A

√
f
√

1− e−4Ap2
. (2.16)

If we picture the string as hanging from the asymptotic boundary, as in figure 1, the

conditions (2.8) fix the relation between the lowest point of the string profile σ∗, the

separation L of the pair and p

p = e2A(σ∗),
L

2
= p

∫ ∞

σ∗

e−3A

√
f
√

1− e−4Ap2
. (2.17)

Note that under a change of the boundary condition δx(∞) = δL, the solution changes

x → x + δx and the change of the Nambu-Goto action is proportional to the conjugate

momentum

δSNG =

∫ ∞
dσ πxδx

′ =
β

2πα′
p δL. (2.18)
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The change of the potential is

δVqq̄ = − 1

2πα′
pδL. (2.19)

Therefore, p should be identified with the force that the (anti)quark feels

Fx = −δVqq̄
δL

=
1

2πα′
p. (2.20)

3 Holographic RG flow of the Wilson loop

The analysis of the previous section demanded to have full knowledge of the dual geometry

all the way to the boundary to determine the classical string profile that controls the

potential. However, for large enough separation it is expected that it is enough to know

the geometry below certain cutoff r(µ). To materialize this expectation, we note that for

sufficiently large values of L, the profile of the string is typically mostly below some finite

value of the radial cutoff r(µ). In the dual geometry the region between the boundary and

the cutoff corresponds to length scales much smaller than the separation L. At these scales,

the quark and antiquark do not feel much the presence of each other, and the profile of

the string around each of the endpoint positions is close to that of a single isolated quark,

remaining close to the endpoint position in the parallel directions to the boundary and

extending almost completely straight into the interior. The straight shape of the profile

persists from the cutoff to the interior, until, far from the cutoff, the profile changes and

extends in the directions parallel to the boundary in such a way that the two endpoints are

joined (see figure 1). This characteristic behavior implies that the information about the

UV properties of the theory is confined to the position of the string profile at the cutoff,

which is close to the position of the endpoints at the boundary and introduces a length

scale much smaller than the separation between the endpoints. The ratio between these two

length scales works as a perturbative parameter that we will use to find the first corrections

to the leading order dependence of the potential on the quark-antiquark separation.

Based on the considerations above, we separate the contribution of the straight seg-

ments from the rest by introducing a cutoff at σ = r(µ) such that

x(µ) = x(r(µ))� L. (3.1)

In the region closer to the asymptotic boundary σ > r(µ), the string does not wander far

from its initial position 0 < x < x(µ), and x′ is a small quantity, as shown in figure 1.

Taking advantage of this fact, we will split the string action in two parts, an upper part

S>string, where we integrate for values σ > r(µ) and add the boundary counterterms, and

the lower part where we integrate below the cutoff S<NG.

Sstring = S>string + S<NG = S>NG + Sc.t. + S<NG. (3.2)

Expanding the upper action to quadratic order one finds

S>NG ' −
β

2πα′

∫

σ>r(µ)

dσ
eA√
f

(
1 +

1

2
fe2A(x′)2

)
. (3.3)
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The solution to the equations of motion is

x′ ' −pe
−3A

√
f
. (3.4)

Comparing with the exact solution (2.16), this is a valid approximation as long as

p2e−4A(r(µ)) � 1. Defining a function

a(σ) =

∫ ∞

σ

e−3A

√
f
, a(µ) = a(r(µ)), (3.5)

the displacement at the cutoff is x(µ) = a(µ)p. The profile of the string is then

x ' x(µ)
a(σ)

a(µ)
. (3.6)

The on-shell action (regularized by an UV cutoff) is

S>NG ' −
β

2πα′

[∫ r(Λ)

r(µ)

dσ
eA√
f

+

√
fe3A

2
x′x
∣∣∣
r(Λ)

r(µ)

]
. (3.7)

The string action, including counterterms, is thus

S>string ' −
β

2πα′

[
M(µ) +

1

2a(µ)
x2

(µ)

]
, (3.8)

where

M(µ) = lim
r(Λ)→∞

∫ r(Λ)

r(µ)

dσ
eA√
f
− eA(r(Λ)), (3.9)

We can then replace our original string action by the NG action below the cutoff plus a

boundary term that appears as a double-trace deformation, the x2
µ term appearing in (3.8),

its effect is to modify the boundary conditions at the cutoff. In order to see this, consider

a string with slightly perturbed profile, but keeping the endpoints at the boundary fixed

x→ x+δx, δx(r(Λ)) = 0. The variation of the on-shell string action under this perturbation

has a bulk contribution and a contribution localized at the cutoff

δSstring = − β

2πα′

[
x(µ)

a(µ)
δx(µ) +

∫

σ<r(µ)

dσ

√
fe3Ax′√

1 + fe2A(x′)2
δx′
]
. (3.10)

Integrating the bulk term by parts and using the equations of motion (2.15), one is left

with only cutoff contributions

δSstring = − β

2πα′

[
x(µ)

a(µ)
− p
]
δx(µ). (3.11)

Since the on-shell action should be stationary for small perturbations of the profile that do

not change the boundary conditions, the variation above should vanish for any δx(µ). This

condition fixes the conjugate momentum for the solution below the cutoff to the right value

p =
x(µ)

a(µ)
. (3.12)

Therefore, the string dual to the Wilson loop that determines the quark-antiquark potential

can be replaced by a string with endpoints at a cutoff satisfying mixed boundary conditions.
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3.1 IR description of the Wilson loop

The analysis above has made precise the expectation that the long distance potential only

depends on the IR physics. By replacing the full string action from the cut-off to the

boundary by the quadratic approximation, (3.8), we have managed to express the problem

in terms of quantities evaluated at the cut-off. All the information about the UV part of

the geometry, and its manifestation in the string embedding, is condensed into the (cut-

off dependent) values of the parameters M(µ) and a(µ). Starting from this action, in this

section we will show how to use the independence of physical quantities on the cutoff to

constraint the long distance behavior of the heavy quark potential.

Suppose we are given a geometry that will be used as a holographic dual description

of the IR physics of some strongly coupled theory. We introduce a cutoff in this geometry

and consider the string action with the additional boundary terms we have derived

SIR = S<NG −
β

2πα′

[
M(µ) +

1

2a(µ)
x2

(µ)

]
. (3.13)

Physical quantities computed using the holographic dual should be independent of the

cutoff we have introduced. However, the string action has an explicit dependence on the

cutoff, that is apparent from the definition of the coefficients of the cutoff terms a(µ) (3.5)

and M(µ) (3.9). If we regard r(µ) as corresponding to an RG scale similar to the ones used

in perturbative renormalization schemes, the dependence on the cutoff can be encoded in

the RG flow equations (A(µ) = A(r(µ)), f(µ) = f(r(µ)))

∂r(µ)
a(µ) = −e

−3A(µ)

√
f(µ)

, ∂r(µ)
Mµ = − eA(µ)

√
f(µ)

. (3.14)

Integrating these equations one would obtain M(µ) and a(µ) up to indeterminate integration

constants. It should be noted that the RG equations involve terms that are evaluated at

the cutoff position, so they only depend on the local geometry close to the cutoff. In the

language of the field theory dual, the RG equations only depend on the physics of the

scale close to the cutoff. All the information about UV physics is hidden in the integration

constants. This fits with the usual Wilsonian paradigm of renormalisation, the terms that

can appear in the effective action are determined by the IR degrees of freedom, but with

coefficients that have to be fixed by experiments or by matching with UV physics.

Using the equations (3.14) it is easy to show that physical quantities are independent of

the cutoff. The equations of motion for the embedding below the cutoff are given by (2.16),

and we have to impose the conditions

p = e2A(σ∗), x(µ) = a(µ)p,
L

2
= x(µ) + p

∫ r(µ)

σ∗

e−3A

√
f
√

1− e−4Ap2
. (3.15)

The force, which is proportional to p, is independent of the cutoff by construction. The

separation between the quark-antiquark pair is invariant under changes of the cutoff at

leading order

∂r(µ)
L = 2p

(
∂r(µ)

a(µ) +
e−3A(µ)

√
f(µ)

√
1− e−4A(µ)p2

)
= O

(
p3e−7A(µ)

)
. (3.16)
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Then, the dependence of the force (2.20) with the length is also invariant to leading order.

In principle one could systematically add higher order corrections by including further

multi-trace terms in the boundary action, we show how to proceed using the Wilsonian

RG flow equations for the boundary action and show explicitly that the length is invariant

at the next order in appendix A. As we already mentioned, the value of a(µ) cannot be

determined by the IR theory, rather it would have to be fixed by matching with the UV

theory if this one is known, or by measuring the force at a separation L and doing a fit.

4 Theory with an IR fixed point

In this section we will use the formalism developed in the previous section to study a

particularly simple example, that of a strongly coupled field theory with an IR fixed point.

Because it is a fixed point, the long distance dynamics are controlled by a CFT. As a

consequence of conformal symmetry, the dual geometry must approach AdS space in the

interior, meaning it takes the form in (2.3) as r → −∞. We will assume that the flow away

from the fixed point is driven an irrelevant scalar operator of conformal dimension ∆ > d.

That is, to the action of the IR CFT we add a coupling to the irrelevant operator

SIR = SCFT +

∫
ddx α̃O∆. (4.1)

In the dual theory, this is realized by turning on a scalar field φ of mass m2R2 = ∆(∆−d).

The scalar field back-reacts on the geometry and takes it away from AdS to a different

geometry in the asymptotic region, which in principle could be another AdS space of

different radius RUV > R, corresponding to a UV fixed point.

In order to simplify the discussion we will use the ‘fake’ supergravity formalism [44–

48],2 such that the equations of motion for the metric and the scalar reduce to a system

of first order equations. It should be noted that for any given potential in supergravity,

a superpotential describing the solution (fake or not) always exists locally, so the analysis

presented here for the leading corrections is quite general.

The metric has a slightly simpler form than the general case

ds2
5 = dr2 + e2A(r)ηµνdx

µdxν . (4.2)

Note, in particular, that the function f(r) = 1, as defined in (2.11). The equations of

motion for the metric and scalar are

φ′ = −∂φW, A′ =
W

d− 1
. (4.3)

There is a critical point at a value φ = φIR such that

∂φW (φIR) = 0, W (φIR) =
d− 1

R
. (4.4)

2The formalism can be derived from a Hamilton-Jacobi formulation of the radial evolution of the so-

lutions, which has also been interpreted in terms of the RG flow in the holographic dual, see e.g. [49–51]

and [52] for an earlier work in the context of cosmology.
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This corresponds to the IR AdS solution where the scalar is constant

φ(r) = φIR, A(r) =
r

R
. (4.5)

Close to the critical point, the fake superpotential can be approximated by

W ' d− 1

R
+
d−∆

2R
(φ− φIR)2. (4.6)

The solution to leading order away from conformality is

φ ' φIR + αe(∆−d)(r−r(M))/R, A ' r

R
− α2

4
e2(∆−d)(r−r(M))/R, (4.7)

where α is of order one and proportional to the irrelevant coupling, α̃, and r(M) determines

the region where the geometry deviates significantly from AdS. The type of expansion

we are doing is valid for r � r(M). In particular, the cutoff should be in the near-AdS

region r(µ) � r(M).

From the first condition in (3.15), we obtain

p ' exp

(
2σ∗
R
− α2

2
e2(∆−d)(σ∗−r(M))/R

)
. (4.8)

We can solve this condition for σ∗ expanding to leading order in α

σ∗ = σ∗(0) + δσ ' R

4
log p2 +R

α2

4
e−2(∆−d)r(M)/Rp∆−d. (4.9)

From (3.15), the quark-antiquark separation is

L = 2a(µ)p+ 2p

∫ r(µ)

σ∗
I(σ), (4.10)

where

I(σ) =
e−3A

√
1− e−4Ap2

. (4.11)

Let us split the integral in a region close to σ∗ and the rest

∫ r(µ)

σ∗
I(σ) =

∫ σ∗+∆σ

σ∗
I(σ) +

∫ r(µ)

σ∗+∆σ
I(σ). (4.12)

The first integral is approximated expanding around σ∗. Expanding the result in α,

one finds
∫ σ∗+∆σ

σ∗
I(σ) ' R1/2

p3/2

(
1 + (∆− d)

α2

4
e−2(∆−d)r(M)/Rp∆−d

)√
∆σ. (4.13)

In the second integral we expand first in α

∫ r(µ)

σ∗+∆σ
I(σ) ' − e−3σ/R

√
1− e−4σ/Rp2

∣∣∣
σ∗(0)+∆σ

δσ +

∫ r(µ)

σ∗(0)+∆σ

[
e−3σ/R

√
1− e−4σ/Rp2

+
α2

4
e−2(∆−d)r(M)/R

e(2(∆−d)−3)σ/R
(
3− e−4σ/Rp2

)
(
1− e−4σ/Rp2

)3/2

]
.

(4.14)
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The integrals can be done analytically, with a result that can be expressed in terms of

hypergeometric functions, but that is not very illuminating. Expanding for r(µ) � σ∗(0),

and ∆σ → 0,

e−3σ/R

√
1− e−4σ/Rp2

∣∣∣
σ∗(0)+∆σ

δσ

' α2

4
e−2(∆−d)r(M)/R

R3/2

2
√

∆σ
p∆−d− 3

2 , (4.15)

∫ r(µ)

σ∗(0)+∆σ

e−3σ/R

√
1− e−4σ/Rp2

' − R1/2

p3/2

√
∆σ +

R

p3/2

√
πΓ
(

3
4

)

Γ
(

1
4

) − R

3
e−3r(µ)/R, (4.16)

∫ r(µ)

σ∗(0)+∆σ

e(2(∆−d)−3)σ/R
(
3− e−4σ/Rp2

)
(
1− e−4σ/Rp2

)3/2

' R3/2

2
√

∆σ
p∆−d− 3

2 − (∆− d+ 1)R1/2p∆−d− 3
2

√
∆σ (4.17)

+
3R

2(∆− d)− 3
e(2(∆−d)−3)r(µ)/R +

(∆− d)
√
πΓ
(

3
4 − ∆−d

2

)

2Γ
(

5
4 − ∆−d

2

) Rp∆−d− 3
2 . (4.18)

The ∼ 1/
√

∆σ terms cancel out when we sum over all contributions, so the limit ∆σ → 0

is finite, giving

∫ r(µ)

σ∗
I(σ) ' R

[√
πΓ
(

3
4

)

Γ
(

1
4

) p−3/2 − 1

3
e−3r(µ)/R

(
1− 9

4

α2

2(∆− d)− 3
e−2(∆−d)(r(M)−r(µ))/R

)

+
α2

4
e−2(∆−d)r(M)/R

(∆− d)
√
πΓ
(

3
4 − ∆−d

2

)

2Γ
(

5
4 − ∆−d

2

) p∆−d− 3
2

]
. (4.19)

The expression is valid for ∆ − d 6= 3/2. In order for the correction proportional to α2 to

be small, the cutoff should be at a position in the radial direction r(µ) � r(M). In the field

theory dual this means that we are considering energy scales much below the characteristic

scale where the RG flow deviates significantly from the IR CFT. For ∆−d = 3/2 one finds

∫ r(µ)

σ∗
I(σ) ' R

[√
πΓ
(

3
4

)

Γ
(

1
4

) p−3/2 − 1

3
e−3r(µ)/R +

α2

4
e−3r(M)/R

(
3
r(µ)

R
− 3

2
log

(
p

2

)
− 1

)]
.

(4.20)

The quark-antiquark separation is

L = R
[
c0p
−1/2 + a0p+ a∆−dp

∆−d− 1
2

]
, ∆− d 6= 3

2
, (4.21)

or

L = R

[
c0p
−1/2 + ã0p+ a3/2p log

p

p0

]
, ∆− d =

3

2
. (4.22)
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The coefficients are

c0 =
2
√
πΓ
(

3
4

)

Γ
(

1
4

) ,

a0 = 2a(µ) −
2

3
e−3r(µ)/R

(
1− 9

4

α2

2(∆− d)− 3
e−2(∆−d)(r(M)−r(µ))/R

)
,

a∆−d =
α2

2
e−2(∆−d)r(M)/R

(∆− d)
√
πΓ
(

3
4 − ∆−d

2

)

2Γ
(

5
4 − ∆−d

2

) ,

ã0 =2a(µ) −
2

3
e−3r(µ)/R

(
1− 9α2

4
e−3(r(M)−r(µ))/R

r(µ)

R

)
,

a3/2 = −3α2

4
e−3r(M)/R, p0 = 2e−2/3.

(4.23)

Only the coefficients a0 and ã0 have an explicit dependence on the cutoff. However, when

taking into account the scale dependence of the double trace coefficient a(µ), this de-

pendence vanishes. Expanding the RG-flow equations for a(µ) (3.14) to O(α2), one can

show that

∂r(µ)
a0 ' 0, ∂r(µ)

ã0 ' 0, (4.24)

where the approximate sign indicates that we have only used an approximate RG evolution

to leading order in α.

The force between the quark and antiquark as a function of the separation can be

found solving for p in (4.21) and (4.22). When L→∞, the leading corrections are

Fx '
R2

2πα′
c2

0

L2

[
1 +

2a0

c0

(
c0R

L

)3

+
2a∆−d
c0

(
c0R

L

)2(∆−d)
]
, ∆− d 6= 3

2
, (4.25)

or

Fx =
R2

2πα′
c2

0

L2

[
1 +

2ã0

c0

(
c0R

L

)3

+
2a3/2

c0

(
c0R

L

)3

log

(
c2

0R
2

p0L2

)]
, ∆− d=

3

2
, (4.26)

These expressions are valid for any RG flow flowing to an IR fixed point having a domain

wall geometry as holographic dual. In both these expressions the first term contains the

expected conformal length-dependence of the force of the IR CFT, while the last term

encodes the contribution from the irrelevant operator that deforms that CFT. These two

contributions are solely determined from infrared physics, once the scaling dimension and

coupling of the operator are known. The second term is more interesting, since its L

dependence is universal. Independently of the details of the RG-flow, provided that the

holographic theory flows to an IR fixed point, there is a contribution to the force between

the quark-antiquark pair that behaves as L−5. Since the value of a0, ã0 are determined

from the RG flow, at long distances all the information of the UV theory is hidden in the

coefficient of this universal contribution.

4.1 Defect theory interpretation

The universal contribution identified above is intriguing since, a priori, it would have been

hard to guess from the IR theory alone. In this subsection we will clarify its origin by
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analyzing the possible contributions to the quark-antiquark potential when considering the

Wilson line as a defect and studying its fluctuations. In order to help us identify the

origin of the universal contribution, let us first consider an arbitrary AdS geometry

ds2 ' dr2 + e2r/Rηµνdx
µdxν . (4.27)

Inside this geometry we introduce a string extending straight along the radial direction

and ending at the asymptotic boundary. The induced metric on the string is AdS2

ds2 = habdσ
adσb ' dσ2 − e2σ/Rdτ2. (4.28)

The string action for fluctuations δx(τ, σ) around the straight profile can be expanded to

quadratic order

SNG '
1

2πα′

∫
d2σ eσ/R

(
−1 +

1

2

(
(∂τδx)2 − e2σ/R(∂σδx)2

))
. (4.29)

Using the field redefinition

δx = Re−σ/Rϕ, (4.30)

we can rewrite this as the action for a scalar field in AdS2

SNG ' −
R2

2πα′

∫
d2σ
√
−h
(

1 +
1

2

(
hab∂aϕ∂bϕ+m2ϕ2

))
, (4.31)

where the mass is

m2R2 = 2. (4.32)

Following the usual AdS/CFT dictionary, the AdS2 geometry on the string is dual to a

0 + 1 dimensional CFT, and the field ϕ is dual to an operator Oϕ of dimension ∆ such

that m2R2 = ∆(∆ − 1). The root ∆ = −1 corresponds to changes in the position of the

Wilson loop at the boundary δx(∞) 6= 0, so it can be naturally identified with changes in

the quark-antiquark separation along the x direction Oφ = L̂. The operator corresponding

to ∆ = 2 can be identified from the variation of the expectation of the Wilson loop with

respect to changes in the trajectory. For instance, for a BPS loop in N = 4 SYM,

δ

δxµ
log 〈W〉 ∝ 1

〈W〉
〈

Tr
[(
Fµν [x]ẋν +D⊥µ ΦI [x]θI |ẋ|

)
ei

∮
(A+θ·Φ)

]〉
≡ E⊥µ , (4.33)

where Fµν is the field strength of the gauge fields. Generalizing the expression above, the

∆ = 2 operator can be identified as the electric field strength produced in the x direction

Oϕ = Ê⊥x . Adding to the straight string a boundary action of the form (3.8) would

introduce a double-trace deformation ∼ O2
ϕ of the 0+1 dimensional CFT that would trigger

a flow to a different fixed point in the IR (see e.g. [17]). As usual, the flow would be between

the alternative quantization in the UV, for which the double trace deformation is relevant

∆O2 = −2, to the normal quantization in the IR, where the double-trace deformation is

irrelevant ∆O2 = 4.

Now let us go back to our setup. Even though the geometry deviates from AdS at

large values of the radial coordinate r & r(M), deep in the interior of the space, r � r(M),
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the geometry again approaches AdS, since we are considering a theory with an IR fixed

point. Furthermore, in the long distance limit we have considered, the separation between

the endpoints is so large that the string profile is approximately straight close to the cutoff

r(µ) � r(M). As a consequence, the AdS2/CFT1 map for the string is expected work in

this region and the small string fluctuations close to that cut-off are governed by the same

action (4.31). Therefore, from the point of view of the IR CFT, those fluctuations posses

the same scaling dimensions and the same dual operators that we have identified in the

pure AdS geometry. In particular, the boundary action (3.8) corresponds to a double-trace

deformation ∼ O2
ϕ and, as the string below the cutoff lays in the IR region, the dimension

of the double-trace deformation must be irrelevant and, as a consequence, ∆O2 = 4. From

the point of view of the IR effective description, the boundary action triggers a flow that

at higher energy scales drives away the theory from the IR CFT. As a consequence, the

double trace deformation will give a contribution to the potential whose dependence on L

will be fixed by conformal invariance

∆Vqq̄ ∝ cE2

〈
E2
x

〉
∼ cE2

L4
. (4.34)

This will give a contribution to the force ∆Fx = −∂L∆Vqq̄ ∼ 1/L5, whose dependence on

L agrees with the universal term in (4.25) and (4.26).

5 Confining theories

The second application of our effective description of Wilson loops in the IR is to study

the long distance quark-antiquark potential in confining theories. One of the defining

characteristics of that type of theories is that Wilson loops follow an area law.3 This implies

that the heavy quark potential grows linearly at sufficiently large distances Vqq̄ = σsL, with

σs the string tension. Going beyond this leading behavior, in this second application we

will study the leading correction to this potential at long distance in holographic confining

theories, which will be sensitive to characteristic features of the holographic description

of confinement.

In the holographic dual description of confinement the string dual to the Wilson loop

reaches a region of space where its tension remains fixed as the separation between the

endpoints at the asymptotic boundary is increased. Although there are several different

realizations of confining theories in holography,4 in this work we will focus on two model

examples. The first example is the WQCD model [24], consisting of the gravity dual of

a stack of D4 branes wrapped around a compact direction with supersymmetry-breaking

boundary conditions. At weak coupling the theory is expected to flow in the IR to pure

Yang-Mills. At strong coupling there is really no separation of scales between the gapped

four-dimensional modes and the Kaluza-Klein modes corresponding to excitations along

the fifth direction. Nevertheless the model captures some of the properties of a confining

3If the theory contains degrees of freedom in the fundamental color representation this is only true in

the large-N limit.
4For the general conditions on the metric under which the Wilson loop will show area law in a given

holographic model see [43].
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theory, including an area law for the Wilson loop [53]. The second example of a holographic

dual to a confining theory is the KS model [25], which is dual to a non-conformal N = 1

supersymmetric SU(Mc)×SU(Mc+Nc) gauge theory. In the IR the theory flows to SU(Nc)

N = 1 super Yang-Mills and also exhibits an area law for the Wilson loop [54].

In both examples, the area law behavior of the Wilson loop can be traced to the

properties of the dual geometry in the interior. Rather than having an infinite throat, as

for an AdS space, or a horizon, the geometry ends smoothly at a fixed position in the radial

direction when a cycle in the internal space of the geometry collapses to zero size. For the

WQCD model, the cycle is the circle corresponding to the fifth direction on the dual D4

branes, while for the KS model, it is a two-cycle in the internal geometry transverse to

the field theory directions. For strings with a small separation between its endpoints, the

string is hanging far from the point where the space ends. Increasing the separation will

make the string go deeper in the geometry, until it reaches the end of space. Since it cannot

penetrate further, a larger separation of the endpoints will result in having an increasing

stretch of the string lying at the bottom of space. As the tension of the string is finite in

this region, the action of the string increases linearly with the separation and produces the

area law. As we will see, corrections to the area law emerge as a consequence of the piece

of the dual string extended along the radial direction throughout all the geometry.

5.1 WQCD model

In the WQCD model the string-frame metric is usually given as

ds2 =

(
U

R

)3/2

ηµνdx
µdxν +

(
U

R

)3/2(
1− U3

M

U3

)
dϕ2 +

(
R

U

)3/2 dU2

1− U3
M
U3

. (5.1)

The map to field theory quantities is

UM =
2

9
λYMMα′, R3 =

1

2M
λYMα

′ (5.2)

Where λYM is the ’t Hooft coupling and M is the scale of KK modes along the compact di-

rection and determines the scale of glueball masses. The change of variables U = r4/(28R3)

puts the metric in “domain wall” form (2.11) with

e2A(r) =
( r

4R

)6
, f(r) = 1−

r(M)
12

r12
, (5.3)

where r(M) = 4R3/4U
1/4
M is the position at which the geometry ends. Having expressed the

metric in this way, we can find the relation between the force, p, and the quark-antiquark

separation L, using the relations in (3.15)

From the first condition in (3.15), the relation between the force and the minimum

string position, σ∗, is

p =
( σ∗

4R

)6
. (5.4)

As we have already explained, confinement implies that for a large enough separation

between the string endpoints, σ∗ is close to the end of the geometry σ∗ = r(M) + δr,

δr ' p− pM
6pM

r(M), pM =
(r(M)

4R

)6

=

(
UM
R

)3/2

. (5.5)
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From (3.15), the quark-antiquark separation is

L = 2a(µ)p+ 2p

∫ r(µ)

σ∗
dσ I(σ), (5.6)

where

I(σ) =
e−3A

√
f
√

1− e−4Ap2
. (5.7)

The integral can be calculated analytically. Expanding for r(µ) � r(M), σ∗ and δr/r(M) � 1

one finds

∫ r(µ)

σ∗
dσ I(σ) = −R

2

[(
4R

r(µ)

)8

+
2

3

(
4R

r(M)

)8

log

(
e

π
2
√

3
δr√

3r(M)

)]
. (5.8)

The quark-antiquark separation in terms of p is

L = R

[
−c0p log

(
p− pM
p0

)
+ a0p

]
, (5.9)

where the coefficients are

c0 =
2

3

(
4R

r(M)

)8

,

a0 = 2a(µ) −
(

4R

r(µ)

)8

,

p0 = 6
√

3pMe
− π

2
√

3 .

(5.10)

As in our first application, only one of these coefficients. a0, depend explicitly on the cut-

off. This reveals that its value is sensitive to UV physics, unlike the other two coefficients,

that depend on quantities defined at the bottom of the geometry. However, taking into

account the RG-flow equation a(µ) (3.14), the coefficient a0 is, as expected, independent of

the cut-off. Indeed, expanding in r(M)/r(µ) � 1, one can show that

∂r(µ)
a0 ' 0. (5.11)

The force between the quark and antiquark as a function of the separation can be found

solving for p in (5.9). When L→∞, the leading correction is

p ' pM + p0e
−a0/c0e

− L
c0pMR . (5.12)

Then, the force is

Fx = σs
(
1 + qMe

−ML
)
, (5.13)

where the string tension and the coefficient of the exponential term are

σs =
pM

2πα′
=

2

27π
λYMM

2, qM = 6
√

3e
− π

2
√

3 e−a0/c0 . (5.14)

The slope of the exponential decay M is determined by the IR theory, but the amplitude

qM depends on a0, which contains information about the RG flow above the cutoff. It
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should be noted that exponential corrections to the leading order behavior were already

found e.g. [43, 55], but the connection with the scale of glueball masses was not made. The

appearance of these corrections, that are non-perturbative in the 1/L expansion, are not

just a feature of this particular model. As we will see they also appear in the KS model,

which we analyze next.

5.2 KS model

In the KS model the metric is slightly more complicated. Separating the field theory

directions from the internal ones it takes the form

ds2 = h−1/2(τ)ηµνdx
µdxν + h1/2(τ)ds2

6. (5.15)

The metric along the internal directions is the deformed conifold. It can be given in terms

of the following basis of one-forms for the angular directions

g1 =
e1 − e3

√
2

, g2 =
e2 − e4

√
2

, g3 =
e1 + e3

√
2

g4 =
e2 + e4

√
2

, g5 = e5, (5.16)

where
e1 ≡ − sin θ1dφ1, e2 ≡ dθ1, e3 ≡ cosψ sin θ2dφ2 − sinψdθ2,

e4 ≡ sinψ sin θ2dφ2 + cosψdθ2, e5 ≡dψ + cos θ1dφ1 + cos θ2dφ2.
(5.17)

Then, the internal metric is

ds2
6 =

ε4/3K(τ)

2

[
1

3(K(τ))3

(
dτ2 + (g5)2

)

+ cosh2 τ

2

(
(g3)2 + (g4)2

)
+ sinh2 τ

2

(
(g1)2 + (g2)2

) ]
(5.18)

ε2/3 has dimensions of length and sets the scale of the conifold deformation. The warp

factors are

K(τ) =
(sinh 2τ − 2τ)1/3

21/3 sinh τ
, h(τ) = α

∫ ∞

τ
dx
x cothx− 1

sinhx
K(x), (5.19)

where α = 2(gsNcα
′)2ε−8/3, with gs is the string coupling constant. The asymptotic

boundary is at τ →∞, although in this case the metric deviates from AdS by logarithmic

corrections. When τ → 0, a two-cycle in the internal metric collapses to zero size and the

space terminates. The expansion of the warp factors in that limit is

K(τ) '
(

2

3

)1/3(
1− τ2

10

)
, h(τ) =

(
2

3

)1/3

α

(
ĥM −

τ2

6

)
, (5.20)

where ĥM ' 0.65.

The map to field theory quantities is

ε2/3 ∝ (gsNcα
′)M, gsNc = λYM . (5.21)

Where λYM is the ’t Hooft coupling and M sets the scale of glueball masses [25, 56].
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Identifying r = ε2/3τ as the domain wall coordinate, the warp factors are

e2A(r) = h−1/2(ε−2/3r), f(r) = 6h−1/2(ε−2/3r)(K(ε−2/3r))2. (5.22)

From the first condition in (3.15), we obtain

p = h−1/2(ε−2/3σ∗). (5.23)

For a large enough separation between the string endpoints, σ∗ should be close to the end

of the geometry σ∗ = δr � ε2/3,

δr2 ' 12

ĥM

p− pM
pM

ε4/3, pM = h−1/2(0) =

(
2

3

)−1/6

α−1/2ĥ
−1/2
M . (5.24)

From (3.15), the quark-antiquark separation is

L = 2a(µ)p+ 2p

∫ r(µ)

σ∗
dσ I(σ, σ∗), (5.25)

where

I(σ, σ∗) =
e−3A

√
f
√

1− e−4Ap2
=

1√
6p

h(ε−2/3σ)

K(ε−2/3σ)
√
h(ε−2/3σ∗)− h(ε−2/3σ)

. (5.26)

For values of σ close to σ∗,

I(σ, σ∗) ' I0(σ, σ∗) =
pM
p

αĥ
3/2
M ε2/3

√
σ2 − σ2∗

. (5.27)

For σ∗ = 0 the integral has a logarithmic divergence. In order to expand for small values

of σ∗ = δr, we subtract the divergent contribution and define

∫ r(µ)

δr
dσ I(σ) =

∫ r(µ)

δr
dσ [I(σ, δr)− I0(σ, δr)] +

pM
p
αĥ

3/2
M ε2/3 log



r(µ) +

√
r2

(µ) − δr2

δr


 .

(5.28)

Expanding for small δr we find, to leading order

∫ r(µ)

δr
dσ I(σ) '

∫ r(µ)

0
dσ [I(σ, 0)− I0(σ, 0)]p=pM

+ αĥ
3/2
M ε2/3

(
log(ε−2/3r(µ))− log

ε−2/3δr

2

)
. (5.29)

The quark-antiquark separation in terms of p is

L = ε2/3

[
−c0p log

(
p− pM
p0

)
+ a0p

]
, (5.30)
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where the coefficients are

c0 = αĥ
3/2
M ,

a0 = 2ε−2/3a(µ) + 2αĥ
3/2
M log(ε−2/3r(µ))

+ 2
√
h(0)

∫ r(µ)

0
dσ

[
ε−2/3

√
6

h(ε−2/3σ)

K(ε−2/3σ)
√
h(0)− h(ε−2/3σ)

− αĥ
3/2
M

σ

]
,

p0 = pM ĥM/3.

(5.31)

Only the coefficient a0 has a dependence on the cutoff. Expanding the RG-flow equations

for a(µ) (3.14) for ε−2/3r(µ) � 1, one can show that

∂r(µ)
a0 ' 0. (5.32)

The force between the quark and antiquark as a function of the separation can be found

solving for p in (5.30). When L→∞, the leading corrections are

p ' pM + p0e
−a0/c0e

− ε−2/3L
c0pM . (5.33)

We define the glueball mass scale M as

M =
ε−2/3

c0pM
=

1

(12)1/6ĥM

ε2/3

gsNcα′
. (5.34)

Then, the force takes the same form as in (5.13), where the string tension and the coefficient

of the exponential term are

σs =
pM

2πα′
=

31/6

2π
ĥ

3/2
M λYMM

2, qM =
ĥM
3
e−a0/c0 . (5.35)

5.3 Interpretation of the Wilson loop as a flux tube in the IR

A popular and successful description of the physics of confined matter is formulated in terms

of effective flux tubes, whose dynamics are determined by massless transverse fluctuations

in the field theory directions. These objects describe the configuration of the color gauge

fields sourced by the heavy quark and antiquark that run along the Wilson loop. According

to this picture, in a confining theory, and for a large enough separation compared to the

confining scale, the color flux between the two sources is concentrated in a tube that

extends from one to the other. In principle, flux tubes in the absence of sources also

describe dynamical excitations of the gauge theory, but they have to be either closed or

ending on dynamical quarks (or other colored particles). The Wilson loop that determines

the quark-antiquark potential is then determined by the properties of the flux tube in

the IR theory. We will now interpret the result obtained for the force (5.13) using the

holographic Wilsonian renormalisation in terms of a modification of the effective theory of

the flux tube.
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This picture emerges naturally in holography. A long classical string at the bottom of

the dual geometry realizes a flux tube in the field theory. These elongated objects posses

their own excitations, which are determined by the vibrational modes of the string in the

different direction of the gravity theory. Fluctuations in the transverse field theory direc-

tions are massless and are determined by the four-dimensional Nambu-Goto action with

string tension σs. In addition, there are massive fluctuations corresponding to perturba-

tions away from the bottom, which from the point of view of the field theory dual should

be interpreted as internal excitations of the flux tube. The piece of the string that connects

the parallel paths of the rectangular Wilson loop and is close to the bottom of the geometry

has the same properties as a flux tube.

To avoid subtleties with boundary conditions, let us characterize those fluctuations for

a flux tube wrapping a compact spacial direction x of length L. This sourceless flux-tube

excitation is realized by a closed string at the bottom of the geometry ( U = UM in WQCD

or τ = 0 in KS). To better characterize the fluctuation dynamics of the flux-tube, we will

use a series of changes of coordinates in each of the two models we have considered that

provide a simple Lagrangian for small (quadratic) fluctuation around the classical string.

In the WQCD model, we will use the following change of coordinates

U = UM

(
1 + cρρ

2 + c(2)
ρ ρ4

)
, ϕ = cθθ. (5.36)

For ρ→ 0, if one fixes

cρ =
3

4R3/2U
1/2
M

, c(2)
ρ = − 3

32R2UM
, cθ =

2

3

R3/2

U
1/2
M

, (5.37)

the metric is, to leading order,

ds2 = pM

(
1 +

ρ2

ρ2
M

)
ηµνdx

µdxν + dρ2 + ρ2dθ2, (5.38)

where

ρ2
M =

8

9
R3/2U

1/2
M . (5.39)

The periodicity of θ is

θ ∼ θ + 2π ⇒ ϕ ∼ ϕ+ βϕ, βϕ =
2π

cθ
. (5.40)

We now change to Cartesian coordinates

dρ2 + ρ2dθ2 = dV 2 + dW 2, (5.41)

such that the metric is

ds2 = pM

(
1 +

V 2 +W 2

ρ2
M

)
ηµνdx

µdxν + dV 2 + dW 2. (5.42)

Similarly, in the KS model we expand the metric for small values of τ and pick the

directions transverse to the three-cycle

θ1 = θ2 = θ, φ1 = −φ2 = φ, ψ = π. (5.43)
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The metric takes the form

ds2 = pM

(
1 +

τ2

12ĥM

)
ηµνdx

µdxν +
ε4/3

2(12)1/3pM

(
dτ2 + τ2(dθ2 + sin2 θdφ2)

)
. (5.44)

We see explicitly that the two-cycle collapses smoothly to zero size at τ = 0. We now

introduce Cartesian coordinates to describe the region around τ = 0

dτ2 + τ2(dθ2 + sin2 θdφ2) = 2(12)1/3pMε
−4/3

(
dZ2 + dV 2 + dW 2

)
, (5.45)

where we have rescaled the τ coordinate in such a way that the metric takes the form

ds2 = pM

(
1 +

Z2 + V 2 +W 2

ρ2
M

)
ηµνdx

µdxν + dZ2 + dV 2 + dW 2. (5.46)

Where, in this case

ρ2
M = (12)2/3ĥM

ε4/3

2pM
. (5.47)

Denoting the field theory directions as xµ = (t, x, y, z), we allow the string to fluctuate

in the transverse directions y and W , keeping z = 0 and V = 0 (and Z = 0 for KS) fixed.

In the static gauge, the embedding functions of the string are

X0 = τ, X1 = σ, X2 = y(τ, σ), X3 = 0, (Z = 0), V = 0, W = W (τ, σ). (5.48)

The induced metric is

gττ = −
[
pM

(
1 +

W 2

ρ2
M

)(
1− ẏ2

)
− Ẇ 2

]
,

gσσ =

[
pM

(
1 +

W 2

ρ2
M

)(
1 + (y′)2

)
+ (W ′)2

]
,

gτσ = pM

(
1 +

W 2

ρ2
M

)
ẏy′ + ẆW ′,

(5.49)

where ẏ = ∂τy, y′ = ∂σy, etc. Expanding to second order in the fluctuations, the determi-

nant is
√−g = pM

(
1− 1

2
ẏ2 +

1

2
(y′)2 +

1

ρ2
M

W 2

)
− 1

2
Ẇ 2 +

1

2
(W ′)2. (5.50)

Changing the normalization

W =
√
pMχ, (5.51)

we find
√−g = pM

(
1− 1

2
ẏ2 +

1

2
(y′)2 − 1

2
χ̇2 +

1

2
(χ′)2 +

m2

2
χ2

)
. (5.52)

Where

m2 =
2pM
ρ2
M

, m2
WQCD =

9

4

UM
R3

, m2
KS =

1

(12)1/3ĥ2
M

ε4/3

(gsNcα′)2
. (5.53)
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In both cases the mass of the string mode is of the same order as the mass of the glueballs

m2 = M2. The action for the fluctuations to quadratic order is

SNG = − 1

2πα′

∫
d2σ
√−g ' σs

∫
d2σ

(
−1 +

1

2
ẏ2 − 1

2
(y′)2 +

1

2
χ̇2 − 1

2
(χ′)2 − M2

2
χ2

)
.

(5.54)

Therefore, M is the mass of the internal excitation of a flux tube in the IR theory. For the

WQCD model, the same quadratic action was derived in [57], where one can also find the

quadratic action for world-sheet fermions. The fluctuations of the flux tube between the

quark-antiquark pair are also governed by the same quadratic Lagrangian.

We now consider an open flux tube of length L. This is described in the holographic

dual by a string satisfying Neumann boundary conditions at the endpoints. In this partic-

ular case, a string extended along the x direction at the bottom of the geometry W = 0

is a solution to the classical action satisfying the boundary conditions. This excitation

does not describe a Wilson loop, since the endpoints of the flux do not connect to the

boundary. However, for large inter-quark separation, it approximates well the dual string

configuration. In order to describe a Wilson loop, we must modify this string such that

it bends towards the boundary. Far from the edges, where the inter-quark string profile

lies close to the bottom of the geometry, this can be described by a small perturbation of

the open flux tube string induced by additional static sources for the massive mode at the

edges of the string,

S = SNG −
1

2πα′

∫
d2σWJW , (5.55)

where

JW = −√pMqχ (δ(σ) + δ(σ − L)) . (5.56)

The equation of motion for the massive mode is, for a static configuration

− χ′′ +M2χ = qχ (δ(σ) + δ(σ − L)) . (5.57)

This can be solved by using a Green’s function, which for Neumann boundary conditions is

G(σ, σ′) =
Θ(σ − σ′)χ2(σ)χ1(σ′) + Θ(σ′ − σ)χ1(σ)χ2(σ′)

M sinh(ML)
. (5.58)

Where

χ1 = cosh(Mσ), χ2 = cosh(M(σ − L)) (5.59)

The solution is

χ = qχ

∫ L

0
dσ′G(σ, σ′)

(
δ(σ′) + δ(σ′ − L)

)
= qχ

cosh(Mσ) + cosh(M(L− σ))

M sinh(ML)
. (5.60)

Far from the string edges, the quark-antiquark string is well described by the classical

open flux tube configuration plus the massive mode perturbation χ, since outside the

endpoints the solution satisfies the classical string equations. We can then use the massive

mode profile to determine the radial position of the lowest point of the string, in this case at

– 23 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
4

σ = L/2, which, in turn, via (2.17) determines the force between the quark and antiquark

to be

p = pM
(
1 + 2q2

χe
−ML

)
. (5.61)

This reproduces (5.13) provided the strength of the source is tuned to the right value

qχ =

√
qM
2
. (5.62)

The analysis we have just performed shows that the exponential corrections we have

found in the quark-aniquark potential are due to non-vanishing excitations of an inter-

nal massive mode of the flux tube that connects those two sources. In holography, this

mode corresponds to the fluctuations of the string along the holographic direction. For all

holographic models in which confinement is associated with the closing of some cycle, as

the two models we have considered, this excitation is massive and its mass is related to

the glueball mass scale. Therefore, this type of exponential correction in the heavy quark

potential is a generic expectation of the holographic description of confinement.

6 Discussion

In this paper we have given the first steps towards a Wilsonian RG flow analysis of Wilson

loops in strongly coupled field theories which enjoy a holographic dual. We have employed

this method to analyze the expectation value of the rectangular Wilson loop in those

theories, which encodes the heavy quark-antiquark potential. In the long distance limit,

the effective theory approach we have developed has allowed us to determine the heavy

quark potential from IR physics, without detailed information of the UV properties of

the corresponding gauge theory. The leading correction to the long distance potential in a

1/L-expansion is introduced via a double trace deformation of the effective one-dimensional

theory localized on the world-line of the loop. The coefficient of that deformation depends

explicitly on the effective theory cut-off and satisfies a renormalisation group equation which

ensures the independence of observables on the renormalisation scale. All the information

on UV physics is reduced to the fixed values of the coefficients at some given scale. The

procedure we have developed is systematically improvable, and higher order corrections can

be in principle introduced by adding further multitrace terms to the IR effective action,

following the standard Wilsonian procedure. By applying this method to two concrete

holographic examples, we have been able to determine analytically the leading corrections

to the heavy quark potential, which provides us with new understanding of the long distance

dynamics in those set-ups.

In our first example we have analyzed a strongly coupled theory that flows to a (con-

formal) fixed point in the IR. As dictated by conformal symmetry in the IR, the long

distance heavy quark potential behaves as 1/L, with a coefficient determined by the IR

physics, which is easy to determine. Employing our Wilsonian approach, we have found

that the double trace term introduces a universal correction, independent of how the IR

CFT is deformed, that contributes to the potential as ∼ 1/L4 or, equivalently, as ∼ 1/L5

in the force (4.25), (4.26). This is consistent with the expected flow in a one-dimensional
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defect theory between a double trace term of scaling dimension ∆ = −2 in the UV to a

scaling dimension ∆ = 4 in the IR. In the UV the associated single trace operator is a

variation in the trajectory of the Wilson loop, while in the IR it is the transverse electric

field as defined in (4.33).

The second example that we have studied is a set of confining holographic gauge

theories. For these theories, the analytic access to the long distance properties of the

potential has allowed us to better understand the properties of the potential in terms of an

effective theory of flux tubes. This description appears naturally in holography, where large

Wilson loops are dual to long strings that stretch along a large distance at the bottom of

the geometry and lead to the characteristic linear confining potential. Holographic models

predict that the effective action of a flux tube in a confining theory is given by the four-

dimensional Nambu-Goto action plus a set of additional internal massive modes, which

correspond to fluctuations along the holographic direction. Using our Wilsonian approach,

we have identified the contribution of those modes to the heavy quark potential, that

appear as an exponentially decaying therm ∼ e−ML, where M is of the same order as the

glueball masses. The information about the UV physics in this case is hidden in the factor

multiplying the exponential correction.

The exponential term can be understood as originating from the profile of a massive

mode induced by sources localized at the endpoints. The profile of the massive mode maps

to the profile of the string along the holographic radial coordinate. This is a classical con-

tribution (from the point of view of the effective action) to the quark-antiquark potential.5

Note that while the exponential correction looks somewhat similar to the contributions

from a rigidity term [61–63] (see [64, 65] for recent lattice calculations in 2+1 dimensions),

those would be suppressed at strong ’t Hooft coupling, and the coefficient of the exponential

would decrease at long separations as ∼ 1/L1/2, unlike the contribution we have identified.

Therefore, this new contribution cannot be explained in terms of an effective action of

the flux tube with massless transverse modes alone, it involves massive modes that have

not been yet observed but should be present in any confining gauge/gravity dual qualita-

tively similar to the known examples. This opens the door to test if our understanding of

confinement in gauge/gravity duality is qualitatively correct.

Consistently with this understanding, it has been now established by lattice calcu-

lations that the Nambu-Goto action is a very good effective description of a flux tube in

2+1 [66–68] and 3+1 dimensions [69] (see [70] for reviews). At long distances, this observa-

tion may be partially expected from just effective theory arguments applied to a derivative

expansion of transverse fluctuations of the flux tube, without invoking holography, since

the energy of a long flux tube and its excitations have an expansion in odd powers of

the length L, and corrections that deviate from four-dimensional Nambu-Goto can only

start at O(1/L7) (or O(1/L5) for open strings) [59, 60, 71–73]. However, lattice calcu-

5Note that there can also be quantum corrections to the potential from integrating both massive and

massless modes, the Luscher term being the most significant, see for instance [57–60]. At very strong

coupling they are suppressed by inverse powers of the ’t Hooft coupling, this is the reason our classical

string calculation does not capture them. At finite coupling the classical term is not necessarily dominant

since it is exponentially suppressed at long distances
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lations of the spectrum of fluctuations of flux-tubes agree with that of a four-dimensional

Nambu-Goto string even at distances of order of the string length σsL
2 ∼ 1, except in

some parity odd channels, where an additional mode has been observed [69]. While the

success of the four-dimensional Nambu-Goto description even in this regime is still an open

problem,6 the existence of new modes beyond those of the four-dimensional Nambu-Goto

string is expected from holography. However, the observed new mode does not correspond

to the massive mode responsible for corrections to the potential, since this latter mode is

parity even. It would be interesting to test whether other massive bosonic and fermionic

modes of the holographic string are consistent with the additional excitations observed in

the lattice.

The new mode we have identified may be directly observed by a detailed comparison

of the quark-antiquark potential and the energy of a flux tube. In confining holographic

models, a flux tube of length L has an energy which is the same as the quark-antiquark

potential except without the classical contributions induced by sources at the endpoints.

Comparing the two one may be able to isolate the exponential correction, and get rid

of other possible contributions such as finite size effects, which are also expected to be

suppressed in the large-N limit [69]. Since this new massive mode is a generic expectation

from holography, this analysis could provide an interesting check of gauge/gravity duality

for confining theories. To further test holographic expectations, it would be interesting to

develop further the effective action of a flux tube including internal massive modes, as well

as to study the effect on meson Regge trajectories if a background profile of those modes is

turned on. A comparison could be made with other holography-inspired models, such as a

flux tubes with massive endpoints [79, 80]. We would also like to mention that finite quark

effects introduce corrections to the relation between the potential and the expectation value

of the Wilson loop that depend on the chromoelectric field squared. In the context of the

effective flux tube picture, these corrections where analyzed in [81]. Nevertheless, these

have a different nature than the ones we have discussed, since the latter remain in the

strictly infinite quark limit. It would be interesting to study the interplay of these two

sets of corrections in the analysis of heavy meson properties. We leave these questions for

future work.

Looking ahead, we would like to stress that our current analysis is restricted to static

heavy quark sources. It would be very interesting to develop a similar Wilsonian RG

approach for Wilson loops along arbitrary curves, which would allow us to address a whole

new suit of physical processes, such as the acceleration and radiation of heavy quarks. It

would also be interesting to include finite temperature and density effects in the holographic

description. In this way, we could address the energy loss of partons in strongly coupled

plasma focussing in the IR properties of the plasma. This analysis could provide new

theory input to the already existing holographically inspired analyses of jet quenching

6The success of the four-dimensional Nambu-Goto description even in this regime has been attributed

to the approximate integrability of the effective action [74–77], explaining also the deviations in parity odd

channels from the appearance of an internal axion-like mode. It has been conjectured that in the large-N

limit the theory could become exactly integrable [76], although lattice calculations seem to disfavor this

possibility [78].
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data in heavy ion collisions [82–86]. In connection with this and other phenomenological

applications, and as final remark, we would like to mention that the Wilsonian approach we

have pursued could be exploited in a semi-holographic approach, where only IR physics are

described using the gauge/gravity dual and the coefficients of the double trace deformations

sensitive to UV physics is used to match with a given microscopic theory.
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A RG flow evolution of the boundary action

We will follow the procedure introduced in [17], where the evolution of the coefficients

in the boundary action is derived from a Hamilton-Jacobi type of equation. We will not

consider the most general type of string profiles, but we will restrict to work in the static

gauge Xr = σ, X0 = τ and consider only static profiles Xi = xi(σ).

The induced string metric for these configurations is

ds2
2 = −e2Adτ2 +

1

f

(
1 + fe2A(∂σ~x)2

)
dσ2. (A.1)

Then, the determinant of the induced metric has the form

√
−h =

eA√
f

√
1 + fe2A(∂σ~x)2. (A.2)

We introduce the conveniently normalized conjugate momenta that determine the force

acting on the quarks in the dual theory

pi = −δ
√
−h

δ∂σxi
= − e4A

√
−h

∂σxi. (A.3)

Therefore, the derivative of the profile is

∂σx
i = −pie−4A

√
−h = −pi e−3A

√
f
√

1− e−4A~p2
, (A.4)

and the Nambu-Goto action is going to be proportional to

√
−h =

eA
√
f
√

1− e−4A~p2
. (A.5)
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We write string action as the Nambu-Goto action plus a boundary action that depends

on the position of the cutoff in the radial direction r(µ) and the position of the string profile

at the cutoff ~x(µ), with ~x = 0 being the position of the quark in the dual field theory:

Sstring = − 1

2πα′

∫

σ<r(µ)

d2σ
√
−h− 1

2πα′

∫
dτ LB[~x(µ), r(µ)]. (A.6)

Let us write down the condition that the action is stationary under changes of the position

of the string at the cutoff

δSstring =
1

2πα′

∫

σ<r(µ)

d2σ pi∂σδx
i − 1

2πα′

∫
dτ

δLB
δxi(µ)

δxi(µ) = 0. (A.7)

Since ∂σpi = 0, we get the condition

δLB
δxi(µ)

= pi. (A.8)

On the other hand, the string action and the solution for the string profile should be

independent of the position of the cutoff, which gives a second condition

d

dr(µ)
Sstring = − 1

2πα′

∫
dτ
√
−h
∣∣∣
σ=r(µ)

− 1

2πα′

∫
dτ

[
∂r(µ)

LB +
δLB
δxi(µ)

∂r(µ)
xi(µ)

]
= 0. (A.9)

Solving for the radial derivative of the boundary action, we find the following RG flow

evolution equation

∂r(µ)
LB = −

√
−h
∣∣∣
σ=r(µ)

− δLB
δxi(µ)

∂r(µ)
xi(µ). (A.10)

This can be cast in the form of a Hamilton-Jacobi type of equation for the boundary action

using (A.4), (A.5) and (A.8),

∂r(µ)
LB = − eA(µ)

√
f(µ)

√
1− e−4A(µ)δij

δLB
δxi(µ)

δLB

δxj(µ)

. (A.11)

Now, to solve this equation, we try an ansatz where the boundary action admits a power

expansion for small values of xi(µ)

LB = M(µ) +
1

2a(µ)
(~x(µ))

2 + · · · (A.12)

Plugging this in (A.11), expanding for small xi(µ) and equating terms with equal powers of

x(µ), this gives the RG flow equations for the coefficients

∂r(µ)
M(µ) = − eA(µ)

√
f(µ)

, ∂r(µ)
a(µ) = −e

−3A(µ)

√
f(µ)

. (A.13)

These formulas coincide with the ones we derived before by direct inspection of the action

integrated above the cutoff (3.14).
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The advantage of this formalism is that it allows a systematic computation of the next

order corrections by adding multitrace terms to the boundary action. For instance, the

first subleading correction would correspond to a quartic term

LB = M(µ) +
1

2a(µ)
(~x(µ))

2 +
1

4b(µ)
((~x(µ))

2)2 + · · · . (A.14)

The condition (A.8) gives the relation between the conjugate momenta and the positions

at the cutoff, that depends on the coefficients of the multitrace terms

pi '
xi(µ)

a(µ)
+

(~x(µ))
2xi(µ)

b(µ)
. (A.15)

The RG flow equation for the coefficient of the quartic term can be derived by expanding

to quartic order in xi(µ) the equation (A.11) and collecting terms with the same factors of

the string profile. A straightforward calculation shows that

∂r(µ)
b(µ) = −1

2

e−7A(µ)

√
f(µ)

b2(µ)

a4
(µ)

− 4
e−3A(µ)

√
f(µ)

b(µ)

a(µ)
. (A.16)

For the particular case we are studying, where the string is extended along one direc-

tion, (A.15) becomes

p '
x(µ)

a(µ)
+
x3

(µ)

b(µ)
. (A.17)

The, solving for x(µ) to O(p3),

x(µ) ' a(µ)p−
a4

(µ)

b(µ)
p3. (A.18)

Therefore, the total length L, as defined in (3.15), is, to O(p3)

L

2
' a(µ)p−

a4
(µ)

b(µ)
p3 + p

∫ r(µ)

σ∗

e−3A

√
f
√

1− e−4Ap2
. (A.19)

We can now show that L is RG invariant at this order, using first (A.13) and then (A.16)

∂r(µ)
L = 2p

(
∂r(µ)

a(µ) − 4p2
∂r(µ)

a(µ)a
3
(µ)

b(µ)
+ p2∂r(µ)

b(µ)

a4
(µ)

b2(µ)

+
e−3A(µ)

√
f(µ)

(
1 +

1

2
e−4A(µ)p2 +O

(
p4e−8A(µ)

))
)

= 2p3

(
4
e−3A(µ)

√
f(µ)

a3
(µ)

b(µ)
+ ∂r(µ)

b(µ)

a4
(µ)

b2(µ)

+
1

2

e−7A(µ)

√
f(µ)

+O
(
p2e−11A(µ)

)
)

= O
(
p5e−11A(µ)

)
.

(A.20)

This procedure can in principle be extended to an arbitrary order of the multitrace correc-

tions, until the desired precision is achieved.
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1 Introduction

The gauge/gravity duality [1–3], aka holography, has been successful in describing some

qualitative properties of the quark-gluon plasma, in particular predicting an almost perfect

fluid behavior and producing the famous KSS formula for the shear viscosity over entropy

density ratio [4, 5], that captures the right order of magnitude deduced from hydrodynamic

simulations of heavy ion collisions [6–10].

One of the most indicative signals of the formation of a deconfined quark gluon plasma

is jet quenching (see [11] for a comprehensive review). If a highly energetic parton collision
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takes place close to the surface of the plasma ball, some of the particles produced may

escape almost immediately, producing an observable jet, while the path of particles moving

in the opposite direction might have to cross a significant portion of the plasma. In this

case energy dissipation produced by the interaction with the plasma components weakens

or prevents the formation of a back jet. The observation of jet quenching in heavy ion

collisions is one of the most convincing evidences in favor of the formation of a deconfined

plasma, and one of the most important probes into its properties.

Early on, the duality has been used to model the energy loss of heavy quarks moving

through the plasma [12–15] in order to give an estimation of jet quenching.1 The energy loss

can be determined from the drag force the quark experiences, which in turn can be obtained

from the expectation value of a Wilson line along the quark trajectory. Following [12, 13],

the heavy quark maps to a dragging string moving through a black brane geometry in the

holographic dual, from which the expectation value of the Wilson line can be extracted.

The string ends at the asymptotic boundary of space and extends all the way to the black

brane horizon. According to the usual holographic map, these two regions correspond to

energy scales of the UV and IR of the field theory, respectively. This means that the heavy

quark motion is sensitive to all the energy scales of the theory, in contrast for instance to

hydrodynamic evolution, which is limited to the IR. The sensitivity to multiple energy

scales is a challenge for the holographic description. In QCD the gauge coupling becomes

weak at high energies, and if this feature was introduced in the holographic model, then the

curvature in the dual geometry would become large and stringy corrections to the classical

gravity approximation would not be negligible anymore. Introducing stringy corrections

may be doable in principle by adding higher derivative terms in the gravitational action.

In this fashion, the first corrections away from the strong coupling limit of some properties

of the plasma have been studied for conformal theories [19–24]. However, for a theory with

a running coupling like QCD, finding these corrections has not been attempted yet.

As a full string theory description of holographic duals is out of reach at the moment, it

is desirable to tackle this issue in a way that avoids dealing with large curvature corrections.

A possibility is to adopt a purely phenomenological approach and model the weakly coupled

region neglecting possible higher curvature corrections. A second possibility is to follow

an effective theory approach and use the holographic model to describe a limited range

of energy scales where the theory is strongly coupled. In this category fall the hybrid or

semi-holograhic models studied for instance in [25–32]. A drawback of hybrid models is

that the theory changes abruptly when the holographic model is used, with no obvious

systematic way to improve the method. We can compare this situation with the usual low

energy effective field theory approach. In this case the couplings in the effective action are

free parameters that have to be fixed by experiments or by matching to the microscopic

theory, and a systematic improvement of the low energy effective theory is possible. This

is one of the main properties that makes the effective field theory so successful, and hybrid

models could be significantly improved if a similar procedure could be implemented for the

holographic model. We will take the first steps in this direction by applying the method

1Different estimations of jet quenching involve particles moving at the speed of light [16] or light quarks

or gluons [17, 18].
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v

Figure 1. The holographic dual of a heavy quark moving at speed v is a string (red curve) ending

at the asymptotic boundary at the position of the quark (black dot). The strings extends from the

asymptotic boundary at the top to the black brane horizon at the bottom of the figure. A cutoff

(dashed blue line) is introduced and the shaded region between the boundary and the cutoff is

“integrated out”. One is left with the string in the region between the cutoff and the horizon and

determined boundary conditions for the endpoint of the string at the cutoff (blue dot).

of holographic “Wilsonian” renormalization [33, 34] to a moving string. Our analysis is an

extension of [35], where we applied this method to static strings in order to extract the

quark-antiquark potential.

In the Wilsonian method we introduce a cutoff in the dual geometry localized at a fixed

distance from the asymptotic boundary. The region between the cutoff and the boundary

is replaced by an action for the string endpoints at the cutoff, as sketched in figure 1. The

cutoff action ensures that the string satisfies the right boundary conditions, in such a way

that the force felt by the heavy quark is independent of the position of the cutoff. The

coefficients of the cutoff action satisfy RG flow equations that are determined by the local

geometry around the cutoff, in such a way that all the knowledge about the region between

the cutoff and the asymptotic boundary is hidden in integration constants of the RG flow

equations. Then, for a given IR effective theory, with a holographic dual corresponding to

the geometry between the horizon and the cutoff, it is possible to match to multiple UV

theories by appropriately tuning the integration constants of the RG flow.

We will derive the cutoff action and RG flow equations of the coefficients for a heavy

quark moving at approximately constant velocity. We will consider a general black brane

geometry, but we will also present the results for a IR geometry approximated by an AdS5

black brane, as a simple example to illustrate the method. We will use these results to

compute the drag force, including a couple of contributions proportional to the acceleration

of the quark and the jerk, or acceleration rate. The first can be interpreted as originating

from a thermal correction to the mass of the quark, while the second can be thought of

as a combination of the Abraham-Lorentz force [36, 37], due to Larmor radiation, and a

viscous contribution produced by the surrounding fluid [38]. The two contributions add up

giving the total value found in [39].
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The paper is organized as follows. In section 2 we introduce the holographic description

of a heavy quark moving through a strongly coupled plasma as a string in a general black

brane geometry. We simplify the analysis by considering a homogeneous and isotropic

state for the plasma, and slow variations of the quark trajectory, compared to the inverse

temperature. In section 3 we introduce a cutoff and derive the cutoff action for the string

and the RG flow equations for the coefficients. In section 4, we apply the general formalism

to a specific case where the theory has an IR fixed point and consequently the IR geometry

is an AdS5 black brane. We compute the drag force and the corrections proportional to

the acceleration and the jerk. In section 5, we explain how the cutoff action and RG flow

equations can be obtained more generally using the cutoff independence of the string action,

and show that they agree with the previous results obtained by direct integration. We end

with a discussion of the results in section 6. Some technical details of the calculations have

been collected in the appendices.

2 Holographic description of a heavy quark in a plasma

We will start by reviewing the holographic dual to a heavy quark in a high temperature

deconfined phase. We will simplify the analysis by imposing that the heavy quark is moving

along one spatial direction in a trajectory of almost constant velocity, with changes in the

trajectory that are slow compared to the time scale set by the inverse temperature. This

last approximation is necessary in order to apply a low energy effective description. Note

that the trajectory is fixed, so we are not considering the dynamics of the quark, only the

force of the plasma acting over it.

The holographic dual of the plasma is a five-dimensional geometry with an event hori-

zon extended along four directions, that are identified with the dual field theory directions.

A homogeneous and isotropic black brane geometry dual to a strongly coupled 3+1 plasma

can be cast in the general form

ds2 = GMNdx
MdxN = Gzz(z)dz2 +Gtt(z)dt2 +Gxx(z)δijdx

idxj . (2.1)

where (t, xi), i = 1, 2, 3 are coordinates along the field theory directions and z is the

holographic radial coordinate. The holographic radial direction is identified with energy or

length scales in the dual field theory. Low energies, or long wavelengths (IR) correspond

to the region close to the horizon, and high energies or short wavelengths (UV) to an

asymptotic region far away from the horizon. If the space is asymptotically AdS5, the

region approaching the conformal boundary is the far UV. In addition to the metric shown

in (2.1), there can be additional internal directions, but they will not play any role in

the following.

We pick coordinates in such a way that there is a horizon at Gtt(zh) = 0. For the AdS5

black brane metric

Gtt(z) = −R
2

z2
h(z), Gzz(z) =

R2

z2h(z)
, Gxx =

R2

z2
, h(z) = 1− z4

z4
h

. (2.2)

Therefore, R is the AdS radius and the boundary is at z → 0. The Hawking temperature

of the black brane maps to the temperature of the field theory and, as the temperature
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is increased, the horizon moves towards the asymptotic region, indicating that there are

degrees of freedom of higher energy contributing to the plasma. The temperature for

the AdS5 black brane geometry is T = 1/(πzh). For a general metric we will define the

functions

h(z) ≡
∣∣∣∣
Gtt
Gzz

∣∣∣∣
1/2

, f(z) ≡ Gxxh(z), g(z) ≡ Gxx
h(z)

. (2.3)

In AdS5 the function h coincides with its usual definition, while f = |Gtt| and g = Gzz. In

general, f and g are not equal to metric components, but we will still assume that there is

an asymptotic boundary at z → 0 even if the space is not asymptotically AdS5.

We now introduce a heavy quark in the plasma. Considering the mass of the heavy

quark to be effectively infinite, the heavy quark maps to a Wilson line and the holographic

dual is a string ending at the quark trajectory on the asymptotic boundary. This identifi-

cation was done originally for static quarks [40–42] and later on generalized to quarks in

motion [12–15]. So we do not solve for the quark motion but rather find the force with

which the plasma acts when the quark follows a fixed path.

To start with, we consider the simplest case of a heavy quark in N = 4 SYM. The

dual geometry is AdS5 × S5, with a string attached to the AdS5 boundary at the location

of the Wilson line and localized at a point in the internal space, in this case the S5. To be

more precise, this corresponds to a 1/2 BPS loop that also couples to N = 4 SYM scalars,

but for simplicity we will restrict to this case. We will assume in the following that this

setup can be generalized to other holographic duals, i.e. we will use a string to describe a

Wilson loop in different geometries, implicitly taking the metric in the string frame and

neglecting any motion along internal space directions.

The dynamics of the string are given by the Nambu-Goto action for the embedding

functions XM

SNG = −Ts
∫
d2σLNG = −Ts

∫
d2σ

√
− det gab(X), (2.4)

where Ts = 1/(2πα′) is the string tension, σa, a = 0, 1 are the worldsheet coordinates and

gab is the induced metric

gab = GMN (X)∂aX
M∂bX

N . (2.5)

2.1 Slowly moving quarks

In the first place we will consider a heavy quark that is almost at rest, but can move with

a small varying velocity. Let us assume that the quark moves along one spatial direction.

An ansatz for the embedding functions in the static gauge is

t = X0 = σ0, X1 = X(t, z), X2 = X3 = 0, z = Xz = σ1. (2.6)

The Nambu-Goto action simplifies to

LNG =
√
|Gtt|Gzz

√
1 +Gxx

(
1

Gzz
(X ′)2 − 1

|Gtt|
(Ẋ)2

)
. (2.7)

Where we have defined the derivatives X ′ = ∂zX, Ẋ = ∂tX.
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A slowly moving string Ẋ � 1 will have a profile that is almost a straight line X ′ � 1,

as long as we are not too close to the horizon. Then, the string action can be approximated

away from the horizon by the quadratic terms

LNG '
√
|Gtt|Gzz −

g(z)

2
(Ẋ)2 +

f(z)

2
(X ′)2 . (2.8)

Within this approximation the equations of motion take the simple form

(fX ′)′ − gẌ = 0. (2.9)

Assuming that the quark follows a trajectory xµ = (t, x(t), 0, 0), we should fix the position

of the string at the boundary to X(z = 0, t) = x(t). Since we are considering slow motion

we can use a derivative expansion to find the solutions, at least away from the horizon

where the function g(z) remains bounded. We expand the profile of the string according

to the order in time derivatives

X = X(0) +X(1) +X(2) + · · · (2.10)

Order by order we have the set of equations

(
fX(0)′

)′
=
(
fX(1)′

)′
= 0,

(
fX(n)′

)′
= gẌ(n−2), n ≥ 2. (2.11)

The equations can be solved recursively. The lowest order solutions are

X(0)(t, z) = x(t) + p(0)(t)a(z), X(1)(t, z) = p(1)(t)a(z), a(z) =

∫ z

0

du

f(u)
. (2.12)

where p(0)(t), p(1)(t) are integration constants. The solutions at higher orders take the

general form

X(n)(t, z) = p(n)(t)a(z) +

∫ z

0

du

f(u)

∫ u

zc

dvg(v)Ẍ(n−2)(t, v). (2.13)

We have fixed the limits of the integrals in such a way that

X(t, z = 0) = x(t), ∂zX
∣∣∣
z=zc

=
1

f(zc)

(
p(0)(t) + p(1)(t) + p(2)(t) + · · ·

)
≡ p

f(zc)
. (2.14)

2.2 Fast moving quarks

The previous analysis is a perturbation around a quark at rest. We can generalize it by

taking as the unperturbed solution a quark moving at constant velocity. The background

profile is the “dragging string” found in the original calculations of the drag force [12, 13].

The ansatz for the embedding functions is a modification of the ansatz used in the

static gauge. Taking σ0 = t, σ1 = z,

X0 = t+ t0(z), X1 = vt+ x0(z) +X(t, z), X2 = X3 = 0, Xz = z. (2.15)

The background profile has constant velocity v. The functions t0(z), x0(z) determine the

profile of the dragging string. t0 determines the gauge and can be conveniently chosen,
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and x0 is obtained by solving the equations of motion of the background profile. They are

fixed to

t′0 =
Gxx
|Gtt|

vx′0, x′0 = p0

√
|Gtt|Gzz

Gxx
(
|Gtt|Gxx − p2

0

)
(|Gtt| −Gxxv2)

(2.16)

Where p0 is a constant. Note that our gauge choice differs from [12, 13], where t0 = 0.

The condition that the solution is real everywhere fixes

p2
0 = |Gtt|Gxx

∣∣∣
z=z∗

, v2 =
|Gtt|
Gxx

∣∣∣
z=z∗

. (2.17)

The point z∗ is where the speed of the string equals the speed of light on a radial slice, it

corresponds to an effective horizon on the string worldsheet outside the black hole horizon.

If the geometry is the AdS5 black brane, the solution to these equations is

z∗ = γ1/4zh, p0 =
R2

z2
h

γv, γ =
1√

1− v2
. (2.18)

The Nambu-Goto action expanded to quadratic order in the perturbation is

LNG '
√
|Gtt|GzzGxx

√
|Gtt| −Gxxv2

|Gtt|Gxx − p2
0

+ p0X
′ − v

√
|Gtt|G3

xxGzz(
|Gtt|Gxx − p2

0

)
(Gtt −Gxxv2)

Ẋ

− 1

2
gv(z)(Ẋ)2 +

1

2
fv(z)(X ′)2. (2.19)

Where we have defined the functions

gv(z) = (|Gtt|GxxGzz)1/2

(
|Gtt|Gxx − p2

0

)1/2

(|Gtt| −Gxxv2)3/2
,

fv(z) = (|Gtt|GxxGzz)−1/2

(
GttGxx − p2

0

)3/2

(|Gtt| −Gxxv2)1/2
. (2.20)

The terms linear in the perturbation are total derivatives, as expected in an expansion

around a solution of the equations of motion. Therefore, they do not affect to the equations

of motion of the perturbation. The quadratic terms take the same form in this gauge as

those for a slowly moving quark (2.8), replacing the functions f, g by fv, gv. Then, we can

apply the same type of derivative expansion as for the slowly moving quark and all the

results have a straightforward generalization to the case of a fast moving quark.

3 Effective string action with a radial cutoff

We now proceed to the derivation of the holographic Wilsonian effective action for the

string. First we will use holographic renormalization on the string action to identify the

quantity that maps to the force acting on the heavy quark in the dual field theory. For

quarks moving along varying trajectories it is not exactly the canonical momentum con-

jugate to the position of the quark, as it was for quarks moving at constant velocities

in [12, 13], because the canonical momentum depends on the holographic radial coordinate
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in this case. Next, we will introduce a cutoff localized in the radial direction and “inte-

grate out” the region between the asymptotic boundary and the cutoff. As a result, the

remaining string action is defined in the region between the horizon and the cutoff, and

there is an additional boundary contribution at the cutoff. Finally, we will derive the RG

flow equations obtained from varying the position of the cutoff and use them to show that

physical observables obtained from the effective action are independent of the cutoff. As

the action for fast moving quarks can be mapped straightforwardly to the action for slowly

moving quarks, we will restrict the analysis in this section only to the latter, and show

results for both cases in the next section.

3.1 Force acting on the quark

The action (2.7) determines the string profile for a given quark trajectory x(t) by fixing the

position of the string at the asymptotic boundary z = 0. We will now identify the relevant

physical observable, the force acting on the quark. It is convenient to momentarily assume

that the metric is asymptotically AdS5. Then, when z → 0

f(z) ' g(z) ' R2

z2
, (3.1)

Then, the equation for the profile can be approximated by

X ′′ − 2

z
X ′ − Ẍ = 0. (3.2)

Solutions to this equation have a boundary expansion

X(t, z) = x(t)− 1

2
ẍ(t)z2 +

F (t)

3R2
z3 + · · · . (3.3)

The string action evaluated on shell is

LNG '
R2

z2
+ ∂z

(
f

2
X ′X

)
. (3.4)

The action is divergent, we will regularize it by introducing a UV cutoff zΛ and adding a

boundary counterterm that cancels the divergence when zΛ → 0. The boundary countert-

erm is determined by the induced metric at the boundary

Sc.t = TsR

∫
dt
√
−gb, gb = gb00 = gb00

∣∣∣
zΛ
' −R

2

z2
Λ

(1− Ẋ2(zΛ)). (3.5)

Since we are approximating the action to quadratic order,

√
−gb ' R2

zΛ

(
1− 1

2
Ẋ(zΛ)2

)
. (3.6)

The regularized action is then

Sstring = lim
zΛ→0

Ts

∫
dt

[
−
∫ zh

zΛ

dzLNG +R
√
−gb

]
. (3.7)
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The string action determines the effective potential felt by the quark Sstring = −
∫
dtVq, so

its variation respect to the position of the quark at the boundary determines the force

δSstring ' lim
zΛ→0

Ts

∫
dt

[
fX ′δX

∣∣∣
zΛ

+
R2

zΛ
Ẍ(zΛ)δX(zΛ)

]
= Ts

∫
dtF (t)δx. (3.8)

Where we have used (3.3). The force acting in the x direction is

Fx = −δVq
δx

= TsF (t). (3.9)

For a fast moving quark there is a small modification of this result, as the background

profile also gives a contribution to the force. The background contribution comes from the

linear terms in the action (2.19). Doing a variation, the term with a time derivative drops,

and the term with a radial derivative gives the boundary contribution

δSback ' lim
zΛ→0

Ts

∫
dt

(
−p0δX

∣∣∣
zΛ

)
= −Ts

∫
dt p0δx. (3.10)

Therefore, the contribution of the unperturbed string profile to the force is

Fvx = −Tsp0. (3.11)

Let us now find an expression for the slow moving quark, using the solu-

tions (2.12), (2.13). The derivatives give

f∂zX
(0) = p(0), f∂zX

(1) = p(1), f∂zX
(n) = p(n) +

∫ z

zc

g(v)Ẍ(n−2)(v). (3.12)

Summing over all orders in the expansion, the radial derivative is

fX ′ = p+ ẍ

∫ z

zc

g(v) + p̈

∫ z

zc

g(v)a(v) +O(∂4
t x, ∂

4
t p). (3.13)

We can do a Taylor expansion if we extract the divergent contribution from the term with

a factor ẍ:

fX ′ = p+ ẍ

[
A(z)− R2

z

]
+ p̈B(z) +O(∂4

t x, ∂
4
t p). (3.14)

Where we have defined

A(z) =
R2

zc
+

∫ z

zc

(
g(v)− R2

v2

)
, B(z) =

∫ z

zc

g(v)a(v). (3.15)

Then,

X ′ ' −ẍz + F (t)
z2

R2
+ · · · . (3.16)

Where the coefficient that determines the force is

F (t) = p+ ẍA(0) + p̈B(0) +O(∂4
t x, ∂

4
t p). (3.17)
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Although it may not look like it at first sight, this expression is independent of zc. Us-

ing (2.14) and the equations of motion (2.9),

∂zcp = ∂zc(f(zc)X
′(zc)) = g(zc)Ẍ(zc). (3.18)

Then, the derivative of the force is

∂zcF = g(zc)Ẍ(zc)− g(zc)ẍ− g(zc)a(zc)p̈+O(∂4
t x, ∂

4
t p) = 0 +O(∂4

t x, ∂
4
t p). (3.19)

where we have used that X(zc) = x+ pa(zc) +O(∂2
t x, ∂

2
t p).

3.2 Introducing a cutoff

Once we have determined that the force is (3.9), we will formulate a prescription to compute

it when there is a cutoff at z = zc in the geometry such that the string does not reach the

AdS boundary, but it is extended between the horizon and the cutoff.

First, we will split the string action in two parts, corresponding to the integration

along the radial coordinate in the UV region zc > z > zΛ and the IR region zh > z > zc.

Sstring = SIR + SUV. (3.20)

Where

SIR = −Ts
∫
dt

∫ zh

zc

dzLNG,

SUV = lim
zΛ→0

Ts

∫
dt

[
−
∫ zc

zΛ

dzLNG +R
√
−gb

]
.

(3.21)

We will use the on-shell expression (3.4) and the counterterm (3.6) to evaluate the UV

action expanded to quadratic order in the perturbation

SUV ' Ts
∫
dt

[
R2

zc
− f(zc)

2
X(zc)X

′(zc) +
1

2
lim
zΛ→0

(
f(zΛ)X(zΛ)X ′(zΛ) +

R2

zΛ
Ẋ(zΛ)2

)]
.

(3.22)

From now on we will denote the position of the string at the cutoff as X(zc) ≡ xc. As we

show in appendix A, for a slowly moving quark the UV action can be approximated by

SUV 'Ts
∫
dt

[
Mc −

1

2
Kcẋ

2 − 1

2ac
(xc − x)2 +

1

2
mc(ẋc − ẋ)2

− κcẍ(xc − x) +O(∂4
t x, ∂

4
t xc)

]
. (3.23)

Where we have defined the coefficients as

Mc =
R2

zc
, Kc = A(0), ac = a(zc), mc =

1

a2
c

∫ zc

0
dvg(v)a(v)2, κc =

1

ac

∫ zc

0
dvg(v)a(v).

(3.24)

The string action has now the desired form, it is the Nambu-Goto action in the region

of the space between the horizon and the cutoff plus a boundary action defined at the
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cutoff, that we will use to determine boundary conditions for the string profile in the IR

region. Note that the cutoff action depends on both the trajectory of the Wilson loop

and the position of the string at the cutoff, and their derivatives. The coefficients in the

cutoff action are determined by integrations over the region between the cutoff and the

asymptotic boundary, but the dependence on the cutoff is sensitive only to the region close

to its radial position. The cutoff action takes the form of the action for a particle at position

xc, defined as a scalar field on the wordline. The particle is subject to a potential that

pins it at the position of the Wilson loop, x, which is a fixed source in the field theory.

From this point of view, ac determines the strength of the effective potential at leading

(quadratic) order and mc renormalizes the two-derivative kinetic term. A combination of

mc and κc multiplies a term linear in xc, which is a source term, and Kc, mc and κc enter

in the coefficient of a background contribution ∼ ẋ2 to the energy.

The total action is stationary respect to changes in the profile of the string that change

the position at the cutoff but keep the position at the asymptotic boundary fixed

δSstring = δSIR + δSUV = 0. (3.25)

The variation of the on-shell action in the IR region is

δSIR = Ts

∫
dtfX ′δX

∣∣∣
z=zc

= Ts

∫
dt pδxc. (3.26)

The variation of the cutoff action (3.23) is

δSUV ' Ts
∫
dt

[
− 1

ac
(xc − x)−mc(ẍc − ẍ)− κcẍ+O(∂4

t x, ∂
4
t xc)

]
δxc. (3.27)

This results in the boundary condition

p ' 1

ac
(xc − x) +mc(ẍc − ẍ) + κcẍ+O(∂4

t x, ∂
4
t xc), (3.28)

which is a mixed boundary condition between the radial derivative p = f(zc)X
′(zc) and

the value of the profile xc = X(zc) at the cutoff.

Substituting in the expression for the force (3.17) and using B(0) = −acκc, A(0) = Kc

produces

F (t) ' 1

ac
(xc − x) + (mc − κc)ẍc + (Kc −mc + 2κc)ẍ+O(∂4

t x, ∂
4
t xc). (3.29)

We have managed to write the force in terms of the coefficients in the cutoff action, the

position of the string at the cutoff and the trajectory of the Wilson line. At this point,

all the information about the geometry in the UV region is hidden in the value of the

coefficients.

3.3 RG flow equations

The cutoff action (3.23) could be interpreted as an effective description of the Wilson line

after UV degrees of freedom have been integrated out up to the energy scale defined by the
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cutoff. It has a similar form as a putative Wilsonian action, although it may not be exactly

the same as the outcome of an actual field theory calculation. Nevertheless, this line of

thought can be pursued further in the context of holographic RG flows. In particular we

can define RG flow equations for the coefficients in the cutoff action from the dependence

on the position of the cutoff in the radial direction. The set of equations we obtain are

∂zcMc = −R
2

z2
c

,

∂zcKc = −g(zc),

∂zcac =
1

f(zc)
,

∂zcmc = − 2

f(zc)

mc

ac
+ g(zc),

∂zcκc = − 1

f(zc)

κc
ac

+ g(zc).

(3.30)

In addition, the position of the string at the cutoff obeys an RG flow equation. Taking into

account (3.28),

∂zcxc =
p

f(zc)
=

1

f(zc)

[
1

ac
(xc − x) +mc(ẍc − ẍ) + κcẍ

]
+O(∂4

t x, ∂
4
t xc), (3.31)

Using the RG flow equations it is straightforward to show that the force (3.29) is an RG-flow

invariant quantity

∂zcF (t) = 0 +O(∂4
t x, ∂

4
t xc). (3.32)

Although we used the AdS boundary expansion to help us identify (3.9) as the force, in

fact we can generalize (3.29) and also the cutoff action (3.23) to any geometry in the UV

region, since it only depends on quantities evaluated at the cutoff and the Wilson line

trajectory. Note that RG flow equations determine the coefficients of the cutoff action,

that only depend on the local geometry close to the cutoff up to integration constants,

where all the information about the UV is hidden.

4 Force in a heated IR fixed point

We will use the results of the previous section to find the first terms that appear in the

force when we do a derivative expansion of the quark trajectory in a specific example.

Consider a strongly coupled theory that has an IR fixed point. The theory is at finite

temperature, but low enough such that the physics is still dominated by the IR conformal

theory. The holographic dual for the geometry in the IR region can then be approximated

by the AdS5 black brane (2.2). The geometry in the UV region is in principle unknown,

but all the information about the UV will be hidden in integration constants of the RG

flow equations.

4.1 Profile of the string perturbation in the AdS5 black brane

The equations of motion for the string profile below the cutoff are (2.9). We will use an

expansion in plane waves to find solutions:

X(t, z) =

∫
dω

2π
Xω(z)e−iωt, (4.1)
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and we will use a similar expansion for the position of the string at the cutoff and the

quark trajectory

xc(t) =

∫
dω

2π
x̃c(ω)e−iωt, x(t) =

∫
dω

2π
x̃(ω)e−iωt. (4.2)

In addition, in order to remove the explicit dependence on the position of the horizon zh,

we do the change of variables

z = zhu, w = zhω. (4.3)

The position of the cutoff in the new coordinate is uc = zc/zh. The equation for the string

profile becomes

X ′′ω −
(

2

u
+

4u3

1− u4

)
X ′ω +

w2

(1− u4)2
Xω = 0. (4.4)

We must impose ingoing boundary conditions at the horizon Xω(u) ∼ (1 − u4)−iw/4 as

u→ 1. It is possible to do an expansion of the solutions in powers of the frequency, in such

a way that they take the form

Xω(u) ' x̃c (1− u4)−iw/4(1− iwχ1(u)− w2χ2(u) + iw3χ3(u) + . . . · · · ). (4.5)

The functions χi must be regular at the horizon and we will identify the overall coefficient

with the value of the profile solution at the cutoff Xω(uc) = x̃c. This fixes the values of

the functions χi at the cutoff. Finally, we have to impose the boundary condition (3.28).

4.2 Cutoff action and boundary conditions

In the following it will be convenient to define a rescaled version of the metric functions

and coefficients of the cutoff action, in terms of the coordinate u. First we introduce the

rescaled f and g functions

f̂(u) =
1− u4

u2
, ĝ(u) =

1

u2(1− u4)
. (4.6)

And, with these definitions, the rescaled functions that determine the coefficients of the

cutoff action

â(u) =

∫ u

0

du1

f̂(u)
, K̂(u) =

1

u
−
∫ u

0
du1

(
ĝ(u1)− 1

u2
1

)
,

m̂(u) =
1

â(uc)2

∫ u

0
du1ĝ(u1)â(u1)2, κ̂(u) =

1

â(uc)

∫ u

0
du1ĝ(u1)â(u1),

(4.7)

As before, we define âc = â(uc), K̂c = K̂(uc), m̂c = m̂(uc) and κ̂c = κ̂(uc). In addition,

we introduce f̂c = f̂(uc) and ĝc = ĝ(uc) to ease notation. The relation to the original

functions is

f(zc) =
R2

z2
h

f̂c, g(zc) =
R2

z2
h

ĝc, ac =
z3
h

R2
âc, Kc =

R2

zh
K̂c, mc =

R2

zh
m̂c, κc =

R2

zh
κ̂c. (4.8)
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Using the plane wave expansion and rescaling by the position of the horizon, the boundary

condition (3.28) becomes

f̂cX
′
ω(uc) =

(
1

âc
− w2m̂c

)
x̃c −

(
1

âc
− w2(m̂c − κ̂c)

)
x̃+O(w4x̃c, w

4x̃). (4.9)

This will determine the value of x̃c, that in turn we will use to compute the force (3.29).

The details of the calculation of the profile solutions and the derivatives can be found

in appendix B. The result, to the order in derivatives we are considering, is

x̃c = x̃+

3∑

i=1

si(−iw)ix̃+O(w4x̃). (4.10)

The coefficients in the expansion are

s1 = −âc,
s2 = âc (âc − κ̂c +H2(uc)) ,

s3 = âc [âc(m̂c + κ̂c − âc)− (2âc + c1(uc))H2(uc) +H3(uc)] .

(4.11)

The explicit expression for c1 is given in (B.7)

c1(uc) = −1

4
log(1− u4

c). (4.12)

The definitions of the functions H2(u) and H3(u) are in (B.11), but we will not use the

explicit expressions. Instead, we compute directly the cutoff values H2(uc) and H3(uc).

4.3 Force acting on a slowly moving quark

Using (4.10) to obtain the position of the string at the cutoff xc(t) and plugging the result

in the force (3.29), one finds the following terms to leading order in derivatives of the quark

trajectory

F (t) =
R2

z3
h

3∑

i=1

Fi (zh∂t)
ix+O(∂4

t x). (4.13)

With coefficients

F1 =
s1

âc
= −1,

F2 = K̂c + κ̂c +
s2

âc
= âc + K̂c +H2(uc),

F3 = (m̂c − κ̂c)s1 +
s3

âc
= âc(2κ̂c − âc)− (c1(uc) + 2âc)H2(uc) +H3(uc).

(4.14)

We can find the explicit values of F2 and F3 by solving RG flow equations for âc, κ̂c and

H2(uc), H3(uc). This is done in appendix C, the results are

âc =
1

4
log

1 + uc
1− uc

− 1

2
tan−1 uc =

1

2

(
tanh−1 uc − tan−1 uc

)
+ aUV,

K̂c =
1

uc
− âc +KUV,
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κ̂c = − 1

uc
+
âc
2

+
1

2âc
tanh−1(u2

c) +
κUV

âc
,

H2(uc) = − 1

uc
+ 1,

H3(uc) =
1

4
(π − log 4)− c1(uc)

uc
+ âc −

1

2
tan−1 uc +

1

4

(
2 log(1 + uc)− 3 log

(
1 + u2

c

))
.

(4.15)

Where aUV, KUV and κUV are integration constants that depend on the UV region. In the

case where the geometry is just the AdS5 black brane everywhere between the boundary

and the horizon, these integration constants vanish aUV = KUV = κUV = 0. They will be

generically non-zero in geometries that approach an AdS5 geometry close to the horizon

but deviate from it in other regions. A class of models that could be interesting to study

are holographic duals to RG flows between two fixed points, consisting of a domain wall

geometry between two AdS spaces of different radius, e.g. [43, 44]. In these models we

expect that the RG flow integration constants introduce an additional dependence on the

ratio between the temperature and the scale of the deformation that triggers the RG flow.

Plugging the solutions to the RG flow equations (4.15) in (4.14) produces the cutoff-

independent values

F2 = 1 +KUV, F3 =
1

4
(π − log 4) + 2(κUV − aUV). (4.16)

Let us now interpret the final result in field theory language. First we multiply by the

string tension as in (3.9). The holographic dictionary maps the AdS radius and the position

of the horizon to the ’t Hooft coupling λ and temperature T of the dual field theory

TsR
2 =

R2

2πα′
=

√
λ

2π
, zh =

1

πT
. (4.17)

The force acting on the heavy quark is, to third order in derivatives of the trajectory,

Fx '
√
λ

2π

(
−(πT )2∂tx+ πT F2 ∂

2
t x+ F3 ∂

3
t x
)

+O(∂4
t x). (4.18)

In the first place we observe that the coefficient of the term proportional to the velocity of

the quark, ∂tx, agrees with the drag force of [12, 13] and is insensitive to the UV physics,

at least in the approximation we are doing of fixing the IR geometry to the AdS black

brane solution.

The coefficient proportional to the acceleration, ∂2
t x, agrees with the expected ther-

mal correction to the quark mass in pure AdS when KUV = 0. The quark mass can be

determined from the length of a straight string extended between the horizon and a “flavor

brane” at z = zm

Mq = TsR
2

∫ zh

zm

dz

z2
= M0 −

TsR
2

zh
= M0 −

√
λT

2
. (4.19)

In the formula above M0 is interpreted as the quark mass at zero temperature. This term

modifies the inertial mass of the quark. Indeed if we allowed a very large, but not infinite,
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mass for the quark, the Newton equation for the quark would be

M0∂
2
t x = Fx. (4.20)

Moving the acceleration term in the force to the left side of the equation results in replacing

M0 by the thermal corrected mass Mq. Therefore, we can interpret KUV as a modification

of the thermal mass due to UV physics.

Finally, the coefficient of the jerk or acceleration rate, ∂3
t x, computed for the AdS5

black brane in [39], can be interpreted as a combination of the Abraham-Lorentz force

produced by the emission of Larmor radiation (see [36, 37]) and a viscous contribution from

the surrounding plasma that has been computed in [38] following the method developed

in [45]. In a conformal theory in vacuum the viscous part is absent and the coefficient

of the jerk term is
√
λ/(2π). At finite temperature the viscous correction is obtained by

subtracting the vacuum contribution from our result. Since the coefficient of the viscous

contribution does not depend on temperature, the T → 0 limit of the acceleration rate

contribution does not coincide with the T = 0 value, as noted in [39].

4.4 Force acting on a fast moving quark

As we showed in section 2.2, the quadratic action for the fast moving quark takes the same

form as for the slowly moving quark, replacing the functions f, g by the functions fv, gv
given in (2.20). Let us introduce the rescaled coordinates and embedding perturbation

s = γ−1/2 t

zh
, u = γ1/2 z

zh
, Y = γ3/2X (4.21)

Then, in the AdS5 black brane geometry, the quadratic terms in string action become

SNG ∼
TsR

2

z2
h

∫
dsdu

1

2

(
ĝ(∂sY )2 − f̂(∂uY )2

)
. (4.22)

Where we have used the expression for p0 in (2.18) and f̂ , ĝ have the same definition as

in (4.6). This allows us to translate directly the results for the slowly moving quark to

this case.

The variation of the action gives a boundary term

δSNG ∼ lim
u→0

TsR
2

z2
h

∫
ds

1

u2
∂uY δY = lim

z→0
Tsγ

∫
dt
R2

z2
∂zXδX. (4.23)

So we should add a factor of γ to the expression we found for the force of the slowly moving

quark.

A solution close to the AdS5 boundary has same form as (3.3) in the rescaled variables,

Y ' y(s)− 1

2
∂2
sy(s)u2 +

F̂ (s)

3
u3 + · · · . (4.24)

Then, from (4.21) and comparing to (3.3), we have that

F (t) =
1

z3
h

F̂ . (4.25)
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The coefficient F̂ is the same as (4.13) taking into account the rescaling

F̂ (s) =

3∑

i=1

Fi (∂s)
iy +O(∂4

sy) = γ3/2
3∑

i=1

Fi (γ1/2zh∂t)
ix+O(∂4

t x). (4.26)

Then, taking into account the background contribution to the force (3.11),

Fx '
√
λ

2π

(
−(πT )2γv − (πT )2γ3∂tx+ πT F2 γ

7/2∂2
t x+ F3 γ

4∂3
t x
)

+O(∂4
t x). (4.27)

Note that the term proportional to ∂tx could have been obtained by replacing v → v+∂tx in

the first term and expanding to linear order. The γ factors appearing in higher derivative

terms imply that this expansion requires time derivatives to be much smaller than the

temperature for very fast quarks ∂t � γ−1/2πT .

5 General RG flow equations

We have presented an explicit derivation of the cutoff action and RG flow equations from

a direct integration of the string action in the UV region using the approximation that

changes in the quark trajectory are slow in time compared to the time scale given by the

inverse temperature. It is possible to rederive and generalize these results by introducing

an ansatz for the cutoff action and using the conditions that the total action should be

invariant under changes in the position of the cutoff. In the following we will derive the

general RG flow equation for a quark moving in a straight trajectory and compare to the

previous results. The interest of this method is that it simplifies somewhat the derivation

and allows a systematic extension to non-linear and higher derivative terms, as well as

possibly curved trajectories of the quark.

5.1 String action and momentum

We will work in the static gauge (2.6) and assume that the background metric takes the

diagonal form

ds2 = Gzzdz
2 +Gttdt

2 +Gxxδijdx
idxj . (5.1)

We will not make other assumptions about the dependence of the metric components on

the coordinates. It will be useful to define a metric for the quark at rest γab, with non-zero

components γ00 = Gtt and γ11 = Gzz. The induced metric on the string worldsheet is

gab = γab +Gxx∂aX∂bX. (5.2)

The effective string action consists of the Nambu-Goto action in the IR region of the

geometry plus a boundary action defined at the cutoff

Sstring = SIR + Sc, (5.3)

where

SIR = −Ts
∫
dt

∫ zh

zc

LNG, Sc = Ts

∫
dtLc[xc, ẋc; zc]. (5.4)
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The Nambu-Goto Lagrangian density in the case we are considering is given by

LNG =
√−g =

√−γ∆1/2, (5.5)

where for later convenience we have defined

∆ = 1 +Gxxγ
ab∂aX∂bX. (5.6)

There is a conserved worldsheet current ∂ap
a
x = 0 corresponding to the shift symmetry

X → X + δX. It can also be identified as the conjugate momentum to the position X. It

can be obtained from the variation of the string action

pax = −δLNG

δ∂aX
= −
√−γ
∆1/2

Gxxγ
ab∂bX. (5.7)

Using this expression we can solve for p0
x and X ′ in terms of p1

x and Ẋ.

p0
x = −Σ1/2Gxxγ

00Ẋ, X ′ = −Σ−1/2Gxxγ11p
1
x, (5.8)

where we have defined

Σ =
|γ| −Gxxγ11(p1

x)2

1 +Gxxγ00(Ẋ)2
. (5.9)

As we have seen, the cutoff action can be obtained from integrating along the radial

coordinate the string action in the UV region. The total action should then satisfy the

condition that it is stationary under changes of the string profile that preserve the boundary

conditions, in particular when the position of the string at the cutoff is displaced keeping

the string at the boundary and the horizon fixed

δSstring = δSIR + δSc = 0. (5.10)

The variation of the IR part is, using the conservation of the momentum ∂ap
a
x = 0,

δSIR = Ts

∫
dt

∫ zh

zc

dz (pax∂aδX) = Ts

∫
dt

∫ zh

zc

dz∂a (paxδX) = −Ts
∫
dt p1

xδxc. (5.11)

The variation of the cutoff action is proportional to the Euler-Lagrange equations of Lc

δSc = Ts

∫
dt

[
δLc
δxc
− ∂t

(
δLc
δẋc

)]
δxc. (5.12)

Then, we find the condition

p1
x

∣∣∣
z=zc

=
δLc
δxc
− ∂t

(
δLc
δẋc

)
≡ δxcLc. (5.13)

5.2 RG flow of the cutoff action

The RG flow equations for the cutoff action can be derived from the requirement that the

total action should be independent of the position of the cutoff, as it would be the case if

we had obtained it by integrating over the UV region. The condition is

d

dzc
Sstring =

d

dzc
SIR +

d

dzc
Sc = 0. (5.14)
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The IR term depends on zc just through the limits of integration

d

dzc
SIR = Ts

∫
dtLNG

∣∣∣
z=zc

. (5.15)

The cutoff action can have an explicit dependence and an implicit dependence in the

position of the string at the cutoff

d

dzc
Sc = Ts

∫
dt [∂zcLc + (δxcLc) ∂zcxc] . (5.16)

Note that there is an integration over time, so the RG flow equation for the cutoff action

will be defined up to a total derivative

∂zcLc = −(δxcLc) ∂zcxc − LNG

∣∣∣
z=zc

+ ∂tV
t. (5.17)

From (5.8) and (5.13) we can derive the RG flow equation for xc

∂zcxc = −Σ−1/2
c Gxxγ11(δxcLc)

∣∣∣
z=zc

, (5.18)

where now

Σc =
|γ| −Gxxγ11(δxcLc)2

1 +Gxxγ00(ẋc)2

∣∣∣
z=zc

. (5.19)

Using the same formulas, the evaluation of the Nambu-Goto action at the cutoff will be

LNG

∣∣∣
z=zc

=
√−γ∆1/2

c

∣∣∣
z=zc

= |γ|Σ−1/2
c

∣∣∣
z=zc

. (5.20)

Adding all the contributions results in the RG flow equation

∂zcLc = −√−γ
(
1 +Gxxγ

00(ẋc)
2
)1/2

(
1−Gxxγ11

(δxcLc)2

|γ|

)1/2 ∣∣∣
z=zc

+ ∂tV
t. (5.21)

This is our final result, it takes the form of a functional equation for the cutoff action Lc.
We do not have a complete solution, but as we will see this equation admits an expansion

in derivatives of xc, in such a way that at each order the RG flow equation for the action

reduces to RG flow equations for the coefficients in the expansion.

5.3 Slowly moving quark

We proceed to solve (5.21) in the case we have studied before, a slowly moving quark. An

obvious ansatz for the cutoff action is to adapt (3.23) to the more general formulas we have

derived, in particular the form of the non-derivative term. We will use2

Lc =
√−γ

[
Λ− k0

2
(xc − x)2 +

k1

2
(ẋc − ẋ)2 +

k2

2
(ẋc)

2 +
k3

2
(ẋ)2 +O(∂4

t x, ∂
4
t xc)

]
. (5.22)

It is implicit in the formula above and the ones that will follow that all the functions depend-

ing on the radial coordinate are evaluated at the cutoff. The overall factor is convenient to

2Note that there is invariance under translations in the x direction, so terms that would break this

invariance, such as x2 are forbidden.
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cancel out similar factors in (5.21). Comparing with (3.23) requires some reshuffling and

an integration by parts, the map between the two sets of coefficients is

Mc =
√−γΛ,

1

ac
=
√−γk0, mc =

√−γ(k1 + k2),

κc =
√−γk2, Kc = −√−γ(k2 + k3). (5.23)

The derivative with respect to the cutoff position is

∂zcLc =
√−γ

[
∇zcΛ− 1

2
∇zck0(xc − x)2 +

1

2
∇zck1(ẋc − ẋ)2

+
1

2
∇zck2(ẋc)

2 +
1

2
∇zck3(ẋ)2

]
, (5.24)

where we have defined, for any coefficient C,

∇zcC =
1√−γ ∂zc

(√−γC
)

=

(
∂zc +

∂zc

√−γ√−γ

)
C. (5.25)

Introducing (??) and (5.24) in (5.21), and expanding to quadratic order in x, xc and

derivatives, one finds that terms with derivatives of the cutoff do not completely match

with other terms. While terms in (5.24) only involve first time derivatives, terms from (??)

will include mixed contributions where one factor has two time derivatives and the other

none. This is fixed by an appropriate choice of the total time derivative term. In this case

all the terms can be matched for

V t = −
√
|γ|Gxxγ11k0(xc − x) [ k1(ẋc − ẋ) + k2ẋc] . (5.26)

Demanding that the coefficients of terms with different factors of x, xc and their time

derivatives vanish independently of each other leads to the RG flow equations for the

coefficients:

∇zcΛ = −1,

∇zck0 = −Gxxγ11k
2
0,

∇zck1 = −Gxxγ11k0(2k1 + k2),

∇zck2 = −Gxxγ00 −Gxxγ11k0k2,

∇zck3 = Gxxγ11k0k2.

(5.27)

If we use the AdS5 black brane solution (2.1) and (2.2), the RG flow equations simplify to

∂zc(
√−γΛ) = −R

2

z2
c

,

∂zc(
√−γk0) = −g(zc)k

2
0,

∂zc(
√−γk1) = −g(zc)k0(2k1 + k2),

∂zc(
√−γk2) = g(zc)(1− k0k2),

∂zc(
√−γk3) = g(zc)k0k2.

(5.28)
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Using the identifications (5.23) and the definitions of f and g (2.3), it is straightforward to

recover the RG flow equations (3.30). We thus arrive to the same results both by doing a

direct integration of the string action between the boundary and the cutoff and by deriving

the RG flow equation for the cutoff action. However, this last method admits in principle

a simpler generalization to more complicated cases.

6 Discussion

The effective IR string action we have derived is valid in the region close to an arbitrary

static black brane geometry, assuming homogeneity and isotropy. In principle these con-

ditions could be relaxed. It would be particularly interesting to study time-dependent

geometries emulating the dual to a heavy ion collision, see section VII of [46] for a recent

review on the topic. An example of this type is the calculation of the drag force in [47], for

a plasma formed by the collision of two infinite sheets with finite energy density in a con-

formal theory. Another natural extension would be to use the general method presented in

section 5 for less constrained quark trajectories, allowing sudden changes in the trajectory

and motion in more than one spatial direction. The general method could also be used

to compute nonlinear contributions of acceleration to energy and momentum loss, that in

vacuum show in Liènard’s formula and the Abraham-Lorenz force [36, 48].

One should keep in mind that we are making an assumption by taking the Nambu-

Goto action for the string. In many cases the holographic dual is not presented as a

ten-dimensional geometry, but has been truncated to five dimensions, and the metric is

presented in the Einstein frame. The string action will then be modified by some additional

factors. Similarly, if the model is bottom-up, with not known string theory construction

behind, then the string action dual to a Wilson line may be chosen in a different way.

Nevertheless, in all these cases the method we have presented here can be easily generalized.

The derivative expansion of the action will be similar even if the detailed dependence of

the coefficients on the geometry can change.

The holographic Wilsonian renormalization method applied here to the string action

can be used more generally, for other observables like Wilson lines in different representa-

tions or ’t Hooft lines as well as for observables obtained from the background geometry,

such as the expectation value of local operators. A fully effective description would involve

introducing the cutoff and deriving the RG flow equations for the holographic actions dual

to all the observables under consideration. It would be interesting to combine the holo-

graphic Wilsonian approach with other phenomenological approaches trying to fit QCD

lattice data or experiments. Among these, we have the traditional holographic QCD mod-

els where the gravitational action is adjusted [49–53] or, more recently, the application

of machine learning [54–57] and Monte Carlo techniques [58] to constrain the background

geometry. In both cases, the holographic description of UV physics is expected to be prob-

lematic due to the asymptotic freedom of QCD. The holographic Wilsonian formalism

limits the range of energy scales where the model is applied, so it could be used to avoid

this issue without introducing additional assumptions.
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A Derivation of the cutoff action

In this appendix we explain how to derive the cutoff action from direct integration of the

string action between the boundary and the cutoff. We can expand the solutions using the

derivative expansion. Their form is (2.12), (2.13), and they satisfy the conditions (2.14).

This gives the following simplifications,

f(zc)X
′(zc) = p, lim

zΛ→0
X(zΛ) = x, lim

zΛ→0
Ẋ(zΛ) = ẋ. (A.1)

It remains to evaluate the derivative at the boundary. From (3.14)

lim
zΛ→0

(
f(zΛ)X(zΛ)X ′(zΛ) +

R2

zΛ
Ẋ(zΛ)2

)
= xF (t) + lim

zΛ→0

R

zΛ

(
ẍx+ ẋ2

)
. (A.2)

The last term is a total derivative and we can drop it, while F (t) is given by the expression

in (3.17). We are left with

SUV ' Ts
∫
dt

[
R2

zc
+

1

2
(F x− p xc)

]
. (A.3)

Instead of p, we would like the action to depend on the position of the string at the

cutoff and the boundary xc, x and on their derivatives. In order to solve for p, first we

integrate (3.14) between the boundary and the cutoff

xc − x = pa(zc) + ẍC(zc) + p̈D(zc) +O(∂4
t x, ∂

4
t p). (A.4)

Where we have defined

C(z) =

∫ z

0

dv

f(v)

(
A(v)− R2

v

)
,

D(z) =

∫ z

0
dv
B(v)

f(v)
. (A.5)

We can further simplify these expressions using the explicit form of A and B (3.15), the

definition of a(z) in (2.12) and integration by parts

C(z) =

∫ z

0
dva′(v)

∫ v

zc

du g(u) = a(z)

∫ z

zc

dug(u)−
∫ z

0
dvg(v)a(v),

D(z) =

∫ z

0
dva′(v)

∫ v

zc

du g(u)a(u) = a(z)B(z)−
∫ z

0
dvg(v)a(v)2.

(A.6)
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Evaluating at the cutoff we obtain

C(zc) = −
∫ zc

0
dvg(v)a(v) = B(0), D(zc) = −

∫ zc

0
dvg(v)a(v)2. (A.7)

Then, we can solve for p as

p =
1

a(zc)
(xc − x)− C(zc)

a(zc)
ẍ− D(zc)

a(zc)2
(ẍc − ẍ) +O(∂4

t x, ∂
4
t xc). (A.8)

Introducing this in (3.17) to the same order,

F =
1

a(zc)
(xc−x)+

a(zc)C(zc)−D(zc)

a(zc)2
(ẍc−ẍ)+

(
A(0)− C(zc)

a(zc)

)
ẍ+O(∂4

t x, ∂
4
t xc). (A.9)

Finally, the UV action can be arranged, up to a total derivative in time, to be (3.23) with

coefficients

Mc =
R2

zc
, Kc = A(0), ac = a(zc), mc = −D(zc)

a(zc)2
, κc = −C(zc)

a(zc)
. (A.10)

Using that

C(zc) = −
∫ zc

0
dvg(v)a(v), D(zc) = −

∫ zc

0
dvg(v)a(v)2, (A.11)

leads to the expressions in (3.24).

B Solution for the string profile in the AdS black brane

In this appendix we give explicit formulas for the solutions of the perturbation of the string

profile in the AdS5 black brane geometry. Introducing (4.5) into the equation (4.4) and

expanding in w, we get the following equations at each order in the expansion

χ′′i +
f̂ ′

f̂
χ′i −

1

f̂
ji = 0, (B.1)

where

j1 = 1, j2 = σ(u) + 2uχ′1 + χ1, j3 = σ(u)χ1 + 2uχ′2 + χ2, (B.2)

and we have defined

σ(u) =
1

u2
+

u2

1 + u2
. (B.3)

The general form of the solutions that satisfy regularity at the horizon u = 1 is

χi(u) = ci(uc) +

∫ u

uc

du1
Ji(u1)

f̂(u1)
, Ji(u) =

∫ u

1
du2ji(u2). (B.4)

where ci(uc) are integration constants.

The expansion of (4.5) in powers of w leads to

Xω(u) ' x̃c
(
1− iwΓ1(u)− w2Γ2(u) + iw3Γ3(u) + · · ·

)
, (B.5)
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where we have introduced the functions

Γ1(u) = χ1(u) +
1

4
log(1− u4),

Γ2(u) = χ2(u)− 1

32
log2(1− u4) +

1

4
Γ1(u) log(1− u4),

Γ3(u) = χ3(u) +
1

4
Γ2(u) log(1− u4)− 1

32
Γ1(u) log2(1− u4) +

1

384
log(1− u4)3.

(B.6)

The boundary condition at the cutoff is Γi(uc) = 0, this fixes the integration constants of

the solutions to

c1(uc) = −1

4
log(1− u4

c), c2(uc) =
1

32
log2(1− u4

c), c3(uc) = − 1

384
log3(1− u4

c). (B.7)

In order to determine x̃c we need to compute X ′ω given by (B.5) at the cutoff, introduce

it in the boundary condition (4.9) together with (4.10) and solve order by order in w. The

result is

s1 = âcf̂cΓ
′
1(uc),

s2 = âc

(
f̂cΓ
′
2(uc) + âc(f̂cΓ

′
1(uc))

2 − κ̂c)
)
,

s3 = âc

[
f̂cΓ
′
3(uc) + â2

c(f̂cΓ
′
1(uc))

3 + âcf̂cΓ
′
1(uc)

(
2f̂cΓ

′
2(uc)− m̂c − κ̂c

)]
.

(B.8)

These expressions can be further simplified. First, from the definitions (B.6) one can derive

the following relations

Γ′1(uc) =
J1(uc)

f̂c
− c′1(uc),

Γ′2(uc) =
J2(uc)

f̂c
− c1(uc)Γ

′
1(uc)− c′2(uc),

Γ′3(uc) =
J3(uc)

f̂c
− c1(uc)Γ

′
2(uc)− c2(uc)Γ

′
1(uc)− c′3(uc).

(B.9)

In addition, one can extract some constant factors

J2(u) = c1(uc)J1(u) +H2(u), J3(u) = c2(uc)J1(u) +H3(u), (B.10)

where

H2(u) =

∫ u

1
du1

(
σ(u1) + 2c′1(u1)J1(u1) +

∫ u1

uc

du2
J1(u2)

f̂(u2)

)
,

H3(u) =

∫ u

1
du1

(
χ1(u1)σ(u1) + 2c′1(u1)J2(u1) +

∫ u1

uc

du2
J2(u2)

f̂(u2)

)
.

(B.11)

C RG flow in AdS5 black brane

In this appendix we explain how to obtain the solutions to the RG flow equations in the

case where the IR geometry is approximately an AdS5 black brane. The RG flow equations

for the rescaled coefficients of the cutoff action (4.7) âc, K̂c and κ̂c are

∂uc âc =
1

f̂c
, ∂ucK̂c = −ĝc, ∂uc κ̂c = − 1

âcf̂c
κ̂c + ĝc. (C.1)
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From (4.6), f̂c = (1− u4
c)/u

2
c and ĝc = 1/(u2

c(1− u4
c). In pure AdS5 the coefficients satisfy

the conditions

âc

∣∣∣
uc

= 0, âcκ̂c

∣∣∣
uc=0

= 0. (C.2)

Otherwise there will be integration constants that depend on the UV geometry in a non-

trivial way.

By direct integration of the equations, one finds the following values for the coefficients

âc =
1

4
log

1 + uc
1− uc

− 1

2
tan−1 uc =

1

2

(
tanh−1 uc − tan−1 uc

)
+ aUV,

K̂c =
1

uc
− âc +KUV,

κ̂c = − 1

uc
+
âc
2

+
1

2âc
tanh−1(u2

c) +
κUV

âc
.

(C.3)

We will now derive RG flow equations for H2(uc) and H3(uc) obtained from evaluat-

ing (B.11) at the cutoff. We will be using that J1(uc) = uc − 1, the relations

c′1(u) =
u

f(u)
, c′2(u) = c1(u)c′1(u), c′3(u) = c2(u)c′1(u), (C.4)

and, from (B.10),

∂ucJ2(u) = c′1(uc)J1(u)− J1(uc)J1(u)

f̂c
=
J1(u)

f̂c
. (C.5)

Then, we derive the following RG flow equations

∂ucH2(uc) =σ(uc) + 2c′1(uc)J1(uc)−
J1(uc)

2

f̂c
= σ(uc) + 2

J1(uc)

f̂c
+
J1(uc)

2

f̂c
, (C.6)

∂ucH3(uc) = c1(uc)σ(uc) + 2c′1(uc)J2(uc)−
J2(uc)J1(uc)

f̂c
(C.7)

+

∫ uc

1
du

([
c′1(uc)−

J1(uc)

f̂c

]

︸ ︷︷ ︸
1/f̂c

σ(u) + 2c′1(u)
J1(u)

f̂c
+

1

f̂c

∫ u

uc

du1
J1(u1)

f(u1)

)

= c1(uc)σ(uc) + 2
J2(uc)

f̂c
+
J2(uc)J1(uc)

f̂c

+
1

f̂c

∫ uc

1
du

(
σ(u) + 2c′1(u)J1(u) +

∫ u

uc

du1
J1(u1)

f(u1)

)

︸ ︷︷ ︸
H2(uc)

= c1(uc)σ(uc) + 2
J2(uc)

f̂c
+
J2(uc)J1(uc)

f̂c
+
H2(uc)

f̂c
. (C.8)

Finally, with the explicit expressions for σ, J1 and f̂ , we get the simple RG flow equation

for H2:

∂ucH2(uc) =
1

u2
c

. (C.9)
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Similarly, if in addition we use that J2(uc) = c1(uc)J1(uc) +H2(uc), the RG flow equation

for H3 takes the simpler form

∂ucH3(uc) =
c1(uc)

u2
c

+
H2(uc)(J1(uc) + 3)

f̂c
. (C.10)

We can integrate both equations taking into account that H2(1) = 0, H3(1) = 0, the

solutions are

H2(uc) = − 1

uc
+ 1,

H3(uc) =
1

4
(π − log 4)− c1(uc)

uc
+ âc −

1

2
tan−1 uc +

1

4

(
2 log(1 + uc)− 3 log

(
1 + u2

c

))
.

(C.11)

Note that H2, H3 and their boundary conditions are defined in the IR region of the geom-

etry, so there are no additional integration constants associated to the RG flow equations

of H2(uc) and H3(uc).
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1 Introduction

Gauge/gravity duality has been extensively used as a phenomenological tool to describe
strongly coupled systems in particle physics and condensed matter (see e.g. [1–3]). In the
search of holographic duals of realistic theories like QCD one has to face the problem that
the UV physics cannot be captured in general by a weakly coupled gravity dual, making
the problem effectively intractable in this regime. Provided the identification between the
energy scale in the field theory side and the position along the holographic radial direction
in the dual, a possible way out of this issue is to introduce a radial cutoff in the gravity
side, thus dividing the geometry in an “IR” region on one side of the cutoff and a “UV”
region on the other side, as in figure 1. Once this is done one can give away with the
troublesome UV region and work only with the IR region where the gravitational theory is
weakly coupled. An important problem with this approach is that observables in the field
theory have to be read from the asymptotic behavior of the fields in the UV region. Then,
in order to be able to extract any useful information from the gravity dual, one needs to
introduce a prescription that allows to recover the UV information after the UV region has
been removed.

Some intuition can be gained from studying this problem in a gravity dual that is weakly
coupled everywhere. One can then introduce the radial cutoff and see what is necessary
in order to reproduce the same values for the observables one would have been obtained
from the full geometry. Since in practice one is solving classical equations of motion for
the gravity fields, this amounts in the end to determining the boundary conditions for the
fields at the radial cutoff. This can be accomplished by introducing an effective action at
the cutoff. The cutoff effective action can be thought of as an effective action in the field
theory, obtained after integrating out UV degrees of freedom, and coupled to the strongly
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Figure 1. The string dual to a Wilson loop is attached to a circle at the boundary (back green
plane) and extends along the holographic radial direction. Introducing a radial cutoff (front red
plane) separates the geometry in the UV region between the cutoff plane and the boundary, and the
IR region at the other side of the cutoff. Removing the UV region leaves the IR section of the string
plus a cutoff action defined at the boundary of the truncated string (red circle).

coupled sector described by the IR region of the gravity dual. The cutoff action depends on
the values of the gravitational fields and their derivatives at the cutoff. The cutoff action
follows the general rules of effective field theories, it is constrained by symmetries, admits
an expansion in small derivatives and all the information about the UV region is hidden in
the values of the coefficients appearing in the action. Then, by fitting the coefficients of
the cutoff action, one may be able to capture the right UV physics in the holographic dual,
while remaining in the region where gravity is weakly coupled. For Wilson loops, which is
our topic of interest here, the cutoff action has been studied in [4, 5], following the general
approach of holographic Wilsonian renormalization [6, 7].

Wilson loops provide a complete set of gauge invariant operators that could in principle
be used to compute any observable in Yang-Mills theory, and determine directly some
important phenomenological quantities like the quark-antiquark potential. Their expectation
value in the large-N limit can be computed at strong coupling by means of the gauge/gravity
duality. For a CFT like N = 4 super Yang-Mills, the holographic dual of the Wilson loop
is a fundamental string anchored at the asymptotic AdS boundary of the gravity dual
geometry [8].

Wilson loops enjoy a quite large reparametrization invariance. By their definition, they
are determined by the holonomy of the gauge field along a closed curve C.1 The curve
itself can be parametrized as the trajectory of a particle xµ(τ), where τ parametrizes the
wordline, in such a way that

∮

C
A =

∫
dτ ẋµAµ[x(τ)]. (1.1)

Any parametrization whose image is said curve should lead to the same value for the Wilson
loop, even if it traces the curve back and forth, this is the so-called “zig-zag” symmetry [9].

1We will consider a Wilson loop extending to spatial infinity as “closed”, from the point of view that
gauge transformations should go to a constant at infinity in flat space.
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This is true at strong coupling even for 1/2 BPS Wilson loops as noted in [10], even though
the coupling to the scalar fields in principle breaks the zig-zag symmetry. The difference in
the holographic dual between ordinary and BPS Wilson loops are boundary conditions for
the string along the internal space, but the configurations we will study are valid for both
sets of boundary conditions, so the symmetries turn out to be the same in this case.

It is unclear whether introducing a cutoff as described above preserves or breaks
reparametrization invariance of the Wilson loop, in the same way that other symmetries
such as conformal invariance are broken. If that were the case, the cutoff action should
include additional terms that compensate the non-invariance of the string in the IR region,
in a way analogous to the anomaly inflow mechanism of gauge theories. Clarifying this
point will be our goal in this work. In order to proceed, it will be much more illuminating
to work with the Polyakov action for the string dual to the Wilson loop, rather than
the Nambu-Goto action that it is usually employed. As we will see, in the gravity dual
description the reparametrization invariance of the Wilson loop corresponds to the conformal
invariance of the string. This is the analog of the usual map between isometries of the
geometry in the gravity side and global symmetries of the field theory dual, except in this
case we are treating with a group with an infinite number of generators.

It turns out that the fate of reparametrization invariance when a radial cutoff is
introduced depends on how this is done. If the radial cutoff is on the worldsheet the
situation is similar to the nearly-AdS2 physics described in [11], connected to Jackiw-
Teitelboim (JT) gravity [12–14] and the Sachdev-Ye-Kitaev model (SYK) [15–19] (see [20]
for a review on these topics). Effectively reparametrization invariance is broken and there
is an effective action at the cutoff proportional to a Schwarzian derivative of the Goldstones
associated to the broken symmetries. On the other hand, if the radial cutoff is at a fixed
position on the target space of the string, reparametrization invariance is unbroken. In this
second case both worldsheet diffeomorphisms and Weyl transformations are broken by the
cutoff, so there are Schwarzian effective actions for the broken (gauge) symmetries, but
they cancel out when a conformal transformation involving both is considered.

The content of the paper is as follows. In section 2 we first study in quite detail a
straight Wilson line in a CFT, described by a fundamental string in the holographic dual
with Polyakov action. We introduce a radial cutoff and derive the cutoff action by integrating
the section of the string in the UV region. We then discuss in detail the reparametrization
symmetries and the cutoff action. Next, in section 3, we generalize the results to other
simple cases in a CFT: a circular Wilson loop at zero temperature and the straight line and
Polyakov loop at nonzero temperature. We discuss the results and conclude in section 4.
Some technical details of the calculation have been gathered in appendix A.

2 Straight Wilson line in a CFT

We will start by considering a straight Wilson line in a d-dimensional CFT, extended along
a spatial direction. The dual is a string in AdSd+1 space (and localized in the internal
directions). The metric in Poincaré coordinates is

ds2 = GMNdx
MdxN = L2

z2

(
dz2 + ηµνdx

µdxν
)
. (2.1)

– 3 –
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We are using indices M = µ, z and µ = 0, 1, . . . , d− 1. In the following we will work with
dimensionless coordinates by doing the rescaling

z → Lz, xµ → Lxµ. (2.2)

To specify the action of the string we introduce σa = (τ, σ) as the (dimensionless) worldsheet
coordinates of the string, XM (τ, σ) as the embedding functions and hab as the worldsheet
metric. Removing the overall L2 factor, the induced metric is

gab = 1
Z2 ηMN∂aX

M∂bX
N . (2.3)

Then, the Polyakov action for a string of tension Ts is

SP = TsL
2

2

∫
d2σ
√
hhabgab + φ0χE . (2.4)

Where χE is the Euler characteristic of the string surface with a coefficient proportional to
the constant dilaton φ0 = log gs, with gs the string coupling. If boundary terms are properly
accounted for, the Euler characteristic is just a constant determined by the string topology.

The Polyakov action is invariant under both worldsheet diffeomorphisms and Weyl
transformations, which are gauge symmetries of the string. We will use them to fix the
metric to be (Euclidean) AdS2, in the Poincaré patch

hab = 1
σ2 δab. (2.5)

After the gauge fixing there is a remnant conformal symmetry that leaves the metric invariant
and consists of simultaneous worldsheet diffeomorphisms and Weyl transformations. This is
a true symmetry of the string that corresponds to the reparametrization invariance of the
Wilson loop, as it will be clear later.

For a straight Wilson line along the x1 direction we need to impose boundary conditions
on the string. By our choice of metric σ = 0 should correspond to the boundary of the
worldsheet, so that

lim
σ→0

X1 = x1, lim
σ→0

XM = 0, M 6= 0. (2.6)

As we have formulated them, these conditions are invariant under conformal transformations.
To ease the notation in the following we will use X = X1 and Z = Xz.

We have some restrictions on the embedding functions. In the first place, the induced
metric should be compatible with the worldsheet metric (the worldsheet energy-momentum
tensor vanishes)

gab −
1
2hach

bdgcd = 0. (2.7)

And in the second place the embedding functions have to satisfy the equations of motion

1√
h
∂a

(√
hhab

∂bX
M

Z2

)
+ 2
Z
habgabδ

M
z = 0. (2.8)

The simplest solution is a string extended along the (x1, z) directions

X = τ, Z = σ, XM = 0, M 6= 1, z. (2.9)

– 4 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
8

The area of the string is divergent, it can be regularized by introducing appropriate
local counterterms at a cutoff z = ε that will eventually be sent to the boundary ε → 0.
The regularized action is

Sε = TsL
2

2

∫

σ>ε
d2σ
√
hhabgab − TsL2

∫

σ=ε
dτ eτ + φ0χE . (2.10)

Where eτ =
√
hττ is the einbein. The Euler characteristic is

χE = 1
4π

[∫

σ>ε
d2σ
√
hR+ 2

∫

σ=ε
dτeτK

]
= 1, (2.11)

where R is the Ricci scalar of the worldsheet metric and K is the extrinsic curvature.

2.1 String solution with arbitrary boundary reparametrizations

Instead of the simple solution (2.9) we may consider an arbitrary reparametrization of the
line at the boundary

lim
σ→0

X = x0(τ), (2.12)

without modifying the shape of the string in the embedding space. This implies modifying
the embedding functions X = X(τ, σ), Z = Z(τ, σ) and keeping XM = 0 for M 6= 1, z. The
constraint (2.7) can be satisfied as long as the induced metric is conformally flat gab = Ωδab.
From now on, let us denote ∂τ = ,̇ ∂σ = ′. The induced metric for this more general
embedding is

gab = 1
Z2

(
Ẋ2 + Ż2 ẊX ′ + ŻZ ′

ẊX ′ + ŻZ ′ (X ′)2 + (Z ′)2

)
. (2.13)

In order to have a conformally flat metric, the conditions we need to impose are

ẊX ′ + ŻZ ′ = 0, Ẋ2 + Ż2 = (X ′)2 + (Z ′)2. (2.14)

Which can be solved by

Z ′ = Ẋ, X ′ = −Ż, X ′′ + Ẍ = 0, Z ′′ + Z̈ = 0. (2.15)

It can be easily checked that solutions to the equations above are also solutions to the
equations of motion (2.8).

The solutions are

X =
∫ ∞

−∞
dτ0

1
π

σ

σ2 + (τ − τ0)2x0(τ0),

Z =
∫ ∞

−∞
dτ0

1
π

τ − τ0
σ2 + (τ − τ0)2x0(τ0).

(2.16)

However, when the derivatives of x0 are small compared to 1/σ, it is more interesting to
express the solutions as an infinite series expansion (see appendix A)

X = cos
(
σ
d

dτ

)
x0(τ) = x0 −

1
2σ

2ẍ0 + 1
24σ

4x
(4)
0 + · · · ,

Z = sin
(
σ
d

dτ

)
x0(τ) = σẋ0 −

1
6σ

3 ...x 0 + 1
120σ

5x
(5)
0 + · · · .

(2.17)
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In this form it is straightforward to find the conformal factor in the induced metric in a
similar expansion

Ω = 1
σ2 −

2
3{x0, τ}+ σ2

( 1
15∂

2
τ{x0, τ}+ 4

15({x0, τ})2
)

+ · · · . (2.18)

Here we have introduced the Schwarzian derivative

{x0, τ} =
...
x 0
ẋ0
− 3

2

(
ẍ0
ẋ0

)2
. (2.19)

Higher order terms can also be written in terms of the Schwarzian and its derivatives. The
Schwarzian is invariant under GL(2,R) reparametrizations of the form

x0(τ) −→ ax0 + b

cx0 + d
, a, b, c, d ∈ R, ad− bc 6= 0. (2.20)

For x0(τ) = τ the Schwarzian vanishes, these are the transformations induced at the
boundary by AdS2 isometries. Defining the complex coordinate ζ = τ + iσ, the AdS2 metric
in these coordinates is

ds2 = − 4dζdζ
(
ζ − ζ

)2 , (2.21)

which is manifestly invariant under the transformation

ζ −→ aζ + b

cζ + d
. (2.22)

When σ → 0, ζ = ζ = τ leading to the transformations we wrote above. Thus boundary
reparametrizations of the form (2.20) with x0 = τ do not lead to changes in the induced
metric and the conformal factor stays fixed as Ω = 1/σ2.

Let us show now that a conformal transformation trivializes the embedding. First, we
perform a worldsheet diffeomorphism

τ = τ(τ̄ , σ̄), σ = σ(τ̄ , σ̄), (2.23)

such that
X(τ, σ) = τ̄ , Z(τ, σ) = σ̄. (2.24)

In the near boundary expansion the transformed coordinates have expansions similar to X
and Z

τ = t(τ̄)− 1
2 ẗ(τ̄)σ̄2 + · · · , σ = ṫ(τ̄)σ̄ − 1

6
...
t (τ̄)σ̄3 + · · · . (2.25)

The induced and worldsheet metrics in the new coordinates are

ḡab = 1
σ̄2 δab, h̄ab = Ω̄δab, (2.26)

where the conformal factor in the worldsheet metric equals to

Ω̄ = 1
σ̄2 −

2
3 {t (τ̄) , τ̄}+ · · · . (2.27)
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Finally, to put back the worlsheet metric in its original form we do a Weyl transformation

h̄ab −→ hab = 1
σ̄2Ω̄

h̄ab = 1
σ̄2 δab. (2.28)

This shows that conformal transformations on the worldsheet correspond to reparametriza-
tions of the Wilson loop, as we could in principle follow these steps backwards to produce
an arbitrary reparametrization from the trivial embedding.

2.2 Induced anomalies in the cutoff action

The expectation value of the Wilson line in the dual field theory is determined by the
string action on-shell. We can introduce a cutoff in the radial direction that splits the dual
geometry in two parts. The region between the AdS boundary and the radial cutoff is
identified with UV degrees of freedom of the field theory dual and the region beyond the
cutoff captures the IR degrees of freedom.

The IR region of the geometry still describes the dual of a strongly coupled theory,
with a line defect that has a holographic description as a string ending at the cutoff along a
line in the x1 direction. In addition to the string, that captures the dynamics of the IR
degrees of freedom of the strongly coupled field theory dual, there is an effective action at
the cutoff for the defect that is obtained integrating over the radial direction the string
action between the boundary and the cutoff. The natural interpretation of the cutoff action
is that it captures the effect of the UV degrees of freedom close to the Wilson line after
they have been integrated out.

There are two possible natural choices for the cutoff, we could introduce a cutoff in the
worldsheet coordinate σ = 1/(LΛ), or we could introduce a cutoff in the radial coordinate
of the geometry z = 1/(LΛ), with Λ an energy scale. If the cutoff is taken in the worldsheet,
the cutoff action is

SΛ = TsL
2
∫
dτ

(
−LΛ− 2

3
1
LΛ{x0, τ}+ 1

3
1

(LΛ)3

( 1
15∂

2
τ{x0, τ}+ 2

5({x0, τ})2
)

+ · · ·
)

+ φ0
2π

∫
dτLΛ. (2.29)

This shows that the cutoff action is not invariant under reparametrizations. From the bulk
perspective, the string extended beyond the cutoff is reparametrization invariant up to
boundary terms. This non-invariance is compensated by the action at the cutoff, so that the
total action consisting of string plus defect is invariant. This can be seen as analogous to
the anomaly inflow between a Chern-Simons action for a gauge field in 2 + 1 dimensions and
chiral edge modes at a boundary. Thus, we can see the terms depending on the Schwarzian
as originating from a reparametrization anomaly in the cutoff action.

However, one might object that a radial cutoff in the geometry is more natural than a
cutoff in the worldsheet, since the AdS radial direction is typically more readily identified
with energy scales in the field theory dual. If we fix the radial cutoff, then we should integrate
the string action up to a value of the worldsheet coordinate determined by the condition

Z(τ, σΛ(τ)) = 1/(LΛ). (2.30)

– 7 –
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The solution can be expanded as

σΛ(τ) = 1
LΛẋ0

[
1 + 1

6
1

(LΛ)2
ẋ0

(ẋ0)3 + 1
6

1
(LΛ)4

10(ẍ0)2 − ẋ0x
(5)
0

(ẋ0)6 + · · ·
]
. (2.31)

Then, the action integrated up to this value is

SΛ = TsL
2
∫
dτ (−LΛẋΛ) + φ0

2π

∫
dτ

1
σΛ
. (2.32)

Where we have defined

xΛ = x0 + 1
2

1
(LΛ)2

ẍ0
ẋ0

+ 1
72

1
(LΛ)4

4ẍ0
...
x 0 − ẋ0x

(4)
0

(ẋ0)5 + · · · . (2.33)

Therefore, with this choice of cutoff, the contribution of the induced metric to the defect
action is simply a reparametrization of the worldline coordinate dτΛ = dτẋΛ. This is to be
expected because the area of the string between the AdS boundary and the radial cutoff
in the geometry should be independent of the reparametrization. However, we must now
pay attention to the contribution to the defect action deriving from the Ricci scalar of the
worldsheet metric, which now gives a non-trivial contribution

SΛ = TsL
2
∫
dτΛ (−LΛ) + φ0

2π

∫
dτΛ

(
LΛ + 2

3
1
LΛ{t(τΛ), τΛ}+ · · ·

)
. (2.34)

Where we have defined t as the inverse of x0: x0[t(θ)] = θ and used that

{t(θ), θ} = − 1
ẋ2

0
{x0(τ), τ}. (2.35)

We can recover the same result by performing the worldsheet diffeomorphism (2.24). Once
we have trivialized the embedding, the terms proportional to the induced metric that
contribute to the cutoff action are trivial. However, the integral over the Ricci scalar
introduces a boundary term proportional to the extrinsic curvature

K̄ = −1
2

Ω̄′

Ω̄3/2 = 1 + σ̄2{t(τ̄), τ̄}+ · · · . (2.36)

Where Ω̄ is given in (2.27). The resulting cutoff action is the same we found before (2.34)
identifying τΛ = τ̄

SΛ = TsL
2
∫
dτ̄ (−LΛ) + φ0

2π

∫
dτ̄

(
LΛ + 2

3
1
LΛ{t(τ̄), τ̄}+ · · ·

)
. (2.37)

The Schwarzian derivative indicates that effectively there is an anomaly at the cutoff, which
compensates the non-invariance of the string under worldsheet diffeomorphisms. Note that
the Weyl transformation (2.28) would remove this term, so there is another associated
anomaly at the cutoff, in such a way that the anomalous terms cancel out for conformal
transformations of the worldsheet.
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3 Generalizations

In order to highlight the universality of the reparametrization anomaly we will now study
three straightforward generalizations of spatial Wilson loops in a CFT: a straight Wilson
line at nonzero temperature, a circular Wilson line at zero temperature and a Polyakov
loop at nonzero temperature.

3.1 Straight Wilson line at nonzero temperature

At nonzero temperature the holographic dual of a CFTd is an AdSd+1 black brane solution,
that in Poincaré patch coordinates reads

ds2 = L2

z2

(
dz2

f(z) − f(z)(dx0)2 + δijdx
idxj

)
, f(z) = 1−

(
z

zH

)d
. (3.1)

The temperature of the dual CFT is T = d
4πzH . It will be convenient for us to do a change

of coordinates such that the induced metric on the string becomes conformally flat. This
can be achieved by picking a new radial coordinate u such that

du = dz√
f(z)

. (3.2)

The solution is

u =

zHB(
z
zH

)d
(

1
d ,

1
2

)

d
. (3.3)

Where Bx(a, b) is the incomplete Beta function. The horizon in the u coordinate is located at

uH =
B
(

1
d ,

1
2

)

d
zH (3.4)

The relation can be inverted to
(
z(u)
zH

)d
= I−1

u
uH

(1
d
,

1
2

)
, (3.5)

where Ix(a, b) = Bx(a, b)/B(a, b) is the regularized incomplete Beta function and I−1
x (a, b)

is its inverse. For convenience let us do the following rescaling of the coordinates

u→ uHu, z → zHz, xµ → uHx
µ. (3.6)

Then, the metric is

ds2 = L̃2

z(u)2

(
du2−f [z(u)]

(
dx0

)2
+δijdxidxj

)
, f(z) = 1−zd, z(u)d = I−1

u

(1
d
,
1
2

)
,

(3.7)
where L̃ = LuH/zH = B

(
1
d ,

1
2

)
L/d.

The worldsheet action dual to a Wilson line in the black brane geometry is

SP = TsL̃
2

2

∫

u<1
d2σ
√
hhabgab + φ0χ̂E . (3.8)
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If the string reaches the black brane horizon, only the part of the string outside the horizon
is taken into account. This introduces a cutoff in the radial direction at u = 1. The term
χ̂E equals (2.11) with the same cutoff at u = 1, but without a extrinsic curvature term at
the horizon, so it is no longer equal to the Euler characteristic of the string worldsheet and
does not take integer values in general.

For a straight spatial Wilson line, we can take as embeddding and worldsheet metric

X1 ≡ X = τ, Xu ≡ U = σ, XM = 0,M 6= 1, u. hab = 1
σ2 δab. (3.9)

With this choice the induced metric is the same as the worldsheet metric up an overall
factor, which automatically satisfies the constraint (2.7). The equations for the embedding
functions, which now have the form

1√
h
∂a

(√
hhab

∂bX
M

z(U)2

)
+ 2
z(U)z

′(U)habgabδMu = 0, (3.10)

are also satisfied.
As in the zero temperature case we consider an arbitrary reparametrization of the

Wilson line at the boundary
lim
σ→0

X = x0(τ). (3.11)

The embedding functions will be modified as before X(τ, σ) and U(τ, σ). The induced
string metric is

gab = 1
z(U)2

(
Ẋ2 + U̇2 ẊX ′ + U̇U ′

ẊX ′ + U̇U ′ (X ′)2 + (U ′)2

)
, (3.12)

which can be made conformally flat by imposing the same conditions as at zero tem-
perature (2.14) and (2.15), simply replacing Z by U . As happened at zero temperature
the embedding equations of motion (3.10) are automatically satisfied even with the new
conformal factor.

Following the discussion at zero temperature, we can fix the radial cutoff in the geometry,
but now on the u coordinate

U (τ, σΛ(τ)) = 1/(ΛL). (3.13)

Performing the same worldsheet diffeomorphism as before (2.25), the induced and worldsheet
metric become

gab = 1
z(σ̄)2 δab, hab = Ω̄δab, (3.14)

where the conformal factor is the same as at zero temperature (2.27).
It follows that the cutoff effective action is the same at zero and nonzero temperature.

However, at nonzero temperature there is a physical cutoff that is the black brane horizon,
where U = 1, implying ΛL = 1, in our variables. Then, the effective action after integrating
all the way to the horizon is

SH = TsL̃
2
∫
dτ̄

(∫ 1

ε
dσ̄

1
z(σ̄)2 −

1
ε

)
+ φ0

2π

∫
dτ̄

(
1 + 2

3{t(τ̄), τ̄}+ · · ·
)
. (3.15)
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Restoring units x0 → x0/uH and τ̄ → τ̄ /uH , the Schwarzian term is

SSch = φ0
12π2

B
(

1
d ,

1
2

)

T

∫
dτ̄ {t(τ̄), τ̄} (3.16)

3.2 Circular Wilson loop

We will consider now a Wilson loop defined on a circle of radius r0 localized on some plane,
that we can take to be along the xµ, µ = 1, 2 directions without loss of generality. In this
case it is more convenient to work with polar coordinates in the plane. The metric in the
Poincaré patch is:

ds2 = L2

z2


dz2 + dr2 + r2dθ2 +

d−1∑

µ=3
(dxµ)2


 . (3.17)

The solution for a string ending on a circle of radius R on the boundary lies on the spherical
surface [10, 21]

z2 + r2 = r2
0. (3.18)

This surface can be parametrized by the worldsheet embedding

Xθ ≡ Θ = τ, Xr ≡ R = r0
cosh σ , Z = r0 tanh σ, XM = 0, M 6= r, θ, z.

(3.19)
Where both τ and θ have 2π periodicity.

This yields global AdS2 in conformally flat coordinates as the induced metric on
the string

ds2
2 = gabdσ

adσb = 1
sinh2 σ

(
dτ2 + dσ2

)
. (3.20)

Given the topology of the string worldsheet, we will select the string metric to be the same

hab = 1
sinh2 σ

δab. (3.21)

Let us now consider a general reparametrization of the embedding of the form

Θ = qτ + θ(τ, σ), R = r0
coshS , Z = r0 tanhS, S = qσ + s(τ, σ). (3.22)

Where the periodicity of τ is now 2πp and p, q are nonzero integers. Both θ and s are taken
to be periodic functions of τ

θ(σ, τ + 2πp) = θ(σ, τ), s(σ, τ + 2πp) = s(σ, τ). (3.23)

At the AdS boundary σ = 0 we impose the conditions

Θ(σ = 0, τ) = Θ0(τ) = qτ + θ0(τ), S(σ = 0, τ) = 0, θ0(τ + 2πp) = θ0(τ).
(3.24)

The term in Θ0 that is linear in τ indicates that the Wilson line is winding w = pq times
over the circle. However, unless q = 1/p (so w = 1) the induced metric will have a conical
singularity. We will ignore this and proceed with general values of p, q.
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With this embedding, the induced metric and worldsheet metric become

gab = 1
sinh2 S

(
Ṡ2 + Θ̇2 ṠS′ + Θ̇Θ′

ṠS′ + Θ̇Θ′ (S′)2 + (Θ′)2

)
, hab = q2

sinh2(qσ)
δab. (3.25)

This takes the same form as for the straight line (2.13), so the induced metric can be
made conformally flat for embedding solutions satisfying the same set of equations as
given in (2.15)

S′ = Θ̇, Θ′ = −Ṡ, S′′ + S̈ = 0, Θ′′ + Θ̈ = 0. (3.26)

The linear terms proportional to q in the embedding functions (3.22) automatically satisfy
these equations. We can give a solution generalizing the straight line results to account for
the periodicity of τ . First we define the functions

GΘ(σ, τ − τ0) =
∞∑

n=−∞

1
π

σ

σ2 + (τ − τ0 + 2πnp)2 = 1
2πp

sinh σ
p

cosh σ
p − cos τ−τ0p

,

GS(σ, τ − τ0) = 1
2πp

sin τ−τ0
p

cosh σ
p − cos τ−τ0p

.

(3.27)

Then, the solutions for the embedding functions are

θ(σ, τ) =
∫ πp

−πp
dτ0GΘ(σ, τ − τ0)θ0(τ0),

s(σ, τ) =
∫ πp

−πp
dτ0GS(σ, τ − τ0)θ0(τ0).

(3.28)

One can recover the straight line expressions (2.16) by taking the p→∞ limit.
As before, it will be more convenient for us to use an expansion of the solutions for

small τ derivatives relative to 1/σ, which is actually of the same form as for the straight
line (2.17) (see appendix A)

Θ = cos
(
σ
d

dτ

)
Θ0(τ) = Θ0 −

1
2σ

2Θ̈0 + 1
24σ

4Θ(4)
0 + · · · ,

S = sin
(
σ
d

dτ

)
Θ0(τ) = σΘ̇0 −

1
6σ

3 ...Θ0 + 1
120σ

5Θ(5)
0 + · · · .

(3.29)

However, before doing the reparametrization, we end up with a slightly modified result,
since the conformal factor in the induced metric was different:

Ω = 1
σ2 −

2
3

{
tan Θ0

2 , τ

}
+ σ2

(
1
15∂

2
τ

{
tan Θ0

2 , τ

}
+ 4

15

{
tan Θ0

2 , τ

}2)
+ · · · . (3.30)

Where the Schwarzian terms are now
{

tan Θ0
2 , τ

}
= {Θ0, τ}+ 1

2Θ̇2
0. (3.31)
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In this case the terms that appear in the expansion are invariant under boundary
reparametrizations of the form

eiΘ0(τ) −→ αeiΘ0 + β̄

βeiΘ0 + ᾱ
, α, β ∈ C, |α|2 − |β|2 = 1. (3.32)

This can be understood as the boundary limit of the SU(1, 1) isometry transformations of
the global AdS2 metric. The symmetry is more easily realized in the coordinates

cosh σ = 1
tanh ρ ; ζ = tanh ρ2e

iτ , ζ̄ = tanh ρ2e
−iτ , (3.33)

leading to the metric

ds2
2 = 4dζdζ̄

(1− |ζ|2)2 . (3.34)

The SU(1, 1) isometry transformations in these coordinates are

ζ −→ αζ + β̄

βζ + ᾱ
−→
|ζ|→1

αeiτ + β̄

βeiτ + ᾱ
. (3.35)

Thus leading to the transformations (3.32). However, contrary to the straight line, the
Schwarzian derivative is nonzero for the trivial embedding, instead for Θ0 = τ or any
SU(1, 1) equivalent, {

tan Θ0
2 , τ

}
= 1

2 . (3.36)

This is of course necessary in order to recover the expansion of the conformal factor

Ω = 1
sinh2 σ

= 1
σ2 −

1
3 + σ2

15 + · · · . (3.37)

Aside from the difference on the isometry group of the induced metric and the cor-
responding invariant Schwarzian derivatives, the analysis of the straight Wilson line of
section 2.2 can be generalized without any other modifications to the circular Wilson loop.
Therefore, replacing

{x0, τ} →
{

tan Θ0
2 , τ

}
, (3.38)

the cutoff action takes the form (2.29) if we introduce the cutoff in the worldsheet coordinates
σ = 1/(LΛ). If the cutoff is in the radial coordinate of the background z = 1/(LΛ), then
the cutoff action is (2.37) changing

{t(τ̄), τ̄} →
{

tan t(τ̄)
2 , τ̄

}
. (3.39)

Where σ̄ = S(σ, τ), τ̄ = Θ(σ, τ) define the barred coordinates and t(τ̄) is the inverse of the
boundary reparametrization Θ0[t(θ)] = θ.
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3.3 Polyakov loop

At finite temperature a Polyakov loop is defined as a Wilson line wrapping the time direction
after a Wick rotation to Euclidean signature. A nonzero expectation value for the Polyakov
loop implies a spontaneous breaking of center symmetry and it is taken as an indication of
deconfinement in pure Yang-Mills. The holographic dual is a string wrapped around the
Euclidean time direction of the Wick rotated AdSd+1 black brane (3.1), with metric

ds2 = L2

z2

(
dz2

f(z) + f(z)dt2E + δijdx
idxj

)
, f(z) = 1−

(
z

zH

)d
. (3.40)

Where the Euclidean time direction tE has periodicity β = 1/T . The string dual to the
Polyakov loop will be extended along the (z, tE) directions, and has the topology of a
disk. In order to have a conformally flat induced metric we first rescale all the coordinates
xM → zHx

M and then introduce the following change of variables for the radial coordinate

du = dz

f(z) . (3.41)

The solution to this equation is similar to the one we found for a spatial Wilson loop (3.3)

u =
Bzd

(
1
d , 0

)

d
. (3.42)

In this case the radial coordinate is not bounded, close to the horizon z → 1

u ∼ −1
d

log(1− z)→ +∞. (3.43)

We now follow similar steps, and rescale the coordinates as follows

u = 1
2πzHT

r, tE = 1
2πzHT

θ. (3.44)

After this, the periodicity of θ is 2π, and the metric takes the form

ds2 = L2

z(r)2

(2
d

)2
f [z(r)]

(
dr2+dθ2

)
+ L2

z(r)2 δijdx
idxj ,

f(z) = 1−zd, z(r)d =B−1
2r

(1
d
,0
)
, (3.45)

where B−1
z (x, y) is the inverse of the incomplete beta function. The simplest choice for the

string embedding of the Polyakov loop is

Xθ ≡ Θ = τ, Xr ≡ R = σ, X i = 0, (3.46)

where τ is periodic, with periodicity 2π. The induced metric is, after removing an overall
L factor,

ds2
2 = gabdx

adxb =
(2
d

)2 f [z(σ)]
z(σ)2

(
dτ2 + dσ2

)
. (3.47)
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This is the same type of induced metric we found for the circular Wilson loop (3.20). The
asymptotic behavior for σ → 0 is that of AdS2, with the conformal factor ∼ 1/σ2. For
σ →∞ we see from (3.43) that zd ' 1− e−2σ, in such a way that the conformal factor is

(2
d

)2 f [z(σ)]
z(σ)2 ∼ 4e−2σ ∼ 1

sinh2 σ
, (3.48)

which is the expected behavior for AdS2. We are thus driven to take a worldsheet metric
corresponding to global AdS2

hab = 1
sinh2 σ

δab. (3.49)

From this point onwards we can proceed following the same steps as for a circular Wilson
loop, introducing a reparametrization that is the analog of (3.22)

Θ = qτ + θ(τ, σ), R = S = qσ + s(τ, σ). (3.50)

The details for the solutions and the symmetries of the worldsheet metric are the same as
for the circular Wilson loop, so we arrive to the same result of a Schwarzian action for the
worldsheet diffeomorphisms (3.39).

4 Discussion

Our motivation was to study the low energy effective description of a Wilson loop using the
gauge/gravity duality, by taking a string in some IR region of the dual geometry determined
by a cutoff in the holographic radial direction. In principle the string embedding and action
that codifies the value of the dual Wilson loop is determined by the full geometry and
the location of the string at the asymptotic boundary, associated to the UV in the dual
field theory.

When the radial cutoff is introduced the region between the cutoff and the asymptotic
boundary is replaced by an action at the cutoff. A systematic way to construct the effective
action is by performing a derivative expansion of the embedding functions close to the cutoff
with respect to the worldline coordinate of the Wilson loop, which remains valid as long as
derivatives are small compared to a scale set by the value of the cutoff. For instance, if
the Wilson loop describes a trajectory (t(τ), x(τ)) at the asymptotic boundary then, in the
static gauge t = τ the cutoff action takes the form [5]

Sc =
∫
dτ
√−γ

[
Λ− k0

2 (xc − x)2 + k1
2 (ẋc − ẋ)2 + k2

2 ẋ
2
c + k3

2 ẋ
2 + · · ·

]
, (4.1)

where γ is the induced metric at the cutoff and xc corresponds to the intersection of the
string embedding with the cutoff. The coefficients Λ, k0,1,2,3 that appear in the cutoff
action depend on the radial position of the cutoff zc and obey a series of RG flow equations
that guarantee that the total action is independent of zc. These equations only depend on
the geometry close to the cutoff, but the solutions depend on the UV geometry through
integration constants that can be explicitly computed when the UV geometry is known.
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Since the embedding can change dynamically away from the asymptotic boundary
xc is not fixed, i.e. the string does not obey Dirichlet boundary conditions at the cutoff.
Nevertheless the variation of the total on-shell action (IR string plus cutoff) should still be
invariant when xc varies. This leads to mixed boundary conditions at the cutoff for the
string that guarantees that the embedding profile in the IR region and the value of the
total action remains unchanged when the cutoff is introduced. In other words, introducing
the cutoff does not change any physical quantity but allows to drop the UV region of the
geometry. When the UV geometry is not known, we can parametrize our ignorance in the
integration constants of the RG flow equations of the coefficients in the cutoff action.

In previous works worldline reparametrizations of the Wilson loop were fixed by
a suitable gauge choice. However, this is an important symmetry that should also be
realized in the holographic dual and our purpose in this work was to address this for
the low energy action of the string. In the Polyakov formulation reparametrizations
could in principle correspond to a combination of (large) worldsheet diffeomorphisms with
Weyl transformations of the worldsheet metric, as the first already induce a worldline
reparametrization and the classical string action is invariant under both. When the cutoff is
introduced and the UV region is replaced by the cutoff action, the total action should still
be invariant under these symmetries. However, there is no unique way in which this could
happen. For any of these symmetries one possibility is that the cutoff and IR string action
are both invariant, or the other possibility is that both are not invariant but their variations
under a symmetry transformation cancel out. An analogous situation for the second
possibility is when conformal symmetry is spontaneously broken in a 3 + 1-dimensional
theory and there is an IR fixed point. The contributions to the conformal anomaly come
from the IR CFT and from the dilaton, and they should add up to the value of the UV
CFT. In the case at hand there can be reparametrization and Weyl anomalies in the cutoff
action that compensate with the non-invariance of the IR string.

We have first identified a map between reparametrizations of the Wilson loop and
conformal transformations in the worldsheet of the dual string. We have then shown that
the string with a cutoff in the worldsheet is not invariant under reparametrizations of the
Wilson loop, so that it is necessary to add a cutoff action proportional to the Schwarzian
derivative of said reparametrizations, as well as higher derivative terms further suppressed
by the cutoff scale. On the other hand, if the cutoff is set in the target space, the string is
invariant under Wilson loop reparametrizations, but not under worldsheet diffeomorphisms
or Weyl transformations that do not belong to the subset of conformal transformations.
Therefore, new terms for the Polyakov string action should be added at the cutoff before
fixing the gauge. Note that in both situations an SL(2,R) or SU(1, 1) symmetry is an
essential ingredient. For a worldsheet cutoff it is a symmetry of the induced metric, so
for more general shapes of the Wilson loop or different geometries we do not expect that
leading contribution to the effective action is just the Schwarzian. On the other hand, for a
target space cutoff the symmetry is an isometry of the worldsheet metric, which in principle
we can fix to be AdS2, global or in Poincaré patch depending on the topology. Thus we
expect the result to be more general in this case. However note that there can still be
modifications of the effective action if the dilaton is not constant, so corrections to the
Schwarzian action are possible in non-conformal holographic duals.
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In the case of a cutoff on the worldsheet, the new terms have the appropriate structure to
describe the effective theory of Goldstone bosons for a spontaneously broken reparametriza-
tion invariance of the Wilson loop, similarly to nearly-AdS2 dynamics. They are necessary
because a conformal transformation on the worldsheet would change the physical location
of the cutoff in the target space, thus modifying the area of the string in the IR region. This
is compensated by the change in the cutoff action, so the total area defined as the string
action including the cutoff remains the same. Although we have only considered strings in
AdS spacetimes, in principle conformal invariance of the worldsheet should be maintained in
any string background, so we expect reparametrization invariance of Wilson loops to hold
in general. It would be interesting to explore if the Schwarzian in the cutoff action is related
with maximal chaos as observed in strings with worldsheet horizons [22, 23], similarly to
SYK [19] and JT gravity [24].

Another interesting extension of this work would be to include in the analysis non-trivial
profiles of the string in the transverse directions, generalizing the results of [4, 5]. It should
be noted that a Schwarzian action for transverse fluctuations can also appear when the
string is embedded in AdS3 [25, 26], but it is related to diffeomorphisms in the target space,
rather than to worldsheet transformations.

Finally, let us comment further on the connection and differences between the Wilson
loop and SYK. A supersymmetric Wilson loop in higher representations can be described
as a brane intersection with dynamical fields on the defect [27]. A similar defect theory may
be expected to describe a Wilson loop in the fundamental representation. For a 1/2 BPS
loop, or at lower order in perturbation theory, the defect action of a straight or circular
Wilson loop is reparametrization invariant [28] and this reduces the calculation of the
expectation value to a random matrix integral. The SYK model could be seen similarly as
a 0+1 defect theory,2 where reparametrization invariance emerges at low energies. Contrary
to the Wilson loop, in this case it is not a true symmetry, and there is a Schwarzian effective
action for reparametrizations. However, as the Schwarzian is an irrelevant deformation in
the 0+1 theory, it seems natural that the IR is captured by a random matrix theory as
the late time analysis of partition functions suggests [30]. Similarly, random matrix models
have been shown to determine partition functions in JT gravity [31].
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A Series expansions in σ

First we check the values of X and Z at σ = 0 for the straight Wilson line. Taking (2.16)
and doing the change of variables in the integral τ0 = τ + σv, the expressions for X and
Z become

X(σ, τ) =
∫ ∞

−∞
dv

1
π

1
1 + v2x0(τ + σv),

Z(σ, τ) =−
∫ ∞

−∞
dv

1
π

v

1 + v2x0(τ + σv),
(A.1)

It is immediate to check that X(σ = 0, τ) = x0(τ) and Z(σ = 0, τ) = 0. From the
equations (2.15), X is an even function of σ and Z an odd function. Therefore, they have
the expansions

X(σ, τ) =
∞∑

n=0

σ2n

(2n)!∂
2n
σ X

∣∣∣
σ=0

,

Z(σ, τ) =
∞∑

n=0

σ2n+1

(2n+ 1)!∂
2n+1
σ Z

∣∣∣
σ=0

.

(A.2)

We can use (2.15) to trade σ derivatives by τ derivatives

X(σ, τ) =
∞∑

n=0

σ2n

(2n)! (−1)n∂2n
τ X

∣∣∣
σ=0

,

Z(σ, τ) =
∞∑

n=0

σ2n+1

(2n+ 1)!(−1)2n∂2n+1
τ X

∣∣∣
σ=0

.

(A.3)

But, using that the kernel in the integrand of (2.16) depends only on τ − τ0,

∂Nτ X = (−1)N
∫ ∞

−∞
dτ0 ∂

N
τ0

( 1
π

σ

σ2 + (τ − τ0)2

)
x0(τ0) =

∫ ∞

−∞
dτ0

1
π

σ

σ2 + (τ − τ0)2x
(N)
0 (τ0).

(A.4)
Therefore, ∂Nτ X

∣∣∣
σ=0

= x
(N)
0 (τ), so we arrive at (2.17).

For the circle we can proceed in a similar way. Starting with (3.28) and doing the
change of variables

τ0 = τ + 2 arctan
(

tan σ2 v
)
, σ = arcsinh(s). (A.5)

We arrive at

Θ(s, τ) =qτ +
∫ ∞

−∞
dv

1
π

1
1 + v2 θ0

(
τ + 2 arctan

(
sv

1 +
√

1 + s2

))
,

S(s, τ) =qσ(s) +−
∫ ∞

−∞
dv

1
π

v

1 + v2
1 +
√

1 + s2

1 +
√

1 + s2 + 1+v2
2 s2

θ0

(
τ + 2 arctan

(
sv

1 +
√

1 + s2

))
.

(A.6)
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So, indeed Θ(σ = 0, τ) = Θ(s = 0, τ) = Θ0(τ) and S(σ = 0, τ) = S(s = 0, τ) = 0. Since Θ
and S for the circle satisfy the same equations as for the straight line, we can apply the
same derivation and arrive at the same result for the expansions.

In both cases the form of the expansion can also be explicitly checked by taking the σ
derivative of the integrands, performing the same changes of variables in the integrals we
have introduced now, and then computing the integrals explicitly.
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Chapter 7

Conclusions

In this thesis we have presented a way to obtain a low energy effective action for the gravity dual

of a Wilson line. We have begun by laying out the basics of a formalism that allows us to perform

Wilson renormalization on a Nambu-Goto string, where the leading correction is introduced with a

double trace deformation. In chapters 4 and 5 we have focused on phenomenological aspects that

can be computed using this formalism. We have first studied the qq̄ potential for different examples.

In the case of an IR fixed point we obtained that the long distance potential behaves as 1/L with

a leading correction 1/L4 which is consistent with a flow in a one-dimensional theory between a

double trace term with scaling dimension ∆ = −2 in the UV to a scaling dimension ∆ = 4 in the

IR. For confining gauge theories holographic models predict that the effective action of a flux tube

is given by 4 dimensional Nambu-Goto action plus internal massive modes. We have identified the

contribution of these modes with the exponentially decaying term ∼ e−ML. This term cannot be

identified with the rigidity term in [24, 25, 26] but corresponds to massive modes that have not

been observed yet. Lattice computations show that a long flux tube in 2+1 and 3+1 dimensions

agree with the Nambu-Goto action from long to string length distances, except for some parity odd

channel [27]. This deviation does not match to the massive mode we have found since ours is parity

even. A way to observe this new mode might be comparing the quark-antiquark potential and

the energy of the flux tube, as in confining theories they only differ at the classical contributions

induced by the sources at the endpoints and finite size contributions, which are expected to vanish

in the large-N limit [27]. The apparition of this massive mode is expected for a general confining

theory, which makes it an interesting check for holography. This formalism could be contrasted

with other holographic expectations to study the effect of massive modes of the flux tube on meson

Regge trajectories to provide an additional test.

We also studied more general trajectories in 5, identifying the contributions to the force suffered

by a quark with those found on previous work by [28, 15, 16, 17, 18]. It could be interesting to

extend this formalism to time dependent geometries that emulate the dual of a heavy ion colision.

As the expansion of the action can be done in a systematic way, this work could be extended to less

constrained quark trajectories with sudden changes in the trajectory or movement in more spatial
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directions. Another generalization could be applying this method to Wilson lines in different repre-

sentations, ’t Hooft lines or the expectation values of local operators obtained from the background

geometry.

The formalism of holographic Wilsonian renormalization could also be combined with other

phenomenological approaches to fit QCD lattice computations or experimental results. For example

there is a recent development in using machine learning to constrain the background geometry

[29, 30] that could be applied to Wilson loops predictions[11], as the holographic description of UV

physics is expected to be problematic due to asymptotic freedom and this approach limits the range

of energy scales.

In both these approaches we have chosen the reparametrization of the Wilson loop with gauge

fixing. However reparametrization invariance is an important feature of these observables, so we

studied how can we realize it in the holographic dual. We have first identified a map between

reparametrizations of the Wilson loop and conformal transformations in the worldsheet of the dual

string, showing that a string with a cutoff in the worldsheet is not invariant under reparametrizations

of the Wilson loops. This makes neccesary to add a cutoff action proportional to the Schwarzian

derivative of the reparametrization with some higher derivative terms that are suppressed by the

cutoff scale. If the cutoff is set in the target space the string is now invariant under Wilson loop

reparametrizations but not under worldsheet diffeomorphisms or Weyl transformations that do not

belong to the subset of conformal transformations. This means that we should add new terms to

the Polyakov action at the cutoff before fixing the gauge. In the case of the cutoff on the worldsheet,

the new terms have the structure of an effective theory of Goldstone bosons for a spontaneously

broken reparametrization invariance that preserves the isometries of the nearly AdS2 space SL(2,R)

or SU(1, 1). These terms are necessary as a conformal transformation would change the physical

location of the cutoff in the target space. This is compensated by a change in the cutoff action so that

the total area of the string remains invariant. Further analysis could be directed to check whether

the Schwarzian in the cutoff is related to maximal chaos as observed in strings with worldsheet

horizons or applying this analysis to more general geometries and string profiles.
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Conclusiones

En esta tesis hemos presentado una forma de obtener una acción efectiva a bajas enerǵıas para

el dual gravitatorio de una ĺınea de Wilson. En primer lugar hemos establecido un formalismo

qu nos permite realizar una renormalización de Wilson en una cuerda de Nambu-Goto, donde las

correcciones a primer orden aparecen como una deformación de traza doble. En los caṕıtulos 4 y 5

nos hemos centrado en aspectos fenomenológicos que podemos calcular empleando este formalismo.

En primer lugar hemos estudiado el potencial qq̄ en distintos ejemplos. En el caso de un punto

fijo en el infrarrojo hemos obtenido que el potencial a largas distancias se comporta como 1/L con

una corrección del tipo 1/L4, que es consistente con el flujo de una teoŕıa en una dimensión entre

un término de doble traza con dimensión de escalado ∆ = −2 en el ultravioleta que fluye a una

∆ = 4 en el infrarrojo. Para teoŕıas confinantes los modelos holográficos predicen que la acción

efectiva de un tubo de flujo está dada por la acción de Nambu-Goto en 4 dimensiones más modos

masivos internos. Hemos identificado la contribución de estos modos con un término que decae

exponencialmente como ∼ e−ML. Este término no puede ser identificado con el término de rigidez

encontrado en [24, 25, 26] y corresponde con modos masivos que no se han identificado aun. Cálculos

en lattice concuerdan con la acción de Nambu-Goto desde largas distancias a longitudes del orden

del tamaño de la cuerda, excepto en algunos canales de paridad impar [27]. Esta desviación no

encaja con el modo que hemos encontrado puesto que el nuestro tiene una paridad par. Una forma

de observar este nuevo modo podŕıa ser comparar el potencial quark-antiquark y la enerǵıa del tubo

de flujo, puesto que en teoŕıas confinantes solo se diferencian en contribuciones clásicas inducidas por

las fuentes al final de la cuerda y contribuciones de tamaño finito, que se espera que se desvanezcan

en el ĺımite de gran N [27]. La aparición de este modo masivo es una predicción general para

una teoŕıa confinante, lo que lo convierte en una prueba interesante para el principio holográfico.

Este formalismo podŕıa ser contrastado con otras predicciones en holograf́ıa para estudiar el efecto

de modos masivos en un tubo de flujo en las trayectorias de Regge para proporcinal una prueba

adicional.

También estudiamos trayectorias más generales en 5, identificando las contribuciones a la fuerza

experimentada por un quark con las encontradas en trabajos previos por [28, 15, 16, 17, 18]. Podŕıa

ser interesante extender este formalismo a teoŕıas dependientes del tiempo que simulen el dual

de una colisión de iones pesados. Puesto que la expansión de la acción puede llevarse a cabo de

una forma sistemática, este trabajo se puede extender a trayectorias menos limitadas con cambios

bruscos en la trayectoria o movimiento en más direcciones espaciales. Otra generalización podŕıa
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ser aplicar este método a ĺıneas de Wilson en diferentes representaciones, lineas de ’t Hooft o valores

de expectación de operadores locales obtenidos en la geometŕıa de fondo.

El formalismo de la renormalización holográfica de Wilson también se podŕıa combinar con

otras aproximaciones fenomenológicas para ajustarse a cálculos de lattice en QCD o resultados

experimentales. Por ejemplo existe un trabajo reciente empleando machine learning para delimitar

la geometŕıa del fondo [29, 30] que podŕıa aplicarse a predicciones de Wilson loops [11], puesto que

se espera que la descripción holográfica de la f́ısica en el ultravioleta sea problemática debido a la

libertad asintótica, y este método limita el rango de enerǵıas.

En los casos anteriores hemos escogido una reparametrización del Wilson loop escogiendo un

gauge. Sin embargo la invarianza bajo reparametrizaciones es una caracteŕıstica importante de estos

observables, por lo que estudiamos como podemos trasladarla al dual holográfico. En primer lugar

hemos identificado una equivalencia entre la reparametrización del Wilson loop y transformaciones

conformes en la hoja de mundo de la cuerda dual, mostrando que una cuerda con un corte en la

hoja de mundo no es invariante bajo las reparametrizaciones del Wilson loop. Esto hace necesario

añadir una acción en el corte proporcional a la Schwarziana de la reparametrización con algunos

términos a mayor orden suprimidos por la escala de corte. Si el corte se coloca en la geometŕıa

de fondo la cuerda es ahora invariante bajo las reparametrizaciones del Wilson Loop pero no bajo

difeomorfismos de la hoja de mundo o transformaciones de Weyl que no pertenezcan al subjconjunto

de transformaciones conformes. Esto implica que debemos añadir términos nuevos a la acción de

Polyakov en el corte antes de fijar el gauge. En el caso de un corte en la hoja de mundo los

términos nuevos tienen la estructura de una teoŕıa efectiva de bosones Goldstone por la ruptura

espontánea de simetŕıa de la invarianza bajo reparametrizaciones que conserva las isometŕıas de la

geometŕıa del espacio cuasi-AdS2: SL(2,R) o SU(1, 1). Estos términos son necesarios puesto que

una transformación conforme cambiaŕıa la localización f́ısica del corte en la geometŕıa de fondo.

Esto se compensa por un cambio en la acción en el corte de forma que el área total de la cuerda

permanece invariante. Futuros análisis podŕıas estudiar si la Schwarziana en el corte está relacionada

con caos maximal como se observa en cuerdas con horizonte en la hoja de mundo o aplicando este

análisis en geometŕıas y perfiles de la cuerda más generales.
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