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RESUMEN (en español)

Esta tesis está enfocada en el estudio de la correspondencia AdS/CFT. En particular, su 
meta principal consiste en proveer nuevas evidencias que apoyen los casos en 
dimensiones bajas: AdS2/SCQM y AdS3/CFT2, los cuales no se comprenden 
completamente todavía.

Para alcanzar esta meta, construimos nuevas soluciones AdS2 y AdS3 de las 
supergravedades de Tipo II, ya que no se ha obtenido aún una clasificación completa. 
Esto se consiguió mediante la aplicación de un conjunto diverso de técnicas y 
conceptos: dualidades de cuerdas (por ejemplo, dualidad-T abeliana y no abeliana), 
estructura-G, soluciones de branas, etc. Tras esto, construimos las teorías de campos de
\textit{quivers} que viven en la configuración de branas subyacente; las branas son 
objetos no perturbativos que aparecen en teoría de supercuerdas. Estas configuraciones
de branas proveen una noción de dualidad entre la solución de supergravedad y la teoría
de campos. En nuestro caso, se espera que esta última fluya en el IR a una teoría 
conforme de campos (CFT). El último paso consiste en poner a prueba esta hipótesis 
calculando un observable llamado carga central de la teoría de campos y ver si coincide 
con aquella de la solución de supergravedad en el IR.

Esta tesis está dividida en dos partes distintas. En la parte I introducimos los 
ingredientes y conceptos principales que será clave para entender la tesis. Están 
relacionados con temas tales como teoría de cuerdas, supergravedad y holografía. La 
parte II está dedicada a la presentación de los resultados originales de esta tesis.

RESUMEN (en Inglés)

This thesis is focused on the study of the AdS/CFT correspondence. In particular, its 
main goal is to provide new evidence supporting the low-dimensional AdS2/SCQM and 
AdS3/CFT2 cases, which are not fully understood yet.

In order to achieve this goal, we built new AdS2 and AdS3 solutions to Type II 
supergravities, as a complete classification has not been obtained yet. This was done by 
applying a diverse set of techniques and concepts: string dualities (e.g. Abelian and non-
Abelian T-duality), G-structure, brane solutions, etc. We then built quiver field theories 
living in the underlying brane set-up, branes being non-perturbative objects that appear 
in superstring theory. These brane set-ups provide a notion of duality between the 
supergravity solution and the field theory. In our case the latter one is expected to flow in



                                                                
the IR to a conformal field theory (CFT). The final step is to trial this hypothesis by 
computing an observable called the central charge of the field theory and see if it 
coincides with that of the supergravity solution in the IR.

The thesis is divided in two distinct parts. In part I we introduce the main ingredients and 
concepts that are key to understand the thesis. They are related to such topics as string 
theory, supergravity and holography. Part II is devoted to presenting the original results 
of the thesis.
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mental para mi bienestar. Me refiero a la Asociación Juvenil y Cultural Inuit en general y
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Introduction

One of the most sought-after goals in modern theoretical physics is to come up with
a simple and elegant theory that describes all physical phenomena, i.e. a Theory Of
Everything. The most seriously considered candidate for a Theory Of Everything since the
nineties is no other than string theory. However, the expectations and interest surrounding
it have notably waned due to its multiple issues (lack of experimental evidence, an order
of 10500 vacua and no way to tell the “real” one apart from the others...). Nevertheless,
its importance as driving force for the development of theoretical physics can’t be denied,
as we review below. This fact along with its influence in our original work, which deals
with supergravity solutions and the holographic duality, should be enough motivation to
justify the following historical summary of the born and development of string theory
and supergravity, as its low-energy limit. This introduction will also serve the purpose of
presenting some of the key concepts that will be further discussed through the thesis.

String theory was born in the sixties in the context of strong interactions, when a
quantum theory describing them was yet to be found. As a result of Veneziano’s work on
hadronic amplitudes [1], it was realised that the underlying theory contained an infinite
number of massive particles in its spectrum, unlike any known QFT at the moment.

In order to better explain this spectrum Nambu [2] and Goto [3] developed in 1970
the model we now call the bosonic string. Around a year after Nambu’s original paper,
Ramond [4] and, independently, Neveu and Schwarz [5] proposed the superstring action.
This new action incorporated fermions to the bosonic strings and displayed supersymmetry
related to the interchanging of both kinds of fields. However, various theoretical obstacles
appear when it comes to using one of these string theories to describe the strong nuclear
force:

1. Consistency at the quantum level fixes the spacetime dimensionD. More specifically,
D = 26 for the bosonic string and D = 10 for the superstring. In both cases, we
seem to obtain unrealistic spacetimes, far from our 4d universe.

2. The spectrum of particles is fixed. Apart from the infinite tower of massive string
modes, it also contains a massless spin 2 particle and a tachyon (a particle with imag-
inary mass). The latter one present both theoretical and experimental problems as
its presence violates causality and such behaviour lacks any empirical confirmation.

In the 70s, string theory was discarded as a theory for the strong interaction. The two
main reasons that justify this are the new experimental high-energy results, which didn’t
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INTRODUCTION

exactly fit the Virasoro amplitudes, and the formulation of QCD, which was regarded as
a superior candidate for the description of this fundamental force. However, this doesn’t
mean that string theory fell into oblivion. On the contrary, the interpretation of the
aforementioned spin 2 particle as a graviton led to the conclusion that string theory was
actually a theory of quantum gravity.

In 1976, Gliozzi, Scherk and Olive proposed the so-called GSO projection [6], which
removed the tachyon from the spectrum and imposed spacetime supersymmetry. It is
important to remark that this procedure applies to superstring theories, but not to the
bosonic string due to its absence of supersymmetry. In the seventies, in parallel to the
development of string theory, the notions of supersymmetry and its gauged version, su-
pergravity, were also researched in detail.

In 1981 Polyakov used the path integral formulation to quantise string theory [7].
He used a linear action which was equivalent at the classical level to the non-linear one
presented by Nambu and Goto [2, 3]. In the early years of that decade three different
superstring theories were formulated. Two of them are theories of closed superstrings
preserving N = 2 supersymmetry in ten dimensions, known as Type IIA and Type IIB.
Their main difference is that Type IIA presents two spinors of opposite chirality, i.e. N =
(1, 1) supersymmetry, while Type IIB is a chiral theory with N = (2, 0) supersymmetry.
The remaining one is an N = 1 theory of open and closed strings which also presents
gauge symmetry called Type I. In 1984, the proof by Green and Schwarz that the theories
were anomaly-free [8] triggered what we now know as the first superstring revolution.

In 1985, two N = 1 closed string theories where formulated by Gross, Harvey, Mar-
tinec and Rohm [9], which were called Heterotic strings. These string theories are built by
considering that the left- and right-moving modes are completely decoupled in such a way
that the former ones behave like D = 26 bosonic strings while the latter ones are treated
as D = 10 superstrings. These theories also display gauge symmetry. However, the mod-
ular invariance of their one-loop partition functions restricts the possible gauge groups to
either SO(32) or E8×E8, hence the two Heterotic theories. These two groups are also the
only possible ones for which the conditions for anomaly cancellation are satisfied. Both
Type I and Heterotic string theories represent a clear advantage when compared with the
closed string theories. Type II string theories lacked a way of obtaining a non-Abelian
group at the perturbative level, meaning that the SU(3)×SU(2)×U(1) gauge group that
underlies the Standard Model could not be recovered. This is no longer a problem for the
Type I and Heterotic string theories due to the intrinsic presence of gauge groups, being
E8 × E8 the one that better fulfils this purpose.

In order to avoid the remaining obstacle of superstring theory, namely the high space-
time dimension, we have to reduce from 10d to 4d. This is usually achieved via a Kaluza-
Klein dimensional compactification. For this purpose, we consider that the spacetime
manifold can be written as M4×K6, where M4 is a 4d spacetime and K6 is a 6d compact
manifold. Under the assumption that K6 is small enough, we can impose that the physical
fields do not depend on the corresponding coordinates and so the 10d and the 4d theories
are related. The idea of increasing the spacetime dimension in order to attain a clearer
interpretation of a theory was originally introduced by Kaluza and Klein [10,11].

2



HOLOGRAPHIC DUALITY, THEORY OF DEFECTS AND BLACK HOLES

There is an important issue we must address: although we are looking for a unique
theory, it doesn’t seem the case. On one hand, there are five perfectly consistent super-
string theories, but only one of them should be the right one. What makes it special?
And why is that the one that actually describes our universe? On the other hand, the way
in which one compactifies is not fixed. On the contrary, the number of string vacua (the
so-called string landscape) is often estimated to be of order 10500 in the literature.

Important breakthroughs in this regard where made in the eighties when the concept
of duality became popular. T-duality was first noticed by Kikkawa and Yamasaki in the
context of toroidal string compactifications. They proved in 1984 that a string theory
with a circle direction of radius R was related to a different one with radius 1/R [12].
The study of this duality, along with the works of other scientists like Sen [13], Schwarz
[14], Vafa [15] and Witten [16] tracing connections between the superstring theories, was
key to motivate the conjecture that stated that all 10d superstring theories are different
descriptions of the same theory. This was also the birth of M-theory, which underlies the
ten-dimensional superstring theories and whose low-energy limit is 11d supergravity. These
events rekindled the interest in string theory, sparking the so-called second superstring
revolution (1994-1995).

The next big step in the development of string theory was holography. In 1997
Maldacena conjectured that various anti-de Sitter (AdS) string theory backgrounds were
related to dual conformal field theories (CFT) living in the boundary of the AdS [17].
A key concept to understand this duality are branes, which are non-perturbative string
theoretical objects that generalise the concept of string and its magnetic dual, the NS5-
brane. In particular, Dirichlet branes or D-branes are of special interest in the context of
holography. They were first introduced in 1989 by Dai, Leigh and Polchinski, when they
noticed that T-duality interchanges Neumann and Dirichlet boundary conditions for open
strings [18]. The locus of Dirichlet boundary conditions was shown to be the dynamical and
non-perturbative object we now call D-brane, or Dp-brane when the spacial dimension p
needs to be emphasised. In the context of holography, Maldacena first stated his conjecture
for D3-branes [17], based on which an AdS5 solution of Type IIB supergravity was proposed
to be holographically dual to four-dimensional CFT, namely 4d N = 4 Super Yang-Mills.
This is particularly relevant because it provided a new path to study a four-dimensional
theory, moreover in the strongly-coupled regime. The exploration and applications of this
so-called AdS/CFT conjecture has constituted a very active line of research in the last
couple of decades. It is quite prominent its application to the study of strongly-coupled
quantum systems (the quark-gluon plasma in QCD, phase transitions, etc). The AdS/CFT
correspondence has been also quite useful in the resolution of the black hole information
paradox: AdS black holes (those living in a universe with a negative cosmological constant)
are holographically dual to a configuration of particles on the conformal boundary of Anti-
de Sitter space, which allows to compute the entropy of the black hole by counting the
number of microstates of this other system on the boundary.

The AdS3 and AdS2 cases and their holographic duals are of special interest because
of the role they play as horizons of black objects in supergravity [19]. In spite of all
the steps taken towards understanding the lower-dimensional AdS holography, we still
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INTRODUCTION

lack a complete and consistent string theory description. On the supergravity side, the
classification of AdS2 and AdS3 solutions is still under development. For instance, one can
check [20–52] for a non-exhaustive list of references. The underlying brane description of
these solutions, key to the study of their CFT interpretation, becomes more complicated
as the dimensionality of the internal space increases, due to the richer structure of the
possible geometries and fluxes. An interesting interpretation of these low-dimensional
AdS backgrounds is as holographic duals to defect CFTs living in higher-dimensional ones
(see, for example, [23, 27, 34, 43, 46, 47, 53–59]). These defect theories are associated to a
system of defect branes localised within a bound state of background branes, where the
higher-dimensional CFT lives. A clue that this interpretation may be possible is when
a low-dimensional AdS solution flows asymptotically locally to a higher dimensional one,
containing extra fluxes. In such cases the holographic free energy (or central charge)
diverges, which is interpreted as the need for UV completion into higher dimensions.

The AdS2/CFT1 case is particularly challenging. The boundary of AdS2 is not con-
nected so it is not quite clear where the dual CFT should live. There is also an issue with
the interpretation of the central charge of the dual superconformal quantum mechanics
(SCQM). Namely, as the trace of the energy-stress tensor of a conformal field theory must
vanish, this implies that the energy of any SCQM equals zero and there are no finite
energy excitations [60–64]. Thus, applying the AdS2/CFT1 correspondence in the micro-
scopic study of black holes is not straightforward at all and some alternatives have being
explored.

This thesis is divided in two distinct parts. In part I, we review the basic concepts
regarding string theory, supergravity and holography. The intention behind this first part
is to make the thesis more or less self-contained, providing the reader with the necessary
tools to understand the rest of the thesis. We start in chapter 1 by introducing the main
concepts related to string theory: the string actions and their boundary conditions, the di-
mensional reduction technique, supergravity as the low-dimensional limit of string theory
and the string dualities. Then in chapter 2 we introduce supergravity as a gauged version
of supersymmetry, review the simplest solutions of Type IIA/B and eleven-dimensional
supergravity and conclude by exploring the notion of G-structure and its relation to super-
symmetry. In chapter 3, we explore the concept of holography: we start with the original
AdS5/CFT4 correspondence and then give an additional example of the AdS3/CFT2 case,
which is particularly interesting for us, as it is related to our research. Finally, we review
the Hanany-Witten brane set-ups and the quiver field theories one can construct in them
in chapter 4.

We then present the original work in part II, where we explain the most relevant
results that appear in [65–68]. In general terms, we have contributed not only to the
classification of AdS2 and AdS3 solutions to Type IIA/B supergravities, but also to the
study of the AdS/CFT correspondence for these cases. We remark the importance of the
AdS geometries as horizons of black holes and strings. The AdS2 and AdS3 vacua are
particularly interesting, as they are known to describe the horizons of extremal 4d and
5d black holes, respectively. Holography then provides a way of counting the number of
microstates of these black objects and, therefore, of computing their Bekenstein-Hawking
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entropy. As for the dual field theories, we have been interested in giving a defect inter-
pretation when possible. Defects consist on insertions of operators in higher-dimensional
field theories.

For an outline of our original results, one can consult chapter 5. Chapter 6 is devoted
to the AdS3/CFT2 correspondence. In particular, in section 6.1 we explore a new class
of AdS3 solutions to massive Type IIA supergravity. Sections 6.2-6.4 are dedicated to
presenting the dual field theories of different subclasses within the aforementioned family
of solutions. On the other hand, chapter 7 is dedicated to our results on AdS2/SCQM
holography. Here we present the new AdS2 solutions to Type IIA/B supergravity we
found, as well as their field theory interpretation whenever it was possible and relevant.
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Chapter 1

String Theory

In this first chapter, we provide a general introduction to string theory as well as a
motivation to why we should consider strings as the fundamental objects that underlie
all the elementary particles. Thus, in section 1.1 we present the most explored string
actions and outline their most relevant features. Then we introduce the notion that string
theory at low energies becomes supergravity in section 1.3. Section 1.4 is dedicated to the
relations connecting the various string theories, also known as dualities.

The chapter itself is bibliographical in nature and heavily based on [69–74] so those
are the sources we recommend for further details on the topic at hand.

1.1. String dynamics

All through this section, we will consider a D-dimensional manifold of signature
(D − 1, 1) and denote its metric by gMN . A classical point particle describes a worldline
in spacetime when we let it evolve in time. Thus, the action describing the dynamics of
the point particle is naturally proportional to the length of the worldline,

Sparticle = m

∫ τ1

τ0

dτ

√
−gMN(τ,XK(τ))ẊM(τ)ẊN(τ) , (1.1)

where m is the mass of the particle, τ its proper time, XM(τ) its spacetime coordinates
and ẊM(τ) its proper velocity.

When we go one step further and substitute the particle with a one-dimensional
string, we observe that it sweeps a two-dimensional surface in spacetime called worldsheet.
We will denote it by Σ and its coordinates by σi = (τ, σ). Analogously to the particle
case, the path chosen by the string should be extremal in the area of the worldsheet. Such
dynamics are encapsulated by the Nambu-Goto action [2, 3],

SNG = T

∫
Σ

d2σ
√
|det(gMN(τ,XK(σk))∂iXM(σl)∂jXN(σm))| , (1.2)

where the string tension T makes the action dimensionless. For reasons that will be
discussed later and to distinguish between different cases, we call this one-dimensional
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CHAPTER 1. STRING THEORY

object a bosonic string. As the XM(σi) depend on the worldsheet coordinates, they can be
interpreted as a set of D dynamical scalar fields living on it. The spacetime parametrised
by these fields is usually referred to as target space.

We also have the Polyakov action, which is completely equivalent to (1.2), but it is
easier to quantise as the velocity is not enclosed within a square root,

SP =
T

2

∫
Σ

d2σ
√
|h|hij∂iXM∂jX

NgMN . (1.3)

We have denoted by hij the worldsheet metric and h the determinant of said metric. The
metric on the worldsheet hij is an independent but non-dynamical variable and, as we will
see, it can be completely gauged away with the aid of the symmetries of (1.3). One of
these symmetries is invariance under local two-dimensional reparametrisation, i.e. under

(τ, σ) → f(τ, σ) = (f1(τ, σ), f2(τ, σ)) , (1.4)

where f is a diffeomorphism. The action (1.3) is also invariant under general transfor-
mations of the D-dimensional spacetime coordinates. It is also symmetric under Weyl
transformations given by

hij → eΛ(σ
i)hij . (1.5)

This invariance can be justified as follows. Let hij be the metric of an n-dimensional
manifold, then under the transformation (1.5) we have that

√
−h→

√
−enΛ(σi)h = e

n
2
Λ(σi)

√
−h , hij → e−Λ(σi)hij (1.6)

and, therefore √
−hhij → exp

{(n
2
− 1
)
Λ(σi)

}√
−h , (1.7)

where the exponential equals 1 if and only if n = 2.
The stress-energy tensor is proportional to the variational derivative of (1.3) with

respect to the metric,

Tij =
2

T

1√
|h|

δS

δhij
= ∂iX

M∂jXM − 1

2
hijh

kl∂kX
M∂lXM . (1.8)

The infinitesimal version of the Weyl invariance implies that, if we consider a variation of
the two-dimensional metric of the form

δhij = vhij , (1.9)

then the variation of the action vanishes,

0 = δSP =

∫
δSP
δhij

δhij =

∫
δSP
δhij

vhij
(1.8)
= −T

2

∫ √
|h|vT ii . (1.10)

This implies that the stress-energy tensor is traceless, even without the requirement of
the equations of motion. In the case we do consider a solution of said equations, the
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corresponding stress-energy tensor must be null as the equation of motion for the metric
is δS/δhij = 0. Therefore, the vanishing of (1.8) tells us that

∂iX
M∂jX

N =
1

2
hijh

kl∂kX
M∂lX

N (1.11)

and taking the square root of the determinant of both sides of this matrix equation, we
have √

|det(∂iXM∂jXN)| = 1

2

√
|h|hkl∂kXM∂lX

N , (1.12)

which proves the equivalence between the actions (1.2) and (1.3).
Now let us use the invariance under (1.4) and (1.5) to choose an appropriate gauge

which simplifies the action (1.3). First, the reparametrisation invariance lets us consider
the following local expression for the metric,

hij = Ω(σi)ηij . (1.13)

Then we can also drop the Ω(σi) factor due to the Weyl invariance. For obvious reasons,
this choice of the metric receives the name of conformal gauge. The resulting action is
that of a free string,

SP =
T

2

∫
Σ

d2σ ηij∂iX
M∂jXM . (1.14)

In this gauge, the equations of motion for the string boil down to the following,

(∂2τ − ∂2σ)X
M = 0 . (1.15)

The general solution of the 2d wave equation can be written in terms of two arbitrary
functions,

XM(τ, σ) = XM
− (τ − σ) +XM

+ (τ + σ) , (1.16)

where XM
− (τ − σ) and XM

+ (τ + σ) are the right- and left-moving modes of the string,
respectively. In order to determine these functions, we must impose boundary conditions
on the endpoints of the string. In particular, we must differentiate between two topological
inequivalent cases: open and closed strings.

The closed string is a loop and, as such, has no free ends. It must satisfy a periodicity
condition for consistency,

XM(τ, σ + 2π) = XM(τ, σ) . (1.17)

The most general solution of (1.15) compatible with (1.17) is described by the following
modes,

XM
− (τ − σ) =

xM

2
+

pM−
4πT

(τ − σ) +
i√
4πT

∑
n̸=0

αMn
n
e−in(τ−σ) ,

XM
+ (τ + σ) =

xM

2
+

pM+
4πT

(τ + σ) +
i√
4πT

∑
n̸=0

α̃Mn
n
e−in(τ+σ) .

(1.18)
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We have that αMk and α̃Mn are arbitrary Fourier coefficients which modulate the different
oscillation modes. We observe that condition (1.17) imposes that

pM− = pM+ ≡ pM . (1.19)

Thus, xM and pM± can be interpreted as the centre of mass of the string and its linear
momentum. Besides, the reality of XM(τ, σ) implies that the Fourier coefficients are
constrained by the following conditions,

(αMn )∗ = αM−n and (α̃Mn )∗ = α̃M−n . (1.20)

Let us now consider the case of open strings. The Fourier expansion given by (1.16)
and (1.18) is still valid, but now we take the space coordinate to satisfy σ ∈ [0, π]. Never-
theless, the periodicity constrain (1.17) is not present this time so we must look for another
reasonable boundary condition. Let us consider the evolution of the string between an
initial time τi and a final time τf . This can be achieved by varying (1.14) and taking
δXM = 0 at τi and τf ,

δSP =T

∫ τf

τi

dτ

∫ π

0

dσ ηij∂iX
M∂jδXM =

=− T

∫ τf

τi

dτ

∫ π

0

dσ δXMηij∂i∂jXM + T

∫ τf

τi

dτ

∫ π

0

dσ ∂i[η
ijδXM∂jXM ] .

(1.21)

The first term of the last line gives rise to (1.15), while the second one is a total derivative
term and we want it to vanish. If we expand and integrate it, we arrive at the following,

T

∫ τf

τi

dτ

∫ π

0

dσ ∂i[η
ijδXM∂jXM ] =

=− T

[∫ π

0

dσ XM∂τδXM

]τf
τi

+ T

[∫ τf

τi

dτ δXM∂σXM

]π
0

.

(1.22)

Of these two terms we obtained, the first is the typical one that appears when the equations
of motion are computed via the principle of least action. It vanishes due to the fixing of
the endpoints, δXM = 0, at τi and τf . Nevertheless, the other term is not trivially equal to
zero, but imposes a new constraint. Consequently, we will consider the following condition,

δXM∂σXM = 0 at σ = 0 , π . (1.23)

There are two ways of meeting this equation:

Neumann boundary conditions impose the vanishing of the normal derivative of the
endpoints of the string,

∂σXM = 0 at σ = 0 , π . (1.24)

As δXM is unconstrained under these boundary conditions, the endpoints of the
string move freely.
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Dirichlet boundary conditions, on the other hand, fix the endpoints of the string,

δXM = 0 at σ = 0 , π ⇐⇒ XM = CM at σ = 0 , π (1.25)

for a certain constant vector CM . The fact that CM is the same for both ends of the
string is a consequence of the Fourier expansions (1.16) and (1.18).

The Dirichlet boundary conditions may seem a bit strange at first glance as there is, in
principle, no reason why the endpoints of the string should be fixed in space. What are
they fixed to? In order to shed some light on this conundrum, let us impose Neumann
boundary conditions to p+1 coordinates including the time direction X0 and Dirichlet to
the remaining D − p − 1. This constrains the endpoints of the string to lie on a (p + 1)-
dimensional manifold in spacetime, which is called a Dirichlet brane or D-brane. When
one wants to specify the number of tangent space dimensions p, we refer to them as Dp-
branes instead. This new kind of objects turns out to be dynamical and highly relevant
both in non-perturbative string theory and as supergravity solutions.

The Fourier expansion of the right- and left-moving modes is once again described by
(1.18), but now we have different constraints. The Neumann boundary conditions (1.24)
impose that

pM+ = pM− ≡ pM , αMn = α̃Mn , (1.26)

while the Dirichlet boundary conditions (1.25) imply the following restrictions,

xM = CM , pM+ = −pM− , αMn = −α̃Mn . (1.27)

For both boundary conditions, we only have a set of Fourier coefficients, for instance αMn ,
as the other set is fully determined by the boundary conditions. Thus, for the Neumann
and Dirichlet boundary conditions the Fourier expansion in target space turns out to be,
respectively,

XM
N (τ, σ) =xM +

pM

2πT
τ +

i√
πT

∑
n̸=0

αMn
n
e−inτ cos(nσ) ,

XM
D (τ, σ) =CM − 1√

πT

∑
n̸=0

αMn
n
e−inτ sin(nσ) .

(1.28)

The next step in this discussion would be to promote the classical string theory to a
quantum one. By doing this, we could compute the string spectrum, scattering amplitudes,
etc. However, we will skip those details as this thesis is supergravity-oriented, meaning
that none of this more quantum-related aspects of string theory will be necessary to
understand the original results presented in part II. Nonetheless, we must take into account
that the bosonic string can only be consistently quantised in D = 26 dimensions. A
quick justification of this fact is that Lorentz invariance requires all the string states to
be massless and that only happens at that dimension. This is quite remarkable as the
spacetime dimension is a free parameter of most theories (classical or quantum). It also
raises the question of how this theory can be related to the 4d universe we live in.
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We observe that the spectrum of the quantum bosonic string suffers of two critical
problems. The first one is that it contains a tachyon, which renders the vacua unstable.
The other one is that it lacks fermions, which should appear in any realistic description
of our world. A way of hitting these two birds with the same stone is by considering a
supersymmetric extension of the bosonic string theory. The simplest way in which this
can be achieved is by adding free fermions as additional internal degrees of freedom that
propagate along the string. We are left with the decision of whether these fermions are
Dirac or Majorana. One interesting option consists on taking D Majorana fermions ψM

transforming in the vectors representation of SO(D− 1, 1). Applying these considerations
to the Polyakov action in the conformal gauge (1.14), one obtains a new action,

S =
T

2

∫
Σ

d2σ
[
∂iXM∂iXM − iψ̄Mρi∂iψM

]
, (1.29)

where ρi are the two-dimensional Dirac matrices and ψ̄ = ψ†ρ0. A convenient choice of
basis is depicted below,

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
(1.30)

and satisfy the anti commutation relation

{ρi, ρj} = −2ηij . (1.31)

In this basis, the spinors are decomposed in the left- and right-moving fermionic modes,

ψM =

(
ψM+
ψM−

)
. (1.32)

The Dirac matrices have being chosen to be imaginary so that the Dirac operator iρi∂i is
real. Thus, it seems reasonable to impose that the ψM± are real-valued, i.e. the spinor is
Majorana.

The action (1.29) is invariant under the following infinitesimal transformations,

δXM = ϵ̄ψM , δψM = −iρi∂iXMϵ , (1.33)

where ϵ is a constant Majorana spinor. As (1.33) interchanges the bosonic and fermionic
coordinates, we say they are supersymmetry transformations. Because of this, the object
underlying (1.29) receives the name of superstring. We observe that if ϵ is not a constant
in (1.33), then the action is not left invariant, but its variation takes the following form,

δS = T

∫
Σ

d2σ(∂iϵ̄)J
i + boundary term , (1.34)

where J i is the Noether current associated to the local supersymmetry transformation,
known as supercurrent,

J i = ∂jX
MρjρiψM . (1.35)
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As we have written the action (1.29) in the conformal gauge, some restrictions must be
satisfied. Apart from the conservation of the supercurrent, the stress-energy tensor must
vanish. The symmetrised version of said tensor is given below,

Tij =∂iX
M∂jXM − i

2
ψ̄Mρi∂jψM − i

2
ψ̄Mρj∂iψM − 1

2
ηij∂kX

M∂kXM+

+
i

2
ηijψ̄

Mρk∂kψM ,
(1.36)

which is traceless, as in the bosonic case.
As for the equations of motion, we get two decoupled PDEs. The one for the bosonic

fields is still (1.15), while the fermionic one reads

ρi∂iψ
M = 0 (1.37)

or, for the components (1.32) in the chosen basis, we have

(∂σ ± ∂τ )ψ
M
∓ = 0 . (1.38)

If we consider light cone coordinates

σ± = τ ± σ and ∂± = ∂τ ± ∂σ , (1.39)

we can rewrite equations (1.15) and (1.38) in a much more enlightening way,

∂±(∂∓X
M) = ∂±ψ

M
∓ = 0 . (1.40)

We observe that ∂±XM and ψM± are functions of σ± alone. Supersymmetry thus relates
these two solutions of the same equation.

The boundary conditions for the fermionic modes can be obtained in an analogous
way to the bosonic case. For the open string, they come once again from the vanishing
of the surface term that appears when the action is varied. Knowing that σ ∈ [0 , π], we
have the following

ψ̄Mρ1δψM = 0 at σ = 0 , π (1.41)

or, in components,
ψM+ δψ+M − ψM− δψ−M = 0 at σ = 0 , π . (1.42)

This last condition is satisfied if ψM+ = ±ψM− and δψM+ = ±δψM− at each end. As the
relative sign between ψ− and ψ+ is a matter of convention (not physics), we can set
ψM+ (τ, 0) = ψM− (τ, 0). Nevertheless, the boundary condition at the other end now becomes
relevant as a relative sign between both ends changes the solution. Thus, we have two
different sets of boundary conditions, which are the ones below:

We say that we are considering Ramond (R) boundary conditions when we impose
ψM+ (τ, π) = ψM− (τ, π). The mode expansion for (1.38) takes the following form,

ψM± (τ, σ) =
1√
2πT

∞∑
n=−∞

aMn e
−in(τ±σ) . (1.43)
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If we take ψM+ (τ, π) = −ψM− (τ, π), we say we are considering Neveu-Schwarz (NS)
boundary conditions. Now the solution reads

ψM± (τ, σ) =
1√
2πT

∞∑
n=−∞

ãMn e
−i(n+1/2)(τ±σ) . (1.44)

Upon quantisation, the spinor solutions satisfying Ramond (Neveu-Schwarz) boundary
conditions give rise to fermionic (bosonic) string modes in D-dimensional spacetime.

On the other hand, for closed strings, we can take σ ∈ [0 , 2π] and consider either
periodic or antiperiodic boundary conditions:

Periodic or Ramond (R) boundary conditions ψM± (τ, 0) = ψM± (τ, π) result in the
following solution

ψM± (τ, σ) =
1√
2πT

∞∑
n=−∞

bMn e
−n(τ±σ) . (1.45)

Antiperiodic or Neveu-Schwarz (NS) boundary conditions ψM± (τ, 0) = −ψM± (τ, π)
give rise to this other solution,

ψM± (τ, σ) =
1√
2πT

∞∑
n=−∞

b̃Mn e
−i(n+1/2)(τ±σ) . (1.46)

We observe that in the closed string case, the boundary condition satisfied by ψM+ is
independent from that met by ψM− and there are two options for both cases. Therefore, we
end up with four combinations of boundary conditions, namely R-R, R-NS, NS-R, NS-NS.
The first and last of these conditions correspond to bosonic string states, while the other
ones manifest as fermionic.

For consistency at the quantum level, the spacetime dimension must be D = 10. This
is closer to our 4d world than theD = 26 we have in the purely bosonic case, although there
are still six extra dimensions. As we will further explain in the next section, the first step
to relate ten-dimensional string theory with lower-dimensional ones is to use a dimensional
reduction tool called the Kaluza-Klein compactification. Another advantage with respect
to the bosonic case is that, although tachyons are still present in the spectrum, we can
remove them using the so-called GSO projection [6]. This is a very specific truncation of
the spectrum which provides 10d supersymmetry.

We conclude the section by noticing that worldsheet supersymmetry induces super-
symmetry in the D-dimensional spacetime. In particular, open strings display N = 1
supersymmetry in the D-dimensional sense and closed strings, N = 2. The way in which
the supersymmetry is realised gives rise to five (and no more) consistent superstring the-
ories. The massless bosonic modes of these theories include the 10-dimensional metric
gMN and a scalar Φ called the dilaton. These fields are part of the so-called NSNS sector,
as the associated fields come from closed strings satisfying double antiperiodic boundary
conditions (1.46). In all superstring theories except for Type I, this sector also includes
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a gauge potential given by a 2-form B2. Each theory also presents a specific extra set of
massless bosonic fields. The particularities of each theory are discussed below,

Type I is an N = 1 theory of unoriented open strings. It also contains closed
strings as they can be the result of the interaction of two open ones. The strings
can be charged under a certain massless Yang-Mills field, whose group is fixed to be
SO(32) for anomaly cancellation. The boundary conditions for open strings reduce
the supersymmetry from N = 2 to N = 1, which corresponds to 16 preserved
supercharges. Apart form the metric and dilaton, this theory contains a massless
gauge potential in the adjoint representation of the SO(32) group as well as a 2-form
gauge potential C2.

Type II string theories only contain oriented closed strings and present N = 2
supersymmetry, thus preserving 32 supercharges. There are two Type II string
theories, called Type IIA and Type IIB. The main difference between them is that,
while the supercharges in Type IIA are of opposite chirality, those of IIB are of the
same chirality. The extra massless bosonic excitations give rise to the RR sector,
corresponding to double periodic boundary conditions (see (1.43) and (1.45)). This
sector consists of a set of p-form gauge potentials Cp, which combines with the B2

to produce gauge-invariant objects called RR fluxes Fq. In the case of Type IIA,
p = 1, 3, while for Type IIB, p = 0, 2, 4. In the latter case, we have an extra condition
F5 = ⋆F5, where ⋆ is the Hodge dual in 10-dimensional spacetime. We remark that
there is a deformation of Type IIA, called massive Type IIA string theory, which
includes a so-called Romans mass m, which is a constant F0.

The heterotic string theories only contain closed strings. They are built on the fact
that left- and right-moving modes evolve independently for closed strings. Thus, it is
considered that the left-moving sector is that of a purely bosonic string propagating
in D = 26 dimensions, while the right-moving one is that of a superstring in D = 10.
For consistency, the mismatch of 16 dimensions between the two sets of modes must
be appropriately compactified on an even, self-dual lattice. There are only two of
those, giving rise to two possible gauge groups, namely SO(32) and E8 × E8. The
gauge potentials associated to said groups are the only other massless bosonic modes
present in these theories. As Type I, the heterotic string theories are also N = 1
supersymmetric.

Although superstring theory is only consistent in 10 dimensions, an underlying 11d theory
called M-theory has being a matter of debate for the past few decades. Although we lack
a complete formulation of M-theory, it is defined by saying that it is the UV completion
of 11d supergravity. The low-energy limit of these 10d and 11d theories will be explored
in section 1.3, but let us review the dimensional reduction mechanism first.
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1.2. Dimensional reduction

In this section we present the notion of Kaluza-Klein compactification in the context
of string theory. We consider a spacetime of dimension D = d+1, which we denote M1,d.
In order to illustrate the idea behind the dimensional reduction, we present the example
in which we can write M1,d = M1,d−1 × S1

R, where S
1
R is a circle of radius R. The D-

dimensional coordinates are denoted by XM = (Xµ, Xd), where µ = 0 , . . . , d− 1 and Xd

corresponds to the S1
R and satisfies a periodic condition,

Xd + 2πR ≃ Xd . (1.47)

We think of a closed string parametrised as XM(τ, σ) = (Xµ(τ, σ), Xd(τ, σ)). We will
consider, as in the previous section, that we are in the conformal gauge so the metric is
ηMN . The mode expansion of the bosonic fields XM is still given by (1.16) and (1.18) so
we can write

XM(τ, σ) =xM +
pM

2πT
τ +

pM+ − pM−
4πT

σ +
i√
4πT

∑
n̸=0

e−inτ

n
(αMn e

inσ + α̃Mn e
−inσ) , (1.48)

where we have defined

pM =
pM+ + pM−

2
. (1.49)

Imposing the periodicity condition (1.17) on the Xµ coordinates leads us to pµ− = pµ+.
However, this condition may not be met for the circle coordinate Xd as there may be
winding modes, namely

Xd(τ, σ + 2π) = Xd(τ, σ) + 2πwR with w ∈ Z . (1.50)

The winding number w is the number of times the string is wrapped around the circle and
its sign depends on the orientation of the string. Thus, now the linear momenta of the
two modes satisfy a more general condition,

pd+ − pd−
4πT

= wR . (1.51)

The classical string Hamiltonian in light cone coordinates is given by the following expres-
sion,

H =
1

2πT
pipi +

1

2

∞∑
n=−∞

(
αi−nαni − α̃i−nα̃ni

)
, (1.52)

where i = 2, 3, . . ., d. Upon quantisation, the previous Hamiltonian must be modified in
order to contain the following normal-ordered variables,

N⊥ =
∞∑
n=1

: αi−nαni : , Ñ⊥ =
∞∑
n=1

: α̃i−nα̃ni : , (1.53)
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which satisfy the matching condition associated to the periodicity condition (1.51),

Ñ⊥ −N⊥ = nw . (1.54)

This along with (1.49) gives rise to the Hamiltonian below,

H =
1

2πT

[
papa +

(
pd+ − pd−

)2
4

+
(
pd
)2]

+
(
N⊥ + Ñ⊥ − 2

)
. (1.55)

where a = 2, 3, . . ., d − 1. For the previous computation, we have implicitly taken light
cone coordinates in the d-dimensional manifold,

X± =
1√
2

(
X0 ±X1

)
and Xa with i = 2 , . . . , d− 1 . (1.56)

In these coordinates, the spacetime metric is given by

η++ = η−− = 0 , η+− = η−+ = −1 , ηij = δij (1.57)

and the mass of the d-dimensional string states can be computed as follows,

(Md)
2 = −pµpµ = 2p+p− − papa =

(
pd+ − pd−

)2
4

+
(
pd
)2

+ 2πT
(
N⊥ + Ñ⊥ − 2

)
, (1.58)

where we have used that

p− = T

∫ π

0

dσ∂τX
− = 2πT

H

p+
. (1.59)

The mass of states with no excited oscillators, i.e. N⊥ + Ñ⊥ − 2 = 0, is given by the
following expression,

(Mn,w)
2 =

( n
R

)2
+

(
wR

2πT

)2

, (1.60)

where we have picked

pd =
n

R
. (1.61)

The reason why this is the most reasonable choice comes from the scalar field case. If
we consider a massless scalar field Φ which lives on our D-dimensional spacetime, the
periodicity of the Xd lets us write it as a Fourier series,

Φ(XM) =
∞∑

n=−∞
ϕ(Xµ)ei

n
R
Xd

(1.62)

Also the n/R factor comes from dividing 2πn by the length of the circumference 2πR and
it plays the role of pd. The field must satisfy a massless Klein-Gordon equation,

0 = ∂M∂
MΦ =

(
∂µ∂

µ + ∂2d
)
Φ . (1.63)
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Applying this equation to (1.62), we obtain an equation for the modes,[
∂µ∂

µ −
( n
R

)2]
ϕn = 0 , (1.64)

which is the Kaluza-Klein equation for a d-dimensional field of mass

Mn =
n

R
. (1.65)

This infinite tower of massive states is a simplified version of what we had for a closed
string (1.60). The only difference is that in this case we have no winding number.

We conclude this section by noticing that similar constructions can be done in the case
where the circle is substituted by a higher-dimensional compact manifold. For instance, we
could considerM1,25 = M1,3×K22 in the bosonic string case andM1,9 = M1,3×K6 in the
superstring case for certain compact manifolds K22 and K6 of the appropriate dimensions.

1.3. The low-energy limit

We are interested in exploring the low-energy particle limit of the string theories.
In order to pursue this goal, we start by writing the most general action for a bosonic
string with up to two worldsheet derivatives. This is the following non-linear sigma-model
action,

SD =
1

4πα′

∫
Σ

d2σ
[(√

|h|gMN(X)hij + (B2)MN(X)ϵij
)
∂iX

M∂jX
N+

+
α′

2

√
|h|ϕ(X)R(2)(h)

]
,

(1.66)

which describes the evolution of scalar fields XM on a worldsheet parametrised by σi =
(τ, σ) or, alternatively, the dynamics of a string embedded in the so-called D-dimensional
target space described by the XM coordinates. It contains the action (1.3), but also
includes the 2-form potential B2 and dilaton ϕ which appear naturally in superstring
theories. The coefficientR(2)(h) that multiplies the dilaton is the 2d Ricci scalar associated
to hij and ϵ

ij is the 2d Levi-Civita symbol. One final remark, the string tension T is absent
in the action because we have defined the so-called Regge slope parameter

α′ =
1

2πT
= l2s , (1.67)

which has units of (length)2 and thus introduces a fundamental length scale, namely the
string scale ls ≡

√
α′. If we see string theory as a 2d field theory living in the worldsheet,

α′ codifies the strength of the interactions of the fields XM . Thus, an expansion in α′

provides quantum corrections whenever they are required.
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We observe that, although the first two terms in (1.66) are Weyl invariant, it is not
the case for the coupling of the dilaton. However, there is a case where this coupling is
Weyl invariant at the classical level. This happens when the dilaton is a constant

ϕ = ϕ0 . (1.68)

In this case, the last term in the action is purely topological because it turns out to be

1

4π

∫
Σ

d2σ
√

|h|ϕ0

2
R(2)(h) =

ϕ0

2

[
1

4π

∫
Σ

d2σ
√

|h|R(2)(h)

]
=
ϕ0

2
χ(Σ) , (1.69)

where χ(Σ) is the Euler characteristic of the worldsheet. This result seems to suggest that
a genus expansion over the worldsheets may be useful. Indeed, equation (1.69) shows that
the constant mode of the dilaton fixes the so-called string coupling constant,

gs = eϕ0 , (1.70)

which encodes the strength of the string interactions and appears in the perturbative
expansions of string theory. Moreover, as the dilatonic term of the action (1.66) is purely
topological for a constant dilaton, this implies that an expansion in gs is a genus expansion,
where the different topologies of the worldsheets are considered. The usual choice for ϕ0

is simply

ϕ0 = lim
X→∞

ϕ(X) . (1.71)

However, action (1.66) is not Weyl-invariant in general at the classical level. If we want to
circumvent this issue at the quantum level, the coupling constants gMN , BMN and ϕ must
be invariant under the Weyl transformation. In other words, their corresponding beta-
functions must vanish. Among other things, this provides that the energy-momentum
tensor becomes traceless. Without entering into detail, it is possible to compute said
beta-functions as a perturbative series in α′, their lowest-order being as below [75],

β(g)MN =RMN + 2∇M∂Nϕ− 1

4
(H3)M

PQ(H3)NPQ +O(α′) ,

β(B)MN =
e2ϕ

2
∇L
(
e−2ϕ(H3)LMN

)
+O(α′) ,

β(ϕ) =
D − 26

6
+
α′

2

(
−R + 4(∂ϕ)2 − 4∇2ϕ+

H2
3

12

)
+O(α′2) ,

(1.72)

where RMN and R are the D-dimensional Ricci tensor and scalar, respectively, and we
have defined

H3 = dB2 . (1.73)

We have also used the following compact notations

H2
3 = HKMNHKMN , (∂ϕ)2 = ∂Mϕ∂

Mϕ . (1.74)

21



CHAPTER 1. STRING THEORY

The difference in order between β(ϕ) and the other two beta-functions comes from the
fact that the dilatonic term in (1.66) is multiplied by α′, therefore, different orders are
required in order for the trace of the energy-momentum tensor to be zero. The vanishing
of the considered terms of these beta-functions yields a set of PDEs which constrain the
massless string states. Surprisingly, these are a deformation of the Einstein equations that
includes the string theoretical fields Φ and B2. This is highly relevant, as it shows that
(super)gravity arises in the low-energy limit of (super)string theory. Concretely, (1.72) are
the Euler-Lagrange equations of the D-dimensional Einstein-Hilbert action below,

S =
1

2κ20

∫
dDx

√
|g|e−2ϕ

(
−(D − 26)

3α′ +R + 4(∂ϕ)2 − H2
3

12

)
. (1.75)

The first term in the action equals zero at the critical dimension D = 26, which reinforces
the idea that (1.75) is the low-energy limit (α′ → 0) of bosonic string theory. The κ0
constant is not fixed by the equations of motion and it scales as κ0 ∼ l24s = α′12. In order
to relate κ0 with the D-dimensional gravitational coupling constant κD, we redefine the
dilaton so it has a vanishing expectation value,

eΦ ≡ eϕ

gs
. (1.76)

The action now reads

S =
1

2κ2D

∫
dDx

√
|g|e−2ϕ

(
−(D − 26)

3α′ +R + 4(∂Φ)2 − H2
3

12

)
, (1.77)

where the D-dimensional gravitational coupling constant is defined as follows,

1

2κ2D
≡ 2π

g2s(2πls)
D−2

. (1.78)

The previous treatment can be repeated for the five superstring theories consistent at
D = 10, which gives rise to five different supergravity theories in their low-energy limits.
The supergravity theories preserve the same amount of supersymmetry as their string
theory counterparts. Moreover, these supergravity theories share a common sector, as in
the full superstring case. Their actions can thus be split in three parts,

SSUGRA = S1 + S2 + Sfermi . (1.79)

The bosonic sector is described by S1 + S2, where S1 is common to the five supergravity
theories and S2 is particular to each one. The term S2 is added to the action in order
to ensure anomaly cancellation. There are exactly five ways in which this term can be
written, corresponding to the five anomaly-free supergravity theories in ten dimensions.
Besides, Sfermi describes the fermionic superpartners of the aforementioned bosons. We
will only present the first two parts of (1.79). The first part of the action describes the
fields common to all five supergravity theories and reads

S1 =
1

2κ210

∫
d10x

√
|g|e−2Φ

(
R + 4(∂Φ)2

)
. (1.80)
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The action S2 describes the dynamics of the massless bosonic fields which are different for
each theory. We explain each case below:

Type I. It contains an extra 1-form gauge potential AI in the adjoint representation
of the SO(32) group and a 2-form potential C2. Thus, we have the following action,

S2(I) = − 1

2κ210

∫
d10x

√
|g|
(
F 2
3

12
+

1

4
e−ΦF IFI

)
, (1.81)

where we have defined the field strengths

F = dA+A ∧A , F3 = dC2 +
1

2
Tr(A ∧A) . (1.82)

Type IIA. This theory contains an RR sector consisting of two gauge potentials
{C1, C3} and the associated action reads [76]

S2(IIA) =− 1

4κ210

∫
d10x

[√
|g|
(
e−2ΦH

2
3

6
+
F 2
2

2
+
F 2
4

4!

)
+

+ dC3 ∧ dC3 ∧B2

]
,

(1.83)

where we have defined

H3 = dB2 , F2 = dC1 , F4 = dC3 −H3 ∧ C1 . (1.84)

A deformation of this theory can be performed by adding a constant scalar m, which
plays the role of an RR 0-form flux F0. This new scalar receives the name of Romans
mass [77]. In this case (1.83) must be modified in order to include the new scalar [76],

S2(massive IIA) =− 1

4κ210

∫
d10x

[√
|g|
(
e−2ΦH

2
3

6
+m2 +

F 2
2

2
+
F 2
4

4!

)
+

+dC3 ∧ dC3 ∧B2 +
m

3
dC3 ∧ (B2)

3 +
m2

20
(B2)

5

]
,

(1.85)

where the topological term comes from a eleven-dimensional Chern-Simons term,

− 1

2

∫
M11

F4 ∧ F4 ∧H3 = . . . =

=− 1

2

∫
M10

(
dC3 ∧ dC3 ∧B2 +

m

3
dC3 ∧ (B2)

3 +
m2

20
(B2)

5

)
.

(1.86)

The exponents of the B2 indicate repeated wedge product by itself and we have
redefined the fluxes in order to include m,

F2 = dC1 +mB2 , F4 = dC3 −H3 ∧ C1 +
m

2
B2 ∧B2 . (1.87)
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Sometimes the democratic formulation of the theory is considered, which means that
the RR fluxes F6, F8 and F10 are treated on the same footing as the lower-ranked
ones. Analogously, one can also define C5, C7 and C9. In this formulation, the
Bianchi identities yield all the equations of motion except for the Einstein one. The
higher-ranked p-forms are related to the lower-ranked ones as follows,

Fp = (−1)⌊
p
2
⌋ ⋆ F10−p , (1.88)

where ⌊x⌋ stands for the floor function, i.e. the greatest integer smaller than or equal
to x, and ⋆ is the ten-dimensional Hodge star operator. In general, we will use the
following notation for a D-dimensional Hodge dual,

(⋆Fp)M1...MD−p =

√
|g|
p!

ϵM1...MD
FMD−p+1...MD , (1.89)

where ϵ01...(D−1) = 1. In our conventions, we consider that

⋆ ⋆ Fp = s(−1)p(D−p)Fp , (1.90)

where s = (−1)n for a spacetime signature of (p, n).

Type IIB. In this case, we have three RR gauge potentials {C0, C2, C4} whose dy-
namics are codified by the following action [76],

S2(IIB) =− 1

4κ210

∫
d10x

[√
|g|
2

(
e−2ΦH

2
3

3!
+ F 2

1 +
F 2
3

3!
+
F 2
5

5!

)
+

+ dC4 ∧H3 ∧ dC2

]
,

(1.91)

where the fluxes are defined in a similar way as in the previous case,

H3 = dB2 , F1 = dC0 , F3 = dC2 − C0H3 , F5 = dC4 −H3 ∧ C2 . (1.92)

However, the action (1.91) is not enough to specify the theory, but an extra condition
must be imposed,

F5 = ⋆F5 . (1.93)

This theory can also be described in the democratic formulation. Whenever the
higher-ranked RR fluxes F7 and F9 are required, they are related to the lower-ranked
ones as in (1.88). One can also consider the C6 and C8 gauge potentials when they
are needed.

Heterotic string. As in the case of Type I, we have gauge potentials corresponding
to the appropriate group, namely SO(32) or E8 × E8 depending on the theory. The
specific piece of the action for these theories reads

S2(H) = − 1

2κ210

∫
d10x

√
|g|e−2Φ

(
H2

3

12
+

1

4
F IFI

)
, (1.94)
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where F is defined as in (1.82) and we also have

H3 = dB2 +
1

2
Tr(A ∧A) . (1.95)

Before we conclude this section, 11d supergravity deserves a special mention because, as
we explained in section 1.1, it is the low-energy limit of M-theory. The eleven-dimensional
case is quite elegant as the field content consists simply on a metric gMN and a three-form
potential A3. The bosonic part of the corresponding action is given below [78],

S11d(SUGRA) = − 1

2κ211

∫
d11x

[√
|g|
(
R− G2

4

48

)
+

1

6
A3 ∧G4 ∧G4

]
, (1.96)

where κ11 is the eleven-dimensional gravitational coupling constant and as usual

G4 = dA3 . (1.97)

This is the only possible supergravity theory in eleven dimensions and is connected to Type
IIA via dimensional reduction. It displays N = 1 supersymmetry, meaning it preserves
32 supercharges.

1.4. String dualities

It is a key feature of the string theories that they are related under certain transfor-
mations called dualities. We observe that the duality associated to the inversion of the
coupling constant (S-duality) is already present in quantum field theories like QED in the
presence of magnetic charges. However, string theory displays a new kind of duality called
T-duality, which is purely a consequence of strings having length (as opposed to point
particles).

As we will see in the next sections, all these relations between 10d and 11d string
theories can be summarised in a simple and visual manner, as done in figure 1.1

Figure 1.1: All the relations between string theories.
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1.4.1. T-duality

T-duality can be applied when the theory is weakly coupled, i.e. at the perturbative
level with respect to gs. The basic idea comes from a construction that we have already
presented, indeed. As we saw in section 1.2, if we consider a closed string theory living
in a spacetime which has a circle direction of which all fields are independent, then the
ground states consist on an infinite tower with masses given by (1.60). Thus, we conclude
that this spectrum is invariant under the following transformation of the radius

R ↔ R̃ =
α′

R
. (1.98)

This interchange relates a theory where the circle is small (stringy effects are relevant)
to another one with a big circle (stringy effects are irrelevant). In other words, T-duality
connects a theory where α′ is large to another one where it is small. The momentum and
winding numbers are also interchanged as below

(n,w) ↔ (ñ, w̃) = (w, n) . (1.99)

The below discussion on T-duality follows in a certain way [79], so it can be consulted
if the reader is interested in the topic.

Abelian T-duality

Buscher first formulated Abelian T-duality for the non-linear sigma-model described
by (1.66) in [80,81]. However, for the purposes of this thesis, we are more interested in the
way it was developed by Rocek and Verlinde [82], as it provides a simpler link to its non-
Abelian extension. We start by assuming that the model presents an Abelian isometry, i.e.
all the fields are independent on one of the coordinates θ of the D-dimensional spacetime.
We thus split the coordinates into XM = (Xµ, θ), where µ = 0, 1, . . . D−2. The main idea
is to gauge the Abelian isometry δθ = ϵ. This is done by introducing a gauge potential
Ai on the worldsheet (with δAi = −∂iϵ) and substituting the partial derivatives of the
isometry coordinate by covariant ones,

∂iθ → Diθ = ∂iθ + Ai . (1.100)

These considerations are key to our derivation as we will obtain the T-dual theory upon
integrating the gauge potentials and fixing the gauge. We also add a Lagrange multiplier
to the action through a term proportional to Ai. The resulting action can be interpreted
as that of a (D + 1)-dimensional non-linear sigma-model and reads

SD+1 =
1

4πα′

∫
Σ

d2σ
[√

|h|hij (gµν∂iXµ∂jX
ν + 2gµθ∂iX

µDjθ + gθθDiθDjθ)+

+ϵij
(
(B2)µν∂iX

µ∂jX
ν + 2(B2)µθ∂iX

µDjθ + 2θ̃∂iAj

)
+
α′

2

√
|h|ΦR(2)

]
.

(1.101)
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By construction, this action depends on θ̃, but not on its derivatives. This can be exploited
as it implies that θ̃ is a Noether charge, its associated equation being simply

ϵij∂iAj = ∂τAσ − ∂σAτ = 0 . (1.102)

In topologically trivial worldsheets the previous condition forces A to be an exact form,
i.e. it can be written as

A = dω (1.103)

for a certain function of the worldsheet ω = ω(τ, σ). In this case, we recover the original
theory upon fixing ω = 0. On the other hand, we could compute the equations of motion
for Ai, √

|h|hij (gµθ∂jXµ + gθθAj) + ϵij((B2)θµ∂jX
µ + ∂j θ̃) = 0 . (1.104)

It is trivial to solve for Ai and obtain the following,

Ai = − 1

gθθ

[
ϵi
j√
|h|

(
(B2)θµ∂jX

µ + ∂j θ̃
)
+ gµθ∂iX

µ

]
. (1.105)

If we substitute this solution in (1.101), assume that the boundary term associated to
∂i(ϵ

ij θ̃Aj) vanishes and set θ = 0, we obtain a new D-dimensional sigma-model,

S̃D =
1

4πα′

∫
Σ

d2σ
[√

|h|hij
(
g̃µν∂iX

µ∂jX
ν + 2g̃µθ̃∂iX

µ∂j θ̃ + g̃θ̃θ̃∂iθ̃∂j θ̃
)
+

+ϵij
(
(B̃2)µν∂iX

µ∂jX
ν + 2(B̃2)µθ̃∂iX

µ∂j θ̃
)
+
α′

2

√
|h|ΦR(2)

]
.

(1.106)

The new metric and 2-form potential are related to the old ones by the so-called Buscher
rules given below,

g̃µν =gµν −
gθµgθν − (B2)θµ(B2)θν

gθθ
, g̃θ̃µ =

(B2)θµ
gθθ

, g̃θ̃θ̃ =
1

gθθ
,

(B̃2)µν =(B2)µν −
gθµ(B2)θν − gθν(B2)θµ

gθθ
, (B̃2)θ̃µ =

gθµ
gθθ

.

(1.107)

A more delicate computation involving the path integral shows that the previous trans-
formation modifies the measure,√

|g|e−2Φ →
√

|g̃|e−2Φ̃ =

√
|g|
gθθ

e−2Φ̃ . (1.108)

This can be compensated by an appropriate shift in the dilaton,

Φ̃ = Φ− 1

2
log(gθθ) . (1.109)

It can be proven that the fields given by (1.107) and (1.109) satisfy the conformal invariance
conditions at first order in α′ that we saw in (1.72).
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We observe that θ̃ is an isometry direction of the new theory, as the associated metric
depends on the fields of the original action (1.66), where θ̃ did not appear. We also
highlight the fact that the geometry of the new theory is completely different from that
of the old one. For instance, both non-diagonal terms in the metric and a 2-form gauge
potential can be generated via T-duality.

However, Rocek and Verlinde proved that the T-dual theories are indeed the same
one as conformal field theories [82]. The discussion begins by considering the (D + 1)-
dimensional action (1.101). This model displays two U(1) isometries and, therefore, the
isometry group can be written as U(1)L×U(1)R. One can gauge (1.101) with respect to
the vector or axial subgroup, i.e. U(1)V = U(1)L + U(1)R or U(1)A = U(1)L − U(1)R,
respectively. The result is an action which is locally invariant under the subgroup that
was considered for the gauging. If we then integrate the gauge field, the actions (1.66)
and (1.106) are obtained for the vector and axial gaugings, respectively. This procedure
of gauging and integrating the resulting gauge field is usually referred to as a coset con-
struction, which presents some interesting properties. For instance, if one of the actions
(1.101), (1.66) or (1.106) is conformal, then the other two also are. This is due to the fact
that the vanishing of the beta functions at all orders in α′ (which is the condition for a
conformal field theory) provides the same set of restrictions for each of these three actions.
Also T-duality can be shown to act on the (D + 1)-dimensional action as a symmetry in-
terchanging vector and axial fields with one another. We conclude the equivalence of the
original and T-dual D-dimensional conformal field theories at all orders in α′.

We notice that the previous derivation is only valid for trivial worldsheets. A way to
see this is by noticing that, in order to show the equivalence between the actions (1.101)
and (1.66), we used that conditions (1.102) and (1.103) are equivalent, which is only
true if the worldsheet is simply connected. However, this can be generalised to arbitrary
topologies, at least in the Abelian case.

Let us consider the case where the sigma model presents no dilaton and let M and
M̃ be the manifolds describing the original and dual spacetimes. We observe that the
Buscher rules (1.107)-(1.109) were given in a special set of coordinates which included the
isometry direction θ̃. However, in order to study the topological properties of the dual
theory (M̃, g̃, B̃2), it is necessary to derive these rules in a general set of coordinates, which
enables the use of different charts for M and M̃ . In order to perform the analysis in an
arbitrary set of coordinates, we consider the following D-dimensional sigma-model in the
conformal gauge without dilaton,

SD =
1

4πα′

∫
Σ

d2σ (gMN + (B2)MN) ∂+X
M∂−X

N =

=
1

4πα′

∫
Σ

d2σ
(
gMN∂iX

M∂iXN + (B2)MNdX
M ∧ dXN

)
,

(1.110)

where ∂± are given by (1.39). The second term of the last line of (1.110) is a so-called
Wess-Zumino term. In the case where the worldsheet is a closed Riemann surface of
genus g, which we denote by Σg, the Wess-Zumino term can be written as the integral of
an element of the set of harmonic three-forms onM , i.e. there is a certain H3 ∈ H3(M,R).
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In particular, if Σ0
g is the region of space enclosed by Σg, then the Wess-Zumino term reads

Γ =
1

4πα′

∫
Σ0
g

H3 with ∂Σ0
g = Σg . (1.111)

We assume that H3 can be defined so that the ambiguity in Γ, due to the freedom of
choice of Σ0

g, is 2πn for some integer n so that the theory is well-defined at the quantum
level. Let kM be the Killing vector of the 10d metric gMN associated to the isometry we
started with, meaning that

LkgMN = ∇MkN +∇NkM = 0 . (1.112)

For the action to be invariant under δXM = ϵkM , the following requirement has to be
met,

δkΓ =
1

4πα′

∫
Σ0
g

ϵLkH3 =
1

4πα′

∫
Σ0
g

ϵ(dik + ikd)H3 =
ϵ

4πα′

∫
Σg

ikH3 = 0 , (1.113)

where we have used the notation

(ikH3)MN ≡ kK(H3)KMN (1.114)

and the generalised Stokes theorem in order to substitute∫
Σ0
g

dikH3 =

∫
Σg

ikH3 , (1.115)

as well as the fact that dH3 = 0. We observe that (1.113) vanishes if ikH3 = −dv for some
one-form v. This implies that

LkB2 = dω , ω = ikB2 − v , (1.116)

where we have used that locally H3 = dB2. According to Noether’s theorem, we have a
conservation law associated to this symmetry,

∂+J
−
k + ∂−J

+
k = 0 , (1.117)

where

J±
k = (k ∓ ikB2 ± ω)M∂±X

M = (k ∓ v)M∂±X
M ≡ (k ∓ v) · ∂±X . (1.118)

As we did in the trivial worldsheet case, we now gauge the isometry. This is accomplished
by introducing the gauge field A± satisfying

δϵA± = −∂±ϵ , δϵX
M = ϵkM(X) , (1.119)
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where ϵ is a function on the worldsheet. We observe that now the variation of the action
(1.110) is given by

δϵSD =
1

4πα′

∫
d2σ(J−

k ∂+ϵ+ J+
k ∂−ϵ) , (1.120)

which can be cancelled out by adding the term

S ′
D =

1

4πα′

∫
d2σ(A+J

−
k + A−J

+
k ) . (1.121)

However S ′
D is not gauge invariant, as J±

k change under gauge transformations. If we
include the term

S ′′
D =

1

4πα′

∫
d2σk2A+A− , (1.122)

then the total variation is given by

δϵ(SD + S ′
D + S ′′

D) =
1

4πα′

∫
d2σ[A+∂−(ϵk · v)− A−∂+(ϵk · v)] . (1.123)

This anomalous variation cannot be cancelled out unless extra fields are added to the
action. The simplest way to achieve this is by defining a real scalar field χ over the
worldsheet which contributes to the action through the following term,

Sχ =
1

4πα′

∫
d2σ(A+∂−χ− A−∂+χ) (1.124)

and changes under the gauge transformation as

δϵχ = −ϵk · v . (1.125)

Interpreting this new scalar field as a spacetime coordinate, we end up with the following
(D + 1)-dimensional action,

SD+1 =
1

4πα′

∫
Σ

d2σ
[
(gMN + (B2)MN)∂+X

M∂−X
N + (J+

k − ∂+χ)A−+

+(J−
k + ∂−χ)A+ + k2A+A−

]
.

(1.126)

We observe that, if the genus of the worldsheet is g ≥ 1 and the gauge orbits are compact,
then multivalued gauge transformations may appear,∮

γ

dϵ = 2π
√
α′n(γ) with n(γ) ∈ Z , (1.127)

where γ is a cycle of non-trivial homology in Σg. As we are only considering Abelian
isometries, we can restrict our study to the g = 1 case. Thus, the variation of (1.126) is
given by

δϵSD+1 =
1

4πα′

∫
Σ

d2σ (∂+χ∂−ϵ− ∂−χ∂+ϵ) =
1

8πα′

∫
T2

dχ ∧ dϵ =

=
1

8πα′

(∮
a

dχ

∮
b

dϵ−
∮
a

dϵ

∮
b

dχ

)
,

(1.128)
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where a and b are the generator of the homology group of the torus T2. As ϵ has a period
of 2πn(γ), in order for SD+1 to be a multiple of 2π, we must impose∮

γ

dχ = 8π
√
α′m(γ) with m(γ) ∈ Z , (1.129)

If the isometry is non-compact then the variation of (1.126) vanishes so the periods of χ
may take any real value.

The original theory is recovered by setting the Lagrange multipliers in action (1.126)
to zero. They are closed forms and consequently can be decomposed as the sum of an
exact component plus a harmonic one in worldsheets with non-trivial topologies. Their
contribution to SD+1 is given by

Sχ = − 1

4πα′

∫
(dχ0 + χh) ∧ A , (1.130)

where the closed 1-form has being written as dχ0 + χh, χ0 is a scalar, χh is a harmonic
1-form and A = A+dσ

+ + A−dσ−. We can write this action as

Sχ =
1

4πα′

∫
χ0 ∧ dA− 1

4πα′

(∮
a

χh

∮
b

A−
∮
a

A

∮
b

χh

)
, (1.131)

where we have integrated by parts the exact part and used the Riemann bilinear identity
in the harmonic one. Taking a look to this action, it is clear that the equations of motion
for χ0 imposes dA = 0, which implies that A is exact in trivial worldsheets. For arbitrary
topologies, we observe that the equation of motion for χh imposes∮

a

A =

∮
b

A = 0 . (1.132)

The Hodge decomposition theorem lets us write

A = dω + (naϕ
a + nbϕ

b) , (1.133)

where ϕa and ϕb constitute the basis of harmonic 1-forms on the torus satisfying∮
i

ϕj = δij with i, j ∈ {a, b} . (1.134)

This normalization lets us easily identify

ni =

∮
i

A with i = a, b . (1.135)

We conclude that (1.132) sets the harmonic part of A to zero so A = dω, which is the
pure gauge solution. Fixing ω = 0 the original theory (1.110) is recovered.

By construction the action (1.126) is invariant under changes of coordinates, meaning
that we can infer geometrical properties from it. It can be shown that the spacetime of
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the T-dual theory M̃ is given by the product of the quotient of the original spacetime
M by the orbit of the gauge group and the space parametrised by χ. If the isometry is
compact, this implies that

M̃ = (M/S1)“× ”S1
χ , (1.136)

as χ describes a circle. Depending on the case “×” can stand for either a direct or
twisted product. We highlight that the structure of π1(M) plays no role in the periodicity
properties of χ, as all that matters is whether the isometry with respect to which we T-
dualise is compact or not. For toroidal compactifications π1(Tn) = Zn, meaning that there
are winding modes describing how closed strings are wrapped, apart from the momentum
ones. In that scenario, T-duality can be interpreted as a symmetry that exchanges both
kinds of modes.

In order to obtain the T-dual theory, one has to integrate the gauge fields and fix the
gauge. Fixing the gauge in this formalism is equivalent to picking a coordinate system.
After integrating the gauge fields, the following rules arise,

g̃χχ =
1

k2
, g̃χµ =

vµ
k2
, g̃µν = gµν −

kµkν − vµvν
k2

,

(B̃2)χµ =
kµ
k2
, (B̃2)µν = (B2)µν −

kµvν − vµkν
k2

, Φ̃ = Φ− 1

2
log
(
k2
)
,

(1.137)

where the T-dual set of coordinates is {x̃M} = {xµ, χ} and we have reincorporated the
dilaton to the original action. We can go back to the coordinate system that contains
the isometry direction θ as coordinate and then fix θ = 0. This yields the Buscher rules
(1.107)-(1.109), as in that case k2 = gθθ, vµ = (B2)θµ and kµ = gθµ.

Taking into account the fermions, one observes that T-duality relates the Type II
string theories to one another and also the Heterotic ones. The application of this duality
in the context of Type II supergravity is one of the most fruitful solution generating
techniques that was used in our original work. However, the previous derivation does
not provide a relation between the RR fields of the T-dual theories. The original way
in which these relations where derived consisted in truncating the Type IIA and Type
IIB supergravities to nine dimensions. As there is a single supergravity theory living in
nine dimensions, this procedure yielded a mapping relating the RR fluxes of the Type
IIA and Type IIB supergravities. However, S.F. Hassan devised an alternative method
that provides a simpler extension to the non-Abelian case [83,84]. It starts by writing the
original metric in terms of vielbeins,

gMN = ηabe
a
Me

b
N , (1.138)

where a and b are Lorentz indices and we are taking some set of flat coordinates {ya}. It
is known that there are two vielbeins (eaM)± compatible with the T-dual solution. The
T-duality of the vielbeins are described by the transformations below,

(ẽMa )± = (QM
N)±e

N
b , (1.139)
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where the matrices Q± are defined as

Q± =

(
∓gθθ ∓(g ∓B2)θν
0 I9

)
, Q−1

± =

(
∓g−1

θθ −(g ∓B2)θν
0 I9

)
(1.140)

and we denote by In the n-dimensional identity matrix. We now observe that the (eaM)±
vielbeins describe the same theory and, therefore must be related by a Lorentz transfor-
mation,

(eaM)+ = Λab
(
ebM

)
− for Λ = e−1Q−1

− Q+e . (1.141)

Using (1.140), we can write the Lorentz matrix more explicitly,

Λab = δab − 2
eaθeθb
gθθ

with det(Λ) = −1 . (1.142)

Now let us shift our gaze to the transformation of spinors under T-duality. Let ΓM =
eMaΓ

a be the 10d Dirac matrices living in the curved spacetime of the original theory and
Γa their flat spacetime counterparts. Similarly as before, after T-duality, there are two
possible sets of gamma matrices depending on the choice of the new vielbein,

Γ̃M± = (ẽMa )±Γ
a . (1.143)

Analogously to the bosonic case, these two sets are related by a matrix Ω as below,

Γ̃M+ = Ω−1Γ̃M− Ω with Ω−1ΓaΩ = ΛabΓ
b . (1.144)

It is clear that Ω is the spinorial representation of the Lorentz transformation (1.141). We
can deduce the concrete form of Ω as follows. Let us rewrite (1.141) as below,

Λab = δab − 2ωab with ωab =
eaθeθb
gθθ

. (1.145)

It is clear that ωabω
b
c = ωac, meaning that ωab is a projection operator of rank 1.

We observe that ω = ωab(∂/∂X
a)dXb projects the vector Γ = Γa(∂/∂Xa) along K =√

g−1
θθ e

a
θ(∂/∂X

a), which is the unitary vector that generates the isometry. In turn, the

projected component of Γ is given by the scalar product

⟨K,ωΓ⟩ =
(√

g−1
θθ e

a
θ

)(
eaθeθb
gθθ

Γb
)

=
√
g−1
θθ Γθ , (1.146)

where Γθ is the curved space gamma matrix. Taking a look to (1.145), we observe that
Λab changes the sign of (1.146), while the other components of Γ remain unchanged. This
implies that the spinorial representation of the Lorentz transformation must be given by

Ω = Γ11⟨K,ωΓ⟩ =
√
g−1
θθ Γ11Γθ , (1.147)
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where Γ11 is the product of all the Γa. If we now take

eθa =
√
gθθδ

9
a , (1.148)

for certain flat spacetime coordinate y9, we can write

Ω = Ω−1 = Γ11Γ9 , (1.149)

as Γ2
11 = I10 in Minkowski spacetime and Γ11 commutes with the other gamma matrices.
Now, the RR fluxes of Type IIA/B supergravity can be combined into a polyform,

P =

{
eΦ

2

∑4
n=0

/F 2n+1 for Type IIA ,
eΦ

2

∑5
n=0

/F 2n for Type IIB ,
(1.150)

where we have considered the democratic formulation of Type II supergravity and so we
have to take into account all possible RR fluxes. The slashed fluxes are given by the below
formulae,

/F n =
1

n!
FM1...MnΓ

M1...Mn , (/F n)M1...Mr =
1

(n− r)!
FM1...MrMr+1···MnΓ

Mr+1···Mn . (1.151)

The polyform is a bispinor and thus transforms as follows under T-duality,

P̃ = Ω−1P . (1.152)

From (1.107) and (1.148), it is clear that

e9 =
√
gθθ dθ , ẽ9 =

dθ̃
√
gθθ

. (1.153)

Thus, if we write the original fluxes as

Fp = G(0)
p +Gp−1 ∧ e9 , (1.154)

then the dual RR fluxes read

F̃p =
√
gθθ

(
G̃(0)
p + G̃p−1 ∧ ẽ9

)
=

√
gθθGp +G

(0)
p−1 ∧ dθ̃ , (1.155)

where

G̃(0)
p = Gp , G̃p−1 = G

(0)
p−1 . (1.156)

We observe that the rules in (1.156) imply that odd-ranked fluxes are transformed into
even-ranked ones. This was expected as T-duality relates Type IIA and Type IIB super-
gravities to one another.
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These considerations lead us to the rule of thumb that is usually applied when com-
puting the Abelian T-dual of RR fluxes: The RR n-form flux associated to a Type II theory
that presents a U(1) isometry along θ can be written as

Fn =
(Fn)µ1...µn

n!
dxµ1 ∧ . . . ∧ dxµn +

(Fn)µ1...µn−1

(n− 1)!
dxµ1 ∧ . . . ∧ dxµn−1 ∧ dθ (1.157)

with µi = 0, . . . , 8. Upon T-dualising along θ, Fn will contribute, when possible, through
two different kinds of components, namely

F̃n−1 =
(Fn)µ1...µn−1

(n− 1)!
dxµ1 ∧ . . . ∧ dxµn−1 ,

F̃n+1 =
(Fn)µ1...µn

n!
dxµ1 ∧ . . . ∧ dxµn ∧ dθ̃ .

(1.158)

To conclude this dissertation, we observe that Abelian T-duality is only possible when
the theory is invariant under translations along the θ direction. This is usually realised in
string theory and supergravity by considering a compact direction in the internal manifold.
As we explained in section 1.2, a solution cannot depend on the coordinate over which
we compactify. Thus, this compact direction is usually taken to be a circle encoding an
Abelian U(1) symmetry. The next natural step is to wonder whether or not this can
be generalised into a non-Abelian group of isometries, realised by a higher-dimensional
manifold.

Non-Abelian T-duality

For a reference for non-Abelian T-duality (NATD) with respect to a general isometry
group G, one can check [85]. The main idea is to rewrite the action (1.66) in a way that
emphasises the isometries,

S =
1

4πα′

∫
Σ

d2σ [Qµν∂+X
µ∂−X

ν +Qµn∂+X
µ∂−X

n+

+Qnµ∂+X
n∂−X

µ +Qmn∂+X
m∂−X

n +
α′

2

√
|h|ΦR(2)

]
,

(1.159)

where we have taken light cone coordinates, as defined in (1.39). We have also defined
QMN = gMN +(B2)MN with XM = (Xµ, Xn) and assumed that there are N isometries so
µ = 0, 1, . . . D −N − 1 and n = D −N, . . . , D − 1. The matrix QMN in general depends
on the Xn and said coordinates transform under the isometries as

Xn → gnmX
m for gnm ∈ G . (1.160)

Following what we did in the Abelian case, we are interested in gauging (1.160) in order
to obtain a new action upon integrating the gauge potentials and fixing the gauge. For
this purpose, the regular partial derivatives must be replaced by covariant ones in (1.159),

∂±X
n → D±X

n = ∂±X
n + i(A±)

n
mX

m , (1.161)
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where A± = Aa±Ta is a gauge potential with {Ta}Na=1 a basis of an N -dimensional repre-
sentation of the Lie algebra associated to G. Its transformation under the action of the
group is given by

A± → g(A± − i∂±)g
−1 . (1.162)

Apart from substituting the regular derivatives with the covariant ones, we add the fol-
lowing term to the action

−i
∫
d2σTr(vF±) , (1.163)

where v = vaTa with Lagrange multipliers va and F± is the field strength defined below,

F± = ∂+A− − ∂−A+ − [A+, A−] . (1.164)

We observe that the trace in (1.163) is simply the Killing form of the Lie algebra of G,
as both v and F are in the adjoint representation of said algebra. Now we must choose a
gauge. If we want to integrate on v, its equation of motion reads

Tr(TaF±) = 0 for a = 1, 2, . . . , N . (1.165)

For a semisimple group, this implies that F± = 0 and, therefore, A must be pure gauge
and we can set A± = 0, recovering the original action (1.106). However, if the group is
not semisimple, the Killing form may be degenerate and F± may not be zero. The v field
must be assumed to be in the dual basis of the Ta. Upon the previous considerations the
action (1.159) becomes

Sgauge =
1

4πα′

∫
Σ

d2σ [Qµν∂+X
µ∂−X

ν +Qµn∂+X
µD−X

n +QnµD+X
n∂−X

µ+

+QmnD+X
mD−X

n − iTr(vF±) +
α′

2

√
|h|ΦR(2)

]
,

(1.166)

In order to obtain the non-Abelian T-dual, we expand this action so that the A± appear
explicitly an integrate by parts in order to eliminate its derivatives,

Sgauge =S[X] +
1

4πα′

∫
Σ

d2σ
[
h+aA

a
− + h−aA

a
+ − Aa+MabA

b
−
]
, (1.167)

where S[X] is the original action (1.159) and

h±a =i(Qµn∂±X
µ +Qmn∂±X

m)(Ta)
n
kX

k ± iTR∂±va ,

Mab =Qmn(Ta)
m
k(Tb)

n
lX

kX l + TRv
cfabc .

(1.168)

We have used that [Ta, Tb] = ifab
cTc and also Tr(TaTb) = TRδab in the semisimple case.

If G is not semisimple, we take Tr(TaT
′
b) = TRδab where {T ′

a}Na=1 is the dual basis. The
equations of motion for A± are

h+a − Ab+Mba = 0 , h−a −MabA
b
− = 0 , (1.169)

36



HOLOGRAPHIC DUALITY, THEORY OF DEFECTS AND BLACK HOLES

which fixes the gauge potentials as

Aa+ = h+b(M
−1)ba , Aa− = (M−1)abh−b . (1.170)

If we substitute them in (1.167), then we obtain the non-Abelian T-dual action we were
looking for,

S̃ =S[X] +
1

4πα′

∫
Σ

d2σ

[
h+a(M

−1)abh−b +
α′

2

√
|h|∆ΦR(2)

]
. (1.171)

We observe that an explicit expression for the metric and NSNS 2-form potential cannot
be written down, as they depend on the isometry group. On the other hand, the new
dilaton is given by

Φ̃ = Φ +∆Φ = Φ− 1

2
log(detM) , (1.172)

which comes once again from the shift in the measure of the path integral. One needs to
fix a gauge in order to eliminate the original Xm coordinates. However, this cannot be
done in general as it again depends on the concrete isometry group. Once this is done,
the va play the role of a new set of coordinates instead of the Xm.

Although the non-Abelian T-duality seems like a straightforward generalization of the
Rocek-Verlinde formulation of the Abelian case, it is not so, as we encounter many diffi-
culties in the former one to the point that it is not clear that non-Abelian T-duality is an
exact symmetry of the theory. First although the non-Abelian NSNS sector we presented
satisfies the equations (1.72), we lack a complete proof of them satisfying the supergravity
equations at all orders in α′. We also have that the isometry group is completely destroyed
by the non-Abelian T-duality (at least globally) and, therefore, this transformation is not
an involution. One more inconvenient that does not appear in the Abelian case is that,
while we derived the non-Abelian T-duality for a spherical worldsheet, we do not know
how to generalise it to arbitrary topologies. The main obstacle to this generalisation is
that, while in the Abelian case the isometry group of the dual theory is the representation
ring of the original one, this no longer holds in the non-Abelian case, as the representation
ring of a non-Abelian group is not even a group. This implies that we lose all global
information of the non-Abelian T-dualised geometry.

Non-Abelian T-duality for SU(2)

Let us now consider the case where the isometry group of a Type II supergravity
solution contains an SU(2) so we can T-dualise with respect to G =SU(2). We remark
that SU(2) is a simple group and, therefore semisimple, which was an important fact in
the general discussion. As some of our original solutions were obtained by doing exactly
this, it is convenient for us to go into the details. The main source followed for the below
derivation was [86]. For convenience, we will assume that the spacetime is described by
a manifold containing a group submanifold that realises the SU(2) symmetry. The non-
Abelian T-duality actually takes places in this submanifold. We start by considering the
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Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.173)

The infinitesimal generators for SU(2) are then taken to be

ti ≡ σi√
2

(1.174)

and satisfy
Tr
(
titj
)
= δij , [ti, tj] = if ijkt

k = i
√
2ϵijkt

k . (1.175)

In general, the left-invariant Maurer-Cartan one-forms of a Lie group G are defined for
each group element g ∈ G as below,

Li = −iTr
(
tig−1dg

)
, which satisfy dLi =

1

2
f ijkL

j ∧ Lk . (1.176)

On the other hand, the Euler parametrisation gives us a way of writing any element of a
Lie group as the exponential of a vector in the associated Lie algebra. Thus, in the case
at hand, we can write any g ∈SU(2) as follows,

g = e
i
2
ϕσ3e

i
2
θσ2e

i
2
ψσ1 with 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ψ ≤ 2π . (1.177)

In this parametrisation the left-invariants forms can be written explicitly,

L1 =
1√
2
(− sin(ψ) dθ + cos(ψ) sin(θ) dϕ) ,

L2 =
1√
2
(cos(ψ) dθ + sin(ψ) sin(θ) dϕ) ,

L3 =
1√
2
(cos(θ) dϕ+ dψ) .

(1.178)

In these terms, we consider an SU(2)-symmetric Type II supergravity solution whose NSNS
sector displays the below form,

ds2 =Gµν(x)dx
µdxν + 2Gµi(x)dx

µLi + gij(x)L
iLj ,

B2 =Bµν(x)dx
µ ∧ dxν + 2Bµi(x)dx

µ ∧ Li + 1

2
bij(x)L

i ∧ Lj ,

Φ =Φ(x) .

(1.179)

where µ = 0, . . . , 6. We will need to use the vielbeins for the transformation of the RR
sector, so we fix the notation as follows,

eA = eAµdx
µ , ea = kajL

j + λaµdx
µ , (1.180)
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In our case, the original action (1.159) takes the following form

S =
1

4πα′

∫
Σ

d2σ
[
Qµν∂+X

µ∂−X
ν +Qµi∂+X

µLi−+

+QiµL
i
+∂−X

µ + EijL
i
+L

j
− +

α′

2

√
|h|ΦR(2)

]
,

(1.181)

where Li± = −iTr(tig−1∂±g) and we have conveniently defined

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi , Qiν = Giν +Biν , Eij = gij + bij . (1.182)

We observe that the action (1.181) is invariant under the global transformation

g → h−1g , (1.183)

where g, h ∈SU(2) and h does not depend on the worldsheet coordinates. Now we can
apply the general proceeding by gauging the SU(2) symmetry and performing the following
changes,

∂±g → D±g = ∂±g − A±g , Li± → Li± + iDjiAj± , (1.184)

where we have defined the matrix

Dij = Tr
(
tigtjg−1

)
(1.185)

Then we add the Lagrange multiplier term (1.163), which takes the following form after
integrating by parts,

−iTr(vF±) = Tr(i∂+vA− − i∂−vA+ − A+fA−) with fij = fij
kvk . (1.186)

The total action is invariant under

g → h−1g , v → h−1vh , A± → h−1A±h− h−1∂±h , (1.187)

where now h = h(σ+, σ−) ∈SU(2).
The next step is to fix a gauge in order to simplify the next computations. The most

reasonable choice of gauge is θ = ϕ = ψ = 0, which implies that g = I. In this gauge the
matrix D = I3 and the Li± are set to 0. We end up with an action of the form (1.167),
where S[X] is no other than (1.181). As for the h± fields and the M matrix, they are
given by the expression below,

h±i = iQµi∂±X
µ ± i∂±vi , M = E + f . (1.188)

The integration of the fields, given in general by (1.170), in our case are

Ai+ = i(Qµj∂+X
µ + i∂+vj)(M

−1)ji , Ai− = i(M−1)ij(Qµj∂−X
µ − i∂−vj) . (1.189)
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Finally, the dual action is given by

S̃ = S[X] +
1

4πα′

∫
Σ

d2σ
[
−(Qµi∂+X

µ + i∂+vi)(M
−1)ij(Qµj∂−X

µ − i∂−vj)+

+
α′

2

√
|h|∆ΦR(2)

]
.

(1.190)

From this expression, it is easy to infer the NSNS sector of the new theory,

Q̃µν =Qµν −Qµi(M
−1)ijQµj , Ẽij =M−1

ij ,

Q̃µi =QµjM
−1
ji , Q̃iµ = −M−1

ij Qjµ .
(1.191)

As for the dilaton, it is again given by (1.172).

We still need to address the transformation of the RR sector. The dual fluxes are
given once again by equation (1.152), but now we have

Ω−1 = (A0Γ
1Γ2Γ3 + AaΓ

a)Γ11 with a = 1, 2, 3 . (1.192)

The coefficients in (1.192) are given by

A0 =
1√

1 + ζ2
, Aa =

ζa√
1 + ζ2

(1.193)

with

ζa =
kai
det k

yi with yi = ϵijkbjk + vi (1.194)

and k is the matrix that appears in (1.180). In order to obtain the new RR fluxes, we
write the original ones as

Fp = G(0)
p +Ga

p−1 ∧ ea +
1

2
Gab
p−2 ∧ ea ∧ eb +G

(3)
p−3 ∧ e1 ∧ e2 ∧ e3 , (1.195)

where G
(0)
p , Ga

p−1, G
ab
p−2 and G

(3)
p−3 do not have legs along the three isometry directions.

Consequently, we have

/F p = /G
(0)
p I10 + /G

a
p−1Γ

a +
1

2
/G
ab
p−2Γ

ab + /G
(3)
p−3Γ

123 , (1.196)

where the /Gq are defined by contracting with the ΓA matrices corresponding to the seven-
dimensional spectator spacetime. Upon using identities of gamma matrices and simplify-
ing, the transformation of (1.196) can be proven to be

/F pΩ
−1 = /̃F p−3 + /̃F p−1 + /̃F p+1 + /̃F p+3 , (1.197)
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where

/̃F p−3 =− A0 /G
(3)
p−3 ,

/̃F p−1 =Aa /G
a
p−1 −

A0

2
/G
ab
p−2ϵ

abcΓc − Aa /G
ab
p−2Γ

b +
Aa
2
/G
(3)
p−3ϵ

abcΓbc ,

/̃F p+1 =Aa /G
(0)
p Γa +

A0

2
/G
a
p−1ϵ

abcΓbc − Aa /G
b
p−1Γ

ab +
Aa
2
/G
bc
p−3ϵ

abcΓ123 ,

/̃F p+3 =A0 /G
(0)
p Γ123 .

(1.198)

The new RR fluxes can be read off directly from this,

F̃p = G̃(0)
p + G̃a

p−1 ∧ ẽa +
1

2
G̃ab
p−2 ∧ ẽa ∧ ẽb + G̃

(3)
p−3 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3 , (1.199)

where

G̃(0)
p = eΦ−Φ̃

(
−A0G

(3)
p + AaG

a
p

)
G̃a
p−1 = eΦ−Φ̃

(
−A0

2
ϵabcGbc

p−1 + AbG
ab
p−1 + AaG

(0)
p−1

)
G̃ab
p−2 = eΦ−Φ̃

[
ϵabc
(
AcG

(3)
p−2 + A0G

c
p−2

)
− (AaG

b
p−2 − AbG

a
p−2)

]
G̃

(3)
p−3 = eΦ−Φ̃

(Aa
2
ϵabcGbc

p−3 + A0G
(0)
p−3

)
.

(1.200)

This transformation maps odd-ranked forms into even-ranked ones and vice-versa, sup-
porting the fact that T-duality transforms Type IIA into Type IIB and the other way
round also in the non-Abelian case with respect to SU(2).

The Wess-Zumino and DBI actions

Let us now take a look to what happens with open strings. As we saw in section 1.1
below equation (1.25), the coordinates of the ends open strings that evolve according to the
Nambu-Goto action (1.2) satisfy either Neumann or Dirichlet boundary conditions. These
open strings may have their ends fixed to so-called D-branes, which are the manifolds
described by the Dirichlet boundary conditions. Nevertheless, free strings are possible in
the bosonic string model.

Open strings can also appear in the Type II string theories, but they must always
end on D-branes. As we will justify below, the presence of these open strings render the
D-branes dynamical objects, which are described by worldvolume actions. An effective
version of such an action is given below [87],

Seff = SWZ + SDBI . (1.201)

We have that the first term is a Wess-Zumino action generalising that of (1.110) and it
reads

SWZ(Dp) = Tp

∫
Mp+1

C ∧ eB2+2πα′F , (1.202)
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where Tp is the tension of the Dp-brane, Mp+1 its worldvolume, C is a formal sum of the
RR gauge potentials defined as

C =

{∑4
i=0C2p+1 in Type IIA ,∑4
i=0C2p in Type IIB

(1.203)

and
F = dA (1.204)

with A the U(1) Born-Infeld gauge potential living in the brane. This action can be easily
generalised to the case where F is a U(N) gauge field by taking the trace of eB2+2πα′F in
(1.202), but we will not need it for the purposes of this thesis. We observe that, in the
particular case in which we are only considering a Dp-brane, the Wess-Zumino term reads

SWZ(Dp) = Tp

∫
Mp+1

Cp+1 . (1.205)

This simply means that the Dp-brane is charged under Cp+1 and, in this case, Tp plays
the role of its charge density. In general, a Dp-brane can be coupled to all the present RR
gauge potentials, which is reflected by (1.202).

The second term in (1.201) is the Dirac-Born-Infeld (DBI) action, which is displayed
below

SDBI(Dp) = − 1

(2π)pα′(p+1)/2gs

∫
dp+1xe−Φ

√
− det(P [g +B2] + 2πα′F )µν , (1.206)

where xµ denotes the worldvolume directions of the considered Dp-brane and

P [Ω]µν = ΩMN∂µy
M∂νy

N (1.207)

the pull-back over it. This term can be obtained via T-duality of the following effective
action,

Seff = − 1

(2π)9α′5gs

∫
dx10e−Φ

√
det(g +B2 + 2πα′F )MN , (1.208)

which describes the aforementioned open strings charged under the Born-Infeld gauge field
F in the low-energy regime [88]. We take a coordinate system {xM} = {xµ, θ}, where θ
parametrises a circle of length 2π

√
α′. We also assume that all the coordinates of the

gauge potential AM are independent of θ. Additionally, we assume that Aθ is proportional
to the identity matrix so we can identify Aθ = −y for some function y = y(xµ). Thus, we
have

Fθµ = ∂θAµ − ∂µAθ = −∂µAθ ≡ ∂µy . (1.209)

For an arbitrary 10d square matrix MMN , we have the following formula,

det(MMN) =Mθθ det

(
Mµν −

MµθMθν

Mθθ

)
. (1.210)
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Applying it to our determinant, we have

det(g +B2 + F )MN =gθθ det
[
(g̃ + B̃2)µν + Fµν + g̃θ̃θ̃∂µy∂νy + ∂µy(g̃ + B̃2)θ̃ν+

+∂νy(g̃ − B̃2)θ̃µ

]
,

(1.211)

where g̃ and B̃2 are the dual fields as given by (1.107). Taking this into account, one can
easily see that (1.208) can be rewritten as

Seff = − 1

(2π)8α′9/2gs

∫
dx9e−Φ̃

√
det
(
P [g̃ + B̃2] + 2πα′F

)
µν

≡ SDBI(D8) , (1.212)

where we have used that∫
dθ = 2π

√
α′ and Φ̃ = Φ− 1

2
det(gθθ) . (1.213)

We observe that (1.207) is valid for a brane with a general worldvolume given by the
equation below,

x̃M = yM(xµ) with {x̃M} = {xµ, θ̃} . (1.214)

However, in our case we have considered yθ̃(xµ) = y(xµ) and yµ(xν) = xµ.
This analysis leads us to a very interesting interpretation of open strings as D9-branes,

as (1.208) looks like the DBI action for a ten-dimensional worldvolume. Moreover, one
can iterate this process to obtain the DBI action for all the Dp-branes, which is precisely
(1.206).

1.4.2. S-duality

The second duality we must consider is S-duality. It is a duality that relates the
strong coupling limit of a theory with the weak-coupling limit of another or the same one.
This can be specified by the following relation of their string coupling constants,

gs ↔ g̃s =
1

gs
. (1.215)

This means that the duality is non-perturbative in gs and a general derivation is not
known. One interesting remark is that the role played by α′ remains unchanged by this
transformation, ergo an order by order expansion in said parameter could be written down.

One important example of S-duality is the relation between Heterotic SO(32) and
Type I string theories. Both of them are very similar, as can be appreciated at the
supergravity level by comparing (1.81) and (1.94). The similarities are even more obvious
if we write these actions in the so-called Einstein frame, as opposed to the string frame
that we used so far. They are related by the following expression for the metrics,

gEMN = e−
4

D−2
ϕgSMN . (1.216)
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In this frame, the bosonic part of the actions of the aforementioned theories read

SE(I) =
1

2κ210

∫
d10x

√
|g|
[
RE − 1

2
(∂Φ)2 − eΦ

12
F 2
3 − 1

4
e

Φ
2 F I

2F2I

]
,

SE(H) =
1

2κ210

∫
d10x

√
|g|
[
RE − 1

2
(∂Φ)2 − e−Φ

12
H2

3 −
1

4
e−

Φ
2 F I

2F2I

]
.

(1.217)

It is clear that one theory is mapped into the other by the following transformations

Φ ↔ −Φ , F3 ↔ H3 . (1.218)

Taking this and (1.216) into account, one concludes that, in the string frame, the actions
of Type I and heterotic SO(32) supergravities are related by

Φ ↔ −Φ , F3 ↔ H3 , gMN ↔ e−ΦgMN (1.219)

Another important example is that of Type IIB. As it can be seen in (1.80) and (1.91), the
role played by H3 and F3 in the overall action is quite similar. A more detailed analysis
shows that the SL(2,R) group can act intermixing these two fields in a concrete manner
that leaves the action invariant. Let us start by considering one such rotation

R =

(
cos ξ − sin ξ
sin ξ cos ξ

)
. (1.220)

If we act with this transformation on the “seed” fields, denoted by F(n),s, Φs and ds
2
10,s,

we obtain new ones with the aid of the following relations

τ =
cos ξ τs − sin ξ

sin ξ τs + cos ξ
, F(5) = F(5),s , ds210 = | cos ξ + sin ξ τ | ds210,s ,(

F̂(3)

H(3)

)
=

(
cos ξ − sin ξ
sin ξ cos ξ

)(
F(3),s

H(3),s

)
, F(3) = F̂(3) − C(0)H(3) ,

(1.221)

where τ = C(0) + ie−Φ is known as the axio-dilaton. We observe that either a dilaton or
C(0) may be generated by these relations, even in cases where either of the seed ones were
zero, provided that τs ̸= 0. It must be also noticed that these transformations depend on
the parameter ξ; this parameter is real in principle, but quantisation of charges fixes it at
either ξ = 0 or ξ = π/2.

Beyond the supergravity limit, there is also heavy evidence that S-duality must hold.
Some non-perturbative checks has been made, usually considering BPS protected opera-
tors, i.e. those preserving some, but not all, of the supersymmetries. For instance, the
branes, as BPS states, have been used to collect evidence which supports this duality.

As a simple test, one can study the S-duality that relates a D1-brane in Type I string
theory to an F1-brane of SO(32) heterotic string theory by comparing their tensions and
seeing if they agree [89]. The tension of a D1-brane in Type I string theory is given by

T I
D1 =

1

gIs2π(l
I
s)

2
, (1.222)
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where the I superscript emphasises that these quantities belong to Type I string theory.
Besides, the tension of an F1-brane of SO(32) heterotic string theory reads

TH
F1 =

1

2π(lHs )
2
, (1.223)

where the H superscript corresponds to SO(32) heterotic string theory. Now it is easy to
see that (1.222) and (1.223) are actually the same. As we saw in (1.219), the dilaton of
both theories is related by Φ ↔ −Φ. We recall that, prior to the normalisation considered
in (1.76), the string action was written in terms of ϕ instead of Φ. In that language, it is
clear that the dilaton must transform as ϕ↔ −ϕ under S-duality. As the string coupling
is the vev of eϕ, we conclude that

gIs =
1

gHs
. (1.224)

On the other hand, the rescaling of the metric in (1.219) implies that, although the string
length is the same in both theories, it is measured in different ways. Consequently, we
observe that

lIs = lHs
√
ghs . (1.225)

Finally, applying (1.224) and (1.225) to (1.222), one obtains (1.223). These supports the
idea that these two kinds branes are just two descriptions of the same object, which is the
cornerstone of all dualities.

1.4.3. M-theory and U-duality

Although it is not strictly a duality, it is important to know that M-theory arises
as the strongly coupled limit of Type IIA string theory. If we start with a solution to
eleven-dimensional supergravity which presents a circle direction χ, on which all the fields
are independent, it can be truncated to obtain a Type IIA supergravity solution. The
formulae that relates these two solutions is given by the expression below,

ds211 =e
−2Φ/3ds210 + e4Φ/3

(
dχ+ C(1)

)2
,

G(4) =F(4) +H(3) ∧ (dχ+ C(1)) .
(1.226)

Furthermore, these equations relate the actions of 11d and Type IIA supergravities.
Let us now consider an eleven-dimensional supergravity solution with two circular

directions forming a torus, on which the fields are independent. The Type IIA back-
grounds that result after dimensionally reducing along each of the circles are related via
the so-called U-duality. It consists on a chain of T-S-T dualities linking both Type IIA
supergravity solutions as displayed in Figure 1.2.

Before moving on to the next chapter, let us briefly recall the most relevant concepts
that have been discussed in the current one. We have started by presenting the string
action and the boundary conditions for open and closed strings in section 1.1. Then
the concept of dimensional reduction has being described and illustrated with a simple
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Figure 1.2: U-duality as a chain of T-S-T dualities coming from two Type IIA solutions with
the same 11d origin.

example in section 1.2. In section 1.3 we saw that a gravity theory is always recovered
as the low-energy limit of a string theory and, in particular, the five superstring theories
reduce to five different supergravity theories. Finally, section 1.4 was dedicated to the
review of the dualities connecting the different supergravity theories. We first explored
T-duality, how it arises naturally as the interchanging of the momentum and winding
numbers of string states, how the presence of an isometry (Abelian or not) in a Type
IIA/B supergravity solution can be exploited to derive a new background in Type IIB/A
string theory and how the DBI action of D-branes can be derived by applying this duality.
We also introduced S-duality as a strong-weak duality and displayed the formulae for its
realisation in Type IIB supergravity. We concluded this section by speaking of U-duality
as a chain of T-S-T dualities that connect Type IIA supergravity solutions that share the
same origin in M-theory.
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Chapter 2

Supergravity

In this chapter, we want to explore supergravity from another perspective. These
theories originally arose, not from string theory, but from the study of supersymmetry
as a gauge theory. With that in mind, we provide a brief introduction to the notions of
supersymmetry and superspace and how they can be gauged to obtain supergravity in
section 2.1. We then introduce some basic notions and explore some simple solutions of
Type II and 11d supergravities in sections 2.2 and 2.3, respectively. This will provide some
context when we present our original solutions in the second part of the thesis. Finally,
section 2.4 is devoted to introducing the notion of G-structure and how it is related to
supersymmetry.

If the reader wishes to study this topics in more detail, we recommend to take a look
at the references we used, namely [73,90,91].

2.1. Gauging supersymmetry

We begin by considering the D-dimensional Minkowski spacetime R1,D−1 with metric
ηMN characterised by a signature (−,+,+, . . . ,+). Its isometry group is the Poincaré
group and its infinitesimal transformations form the Poincaré algebra. The generators
of said algebra are PM and MMN , related to translations and Lorentz transformations,
respectively. We recall that their commutation relations are the ones below,

[MMN ,MPQ] =ηNPMMQ − ηMPMNQ + ηMQMNP − ηNQMMP ,

[MPQ, PM ] =PPηQM − PQηPM , [PM , PN ] = 0 .
(2.1)

We are interested in extending this Lie algebra to include supersymmetry in an intrinsic
way. This can be achieved by extending the spacetime (Minkowski in our case) into a su-
perspacetime by adding a set of anticommuting coordinates {ψM} to the regular ”bosonic”
ones {xM}. This mirrors what we did in section 1.1 when we built the superstring ac-
tion from the bosonic one. Supersymmetry then arises naturally as the invariance under
the interchange of both kinds of coordinates. This gives rise to a set of anti-Hermitian
fermionic generators of these new symmetries Qα, where α is the spacetime spinor index,
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and receive the name of supercharges. If more than one set of fermionic coordinates is
present, there is more than one collections of supercharges. These are then labelled as QI

α

with I = 1, 2, . . . ,N the index that runs over the different sets of fermionic coordinates.
Moreover, the symmetry that transforms the different supercharges into one another re-
ceives the name of R-symmetry. The new (anti)commutation relations depend on the
spacetime dimension D and on the number of supersymmetries N . For instance, when
D = 4 and N = 1, we have the below relations,

{Qα, Q̄β̇} = −1

2
PM(γM)αβ̇ , [Qα, PM ] = 0 , [MMN , Qα] = −1

2
(γMN)α

βQβ , (2.2)

where γM are the gamma matrices in four dimensions and

γM1...Mn = γ[M1γM2 . . . γMn] . (2.3)

This new algebra is called the super-Poincaré algebra. Supergravity arises when we gauge
it by considering local supersymmetry transformations in the same way that General
Relativity appears when the regular Poincaré algebra is gauged. In more concrete terms,
this means that the constant spinor ϵ parametrising the transformations in the global
case depends on the bosonic coordinates when we speak about supergravity. Supergravity
theories are non-linear and they contain a gauge or gravity multiplet and optionally matter
multiplets. The gauge multiplet consists in the graviton, given by the vielbein eaM(x) in
the second-order formalism, and a set of N spin 3/2 gravitino fields ψIM(x) with I =
1, 2, . . . ,N . The concrete theory depends, as before, both on the dimension and the
amount of supersymmetry. However, there is a part of the supergravity action that is
shared by the N = 1 case in all dimensions. It consists on the Hilbert action (written here
in the second order formalism) plus a Lorentz and diffeomorphism invariant extension of
the Rarita-Schwinger action for the gravitino,

S = S2 + S3/2 (2.4)

with

S2 =
1

2κ210

∫
dDxeeaMebMRMNab(ω) , S3/2 = − 1

2κ210

∫
dDxeψMΓMNPDNψP , (2.5)

where e is the determinant of the vielbein, ΓM are the D-dimensional gamma matrices and
the Γ with more than one index are defined as in (2.3). The gravitino covariant derivative
reads

DMψN ≡ ∂MψN +
1

4
ωMabγ

abψN (2.6)

and ωMab(e) is the torsion-free spin connection below,

ωM
ab(e) = 2eN [a∂[MeN ]

b] − eN [aeb]σeMc∂Neσ
c . (2.7)

Action (2.4) is invariant under the following local supersymmetry transformation,

δϵe
a
M =

1

2
ϵγaψM , δϵψM = DMϵ = ∂Mϵ+

1

4
ωMabγ

abϵ . (2.8)
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There is a matter that must be addressed now: the supersymmetry solutions are
never invariant under all the possible supersymmetry transformations. Those solutions
that preserve some supersymmetry are called supersymmetric or BPS states. The question
of how much supersymmetry does a particular solution preserve is a crucial one. Let us
consider generic bosonic and fermionic fields B and F . The infinitesimal form of the
supersymmetry transformation that interchanges them is given below,

δϵB ∼ ϵF , δϵF ∼ ∂ϵ+Bϵ . (2.9)

As it is usually done in supergravity, we consider purely bosonic solutions, which cor-
respond to classical solutions. This is because in nature we only observe macroscopic
bosonic fields, while fermions behave as particles at the classical level. A solution is said
to be supersymmetric when (2.9) vanishes for some parameter ϵ(x). As we are considering
F = 0, the condition for the bosons is always met, while that for the fermions reads

δκF ∼ ∂ϵ+Bϵ = 0 . (2.10)

These can be interpreted as an infinitesimal reparametrisation of the superspace. This
heavily resembles the general relativistic case, in which Killing vectors are those whose Lie
derivative leaves the metric invariant. For this reason, (2.10) is called the Killing spinor
equation and its solution is the product of the infinitesimal anticommuting scalar ϵ and the
finite commuting spinor κ, i.e. the Killing spinor. These spinors are the supersymmetry
generators and, therefore, the dimension of the solution space of (2.10) is the number of
preserved supersymmetries.

Each supergravity theory has a different Killing spinor equation. For instance, in
Type II supergravity theories, the fermionic fields consist of two gravitini ψIM and two
dilatini λI with I = 1, 2 [92]. Thus, the Killing equation in these theories corresponds to
the vanishing of their infinitesimal variation with respect to said spinor,

δκψM = 0 , δκλ = 0 . (2.11)

More explicitly, these equations can be written in terms of a supersymmetry parameter ϵ,

δκψM =∇Mϵ+
1

4
/HMPϵ+ eΦ

16

∑
n

/F nΓMPnϵ = 0 ,

δκλ =

(
/∂Φ +

1

2
/HP
)
ϵ+

eΦ

8

∑
n

(−1)n(5− n)/F nPnϵ = 0 .

(2.12)

We have used that M = 0, . . . , 9. In addition, n = 0, 2, 4, 6, 8 for Type IIA and n =
1, 3, 5, 7, 9 for Type IIB. Besides, ψM , λ and ϵ are Majorana-Weyl bispinors of opposite
(same) chirality in Type IIA (Type IIB). As for P and Pn, they are 2 × 2 matrices as
depicted below,

P =

{
Γ11 in Type IIA ,

−σ3 in Type IIB ,
Pn =


Γ
(n/2)
11 σ1 in Type IIA ,{
σ1 for n+1

2
even

iσ2 for n+1
2

odd
in Type IIB .

(2.13)

The slash represents contraction with gamma matrices following (1.151).
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2.2. Solutions in Type II supergravity

In our original work we explored, among other things, supergravity solutions in Type
II. Thus, it is convenient to review the most basic concepts and solutions related to these
theories.

First of all, we must talk about branes, which appear as solutions to the Type IIA/B
supergravities. As mentioned previously, they are extended objects that arise naturally in
non-perturbative string theory, but also play a role here. We already spoke of D-branes
when presenting the string boundary conditions in section 1.1 and presented their effective
worldvolume action in subsection 1.4.1. Moreover, they are the sources of the RR fluxes,
which were introduced in section 1.3. As only certain RR fluxes appeared in each kind
of Type II supergravity (either of odd or even rank), something similar happens with the
branes as summarised in Table 2.1. In addition, in Type II string theory the so-called
NS-branes appear. In the classical theory they are seen as the sources of the NSNS two-
form B2. In more concrete terms, we have the fundamental strings F1, which are the
sources of the electric components of B2 and its magnetic counterpart the NS5-brane,
which are branes with five spacial dimensions and which are the sources of the magnetic
part of B2. Let us now review the Type II supergravity solutions associated to a single

Type IIA Type IIB
NS-branes F1, NS5
D-branes D0, D2, D4, D6, D8 D(−1), D1, D3, D5, D7

Table 2.1: Table summarising the branes that appear in Type II string theory.

stationary brane. The metric of these backgrounds can be written either in the string or
Einstein frames so we present both. For a set of fundamental strings expanding along the
x direction, we have the following fields,

ds2E =H
− 3

4
F1 (−dt2 + dx2) +H

1
4
F1ds

2
R8 ,

ds2s =H
−1
F1 (−dt

2 + dx2) + ds2R8 ,

e−2Φ =HF1 , B2 = H−1
F1 dt ∧ dx ,

(2.14)

where the equations of motion and Bianchi identities boil down to the following,

∇2
R8HF1 = 0 . (2.15)

In other words, the function HF1 which parametrises these solutions must be a harmonic
function of the coordinates of the R8. For instance, we can take

HF1 = 1 +
qF1
r6

, (2.16)

where r is the radial coordinate of R8 and qF1 is an integration constant. This function
describes the effect of a single fundamental string localised in the origin of R8. As we
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explained before, this solution contains an electric NSNS two-form potential. On the
other hand, if we consider parallel NS5 branes extending along directions parametrised by
x⃗5, the following Type II supergravity solution arises

ds2E =H
− 1

4
NS5(−dt

2 + dx⃗5
2) +H

3
4
NS5ds

2
R4 ,

ds2s =− dt2 + dx⃗5
2 +HNS5ds

2
R4 ,

e−2Φ =H−1
NS5 , B6 = H−1

NS5dt ∧ dx
1 ∧ . . . ∧ dx5 ,

(2.17)

where, analogously to the previous case, we have the condition

∇2
R4HNS5 = 0 . (2.18)

The solution corresponding to a single NS5-brane set in the origin of the R4 is given by

HNS5 = 1 +
qNS5

r2
, (2.19)

where r is the radial coordinate of said space. In this case the NSNS three-form flux is
purely magnetic and can be obtained as follows,

H3 = e2Φ ⋆ dB6 , (2.20)

where ⋆ is the ten-dimensional Hodge dual operator.
As for the Dp-brane solutions, they all display a similar form, only changing slightly

according to the concrete value of p,

ds2E =H
p−7
8

Dp (−dt2 + dx⃗p
2) +H

p+1
8

Dp ds
2
R4 ,

ds2s =H
− 1

2
Dp (−dt

2 + dx⃗p
2) +H

1
2
Dpds

2
R9−p ,

e−2Φ =H
p−3
2

Dp , Cp+1 = H−1
Dpdt ∧ dx

1 ∧ . . . ∧ dxp ,

(2.21)

where, as always, x⃗p is the vector of spacial coordinates tangent to the Dp-branes and we
have that

∇2
R9−pHDp = 0 . (2.22)

We have that Cp is the RR p-form potential and its relation to the corresponding RR flux
for the solutions (2.21) is given below

Fp+1 = dCp . (2.23)

As before, if r is the radial coordinate of R9−p, the single brane solution localised at its
centre is given by one of the following harmonic functions,

HDp = 1 +
qDp
r7−p

for p ≤ 6 , HD7 = 1 + qD7 log |r| , HD8 = 1 + qD8|r| . (2.24)
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As we saw in section 1.3, when p ≥ 4 the contribution of the Dp-brane to the RR fluxes
is taken to be magnetic in the following manner,

F4 =− ⋆F6 , F2 = ⋆F8 , F0 = ⋆F10 in Type IIA ,

F3 =− ⋆F7 , F1 = ⋆F9 in Type IIB .
(2.25)

One last remark about brane solutions (either Neveu-Schwarz or Ramond) is that the H
functions of said objects are defined so that they go to 1 in a certain limit (r → ∞ in our
case) and to infinity in the opposite limit (r → 0). This can be physically interpreted as
the observer either approaching the brane or distancing from it. In the latter case, the
warping associated to the brane disappears, as expected. On the other hand, when r → 0,
which is often referred to in the literature as the near-horizon limit, one is zooming in the
brane, thus observing it as a singularity.

There are a couple of objects appearing in Type II backgrounds, which are interesting
in spite of not being branes. They are the KK-monopoles and pp-waves. As we see below,
they only contribute to the metric, but not to the other fields.

A Kaluza-Klein monopole (or KK-monopole) is a six-dimensional object that becomes
a monopole upon Kaluza-Klein compactification on a 6d fibre, hence the name. The metric
of a spacetime that only contains a KK-monopole localised at r = 0 reads

ds2 =ds2R1,5 +H−1
KK (dz + Amdx

m)2 +HKKds
2
R3 with HKK =

qKK

r
, (2.26)

where the monopole extends along R1,5 and z. We also have that {xm}3m=1 parametrise the
R3, Am = Am(x

n) is a vector field on said space, their indices being uplifted and lowered

with the Euclidean metric, and r =
√∑3

m=1(x
m)2. The {z, xm} coordinates parametrise

a so-called Taub-NUT space, which displays a singularity at r = 0, where the monopole
is localised. We highlight that z is an isometry direction of this space. Additionally, we
observe that, in the absence of a dilaton, the metric is the same in both the string and
Einstein frames.

A pp-wave (or plane-fronted wave with parallel rays) is a kind of gravitational wave
characterised by a metric which admits a covariantly constant null Killing vector lM ,
meaning that

∇M lN = 0 , l2 = lM l
M = 0 . (2.27)

The metric of a pp-wave propagating along the z direction is given by

ds2 = −H−1
W dt2 +HW(dz −H−1

W dt)2 + ds2R8 , (2.28)

where the equations of motion and Bianchi identities boil down to

∇2
R8HW = 0 . (2.29)

When we consider the solution associated to several of these branes and other objects,
we have to take into account the individual contributions coming from each one. For
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instance, the resulting metric comes from multiplying the H functions related to each
object and taking into account the non-diagonal terms (in the case of waves or KK-
monopoles). The dilaton is just the product of the individual ones, the NSNS three-form
flux is given by H3 = dB2 and the RR fluxes are given by 1

F0 =m, F2 = dC1 +mB2 , F4 = dC3 −H3 ∧ C1 +
m

2
B2 ∧B2 in Type IIA ,

F1 =dC0 , F3 = dC2 − C0H3 , F5 = dC4 −H3 ∧ C2 in Type IIB ,
(2.30)

where the gauge potentials B2 and Cp are the sum of all the contributions (either electric
or magnetic). However the contribution to the RR fluxes coming from each brane may be
modified by the backreaction of the others. These ideas will be further exemplified when
our original work is presented.

There are a set of quantised charges associated to the D-branes, called Page charges
[93]. The value of each kind of Page charge in a region of space measures the number of
Dp-branes of a certain kind in said region. In order to compute them, we first need to
compute the Page fluxes, which are defined as

F̂ = F ∧ e−B2 , (2.31)

where

F =
∑
i

Fi and e−B2 = 1−B2 +
1

2!
B2 ∧B2 −

1

3!
B2 ∧B2 ∧B2 + . . . (2.32)

From now on we will use the notation

Bn
2 = B2∧ n). . . ∧B2 (2.33)

in order to simplify the expressions. Thus, we have the following definitions for the Page
fluxes,

F̂0 =F0 , F̂2 = F2 − F0B2 , F̂4 = F4 − F2 ∧B2 +
F0

2!
B2

2 ,

F̂6 =F6 − F4 ∧B2 +
1

2!
F2 ∧B2

2 −
F0

3!
B3

2 ,

F̂8 =F8 − F6 ∧B2 +
1

2!
F4 ∧B2

2 −
1

3!
F2 ∧B3

2 +
F0

4!
B4

2 ,

F̂10 =F10 − F8 ∧B2 +
1

2!
F6 ∧B2

2 −
1

3!
F4 ∧B3

2 +
1

4!
F2 ∧B4

2 −
F0

5!
B5

2

(2.34)

for massive Type IIA and

F̂1 =F1 , F̂3 = F3 − F1 ∧B2 , F̂5 = F5 − F3 ∧B2 +
1

2!
F1 ∧B2

2 ,

F̂7 =F7 − F5 ∧B2 +
1

2!
F3 ∧B2

2 −
1

3!
F1 ∧B3

2 ,

F̂9 =F9 − F7 ∧B2 +
1

2!
F5 ∧B2

2 −
1

3!
F3 ∧B3

2 +
1

4!
F1 ∧B4

2

(2.35)

1We have adopted the notations of [76].
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for Type IIB. In the case that these new fluxes may be confused with the ones in (2.30),
the latter ones will be referred as Maxwell fluxes. The Page charge of a Dp-brane is thus
given by [93,94]

QDp =
1

(2π)7−pgsα′(7−p)/2

∫
Σ8−p

F̂m
8−p , (2.36)

where F̂m
k is the magnetic part of the corresponding Page flux. On the other hand, the

integration of H3 results directly into quantised charges,

QF1 =
1

(2π)6g2sα
′3

∫
Σ7

Hm
7 , QNS5 =

1

(2π)2α′

∫
Σ3

Hm
3 , (2.37)

where the higher-ranked NSNS flux is given by

H7 = e−2Φ ⋆ H3 . (2.38)

All the previous charges are called magnetic, as they have being defined as the integral of a
magnetic flux. This mirrors how the electric charge is defined in classical electrodynamics
as the integral of the Hodge dual of the electromagnetic tensor. However, sometimes the
computation of their electric counterparts is more appropriate. The electric Page charges
are defined as follows,

Qe
Dp =

1

(2π)p+1gsα′(p+1)/2

∫
Mp+2

F̂ e
p+2 , (2.39)

where Mp+2 is the worldvolume of the Dp-brane and the superscript e is used to show
that the charge and flux are electric this time. As for the electric quantised charges of the
NS-branes, they are given by

QF1 =
1

(2π)2α′

∫
M3

He
3 , QNS5 =

1

(2π)6g2sα
′3

∫
M7

He
7 . (2.40)

2.3. Basic solutions in 11d supergravity

When compared to Type II, supergravity in eleven dimensions seems far simpler and
more elegant. For instance, only two kinds of branes appear in this case, as opposed to
the many that appear in the ten-dimensional cases. These new branes are called M-branes
and have either two or five spatial dimensions. Furthermore, we now have a metric and
a 4-form flux G4 as the two only fields of interest. Concretely, the M2-branes couple
electrically to the G4, while the M5-branes couple magnetically to it.

Thus, the solution for M2-branes extending along the directions x⃗2 is given by the
following metric and 3-form gauge potential,

ds2 = H
− 2

3
M2 (−dt

2 + dx⃗2
2) +H

1
3
M2ds

2
R8 , A3 = H−1

M2 dt ∧ dx
1 ∧ dx2 , (2.41)
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where G4 = dA3 and the equations of motion and Bianchi identities are equivalent to

∇2
R8HM2 = 0 . (2.42)

As before, we can pick the solution of a single M2-brane disposed in the origin of R8 by
setting

HM2 = 1 +
qM2

r
, (2.43)

where r is the radial coordinate of R8. As for the case of M5-branes, we have something
similar,

ds2 = H
− 1

3
M5 (−dt

2 + dx⃗5
2) +H

2
3
M5ds

2
R5 , A6 = H−1

M5 dt ∧ dx
1 ∧ . . . ∧ dx5 , (2.44)

with G4 = ⋆dA6, ⋆ being the eleven-dimensional Hodge star operator. The condition now
is

∇2
R5HM5 = 0 . (2.45)

As always, a single M5-brane in the centre of R5 is given by the choice

HM5 = 1 +
qM5

r
, (2.46)

with r the radial coordinate of R5 in this case. The discussion regarding the limits of the
Type II brane solutions is also valid here.

Although there are only this two kinds of branes in 11d supergravity, other objects
may appear. One of this is the KK-monopole, which is 7-dimensional in this case and
warps the spacetime giving rise to the following metric,

ds2 =ds2R1,6 +H−1
KK

(
dψ + 2−1qKKω

)2
+HKK

(
dr2 + r2ds2S2

)
, (2.47)

where, as in the ten-dimensional case, ψ parametrises a circle, dω = volS2 and

HKK =
qKK

2r
(2.48)

We also have a wave solution, which is very similar to that of the ten-dimensional case. It
presents a propagation direction z and the associated metric can be written as below,

ds2 = −H−1
W dt2 +HW(dz −H−1

W dt)2 + ds2R9 , (2.49)

where the equations of motion and Bianchi identities imply that

∇2
R9HW = 0 . (2.50)
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2.4. G-structure

In this section, we introduce and explore the concept of G-structures and their relation
to supersymmetry. Using G-structure as a solution generating technique in supergravity
has being quite fruitful in the last years. In more concrete terms, one considers a certain
family of solutions by fixing part of the geometry and fluxes and looks for a set of conditions
that ensures a certain amount of supersymmetry for said family.

Let us consider a frame bundle FM , i.e. a bundle where the fibre is an ordered
basis. A G-structure is defined as a spinor or tensor field on a FM whose stabiliser is
G everywhere [95]. The main property of a G-structure is that it reduces the structure
group of FM2 from the whole GL(d,R) to one of its subgroups G. A G-structure can also
be thought as defining a subbundle of FM .

A basic example is when the base manifold is Riemannian, as a metric can be used to
define a G-structure. This is because one can think of the subbundle OFM ⊂ FM that
has the frames that are orthogonal with respect to the metric as their fibres.

However, for the purposes of this thesis, we are not interested in the general formu-
lation of G-structure. On the contrary, we want to understand how it can be applied to
finding supersymmetry conditions for Type IIA/B AdS3 backgrounds.

For this goal, we use yet another interpretation of G-structure: it can be thought of as
a generalisation of G-holonomy [96]. Let (M, g) be a D-dimensional Riemannian manifold,
let E be a vector bundle over (M, g) and ∇, a connection over E. We can think of a point
x ∈ M and the parallel transport maps along the fibres p : Ex → Ex corresponding to
closed loops with x at its base. The set of all these maps has a group structure and it
is called the Holonomy group of M under the connection ∇ based at x ∈ M , which we
denote by Hol(M,x). In our case, we take the spin bundle as our vector bundle and the
spin connection as our connection. As the parallel transport preserves the length of the
vectors, the holonomy group we are considering must be a subgroup of Spin(D).

In our case, we are considering a compactification space of dimension seven, which we
denote by M7. Taking a look to the Berger Classification, we observe that the only viable
candidate for 7d holonomy is the exceptional group G2. Such manifolds are called G2

holonomy manifolds or simple G2 manifolds. Being a G2 manifold is equivalent to having
a nowhere vanishing, globally defined 3-form Φ3, which is both closed and co-closed, i.e.

dΦ3 = 0 , d ⋆7 Φ3 = 0 , (2.51)

where ⋆7 is the Hodge dual in M7. G2 manifolds first appeared in the context of 11d
supergravity with a Minkowski space of dimension four as external space. In other words,
if we assume that the the only non-trivial bosonic field is a metric of the form

ds211 = ds2R1,3 + ds2M7
(2.52)

and then we demand 11d N = 1 supersymmetry, we have that M7 must be a G2 manifold
with its associated Φ3. Curiously, those manifolds whose holonomy group is a subgroup

2The structure group is isomorphic to the group of transition functions that relate the open subsets
that define the open covering of the bundle.
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of G2 are automatically Ricci-flat, implying that a metric of the form (2.52) satisfies the
vacuum Einstein equations if M7 is a G2 manifold. Moreover, a G2 structure generalises
this notion for the case where the 3-form Φ3 is not closed or co-closed. In this case dΦ3

and ⋆7dΦ3 can be decomposed into irreducible representations of G2,

dΦ3 = τ0 ⋆7 Φ3 + 3τ1 ∧ Φ3 + ⋆7τ3 , d ⋆7 Φ3 = 4τ1 ∧ ⋆7Φ3 + ⋆7τ2 . (2.53)

These τk are the so-called torsion classes [44]. We have that τ0 transforms in the 1
representation of G2, τ1 in the 7, τ2 in the 14 and τ3 in the 27.

Let us now concentrate in this case and show how supersymmetry and G-structure are
equivalent. Following the conventions in [97], a solution of Type II supergravity preserves
some amount of supersymmetry if there are Majorana-Weyl spinors ϵ1,2 that solve the
following spinorial equations(

∇(10)
M − 1

4
( /H3)M

)
ϵ1 +

eΦ

16
FΓMϵ

2 = 0 ,(
∇(10)
M +

1

4
( /H3)M

)
ϵ2 ±

eΦ

16
λ(F )ΓMϵ

1 = 0 ,(
∇(10) − 1

4
H3 − dΦ

)
ϵ1 = 0 ,(

∇(10) +
1

4
H3 − dΦ

)
ϵ2 = 0 ,

(2.54)

where H3 and Φ are the NSNS 3-form flux and dilaton of Type IIA/B supergravity re-
spectively and the notation in (1.151) has being applied. We also assumed the Clifford
map and defined the spin covariant derivatives as

∇M = ∂M +
1

4
ωM

PQΓPQ , deM + ωMN ∧ eN = 0 . (2.55)

We have denoted byM the curved indices and byM the flat ones. Besides, the upper/lower
signs are taken in Type IIA/B. We also have the polyform F defined as

F =

{
F0 + F2 + F4 + F6 + F8 + F10 IIA ,

F1 + F3 + F5 + F7 + F9 IIB ,
(2.56)

which satisfies a self-dual constraint

λ(F ) = ⋆F , (2.57)

where λ(Xk) = (−1)⌊
k
2
⌋Xk, ⌊x⌋ being the floor function. We will consider the following

3 + 7 split for the 10d gamma matrices,

Γµ =γµ ⊗ σ3 ⊗ I8 for µ = 0, 1, 2 ,

Γa =I2 ⊗ σ1 ⊗ γa for a = 1, . . . , 7 , iγ1...7 = I8 ,
(2.58)

57



CHAPTER 2. SUPERGRAVITY

where γµ = (iσ2, σ1, σ3)µ and are thus real.
If the spacetime can be decomposed as M10 =AdS3 ×M7 and taking into account

(2.58), we can decompose the 10d spinors as follows,

ϵ1 = ζ ⊗ θ+ ⊗ χ1 , ϵ2 = ζ ⊗ θ∓ ⊗ χ2 , (2.59)

where ζ are real Killing spinors on AdS3 meeting the condition

∇AdS3
µ ζ =

m

2
γµζ , (2.60)

where m is the inverse of the AdS3 radius, the Minkowski case being recovered for m = 0.
χ1,2 are Majorana spinors on M7. Moreover, θ± are auxiliary 2d spinors necessary to
obtain the right dimensionality for the 10d spinors when decomposed into the 3d and 7d
ones. They are defined as

θ+ =
1√
2

(
1
−i

)
, θ− =

1√
2

(
1
i

)
(2.61)

and, therefore, ϵ1,2 are Majorana-Weyl spinors. The ± signs denotes ten-dimensional
chirality and, as before, the upper/lower signs correspond to Type IIA/B. Plugging the
ansatz (2.59) in the conditions (2.54) and applying some identities, one ends up with the
following equations,

(me−A − idA)χ1 +
1

4
eΦβ±f±χ2 = 0 ,

(me−A ± idA)χ2 +
1

4
eΦβ∗

±λ(f±)χ1 = 0 ,(
∇a −

1

4
( /H3)a

)
χ1 +

1

8
eΦiβ∗

±f±γaχ2 = 0 ,(
∇a +

1

4
( /H3)a

)
χ2 −

1

8
eΦiβ∗

±λ(f±)γaχ1 = 0 ,[
3

2
me−A − i

(
3

2
dA+∇+

i

4
H3 − dΦ

)]
χ1 = 0 ,[

3

2
me−A ± i

(
3

2
dA+∇+

1

4
H3 − dΦ

)]
χ2 = 0 ,

(2.62)

where

β+ = 1 , β− = i . (2.63)

Let us consider the simplest case, which consists on taking χ1 = χ2 ≡ χ and setting
H3 = f± = 0 and assume constant dilaton and warp factor eA. Under these considerations,
the conditions (2.62) boil down to

∇aχ = 0 , m = 0 , (2.64)
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which, as mentioned before, corresponds to the case where the AdS3 degenerates into a
4d Minkowski spacetime. Thus, we must have a metric of the form

ds210 = ds2R1,3 + ds2M7
, (2.65)

which supports a covariantly constant spinor. It is possible to show that the condition
(2.64) is equivalent to (2.51). The main idea behind this equivalence is that a single
seven-dimensional Majorana spinor defines the 3-form of the G2-structure [98],

Φ3 = −i 1
3!
χ†γabcχe

a ∧ eb ∧ ec . (2.66)

Starting with this expression and applying (2.64), one obtains the condition (2.51).

In general, two Majorana spinors χ1,2 define a G2×G2-structure in seven dimensions,
i.e. a G2 structure for each spinor. This is usually referred to as their largest common
subgroup SU(3). In other words, one can decompose a general G2-structure in terms of
an SU(3) as

Φ3 = J ∧ U − Im(Ω) , (2.67)

characterised by a real 2-form J and a holomorphic 3-form Ω, both six-dimensional. The
two Φ3 corresponding to χ1,2 share the same (J,Ω) but have different U . The situation
where χ1 = χ2 is an exception where both Φ3 coincide and, therefore, the largest common
subgroup is the whole G2. Thus, in that case we have a G2-structure.

2.4.1. G-structure in N = (1, 1) AdS3 solutions to Type IIA/B
supergravity

As an example, we now explore in more detail the case of N = (1, 1) Type IIA/B
backgrounds, as presented in [50]. Actually, the solutions that appear in our original
work are N = (0, 1) supersymmetric. However, a thorough justification of the equivalence
between supersymmetry and G-structure conditions in the N = (0, 1) case is too advanced
and exceeds the purposes of this thesis. Thus, we restrict ourselves to the simpler N =
(1, 1) scenario for this example. We start by assuming that the fields take the following
form,

ds2 =e2Ads2(AdS3) + ds2(M7) , H = e3Ah0volAdS3 +H3 ,

F =f± + e3Avol(AdS3) ∧ ⋆7λ(f±) with λ(fn) = (−1)⌊
n
2
⌋fn ,

(2.68)

where we denote by m the inverse of the radius of the AdS3. We also consider that the
warp factor e2A, the dilaton Φ, the magnetic components of the NSNS flux H3 and the
RR polyform f± depend on the coordinates of M7, but are independent on those of the
AdS3. The sign in f± denotes whether the considered forms are of even (+) or odd (−)
rank, i.e. the former corresponds to Type IIA and the latter to Type IIB.
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We will realise the N = (1, 1) supersymmetry of our backgrounds through the two
ten-dimensional Majorana-Weyl Killing spinors ϵ1,2. In more concrete terms, we assume
that they can be decomposed as follows,

ϵ1 = ζ+ ⊗ θ+ ⊗ χ1
+ + ζ− ⊗ θ+ ⊗ χ1

− , ϵ2 = ζ+ ⊗ θ∓ ⊗ χ2
+ + ζ− ⊗ θ∓ ⊗ χ2

− , (2.69)

where ζ± are the two independent real Killing spinors on AdS3 realising the N = (1, 1)
supersymmetry and which are charged under the group SL(2)± ⊂SO(2, 2). χ1,2

± are four
independent Majorana spinors and, without loss of generality, their norms can be taken
to satisfy ∣∣χ1

+

∣∣2 + ∣∣χ2
+

∣∣2 =∣∣χ1
−
∣∣2 + ∣∣χ2

−
∣∣2 = 2eA ,

eA(
∣∣χ1

+

∣∣2 − ∣∣χ2
+

∣∣2) =− eA(
∣∣χ1

−
∣∣2 − ∣∣χ2

−
∣∣2) = c ,

(2.70)

where c is an arbitrary real constant. Also the θ± are two dimensional vectors and codify
the ten-dimensional chirality labelled by the subscript (the subscripts in ζ± and χ1,2

± are just
labels). Without entering into details, there are certain geometric necessary and sufficient
conditions for the existence of anN = (1, 1) solution. These refer to the following bilinears,

Ψst
+ + iΨst

− = χ1
s ⊗ χ2†

t , s, t = ± , (2.71)

where

χ1
s ⊗ χ2†

t =
1

8

7∑
n=1

1

n!
χ2†
t (γa1...an)χ

1
se
a1 ∧ . . . ∧ ean , (2.72)

where γa are the flat space seven-dimensional gamma matrices, the ea is a vielbein of said
dimension and the subscript in Ψst

± refers to form degree once again. The aforementioned
conditions are displayed below,

e3Ah0 = −mc , dH3(e
A−ΦΨ++

∓ )± c

16
f± = 0 , dH3(e

A−ΦΨ−−
∓ )∓ c

16
f± = 0,

(Ψ++
∓ , f±)7 = ∓1

2
e−Φ

(
m+

1

4
e−Ach0

)
vol(M7) ,

(Ψ−−
∓ , f±)7 = ±1

2
e−Φ

(
m+

1

4
e−Ach0

)
vol(M7) ,

dH3(e
2A−ΦΨ++

± )∓ 2meA−ΦΨ++
∓ =

1

8
e3A ⋆7 λ(f±) ,

dH3(e
2A−ΦΨ−−

± )± 2meA−ΦΨ−−
∓ =

1

8
e3A ⋆7 λ(f±) ,

(2.73)

where (X, Y )7 is the seven-dimensional Mukai pairing defined as

(X, Y )7 = X ∧ λ(Y )

∣∣∣∣
7

(2.74)
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and dH3 = d −H3∧. It can be shown that an N = (1, 1) AdS3 gets enhanced into AdS4

at all regular points in internal space unless the following conditions are met,

χ1†
+χ

1
− + χ2†

+χ
2
− = 0 , χ1†

+ γ
aχ1

− ∓ χ2†
+ γ

aχ2
− = 0 . (2.75)

We assume these restrictions in order to obtain bona fide AdS3 solutions. However, im-
posing (2.75) gives rise to an additional set of conditions,

d(eAg) +mξ̃ = 0 , dH3(e
2A−Φ(Ψ+−

± +Ψ−+
± )) = 0 ,

dH3(e
−Φ(Ψ+−

± −Ψ−+
± )) =

1

8
ξ̃ ∧ f±,

dH3(e
A−Φ(Ψ+−

∓ +Ψ−+
∓ ))±me−Φ(Ψ+−

± −Ψ−+
± ) = ∓1

8
gf± ,

dH3(e
3A−Φ(Ψ+−

∓ −Ψ−+
∓ ))± e3A−Φh0(Ψ

+−
± −Ψ−+

± )± 3me2A−Φ(Ψ+−
± +Ψ−+

± ) =

=± 1

8
e3Aξ̃ ∧ ⋆7λ(f±) ,

(2.76)

where
g = χ1†

+χ
1
− − χ2†

+χ
2
− , ξ̃ = −i(χ1†

+ γ
aχ1

− ± χ2†
+ γ

aχ2
−)e

a (2.77)

cannot vanish globally when N = (1, 1). Some of the equations (2.73) and (2.76) can
be shown to be redundant in the light of the relations for 7d spinors. Furthermore, if we
consider internal spinors that satisfy (2.70) and (2.75), the N = (1, 1) AdS3 solutions boils
down to the ones below,

e3Ah0 = −mc , d(eAg) +mξ̃ = 0 , dH3(e
A−Φ(Ψ++

∓ +Ψ−−
∓ )) = 0,

dH3(e
2A−Φ(Ψ++

± −Ψ−−
± ))∓ 2meA−Φ(Ψ++

∓ −Ψ−−
∓ ) = 0 ,

dH3(e
A−Φ(Ψ++

∓ −Ψ−−
∓ ))± c

8
f± = 0 ,

dH3(e
2A−Φ(Ψ++

± +Ψ−−
± ))∓ 2meA−Φ(Ψ++

∓ +Ψ−−
∓ ) =

1

4
e3A ⋆7 λ(f±) ,

dH3(e
A−Φ(Ψ+−

∓ +Ψ−+
∓ ))±me−Φ(Ψ+−

± −Ψ−+
± ) = ∓1

8
gf± ,

(Ψ++
∓ −Ψ−−

∓ , f±)7 = ±e−Φ

(
m+

1

4
e−Ach0

)
vol(M7) .

(2.78)

From now on, we fix c = 0 and so, according to (2.70), both internal bispinors have the
same norm. This means that h0 = 0 now solves the first equation in (2.78). Without loss
of generality, we can parametrise the four internal spinors by two real unit norm vectors
(V, V̂ ), a set of three real functions (a, b, α) and a unit norm spinor χ,

χ1
+ =eA/2χ , χ2

+ = eA/2(a+ ibV )χ ,

χ1
− =eA/2(cosα + i sinαV )χ , χ2

− = −eA/2(cosα∓ i sinαV )(a+ ibV̂ )χ ,
(2.79)

where a2+b2 = 1. Substituting these spinors in (2.77), we obtain the following expressions,

g = 2eA cosα , ξ̃ = 2eA sinαV , (2.80)
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where neither cosα nor sinα can be globally zero. A straightforward consequence of this
is that the second equation in (2.78) takes the following form,

d(2e2A cosα) +meA sinαV = 0 , (2.81)

meaning that the internal manifold M7 may be decomposed via a warped product of an
interval spanned by V and a six-dimensional manifoldM6. In general the spinor χ satisfies
the relations below,

χ⊗ χ† = Ψ
(G2)
+ + iΨ

(G2)
− =

1

8
(1− iΦ3 − ⋆7Φ3 + ivol7) , Φ3 ∧ ⋆7Φ3 = 7vol7 , (2.82)

where Φ3 is the 3-form associated to the G2-structure that a single seven-dimensional
Majorana spinor supports. The G-structure of an N = (1, 1) solution will depend on
the relative orientation of V and V̂ . If they are parallel to each other, then the solution
presents an SU(3)-structure on the M6. If they are not parallel and b ̸= 0, then an SU(2)-
structure is supported in the M6. This reduction can be thought of as each χ± imposing a
restriction on the G-structure. Thus, the maximal group (SU(3) in this case) is obtained
only when V and V̂ are parallel.

Let us capitulate what we saw in this chapter before we conclude. We provided an
interpretation of supergravity as gauged supersymmetry in section 2.1. Then we explored
some basic solutions of Type IIA/B and 11d supergravities in sections 2.2 and 2.3, respec-
tively. We closed this chapter by introducing the notion of G-structure and exploring a
relevant example in section 2.4.
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Chapter 3

Holography

This chapter revolves around a key concept for this thesis, but also for the understand-
ing of the current research in supergravity and CFT. This is no other than the AdS/CFT
correspondence, which conjectures that a Type IIA/B string theory which lives in an Anti-
de Sitter space is related to a CFT whose fields are defined over the conformal boundary
of said space. It is a remarkable application of the holographic principle, which tells us
that the information contained in a volume Vd+1 is actually encoded in its boundary Ad.
The motivation behind this principle is the so-called Bekenstein bound for the maximum
amount of entropy enclosed within a certain volume: Smax = Ad/(4GN), where Ad is the
area of the boundary (measured in units of the Planck area ldp) and GN is the Newton’s
constant.

Although this may be surprising the first time one hears about it, there is a historical
background suggesting that the conjecture is quite likely to be true. In particular, the
holographic principle first appeared in the context of the black hole information paradox. In
1975 Hawking published a paper suggesting that black holes are not completely black, but
radiate due to quantum effects in their horizons [99]. This result raised some controversy
as it seemed to violate the unitarity of time evolution, a fundamental postulate of quantum
mechanics that estates that quantum systems evolve according to unitary operators and,
therefore, information cannot be destroyed when a system changes from one state to
another. For this reason, this contradiction was called the black hole information paradox.
Almost two decades later, in 1993, Stephens, t’ Hooft and Whiting proposed a solution
to this paradox: the entropy of a black hole must be proportional to the surface of its
horizon because the degrees of freedom of a black hole are duplicated in the Hawking
radiation [100]. This statement is the seed of the holographic principle, which was later
formulated in general by ’t Hooft [101]. Maldacena’s 1998 paper [17] then introduced
the AdS/CFT correspondence with the support of the particular example of D3-branes in
Type IIB string theory, constituting a very exciting example of the holographic principle.
Moreover, in the past decades, other such examples regarding different brane configurations
in Type IIA/B have been studied. Another hint that suggests that the AdS/CFT duality
should be correct is related to the isometry group of AdSd+1, which is the Lorentz group
SO(d, 2). This group is isomorphic to the conformal group Conf(d − 1, 1), which is the
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symmetry group of a CFT living in R1,d−1.
Furthermore, the AdS/CFT correspondence is a strong-weak duality. This means

that it relates a strongly coupled field theory with a classical and weakly curved gravity
theory. This provides a path for the study of strongly coupled field theories, as some
observables can be computed on the gravity side. This also applies the other way around,
relating weakly coupled field theories to strongly coupled and heavily curved string theory.
Roughly speaking, at the heart of the correspondence lies the dual nature of D-branes.
On the one hand, they are objects on which the open strings must end. However, they
are also extremal p-branes, which are supergravity solutions.

The main sources consulted for this chapter were [102,103].

3.1. The original AdS5/CFT4 correspondence

We consider the original case of D3-branes, which was devised by Maldacena in 1997
[17]. In the D3-brane case, the correspondence relates 4d N = 4 Super Yang-Mills (SYM)
and Type IIB string theory on AdS5 × S5. In its strongest formulation, the AdS5/CFT4

conjecture states that both theories are dynamically equivalent and matches their free
parameters in the following way,

g2YM = 2πgs and 2g2YMN = L4/α′2 . (3.1)

Here gYM is the coupling constant of the gauge group SU(N) that describes the interactions
in the SYM theory and λ = g2YMN is referred to as the ’t Hooft coupling. We also have
that gs is the string coupling constant over AdS5 × S5, the radius of curvature of both
the AdS5 and the S5 is L and there are N units of F5 flux on the S5. Thus, we observe
that gYM and N of the SYM theory are mapped to gs and L

2/α′ on the string theory side.
The two theories being dynamically equivalent implies that they describe the same physics
from two different perspectives. But this implies that string theory, a theory of quantum
gravity, is mapped to a quantum field theory where gravity does not appear at all. In
other words, the gravitational degrees of freedom of the former theory have to transform
into something else in the latter one. Furthermore, as we presented in the introduction to
this section, the information of the 5d theory obtained upon Kaluza-Klein reducing the
Type IIB solution on the 5-sphere is actually encoded within the conformal boundary of
the AdS5.

It is quite difficult to perform general computations applying the AdS5/CFT4 cor-
respondence. The idea then consists on taking certain limits on both sides of the corre-
spondence. This provides a more applicable version of the conjecture, albeit a weaker one.
In particular, as string theory is not fully understood at the non-perturbative level, it is
reasonable to take the weak coupling regime (gs ≪ 1 and constant L/

√
α′) on that side

as our start point. By considering only the leading order in gs, we obtain classical string
theory, meaning that only the tree level diagrams are regarded instead of the whole genus
expansion. We now turn our attention to CFT side of the correspondence. If the mapping
in (3.1) holds, we must have gYM ≪ 1 and g2YMN must stay finite. In other words, we are
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in the large N limit (N → ∞) for a fix value of the ’t Hooft coupling λ. This corresponds
to the so-called planar limit of the gauge theory, meaning that the scattering amplitudes
are dominated by Feynman diagrams that can be described by planar graphs. This implies
that the AdS/CFT conjecture is an example of a conjecture proposed by ’t Hooft, which
states that the planar limit of a gauge theory is a string theory [104]. We conclude that a
1/N expansion of the CFT can be mapped into a genus expansion of the string theory, as
1/N ∝ gs for constant λ, according to (3.1).

We must focus on the strongly coupled limit on the CFT side, which corresponds to
sending α′/L2 → 0, as it is the one we can work with. In this regime, we are considering
that the string length is very small when compared to the AdS curvature radius. Thus, we
are in the point particle limit. This fact jointly with the tree level truncation we already
considered implies that we are dealing with classical supergravity. On the field theory side,
we are in the strongly coupled, λ → ∞, regime. This is the weak form of the AdS/CFT
correspondence, with relates Type IIB supergravity on a weakly curved AdS5 × S5 to
strongly coupled N = 4 Super Yang-Mills in four dimensions. For our particular example,
we will consider this form of the conjecture.

As we anticipated in the introduction to this chapter, the AdS/CFT correspondence
arises in the context of string theory as a consequence of the dual nature of D-branes. We
will address these two points of view as the open string and closed string perspectives.
Which one of these two cases is applicable relies completely on the value of gs, which
determines the strength of the interaction between strings and, therefore, the regime we
are in.

The open string perspective corresponds to the viewpoint where we consider D-branes
as the region of space where open strings may end. For this interpretation to make sense,
we must be in the perturbative string regime, i.e. gs ≪ 1. In particular, we are interested
in the low-energy case (E ≪ α′−1/2), when the dynamics of the open strings can be
described via a supersymmetric gauge theory defined within the worldvolume of the D-
branes. The gauge potential in play, Aµ, accounts for the open string excitations along the
worldvolume directions of the D-branes, while scalar fields ϕi describe those excitations
transverse to the D-branes. The case where N D-branes coincide gives rise to a U(N)
gauge group. Therefore, we conclude that the effective coupling must be gsN in this case.
Furthermore, the condition gsN ≪ 1 must be met for the open string viewpoint to be
reasonable considered.

As for the closed string point of view, it is the completely opposite one. In this case,
D-branes are regarded as solutions to supergravity, i.e. as p-branes, as we presented in
section 2.2. In this case, we must consider that D-branes curve the surrounding spacetime,
which we completely ignored in the open string perspective. The radius of curvature L
is taken to be large so that we are in the low curvature scenario and we can apply the
supergravity approximation. When N D-branes coincide, we observe that L4/α′2 ∝ gsN
according to (3.1). Thus, this perspective is only trustworthy when gsN ≫ 1.

These two perspectives motivate the AdS5/CFT4 duality when applied to a stack
of N D3-branes in Type IIB string theory embedded in flat spacetime. As we explained
earlier, this will provide a connection between strongly coupled N = 4 Super Yang-Mills
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Theory in 4 dimensions and a Type IIB supergravity solution displaying an AdS5 × S5

geometry. The first step is to specify how the D3-branes are embedded in ten-dimensional
spacetime. We will consider that they extend along x0, x1, x2 and x3 and, without loss of
generality, we also consider that they satisfy x4 = . . . = x9 = 0. These specifications are
summarised in Table 3.1.

branes x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × × − − − − − −

Table 3.1: Description of the worldvolume and transversal directions of the D3-branes. The
former ones are represented by × and correspond to Neumann boundary conditions for open
strings, while the latter ones are depicted by − and coincide with the Dirichlet ones.

3.1.1. The open string interpretation

We start with the open string perspective, thus considering the perturbative case
gsN ≪ 1. In principle, for the considered kind of backgrounds in perturbative string
theory, we can have open strings with both ends attached to the stack of D3-branes
and closed strings. The former ones can be regarded as perturbations of the D3-branes,
while the latter ones are viewed as excitations of the 10-dimensional flat spacetime. We
will only consider massless excitations and ignore the higher energy ones by assuming
E ≪ α′−1/2. As the brane configuration preserves half of the supersymmetries, we have
sixteen supercharges. Because of this, the massless closed string states are grouped into a
10d N = 1 supergravity multiplet. As for the massless open string modes, they combine
into a four-dimensional N = 4 supermultiplet consisting of a gauge field Aµ, six real
scalar fields ϕi and their corresponding fermionic superpartners. As a consequence of the
D3 coinciding in a single stack, the strings ending on them are massless and all the open
string modes must be in the adjoint representation of U(N).

After the previous discussion, we can write down the general form of the action
describing all massless excitations,

S = Scl + Sop + Sint , (3.2)

where Scl contains the closed strings alone, Sop is the analogous for the open ones and
Sint describes the interactions between both kinds of modes. We remark that Scl is the
supergravity action with some extra higher derivative corrections,

Scl =
1

2κ210

∫
d10x

√
−ge−2Φ[R + 4∂MΦ∂MΦ] + · · · ∼ −1

2

∫
d10x∂Mh∂

Mh+O(κ) , (3.3)

where h is the lowest order fluctuation of the metric, i.e. g = η + κh. The actions Sop

and Sint can be derived from the DBI and Wess-Zumino actions. The former one can be
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written as follows for the case of a single D3-brane,

SDBI = − 1

(2π)3α′2gs

∫
d4xe−Φ

√
− det(P [g] + 2πα′F ) , (3.4)

where B2 has been set to zero and F is the field strength of the gauge potentials Aµ living
on the worldvolume of the D3-branes. We now consider the static gauge. This means
that we will denote by xµ with µ = 0, 1, 2, 3 the worldvolume coordinates and identify the
remaining ones, xi, with six real scalar fields ϕi,

xi+3 = 2πα′ϕi for i = 1, . . . , 6 . (3.5)

We also have that P represents the pullback to the worldvolume and, according to what
we have just seen, the pullback of the metric takes the following form,

P [g]µν = gµν + (2πα′)(gi+3 ν∂µϕ
i + gµ j+3∂νϕ

j) + (2πα′)2gi+3 j+3∂µϕ
i∂νϕ

j . (3.6)

If we expand the metric and dilaton in (3.4) at leading order in α′, we get the following
effective actions,

Sop =− 1

2πgs

∫
d4x

(
1

4
FµνF

µν +
1

2
ηµν∂µϕ

i∂νϕ
i +O(α′)

)
,

Sint =− 1

8πgs

∫
d4xΦ

1

4
FµνF

µν + · · · .
(3.7)

These actions are for a single D3-brane. If we want to generalise to the case of N coinciding
D3-branes, we have to take into account that the scalars and gauge potentials are U(N)-
valued in that case. In other words, in general we have

ϕi = ϕiaTa , Aµ = AaµTa , (3.8)

where Ta are the Lie algebra generators. We also have to take the trace whenever the Ta
appear in order to have gauge invariance. For instance, FµνF

µν becomes F a
µνF

aµν . One
last consideration, we need to replace the partial derivatives with covariant ones and add
an scalar potential

V =
1

2πgs

∑
i,j

Tr
[
ϕi, ϕj

]2
(3.9)

to Sop to lowest order in α′.
Finally, if we take α′ → 0, we observe that Sop becomes the bosonic part of the N = 4

Super Yang-Mills action with
2πgs = g2YM . (3.10)

For Scl, we observe that κ10 ∝ α′2 → 0 in this limit so we recover the action of free 10d
supergravity. As for the interaction term, we have that Φ must be rescaled by κ10 for
renormalisation reasons. We conclude that Sint vanishes in the α′ → 0 limit and both
open and closed strings decouple.
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3.1.2. The closed string interpretation

Now we explore the opposite limit by considering a stack of N D3-branes in the
strongly coupled regime (gsN → ∞). Thus, we must switch to the closed string perspective
and regard the D3-branes as massive sources of the Type IIB supergravity fields. The
supergravity solution preserves once again half of the supercharges (sixteen) and, as we
saw in section 2.2, it takes the following form,

ds2 =H(xi)−1/2ηµνdx
µdxν +H(xi)1/2δijdx

idxj ,

C(4) =H(xi)−1 dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,
(3.11)

where H(xi) is a harmonic function in the xi coordinates and the dilaton is constant so
we can take it to vanish. In our case, we are interested in the most symmetric solution,
which consists in taking

H = 1 +
L4

r4
, (3.12)

where r is the radial coordinate of the R6 parametrised by the xi. As we already explained
in section 2.2, this particular choice of H interpolates between two different behaviours in
two separate regions of spacetime. First we have that H(r) ∼ 1 when r ≫ L; the observer
is far away from the sources so the spacetime is asymptotically flat. On the other hand,
H ∼ L4

r4
when r ≪ L, i.e. when the near-horizon limit is taken; this region is shaped like

a throat. In this latter regime, the metric reduces to

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
δijdx

idxj =

=
L2

z2
(
ηµνdx

µdxν + dz2
)
+ L2ds2S5 =

=ds2AdS5
+ L2ds2S5 ,

(3.13)

where we have gone to spherical coordinates in the second line and defined z ≡ L2/r. We
highlight the fact that we have arrived at the conclusion that the geometry of our solution
is AdS5 × S5 in the near-horizon limit and flat in the outermost region. Thus, we have to
differentiate between closed strings propagating in each of these two regions. Furthermore,
in the low-energy limit, both kinds of closed strings decouple. This can be reasoned by
considering a string excitation. An observer positioned at a fixed r will measure an energy
Er for the excitation, while another one at infinity will measure E∞. These two measures
of the energy are related as below,

E∞ = H−1/4Er . (3.14)

As H−1/4 ∼ r/L when r → 0, we conclude that E∞ goes to zero in the throat region
independently on the value of Er. Therefore, these string excitations are in the low-energy
regime for an observer at infinity. They would conclude that there are two decoupled
low-energy modes: the supergravity modes propagating in flat ten-dimensional spacetime
and the string excitations in the throat corresponding to the AdS5 × S5 geometry.
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3.1.3. The comparison of both interpretations

If we compare the two perspectives, we observe that both present two decoupled
effective theories in their low-energy regimes. Both perspectives are equivalent in the
sense that the underlying physics are the same in spite of being described in two very
different ways. As expected, they share the presence of Type IIB supergravity on R1,9.
However, while in the open string perspective we also observe N = 4 SYM theory in R1,3,
the closed string perspective contains Type IIB supergravity on AdS5×S5. Thus, these two
theories have to be related in some way. This is what motivated Maldacena to propose the
AdS/CFT conjecture [17]. If we ignore the low-energy condition, the conjecture proposes
the equivalence between N = 4 SYM in flat 4d spacetime and Type IIB string theory on
AdS5 × S5.

Without entering into details, this correspondence also proposes a map between the
operators of the 4d N = 4 Super Yang-Mills theory and the spectrum of states of string
theory. The underlying reason for this map to exist is that the symmetry group of both
theories is the same, namely PSU(2, 2|4), allowing certain representations of said group
that correspond to operators in the gauge theory to be mapped into string states on the
AdS in the same representation. In the weak form of the conjecture, the map relates the
operators of the CFT to supergravity fields. This field-operator map enables a formulation
of the AdS/CFT correspondence as as a relation between generating functionals in both
theories.

All these results can be extended to other dimensions by considering different branes
or brane configurations. In more concrete terms, whenever an AdSp+1 solution arises in
the near-horizon limit of some brane set-up, one can study if it is holographically dual to
some CFTp which lives in said brane set-up. To illustrate this, we present an example of
the p = 2 case in the next section.

3.2. An example of AdS3/CFT2 correspondence

In this section, we will explore a D1-D5 bound state. Its holographic properties
were already studied by Maldacena in [17] and it gives rise to the simplest example of
AdS3/CFT2 duality. This case of the correspondence (p = 2) is particularly relevant for
our purposes, as we explored it in our work. We start by considering the brane set-up
depicted in Table 3.2. In this brane configuration, the D1- and D5-branes are taken to

branes t x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 × − − − − × − − − −
D5 × − − − − × × × × ×

Table 3.2: D1-D5 brane configuration. The (x6, x7, x8, x9) coordinates parametrise a four-fold
M4, which is taken to be either a T4 or a K3.

share a worldvolume direction, x5. Besides, we have a four-dimensional internal compact
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manifold M4 = T4 or K3, and the D5-branes are wrapped around it.
On the field theory side, we have Type IIB string theory on R1,4×S1×M4 if we take

x5 to parametrise a circle. This theory preserves 16 out of the 32 supercharges of Type IIB
string theory. When the size ofM4 is small compared with the length of S1, the low-energy
dynamics are given by a field theory living in the (1 + 1)-dimensional brane intersection.
Standard weak coupling open string quantisation determines that this is a U(N1)×U(N5)
supersymmetric gauge theory that flows in the IR to a non-trivial CFT. Here N1 and N5

are the number of D1- and D5-branes in the considered intersection, respectively. The
theory presents N = (4, 4) supersymmetry in (1+1) dimensions, meaning that it displays
4 right-handed and 4 left-handed supercharges. The central charge of the associated
superconformal algebra can be proven to be

c = 6N1N2 . (3.15)

On the supergravity side, the D1-D5 brane system depicted in Table 3.2 gives rise to
the following solution to Type IIB supergravity,

ds2 =H
−1/2
D1 H

−1/2
D5 (−dt2 + dx25) +H

1/2
D1 H

1/2
D5 dx

ldxl +H
1/2
D1 H

−1/2
D5 ds2M4

,

F3 =∂rH
−1
D1 dt ∧ dx

5 ∧ dr − ∂rHD5 r
3volS3 , eΦ = H

1/2
D1 H

−1/2
D5 .

(3.16)

We have parametrised the transversal space to the D1-D5 system by xl with l = 1, 2, 3, 4.
We have also used spherical coordinates for this space, denoting the radial direction by

r =
√∑4

l=1(x
l)2 and by volS3 the volume form of the associated 3-sphere. Besides, we

assumed HD1 = HD1(r) and HD5 = HD5(r), which must be harmonic functions in R4
r

in order to satisfy the Bianchi identities and equations of motion. Let us consider the
particular solution

HD1(r) =1 +
qD1

r2
with qD1 =

(2π)4gsN1α
′3

VolM4

,

HD5(r) =1 +
qD5

r2
with qD5 = gsN5α

′ , ,

(3.17)

where VolM4 is the volume ofM4. Besides, qD1 and qD5 are two integration constants which
provide the length scale L = (qD1qD5)

1/4. We can now take the near-horizon limit r → 0,
which yields the following fields,

ds2 =ds2AdS3
+ L2ds2S3 + q

1/2
D1 q

−1/2
D5 ds2M4

,

F3 =2qD5 (volAdS3 + volS3) , eΦ = q
1/2
D1 q

−1/2
D5 ,

(3.18)

where

ds2AdS3
=
r2

L2
(−dt2 + dx25) +

L2

r2
dr2 , volAdS3 =

r

L
dt ∧ dx5 ∧ dr (3.19)

are the metric and element of volume of an AdS3 with radius L. We can compute the cen-
tral charge from this supergravity solution using holographic techniques. The holographic
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central charge is thus given by the formula below [105,106],

chol = 3
(p− 1)p−1

GN

b(r)(p−1)/2(Ĥ)
2p−1

2

(Ĥ ′)p−1
, (3.20)

where GN = 8π6α′4g2s is the ten-dimensional Newton’s constant and we are considering a
generic metric and dilaton of the form

ds2 = a(r, yk)(ds2R1,p−1 + b(r)dr2) + gij(r, y
k)dyidyj, Φ = Φ(r, yk) (3.21)

and

Ĥ =

(∫
dy9−p

√
e−4Φ det(gij)a(r, yk)p−1

)2

. (3.22)

Here {yi} parametrise the space transversal to the AdSp+1. Applying (3.20)-(3.22) to our
background (3.18), we obtain the central charge below,

chol =
3L4VolS3VolM4

2GN

. (3.23)

This can be further simplified taking into account the values of qD1 and qD5 that appear
in (3.17). The final result is

chol = 6N1N5 , (3.24)

which coincides exactly with the central charge obtained via the field theory computation.
This further supports the AdS/CFT conjecture.

We point out that this comparison between the central charge computed from the
supergravity solution and the dual field theory has being used in our work. In particular,
the agreement of both quantities in the IR has being used to support the hypothesis that
we will introduce in the next chapter, which states that the quiver field theories we built
flowed in said regime into the CFTs dual to the AdS supergravity solutions.

In this chapter we have introduced the notion of holographic duality. We concentrated
in particular in the weak form of the correspondence, which relates a strongly coupled field
theory with supergravity. We then illustrated the correspondence with the AdS5/CFT4

case that was originally devised by Maldacena [17]. The idea was to consider D3-branes
from two different perspectives. From the so-called open string perspective, D-branes are a
region of space where open strings may end, which is only valid in the perturbative limit of
string theory (gs ≪ 1). On the other hand, D-branes can be regarded as objects that warp
the spacetime they live in. From the so-called closed string perspective, a brane set-up is
described by a supergravity solution. The comparison of both perspectives provides a link
between the CFT that arises from the open string viewpoint and the supergravity solution
that appears in the closed string one. Furthermore, these ideas can be used to build a
map that relates the fields of the supergravity solution to the operators in the CFT. This
conjecture can be generalised to other dimensions by taking into consideration different
brane set-ups, as we saw for the AdS3/CFT2 through a D1-D5 bound state. Furthermore,
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one can compute the central charge of the CFT and then compare it to the one obtained
from the supergravity solution in order to obtain evidence for the Maldacena conjecture.
As we explain in the next chapter, the brane solutions to Type II supergravity are dual to
quiver field theories. In some regime these field theories are expected to flow into CFTs
which are dual to the AdS solutions that appear in the near-horizon limit of the brane
ones.
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Chapter 4

Quiver field theories on brane
systems

In the previous chapter, we introduced the idea of holography as a duality that links
Type II string theory in an AdS space with CFTs living in the boundary of said space.
However, AdS solutions usually appear only as near-horizon limits of more general ones.
Thus, the next logical step is to wonder whether there is a way of relating supergravity
solutions associated to certain brane set-ups with quantum field theories living in their
worldvolume. This idea has being explored in the literature (in our work in particular) by
building quiver field theories living in brane systems, which are dual to the supergravity
solutions in this sense. These are theories which can be described in a graphic manner
through quivers where the nodes and edges represent the different multiplets that encode
the field theory. In more concrete terms, the best understood case are Dp-NS5-D(p + 2)
brane intersections for some non-negative integer p. They have being found to realise
p-dimensional field theories with 8 supercharges that flow to CFTs in the IR (for p < 4),
in the UV (for p > 4), or are conformal per se (for p = 4) [107]. These CFTs are dual
to AdSp+1 solutions in Type IIB supergravity with 16 supercharges that arises as near-
horizons of the aforementioned brane intersection. Thus, these constructions have being
useful in the study of the AdS/CFT correspondence.

For more complicated brane set-ups, the dual CFT may be difficult to describe,
sometimes even lacking a Lagrangian. Following what was explained above, the solution
consists on building a quiver field theory, which does admit a Lagrangian and provides
an easy description of the fermions. In our papers we considered the AdSp+1/CFTp cor-
respondence with p = 1, 2 and, therefore, it is hypothesised that the quiver field theory
flows in the IR into the CFT dual to the AdS supergravity solution, as happened in the
case of Dp-NS5-D(p + 2) intersections. In order to support this assertion one computes
the central charge both from the field theory and the supergravity solution in said limit
and compares both results.

The basics for the building of quiver quantum theories in brane set-ups were first
explored by Hanany and Witten in the case of a D3-D5-NS5 intersection in Type IIB
string theory [108]. We revisit said paper in section 4.1 in order to provide the background
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to understand the construction of quivers in our original work. The references [91, 107,
109,110] were also consulted.

There are other Hanany-Witten brane set-ups that are relevant for this thesis, as they
appear as mother theories in our works. In particular, the D6-NS5-D8 brane intersection,
which is reviewed in subsection 6.2.1, and the D4-NS5-D6 brane set-up, which we revisit
in subsection 7.5.1. The former one gives rise to a N = (1, 0) 6d quiver field theory, while
the latter one corresponds to an N = 2 4d quiver field theory.

4.1. Hanany-Witten brane set-ups

We start by reviewing the original Hanany-Witten brane setup. The ten-dimensional
coordinates are denoted to be x0, x1, . . . x9. All considered branes extend along the R1,2

associated to x0, x1 and x2. The D3-branes also span the x6 direction, which is transversal
to both D5- and NS5-branes. The remaining worldvolume directions for the NS5-branes
are x3, x4 and x5, while for the D5-branes they are x7, x8 and x9. Table 4.1 should serve
as a summary for this brane setup. This configuration displays an interesting property:
it remains invariant upon performing S-duality and a rotation interchanging (x3, x4, x5)
with (x7, x8, x9). This combined transformation is often referred to as RS transformation.

If we take a look to the supersymmetry, of the solution at hand, it is a known fact
that Type II supergravity theories can present a maximum of 32 supercharges. It is also
known that a D-brane breaks half of the supersymmetries, as it imposes the following
condition on the left- and right-handed components of a Killing spinor,

ϵL = Γ0Γa1 . . .ΓapϵR , (4.1)

where xa1 , . . . , xap are the worldvolume directions of the considered Dp-brane. Thus,
the presence of D5-branes in our brane system halves the number or supersymmetries
according to

ϵL = Γ0Γ1Γ2Γ7Γ8Γ9ϵR . (4.2)

Analogously, the presence of NS5-branes halves again the number of supersymmetries, as
they are only invariant under those satisfying

ϵL = Γ0Γ1Γ2Γ3Γ4Γ5ϵL , ϵR = −Γ0Γ1Γ2Γ3Γ4Γ5ϵR . (4.3)

We also know that Type IIB is a chiral theory and therefore

Γ11ϵR = ϵR , Γ11ϵL = ϵL . (4.4)

Combining (4.2), (4.3) and (4.4), the following condition can be derived,

ϵL = Γ0Γ1Γ2Γ6ϵR , (4.5)

which corresponds to D3-branes stretching along x0, x1, x2 and x6. It is quite straight-
forward to conclude that the addition of D3-branes in said orientation breaks no extra
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branes x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × − − − × − − −
D5 × × × − − − − × × ×
NS5 × × × × × × − − − −

Table 4.1: The 1
4 -BPS intersection of D3-, D5- and NS5-branes originally studied by Hanany

and Witten in [108].

supersymmetries. Thus, one ends up naturally with the brane configuration depicted in
Table 4.1 preserving 8 supercharges.

The presence of branes also breaks the isometry group from SO(9, 1), the Lorentz
group corresponding to empty Minkowski space, to SO(2, 1)×SO(3)×SO(3). The first
SO(3) acts on (x3, x4, x5) and is labelled as SO(3)V , while the second one acts on (x7, x8, x9)
and it is labelled as SO(3)H . Their double covers SU(2)V and SU(2)H are symmetries of
the Coulomb and Higgs branches of the field theory. Thus, the R-symmetry group turns
out to be SO(4)≃SU(2)V×SU(2)H .

The field content of a theory living in a brane configuration is given by the quanti-
sation of open strings ending on the different branes. We consider only D3-branes that
are finite in the x6, ending on D5- or NS5-branes. Thus, the field theories living on these
D3-branes is macroscopically 2 + 1-dimensional and the fields are independent on x6. In
order to see which are these theories, we start with a single infinite D3-brane. The theory
living in said branes is 4d N = 4 Super Yang-Mills, as we saw in chapter 3. It presents
a U(1) gauge group with an irreducible supermultiplet under the N = 4 supersymmetry
transformations. Now, when the four-dimensional N = 2 (or three-dimensional N = 4)
subalgebra given by equations (4.2), (4.3) and (4.5), the supermultiplet decomposes into
a vector multiplet and a hypermultiplet. When the D3-brane ends on one of the other
branes, the resulting boundary conditions set to zero half of the massless fields that live in
the worldvolume of the D3-brane. The possible boundary conditions are described below:

1. A 3 + 1-dimensional scalar field can obey either Dirichlet or Neumann boundary
conditions. The former ones require that the field vanishes at the boundary, while
the latter ones set its normal derivative to zero.

2. For 3 + 1-dimensional vector fields, we can also have either Dirichlet or Neumann
boundary conditions, but they imply something different in this case. If we impose
Dirichlet boundary conditions on vector field A with field strength F = dA, then we
must set Fµν to zero at the boundary, where µ, ν = 0, 1, 2 represent the directions
tangent to the boundary. On the other hand, Neumann boundary conditions imply
that the components Fµ6 and F6µ vanish at the boundary; the direction x6 acts as
the normal direction of the boundary. A 3+1-dimensional vector field A decomposes
into a 2+1-dimensional scalar field b and a 2+1-dimensional vector field a. The new
fields are related to the old one by ∂µb = Fµ6 and aµ = Aµ. Thus, Dirichlet boundary
conditions set a to zero in the boundary, while Neumann boundary condition do the
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analogous for b.

We thus observe that the possible massless modes of the 2+1-dimensional field theory are
a, b and the fluctuations of the D3-branes along (x3, x4, x5) and (x7, x8, x9). In particular,
the fluctuations along (x3, x4, x5) are set to zero at D5-branes and also a. On the other
hand, both fluctuations along (x7, x8, x9) and b are set to zero at NS5-branes. Under our
algebra, (x3, x4, x5) and aµ form the bosonic part of the vector multiplet, while (x7, x8, x9)
and b form the bosonic part of the hypermultiplet. From now on, we refer to the three-
dimensional perspective when we speak about supersymmetry. These facts can be used to
identify the effective 2+1-dimensional field theory depending on the two branes on which
the D3 brane ends:

1. If the D3-brane terminates on two NS5-branes, then the theory is that of an N = 4
U(1) vector multiplet. In general, for a configuration with nv parallel D3-branes
suspended between two NS5-branes, the field content comes from considering strings
stretching between the different branes. The resulting field theory is that of nv N = 4
vector multiplets and the gauge group is U(1)nv , but gets enhanced at the classical
level into U(nv) when the D3-branes coincide.

2. When a single D3-brane is delimited by two D5-branes, then an N = 4 hypermul-
tiplet arises. If we now consider nh parallel D3-branes stretched between the NS5-
branes, the resulting field theory consists of nh hypermultiplets in the fundamental
representation of U(1)nh if there is enough distance between the branes. When
the D3-branes coincide, the hypermultiplets are in the fundamental representation
of U(nh). This can be seen as a consequence of mirror symmetry interchanging the
Coulomb and Higgs branches. This is because a combination of S-duality and a rota-
tion transforms the NS5-branes into D5-branes and, therefore, the vector multiplets
that appeared in the previous case (where the D3-branes were stretched between two
NS5-branes) are now hypermultiplets.

3. Let us now consider a D3-brane delimited by a D5-brane on one side and by an
NS5-brane on the other. In this case, the (x3, x4, x5) coordinates of the D3-brane
are fixed to match those of the D5-brane. Similarly, the (x7, x8, x9) coordinates of
the D3-brane are fixed to match those of the NS5-brane. Also aµ and b are set to
zero. Thus, there are no massless modes in the worldvolume theory.

We now explore the particular brane picture in Figure 4.1 as an example. In this case we
have a chain of NS5-branes, a set of Kj parallel D3-branes linking the j-th and (j + 1)-
th NS5-branes. We assume that the D3-branes of each interval are close enough to one
another to consider them coincident. Additionally, Fj D5-branes are added in the space
between the j-th and (j + 1)-th NS5-branes. In this scenario, the open strings that have
both ends on the same stack of D3-branes contributes, as in the case of a single stack, with
an N = 4 vector multiplet with U(Kj) as gauge group. Thus, the gauge group of the whole
theory is

∏n−1
j=1 U(Kj). Besides, open strings can also end on adjacent stacks of D3-branes,

going through an NS5-brane. The result is an N = 4 hypermultiplet, which becomes
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Figure 4.1: A brane picture for the D3-D5-NS5 brane setup.

massless when the two stacks meet at the NS5-brane. The open strings with one end on a
D5-brane and the other in the stack of D3-branes contribute in each interval with Fj N = 4
hypermultiplets. Finally, open strings with both ends on D5-branes of the same interval
give rise to massive modes, which decouple in the low-energy limit. Thus, the gauge group
corresponding to the D5-branes of each interval becomes an U(Fj) global (or flavour)
group. This information was summarised in a graphic manner in Figure 4.2. Circles
representN = 4 vector multiplets in the adjoint representation of the corresponding U(Kj)
colour group. Boxes, on the other hand, represent Fj hypermultiplets in the fundamental
representation of U(Kj). Thus, each colour group has a flavour one attached to it. Besides,
lines are N = 4 hypermultiplets in the bifundamental representation of the groups at their
ends. As for the coupling constants gj of the gauge groups, let x6j be the x6 coordinate of

Figure 4.2: Quiver representation of the quantum field theory living in the D3-D5-NS5 brane
setup depicted in figure 4.1.

the j-th NS5-brane, we have the following,

1

g2j
=
x6j+1 − x6j

2πgs
. (4.6)

This effective coupling can be obtained by integrating along the x6 direction in the first
action in (3.7). As we have assumed that all the fields are independent on that direction,
the result is just x6j+1−x6j . Following the same reasoning as in section (3.1) one then finds
that the coupling is (4.6).
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In [111], Gaiotto and Witten explored the fact that a choice of two partitions ρ and
ρ̂ of an arbitrary positive integer N completely determine the data of the field theory,
namely {Kj, Fj}. In particular, they conjectured that the 3d field theory associated to
the quiver in Figure 4.1 flows to a non-trivial CFT in the IR if the following inequalities
hold,

ρ̂T > ρ ⇐⇒ ρT > ρ̂ . (4.7)

Let us start by writing two useful parametrisations of ρ,

ρ : N =l1 + l2 + . . .+ lk =

=1 + . . .+ 1︸ ︷︷ ︸
F1

+2 + . . .+ 2︸ ︷︷ ︸
F2

+ . . . , (4.8)

where the li are a set of integers such that l1 ≥ l2 ≥ . . . ≥ lk > 0 and Fj is the number of
times the integer j appears in the decomposition. The Fj are then non-negative integers
satisfying

∑
jFj = N . One can associate a Young tableaux to ρ with rows of lengths

l1 , l2 , . . . , lk. Something similar can be done to the partition ρ̂,

ρ̂ : N =l̂1 + l̂2 + . . .+ l̂k =

=1 + . . .+ 1︸ ︷︷ ︸
F̂1

+2 + . . .+ 2︸ ︷︷ ︸
F̂2

+ . . . , (4.9)

With these parametrisations, we observe that the Fj are precisely the number of hyper-
multiplets in the fundamental representation of the jth gauge group, while the rank of
each of these groups reads

K1 = k − l̂1 and Kj = Kj−1 +mj − l̂j j = 2 , . . . , k̂ − 1 . (4.10)

Heremj is the number of li greater than or equal to j in the first line of (4.8). Consequently,
m1 = k and ml+1 = ml − Kl. It can be seen that the ml are a non-increasing sequence
of positive integers that define a partition ρT , which associated Young tableau is the
transpose of that of the partition ρ. The condition (4.7) is a shorthand way of writing the
following strict inequalities,

i∑
s=1

ms >

i∑
s=1

l̂s ∀ i = 1 , . . . , l1 . (4.11)

We observe that, due to (4.10), these inequalities are equivalent to imposing that the ranks
Kj of the gauge groups are positive integers. This condition also implies that Fj = 0 when

j ≥ k̂ so that there are not hypermultiplets associated to empty gauge group factors. We
conclude that (4.11) is necessary for (ρ, ρ̂, N) to properly define a quiver field theory. We
observe that if one of the inequalities in (4.10) is replaced by an equality, then the quiver
splits into two disconnected components. We conclude that what Gaiotto and Witten
proposed is that all such quiver field theories flow in the IR into non-trivial CFTs.
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4.1.1. Hanany-Witten brane creation effect

Before this chapter concludes, we must review a very important phenomenon con-
cerning the study of Hanany-Witten-like brane set-ups and their associated quivers. This
is no other than the so-called Hanany-Witten brane creation effect depicted in Figure 4.3.
Let us consider a brane configuration where a D3-brane connects two NS5-branes with
a D5-brane between them as in Figure 4.3a. The branes are oriented as in Table 4.1.
Open strings connecting the D5-brane with the right portion of the D3-brane give rise
to hypermultiplets with mass proportional to |m⃗− x⃗|, where x⃗ and m⃗ are the (x3, x4, x5)
coordinates of the transverse position of the D5- and D3-branes respectively. We want to
interchange the D5-brane with the NS5-brane on the right. In order to do this, we move
the D5-brane to the right and the NS5-brane to the left so they intersect at some point
in this procedure. In that position, the hypermultiplet becomes massless. Finally, the
two branes “go through” each other creating a second D3-brane linking the interchanged
branes. Thus, we end up with Figure 4.3b. A way to give a logical explanation to why
the described intersection should generate a new brane is that only in this way we have a
massless multiplet when we approach the NS5- and D5-branes in Figure 4.3b. Without the
new D3-brane, there would be no reason to have any kind of singularity upon intersecting
these two branes.

(a) Original set-up (b) Final set-up

Figure 4.3: Example of a Hanany-Witten move.

This phenomenon has been observed in more general situations with other branes
and it has proven useful when it comes to finding the quiver for the quantum field theory
living in a brane set-up. Furthermore, if we consider a brane system in Type II including
an NS5-brane and a Dp-brane under analogous circumstances as before, then a chain of
T-dualities shows that a D(p−2)-brane linking them is generated if they cross each other1.
S-duality also suggests that, in the same conditions, the crossing of a D3- an a D5-brane

1Regarding the circumstances, no D(p − 2)-brane can end on both branes before the crossing. Also
the orientations of the NS5- and Dp-branes cannot be arbitrary, but they must be related via the chain
of T-dualities to the NS5- and D5-branes depicted in Table 4.1, respectively
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produces a fundamental string. In general, these crossings of branes are called Hanany-
Witten moves and can be used to relate a certain brane set-up to another one where the
branes are located at the positions we need.
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Chapter 5

Outline of the Original Results

This chapter may serve as an introduction to the original work developed for this
thesis and explored in further detail in chapters 6 and 7. The papers that collect this work
are the ones below:

[65] Y. Lozano, N. Petri and C. Risco, “New AdS2 supergravity duals of 4d SCFTs with
defects,” JHEP 10 (2021), 217,
doi:10.1007/JHEP10(2021)217 [arXiv:2107.12277 [hep-th]].

[66] Y. Lozano, N. T. Macpherson, N. Petri and C. Risco, “New AdS3/CFT2 pairs in
massive IIA with (0, 4) and (4, 4) supersymmetries,” JHEP 09 (2022), 130,
doi:10.1007/JHEP09(2022)130 [arXiv:2206.13541 [hep-th]].

[67] Y. Lozano, N. Petri and C. Risco, “Line defects as brane boxes in Gaiotto-Maldacena
geometries,” JHEP 02 (2023), 193,
doi:10.1007/JHEP02(2023)193 [arXiv:2212.10398 [hep-th]].

[68] Y. Lozano, N. Petri and C. Risco, “AdS2 near-horizons, defects, and string dualities,”
Phys. Rev. D 107 (2023) no.10, 106012,
doi:10.1103/PhysRevD.107.106012 [arXiv:2212.11095 [hep-th]].

They share common goals: building new AdS2 and AdS3 solutions of Type IIA/B
supergravity and, if possible, their holographically dual CFTs. Roughly speaking, they
were achieved by following some general steps:

1. Obtention of a new AdS2 or AdS3 Type IIA/B background.

2. Computation of spatial distribution of the quantised charges and derivation of the
underlying brane set-up.

3. Construction of the dual field theory living in the brane set-up.

4. Computation of the central charge and test of the duality.
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CHAPTER 5. OUTLINE OF THE ORIGINAL RESULTS

We highlight that not all the steps are always attained and, even when they are, the path
taken and the concrete tools employed depend greatly on the case. For instance, we were
not always able to give a brane interpretation to the solutions nor in all cases we were
able to derive the quiver field theory. In the next sections, we will explore these steps and
briefly comment on the particular results we obtained.

5.1. Construction of new low-dimensional AdS solu-

tions

The new AdS solutions have being obtained in several ways:

Starting with a known solution describing a brane intersection, one can sometimes
add extra branes in order to obtain a new solution. The AdS solution then arises in
the so-called near-horizon limit.

If a Type IIA/B or 11d background is known, one can derive new ones by per-
forming T- or S-duality or applying the truncation/uplifted formulae that relate
eleven-dimensional and Type IIA supergravities, as explained in section 1.4.

From a general class of AdS solutions with a certain amount of supersymmetry
(usually computed using G-structure technology), one can either study a certain
subclass of it or generalise the geometry.

In the first case, the new branes were taken to be fully localised within the worldvolume
of the original system of background branes, but smeared along the other directions and
they are called defect branes. As shown in [46,58], this requirement is crucial (at least for
AdS2 and AdS3 vacua) in order to decouple the field equations of the defect branes from
those of the background ones.

In Figure 5.1 we present a summary of the AdS2 solutions of Type IIA/B computed
in this thesis. As for the new AdS3 classes of solutions we obtained a single one of massive
Type IIA, characterised by an AdS3 × S3 ×M4 geometry. In particular, we constructed
two subclasses: the first one corresponds to M4 = S2 × Σ2, with Σ2 a Riemann surface,
and appears in the near-horizon limit of D2-D4 branes ending on a D6-NS5-D8 bound
state; while the second one satisfies M4 = T3 × I and arises in the massless limit when
one takes the near-horizon limit of D2-D4-NS5.

Figure 5.1: Summary of the AdS2 solutions built in the thesis.
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5.2. Computation of quantised charges and deriva-

tion of the dual field theory

As explained in section 2.2, once one has a supergravity solution, the fluxes can
be used to compute quantised charges that reveal the presence and distribution of the
branes and other objects that underlie the background. In particular, we are interested
in Hanany-Witten brane set-ups, as these have been mapped to quiver field theories. The
key feature of these considered theories is that they can be seen as defects embedded in
higher-dimensional field theories dual to the background brane set-up. The multiplets of
these defect theories can be obtained by considering the massless modes of open strings
ending on the branes of the set-up1. The main idea is to take into account which multiplets
are compatible with the dimension and supersymmetry of the considered theory and then
impose the boundary conditions associated to the branes on which the strings end. This
determines the multiplet associated to each set of boundary conditions, as we saw in
chapter 4. We remark that the branes themselves can end on other branes, which limits
and breaks down the multiplets living in them. In particular, we explore the N = (0, 4)
two-dimensional case. We also study the N = 4 one-dimensional case, but we consider
the notation and knowledge of the N = (0, 4) two-dimensional one.

On the other hand, sometimes, the massive open F1-strings present in the brane set-
up admit a so-called baryon vertex interpretation. For this to be possible, we need to have
a stack of extra D-branes at a distance L from the stack of colour D-branes with both
kinds of branes oriented in such a way that we can stretch F1-strings between them. A
set of (l1, l2, . . . , lM) F1-strings stretched between the stacks have as their lowest energy
excitation a fermionic field. It was shown in [113, 114] that this produces a half-BPS
Wilson loop in an antisymmetric representation labelled by a Young tableau (depicted in
Figure 5.2).

Figure 5.2: Young tableau labelling the irreducible representations of U(N).

The coupling describing a baryon vertex is an effective version of the Wess-Zumino
action, which reads [115]

SDp = Tp

∫
Mp+1

F̂p ∧ At , (5.1)

1See, for instance, [49,108,112].
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where F̂p is the appropriate Page flux, At is the time component of the gauge potential
living in the string and Mp+1 is the worldvolume of the Dp-brane. We now assume that
Mp+1 can be locally written as Mp × Rt, where Rt parametrises time. The action (5.1)

tells us that F̂p contributes with N units of At-charge, where∫
Mp

F̂p = N (5.2)

is the amount of Page charge produced by the considered Dp-brane. As the total amount of
At-charge must vanish in a closed universe, there must be another source which produces
a charge of −N . As we said above, the source turns out to be N fundamental strings
ending on the Dp-brane. As they are charged under At with either 1 or −1 depending
on the orientation, we must have N fundamental strings with the same orientation in
order to cancel the contribution of F̂p. The fundamental strings are then perceived as a
gauge-invariant combination of N quarks within the worldvolume of the Dp-brane. This
explains why we say that the Dp-brane is called a baryon or anti-baryon vertex, depending
on the orientation.

5.3. Computation of the central charge and test of

the duality

We are interested in AdS2 and AdS3 backgrounds, which are holographically dual to
SCQMs and CFT2s, respectively. In order to study these dualities, we constructed quiver
field theories living in the underlying brane set-ups. As explained in chapter 4, one such
theory is expected to flow in the IR into the CFT dual to the considered AdS solution. In
order to support this hypothesis, we can compute the central charge of the field theory in
two ways and compare them in the IR. The first way consists on computing the holographic
central charge from the AdS supergravity solution via the formula given by (3.20). On
the other hand, one can compute the central charge directly from the field theory, as we
explain below. In the IR, both results should coincide with the central charge of the CFT.

Let us start by considering AdS3 backgrounds. In particular, in our papers we com-
puted the central charge of 2d N = (0, 4) CFTs from the R-symmetry anomaly (see for
instance [116]). This is a so-called t’ Hooft anomaly, meaning that it is scale-independent.
Therefore, it makes sense for us to compute the central charge of the quiver field theory,
which is a UV deformation of the CFT, and then study its IR limit. This is because its
expression must remain valid at all scales/energies. The formula we considered is give by

cR = 3 Tr
(
γ3Q2

R

)
, (5.3)

where the trace is over the Weyl fermions of the theory, γ3 is the 2d chirality matrix and
QR is the R-charge under U(1)R. We recalls the following facts:

N = (0, 4) vector multiplets contain two left-moving fermions with R-charge 1,
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N = (0, 4) twisted hypermultiplets contain two right-moving fermions with R-charge
0,

N = (0, 4) hypermultiplets contain two right-moving fermions with R-charge -1,

N = (0, 2) Fermi multiplets contain one left-moving fermion with R-charge 0,

N = (4, 4) hypermultiplets contain an N = (0, 4) hypermultiplet plus an N = (0, 4)
Fermi multiplet and also provide 2 units of charge to the R-symmetry anomaly.

Substituting these R-charges in (5.3), one gets the well-known expression below [116],

cR = 6 (nhyp − nvec), (5.4)

where nhyp stands for the number of N = (0, 4) untwisted hypermultiplets and nvec for
the number of N = (0, 4) vector multiplets.

In the AdS2 case this computation involves some caveats, as defining a central charge
for a one-dimensional CFT is known to be a subtle issue 2, which we did not had in the
two-dimensional case. The main difficulty lies in its interpretation, as the central charge of
a CFT is its free energy. However, as the trace of the stress-energy tensor of a conformal
field theory must vanish, the free energy of a one-dimensional CFT (its central charge)
must be zero. It is, in principle, not clear if we can compute a non-vanishing central
charge or what its interpretation should be. The central charge in this case has being
argued to be counting the degeneracy of ground states of the system. Some proposals
exist in the literature for computing this degeneracy. In [119–121] the number of ground
states of quiver quantum mechanics with gauge group

∏
vU(Nv) with the U(Nv) subgroups

connected by bifundamentals (so-called Kronecker quivers) was computed by quantising
the classical moduli space in the Higgs branch. The result is

M =
∑
v,w

NvNw −
∑
v

N2
v + 1 , (5.5)

where Nw stands for the rank of the gauge groups adjacent to a given colour group of rank
Nv.

Alternatively, it was shown in [62,64] that when the AdS2 solution dual to an N = 4
SCQM can be obtained from an AdS3 space through a null compactification (the so-called
null orbifold construction) the dual SCQM corresponds to the chiral half of the 2d CFT
dual to the AdS3 solution. The AdS3 spaces considered in [62, 64] preserve N = (4, 4)
supersymmetries, but the result can be extrapolated to the case in which they preserve
N = (0, 4), where the SCQM simply arises upon compactification of the 2d dualN = (0, 4)
CFT. In these situations the obvious interpretation of the central charge of the SCQM is
as counting the excitations of the 2d CFT, and the caveats mentioned above do not apply.
Moreover, one can use the expression (5.4) to obtain the central charge of the SCQM.
This was done explicitly for the class of AdS2 solutions constructed in [42], obtained by

2See for instance [63,117,118]
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T-dualising a sub-class of the AdS3 solutions to Type IIA supergravity with N = (0, 4)
supersymmetries constructed in [38]3. The central charge computed this way was shown
to agree with the holographic calculation in the holographic limit.

Remarkably, in [43,45,65] other classes of AdS2 solutions with N = 4 supersymmetry
were constructed that do not bear any relation with AdS3. Still, the expression that gives
the central charge of a 2d N = (0, 4) CFT was used to compute the central charge and
it was shown to agree with the holographic result. This agreement is a remarkable result
and deserves further research. It could be related to the fact that the 2d expression can
be shown to agree to leading order with the 1d expression given by (5.5), when applied to
the same type of quivers.

There are several arguments supporting the fact that the central charge of a SCQM
can always be computed by applying (5.3) or (5.4), even when it cannot be obtained
via compactifying a two-dimensional CFT [63, 117]. For instance, we have that the R-
symmetry anomaly comes from the superconformal symmetry. In this respect, we have
that the superconformal algebra of an AdS3 geometry consists of two copies of the Virasoro
algebra, while that of an AdS2 vacuum is one copy of the Virasoro algebra. These seems
to suggest that the tools used in the AdS3 case should still be valid when we consider an
AdS2 geometry.

Besides, in [117] two actions we considered: both of them admitted an AdS2 vacuum,
but while the first one could not be lifted up to an AdS3, the second one could. For both
of them it was observed that a twisted energy-momentum tensor was required in order to
have consistent boundary condition. The presence of said tensor then gave rise to a non-
vanishing central charge in both models. This seems to suggest that the 2d expression
for the central charge may be always valid for the SCQMs dual to consistent quantum
gravities in AdS2.

3It is straightforward to see that the Abelian T-duality transformation performed in [42] is equivalent
to the null orbifold construction in [62,64].
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Chapter 6

AdS3/CFT2 in Type II

This chapter presents the new results published in [66]. In said paper, the AdS3/CFT2
case of the holographic conjecture was explored. We start by presenting a new class
of N = (0, 4) AdS3 solutions of massive IIA supergravity in section 6.1, as well as its
interpretation as brane intersection. We then move on to building the quiver field theory
living on said brane set-up in section 6.2. Section 6.3 is then devoted to the study of the
supergravity solution and its dual quiver in the particular case in which the Romans mass
vanishes and part of the spacetime is given by a T3. Finally, in section 6.4 we go back to
the massive case, embed the supergravity solution in Type I’ and explore its dual quiver
field theory.

6.1. A new class of N = (0, 4) AdS3 solutions in mas-

sive IIA

We started by generalising a class of 1
4
-BPS solutions describing the D8-D6-NS5 inter-

section developed in [122,123]. The original class presents a flat six-dimensional Minkowski
space as external space and no F4. The generalisation was done by adding an RR four-form
flux that further breaks the isometries of the external space as follows,

R1,5 → AdS3 × S3 . (6.1)

The general form of the fields of solutions in the new class are given below,

ds2 =
q√
h

[
ds2(AdS3) + ds2(S3)

]
+ g

[
1√
h
dρ2 +

√
h

(
dz21 + dz22 + dz23

)]
,

e−Φ =
h

3
4

√
g
, F0 =

∂ρh

g
, F4 = 2 q

(
vol(AdS3) + vol(S3)

)
∧ dρ ,

F2 =− (∂z1hdz2 ∧ dz3 + ∂z2hdz3 ∧ dz1 + ∂z3hdz1 ∧ dz2) ,
H3 =− (∂z1gdz2 ∧ dz3 + ∂z2gdz3 ∧ dz1 + ∂z3gdz1 ∧ dz2) ∧ dρ+

+ ∂ρ(hg)dz1 ∧ dz2 ∧ dz3 ,

(6.2)
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where the AdS3 and S3 are of unit radius and q is a redundant constant that will be
useful later. Away from sources, the Bianchi identities for the fluxes demand that the F0

is constant and

(∂2z1 + ∂2z2 + ∂2z3)g + ∂2ρ(gh) = 0 , (∂2z1 + ∂2z2 + ∂2z3)h+ F0∂ρ(gh) = 0 , (6.3)

which are the same PDEs that appeared in [123]. These constraints give rise locally to
two classes of solutions depending on whether F0 vanishes or not. If F0 = 0, then ∂ρh = 0
and the PDEs are those of a flat D6-NS5 intersection. On the other hand, in the F0 ̸= 0
scenario, we can clear g from the definition of F0,

g =
∂ρh

F0

. (6.4)

Taking this into account, the equations in (6.3) boil down to a single one,

(∂2z1 + ∂2z2 + ∂2z3)h+
1

2
∂2ρ(h

2) = 0 . (6.5)

6.1.1. Supersymmetry

Next we studied the amount of supersymmetry preserved by this new class of solu-
tions. Our solutions (6.2) are within the class (2.68), whose amount of supersymmetry was
studied in section 2.4 through the tools of G-structure for the case of N = (1, 1). We recall
that we considered N = (1, 1) as an example in section 2.4 instead of the more general
N = (0, 1) because the latter case needed tools and concepts that lie beyond the purposes
of this thesis. In any case, for our solutions (6.2), we applied the bi-spinor relations for
N = (0, 1) first introduced in [33] and generalised in [124]. The 10d Majorana-Weyl spinor
for N = (0, 1) supersymmetric AdS3 can be decomposed as follows,

ϵ1 = ζ+ ⊗ θ+ ⊗ χ1 , ϵ2 = ζ+ ⊗ θ− ⊗ χ2 , (6.6)

where θ± are two-dimensional vectors and their subscript denotes the 10d chirality, ζ+ is
an AdS3 Killing spinor realising the N = (0, 1) supersymmetry and its label denotes the
SL(2)+ subgroup of SO(2, 2) = SL(2)+×SL(2)− and χ1,2 are two real Killing spinors with
support on M7. The aforementioned bi-spinor relations then take the following form,

dH3(e
A−ΦΨ−) = 0 , dH3(e

2A−ΦΨ+)− 2eA−ΦΨ− =
1

8
e3A ⋆7 λ(f+) ,

(Ψ− ∧ λf+)
∣∣∣∣
7

= −1

2
e−Φvol(M7) ,

(6.7)

where
Ψ+ + iΨ− ≡ χ1 ⊗ χ†

2 (6.8)

and the tensor product is defined as in (2.72). However, the explicit expression of Ψ±
does not matter, as we only need them to realise a G2 ×G2 structure. For this paper, we
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assumed that the intersection of the two G2 was SU(3), which lets us parametrise the Ψ±
as

Ψ+ = −Im
(
e−iJ

)
+ V ∧ ReΩ , Ψ− = −ImΩ− V ∧ Re

(
e−iJ

)
, (6.9)

where V is a real one-form whose dual vector is taken to define a direction in M7 and
(J,Ω) are defined in terms of another 3 complex vielbein directions E1, E2, E3,

J = E1 ∧ E1 + E2 ∧ E2 + E3 ∧ E3 , Ω = E1 ∧ E2 ∧ E3 . (6.10)

We remark that the class of solutions (6.2) preserves N = (0, 4) supersymmetry if
it preserves 4 independent SU(3)-structures satisfying (6.7). Exploiting the fact that the
class presents an S3 factor, we defined 1-forms (La, Ra) (with a = 1, 2, 3) such that

dLa =
1

2
ϵabcLb ∧ Lc , dRa = −1

2
ϵabcRb ∧Rc , ds2(S3) =

1

4
(La)

2 =
1

4
(Ra)

2 . (6.11)

La behaves as a singlet/triplet under the SO(3)L/R subgroup of SO(4)=SO(3)L×SO(3)R,
while Ra transforms the other way round. We then considered the SU(3)-structure defined
through the vielbein

Ea = −√
gh

1
4dxa + i

1

2µh
1
4

La , V =

√
g

h
1
4

dρ , (6.12)

which can be shown to solve (6.7), realising N = (0, 1) explicitly. We highlight that Ψ±
depends on the 3-sphere through La, dLa (which are SO(3)R triplets) and vol(S3), which
is SO(4)-invariant, with only the latter one affecting the physical fields. This means that,
if (6.12) solves (6.7), then so does the SU(3)-structure obtained via performing a generic
constant SO(3)R rotation in (6.12), which only transforms the La. One can apply this
to three independent SO(3)R rotations in order to generate three further independent
SU(3)-structures which solve (6.7) for the same physical fields. We then concluded that
N = (0, 1) supersymmetry is always enhanced to small N = (0, 4) in our class (6.2).
The fact that this one and no other superconformal group is the one realised for (6.2)
comes from the realisation that any other such group would require the presence of other
isometries that do not appear in the class in general. Another way to see this would be
to realise that the class of solutions can be related through Abelian T-duality to that of
section 3.3 of [51], for the particular case where the coordinate x parametrises an isometry
directions.

The presence of the round 3-sphere in (6.2) raises the question of whether or not an
enhancement to N = (4, 4) is possible and under which restrictions. We noticed that
said enhancement, if possible, would require four additional N = (1, 0) SU(3)-structures
to be supported by the background. They should satisfy the equation which results after
performing the substitution Ψ− → −Ψ− in (6.7) 1. Analogously to the N = (0, 1) case,
the new SU(3)-structures must span the S3 in terms of Ra. This is because each N = 4

1It must be noticed that this map does not hold in general, but only for the restricted case at hand.
See [50] for full details.
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sub-sector must be a singlet with respect to the R-symmetry group of the other one. Let
us consider the following vielbein,

Ea =
√
gh

1
4dxa + i

1

2µh
1
4

Ra , V = −
√
g

h
1
4

dρ . (6.13)

It can be shown to give rise to an SU(3)-structure that satisfies the N = (1, 0) conditions.
The same train of thought used before implies that another three SU(3)-structures can
be built by using SO(3)L rotations. However the F2 now changes sign with respect to
the one in (6.2). This implies that the physical fields of our class of solutions are only
compatible with both sub-sectors if they satisfy dh = 0, rendering F2, F0 trivial. However,
in the general case only N = (0, 4) supersymmetry is preserved. A last and interesting
remark is that, in the case where h ̸= constant S3 can be replaced by the lens space S3/Zk
without breaking any further supersymmetry. Nevertheless, when h = constant the Lens
space does break N = (4, 4) into N = (0, 4).

6.1.2. The brane picture

The next matter that we addressed is that of the interpretation of (6.2) as the near-
horizon limit of a brane intersection defined by D2-D4 branes ending on D6-NS5-D8 bound
states, as depicted in Table 6.1.

Branes x0 x1 r φ1 φ2 ρ ζ θ1 θ2 θ3

D2 × × − − − × − − − −
D4 × × × × × − − − − −
NS5 × × − − − − × × × ×
D6 × × − − − × × × × ×
D8 × × × × × − × × × ×

Table 6.1: 1
8 -BPS brane intersection giving rise in the near-horizon limit to the N = (0, 4)

AdS3 solutions described by (6.2). (x0, x1) parametrise an R1,1, where the 2d dual CFT lives,
(r, φi) are spherical coordinates that describe the same space that the Cartesian (z1, z2, z3), ζ is
the radial coordinate of AdS3 and the θi parametrise the S3.

The supergravity solution for D6-NS5-D8 had already being explored by Imamura
in [122]. By adding the D2- an D4-branes to said solution, we arrived at the following
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fields,

ds2 =h−1/2
[
H

−1/2
D4 H

−1/2
D2 ds2(R1,1) +H

1/2
D4 H

1/2
D2 (dζ2 + ζ2ds2(S3))

]
+ h−1/2 g H

1/2
D4 H

−1/2
D2 dρ2 + h1/2 g H

−1/2
D4 H

1/2
D2 (dr

2 + r2ds2(S2)) ,

eΦ =h−3/4 g1/2H
1/4
D2 H

−1/4
D4 ,

H3 =− ∂rg r
2 dρ ∧ vol(S2) +HD2H

−1
D4 ∂ρ (h g) r

2 dr ∧ vol(S2) ,

F2 =− ∂rh r
2 vol(S2) ,

F4 =∂ζH
−1
D2 vol(R

1,1) ∧ dζ ∧ dρ− ∂ζHD4 ζ
3 vol(S3) ∧ dρ

(6.14)

with the addition of a Romans mass F0. The two-dimensional Minkowski space is described
by coordinates (x0, x1), the space transverse to D2-D4 by (ζ, θi) and (r, φi) are spherical
coordinates parametrising the 3d space previously codified by (z1, z2, z3). We assume that
the charges associated to D2-D4 are completely localised within the worldvolume of the
D6-NS5-D8 bound system. This is implemented by imposing that the corresponding warp
factors satisfy HD2 = HD2(ζ) and HD4 = HD4(ζ). Besides, the D6-NS5-D8 intersection
is codified by h = h(ρ, r) and g = g(ρ, r). The Bianchi identities for the D2-D4 system
decouple from those of the D6-NS5-D8 bound state giving rise to

HD2 = HD4 and ∇2
ζ HD4 = 0 , (6.15)

are those for the former and

∂ρh = F0 g and ∇2
r h+

1

2
∂2ρ h

2 = 0 , (6.16)

for the latter. In the previous PDEs, we have denoted by ∇2
r and ∇2

ζ the Laplacian in
spherical coordinates on the spaces transverse to the D6-NS5-D8 and D2-D4 systems,
respectively. We notice that (6.16) is nothing else that (6.3) in the massive case, i.e. after
imposing (6.4) and (6.5). On the other hand, equation (6.15) can be easily solved by the
simplest 4d harmonic function,

HD4(ζ) = HD2(ζ) = 1 +
q

ζ2
(6.17)

with q an integration constant.
If we take the limit ζ → 0, then ζ becomes the radial coordinate of an AdS3, and the

fields of the brane solution (6.14) take the form below,2

ds210 =q h
−1/2

[
ds2(AdS3) + ds2(S3)

]
+ h−1/2g dρ2 + h1/2g

(
dr2 + r2ds2(S2)

)
,

eΦ =h−3/4g1/2 , H3 = −∂rg r2 dρ ∧ vol(S2) + ∂ρ (h g) r
2 dr ∧ vol(s2) ,

F2 =− ∂rh r
2 vol(S2) , F4 = 2q vol(AdS3) ∧ dρ+ 2q vol(S3) ∧ dρ

(6.18)

2The Minkowski coordinates have been rescaled as (t, x1) → q (t, x1) in order to obtain an AdS3 of
unitary radius.
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with the presence of the F0 and (h, g) solving (6.16). We observe that this is precisely (6.2)
with the three-dimensional space transverse to the D6-NS5-D8 intersection parametrised
in spherical coordinates (r, φi) instead of the Cartesian (z1, z2, z3). This allows for an
interpretation of our new solutions (6.2) as the low-energy regime of the D6-NS5-D8 bound
states wrapping an AdS3 × S3 geometry, completely determined by the choice of h and
g, and the D2-D4 intersection is fully resolved into said geometry. Thus, the addition of
the D2-D4 branes break the isometries of the six-dimensional worldvolume common to the
D6-NS5-D8 intersection, as in (6.1).

6.1.3. An uplift of 6d minimal N = 2 ungauged supergravity

One last detail that we found interesting is the fact that governing PDEs (6.3) support
solutions with either a warped Mink6 or an AdS3 ×S3 factor. This led us to the idea that
it should actually work for any solution to 6d N = 2 ungauged supergravity with SU(2)
R-symmetry. The pseudo-action of said theory is displayed below,

S6 =

∫
d6x

√
−g6

(
R− 1

3
H

(6)
abcH

(6)abc

)
, (6.19)

where H(6) is a closed self-dual 3-form, the latter constraint needing to be imposed after
varying the action. This theory can be embedded into massive IIA supergravity through
the following expressions for the 10d fields,

ds2 =
1√
h

[
c−2ds26 + gdρ2

]
+ g

√
h

(
dz21 + dz22 + dz23

)
, e−Φ =

h
3
4

√
g
,

H3 =− (∂z1gdz2 ∧ dz3 + ∂z2gdz3 ∧ dz1 + ∂z3gdz1 ∧ dz2) ∧ dρ
+ ∂ρ(hg)dz1 ∧ dz2 ∧ dz3 ,

F0 =
∂ρh

g
, F2 = −(∂z1hdz2 ∧ dz3 + ∂z2hdz3 ∧ dz1 + ∂z3hdz1 ∧ dz2) ,

F4 =2c2H(6) ∧ dρ ,

(6.20)

where c is an arbitrary constant. We verified that the solutions of the form (6.20) satisfy the
10d equations of motion provided that they meet (6.3) and ds26, H

(6) solve the 6d equations
of motion derived from (6.19). A complete classification for such supersymmetric solutions
was presented in [125].

6.2. Defects within N = (1, 0) 6d CFTs

In this section, we expound a family within the class of solutions (6.2) characterised
by an asymptotically locally AdS7 geometry and their dual interpretation as surface de-
fects within the 6d N = (1, 0) CFTs dual to the AdS7 solutions of massive Type IIA
supergravity constructed in [126].
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Our first aim was to derive the particular set of coordinates for which the AdS7

asymptotics is manifest. This can be done by direct calculation in ten dimensions or by
making use of the consistent truncation of massive IIA supergravity to minimal 7d N = 1
gauged supergravity [127]. From the latter viewpoint, these supergravity solutions take
the form of a domain wall with AdS3 × S3 worldvolume with a locally AdS7 vacuum at
infinity, which arises upon consistent truncation from the AdS7×S2× I solutions of [126].
In ten dimensions one can see from the brane picture studied in subsection 6.1.2 that
D2-D4 branes break the isometries of the R1,5 worldvolume common to the D6-NS5-D8
intersection, as

R1,5 −→ AdS3 × S3 , (6.21)

leaving intact the conformal symmetries of AdS3. In the UV the AdS7 vacuum emerges
as a foliation of the AdS3 × S3 subspace over an interval.

With the insight coming from the supergravity analysis, we constructed 2d N = (0, 4)
quiver gauge theories that flow in the IR to the CFTs dual to the AdS3 solutions and
showed that they can be embedded within the 6d quivers constructed in [128, 129], dual
to the AdS7 solutions in [126].

6.2.1. The AdS7 vacua of massive IIA and their dual 6d CFTs

Let us briefly review the main properties of the AdS7 solutions of massive IIA super-
gravity and of their 6d dual CFTs.

The solutions in [126] are described by AdS7 × S2 foliations over an interval preserv-
ing 16 supercharges. They arise in the near horizon limit of a D6-NS5-D8 intersection,
constructed in [130]. In the parametrisation of [129] they take the form

ds210 =π
√
2

[
8
(
− α

α′′

)1/2
ds2AdS7

+
(
−α

′′

α

)1/2
dy2+

+
(
− α

α′′

)1/2 (−αα′′)

α′2 − 2αα′′ds
2
S2

]
,

e2Φ =3825/2π5 (−α/α′′)3/2

α′2 − 2αα′′ ,

B2 =π
(
−y + αα′

α′2 − 2αα′′

)
volS2 ,

F2 =
( α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

)
volS2 .

(6.22)

The solutions are specified by the function α(y), which satisfies the differential equation

α′′′ = −162π3F0 . (6.23)

Let us now recall the main ingredients of the 6d quivers dual to these solutions. We
will follow [129] and [131]. The B2 in (6.22) (see below) implies that there are (colour)
NS5-branes located at given positions in the y-direction, which can be labelled by an
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integer number k. Piecewise α(y) functions defined in intervals [k, k + 1] between NS5-
branes can then be constructed, with continuous first and second derivatives, and third
derivative satisfying

α′′′
k = −81π2βk . (6.24)

We thus have on a given [k, k + 1] interval

Q
(k)
NS5 =

1

4π2

∫
H3 =

1

4π2

∫
S2

(
B2(y = k + 1)−B2(y = k)

)
= 1 , (6.25)

where we have chosen units where α′ = gs = 1. Moreover, given that QD8 = 2πF0,
equation (6.24) implies that

Q
(k)
D8 = βk (6.26)

on each [k, k+1] interval. βk are therefore integer numbers, and (βk−1−βk) is the number
of D8-branes introduced at each y = k position. Integrating (6.24) one finds

αk(y) = −27

2
π2βk(y − k)3 +

1

2
γk(y − k)2 + δk(y − k) + µk for y ∈ [k, k + 1] , (6.27)

where (γk, δk, µk) are constants that are determined by imposing continuity of α, α′, α′′.
The condition that α′′

k = α′′
k−1 at y = k implies that

γk = −81π2βk−1 + γk−1 = −81π2(β0 + β1 + · · ·+ βk−1) . (6.28)

This means that the D6-brane charge at each interval is given by

Q
(k)
D6 =

1

2π

∫
S2
F̂2,= − γk

81π2
, (6.29)

where F̂2 = F2 − F0 ∧ B2 is the Page flux, defining a charge that should be integer. In
turn, the conditions α′

k = α′
k−1 and αk = αk−1 at y = k impose, respectively,

δk = −81

2
π2βk−1 + γk−1 + δk−1 , µk = −27

2
π2βk−1 +

1

2
γk−1 + δk−1 + µk−1 . (6.30)

The continuity conditions need to be supplemented by conditions at the boundaries of the
y-interval. For this to be geometrically well-defined, the asymptotic form of the metric
needs to approach one of 4 physical behaviours compatible with the metric factors, namely
a regular zero or singular D6, O6 or D8/O8 behaviour. Two of these arise generically:
one can choose the integration constants so that α = 0 at a boundary of the space, in
which case the behaviour corresponds to fully localised D6-branes, or one can impose
that α′′ = 0, in which case one finds fully localised O6-planes. The other behaviours are
possible with specific tunings of α when F0 ̸= 0. One can tune α so that in the boundary
interval α = −q2(y)α′′, for qn = qn(y) an order n polynomial; then, as long as q2 has
non-degenerate zeros, the zero of α′′ is regular. Likewise one can simultaneously impose
α′′ = 0 and (α′)2 − 2αα′′ = q3α

′′, then the behaviour at the zero of α′′ = 0 is that of a
localised O8, which may be coincident to additional D8s.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D6 × × × − − − × × × ×
D8 × × − × × × × × × ×
NS5 × × − − − − × × × ×

Table 6.2: 1
4 -BPS brane intersection underlying the 6d (1, 0) CFTs living in D6-NS5-D8 brane

intersections. The directions (x0, x1, x6, x7, x8, x9) are the directions where the 6d CFT lives.
x2 is the field theory direction, along which the D6-branes are stretched. (x3, x4, x5) are the
directions realising the SO(3) R-symmetry.

Figure 6.1: Quiver describing the field theory living in D6-NS5-D8 intersections. The circles
denote N = (1, 0) vector multiplets and the lines N = (1, 0) bifundamental matter fields. The
quiver has been terminated with (βP−1−βP ) D8-branes at the end of the space, with βP = γP

81π2

and γP = −81π2
∑P−1

l=1 βl.

The D6-NS5-D8 brane set-up associated to the solutions is the one depicted in Table
6.2. Here the D6-branes play the role of colour branes while the D8-branes play the
role of flavour branes [132, 133]. In 6d language the quantised charges give rise to the
quiver depicted in Figure 6.1, as discussed in [129, 131]. One can check that 6d anomaly
cancellation is fulfilled given that at each gauge node of the quiver

2Nk = 2Q
(k)
D6 = Nk

f = Q
(k−1)
D6 +Q

(k+1)
D6 +∆Q

(k)
D8, (6.31)

with ∆Q
(k)
D8 = βk−1 − βk.

6.2.2. The surface defect ansatz

In this subsection we search for a solution within the class constructed in section 6.1
that is asymptotically AdS7. The first step is to decide on the form of the external 7d and
internal 3d spaces. For this purpose, we assumed the following form for the ten-dimensional
metric,

1√
2π
ds2 =L2

√
− α

α′′ds
2(M1,6) + ∆1dy

2 +∆2ds
2(S2) ,

ds2(M1,6) =P
2

[
ds2(AdS3) +

1

m2
ds2(S3)

]
+Q2dx2,

(6.32)
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where P,Q depend on x alone, while ∆1,2 are functions of both x and y. In this section, we
fix without loss of generality the constant q that appears in (6.18) to 1. Imposing SO(3)
symmetry in (6.2), we were able to substitute (z1, z2, z3) → (r, S2). The next step consists
on performing a change of coordinates (r, ρ) → (x, y) such that (6.32) emerges. It turned
out to be the one below,

r = q1(x)α , ρ = −q2(x)α′ . (6.33)

This variable change was performed in (6.2) and the result was compared to (6.32), leading
us to certain constrains. In order for them to be met, we had to fix

h =
1

2P 4L4π2

(
−α

′′

α

)
, g =

4L8π4P 6q22Q
2

(q̇1)2(q21(α
′)2 − 2L4π2P 4q22αα

′′)
(6.34)

and take into account the condition

q1q̇1 = 2L4π2P 4q2q̇2 . (6.35)

With respect to the Bianchi identities, the condition F0 = constant, jointly with equations
(6.23) and (6.35), gives rise to the following conditions

4q1Ṗ = P q̇1 , (q̇1)
2 =

2πL8

34
P 6Q2q2 , (6.36)

and implies the remaining Bianchi identities. Up to diffeomorphisms, one can solve (6.35)
and (6.36) without loss of generality with

P = 23/2x , Q = − 23/2

(c+ x4)
1
4

, q1 =
64L6

34
x4 , q2 =

8L4

34π

√
c+ x4 , dc = 0 . (6.37)

With all the previous considerations in mind, we were able to write our class of solutions
(6.2) as displayed below,

ds2

8
√
2πL2

=

[√
− α

α′′

(
x2
(
ds2(AdS3) + ds2(S3)

)
+

dx2√
c+ x4

)
+

+

√
c+ x4

x2

√
−α′′

α

(
dy2 +

α2x4

∆
ds2(S2)

)]
,

e−Φ =
L
√
∆

342
5
4π

5
2x(c+ x4)

1
4

(
−α

′′

α

) 3
4

, B2 = −L2π

(
−y + x4αα′

∆

)
vol(S2) ,

F0 =− 1

162π3
α′′′ , F2 = F0B2 −

L2

162π2
(162F0π

3y + α′′)vol(S2),

F4 =− 24L4

34π
d(
√
c+ x4α′) ∧

(
vol(AdS3) + vol(S3)

)
,

F6 =− 24L6

34
d(
√
c+ x4(α− yα′)) ∧

(
vol(AdS3) + vol(S3)

)
∧ vol(S2)

+ F4 ∧B2 ,

(6.38)
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where we have defined
∆ = x4

(
(α′)2 − 2αα′′)− 2cαα′′ . (6.39)

In the x → ∞ limit, we have that x−4∆ → 1 and the NSNS sector of the purely AdS7

solutions described in (6.22) is recovered, where the AdS7 radius is set to 1. As for the
RR sector, F0 and F2 also behave as in the purely AdS7 solutions, but the 4-form flux
does not vanish, indicating the presence of a D2-D4 defect. It can be checked that the
directions (AdS3, S

3, x) tend to AdS7 by computing the Riemann curvature tensor.
The solution is bounded from below, but its behaviour at the lower bound depends

on c. In the c ≥ 0 case, x is bounded to the interval [0,∞). For c = 0 there is a curvature
singularity at the lower bound x = 0 that we do not recognise as physical. On the other
hand, when c > 0 the metric around the bound behaves as

ds2

8
√
2πL2

=

√
− α

α′′

[√
z

(
ds2(AdS3) + ds2(S3)

)
+

1

16
√
cz

3
2

(dz2 + z2ds2(S2))

]
+

+

√
c

8
√
z

√
−α

′′

α
dy2 ,

(6.40)

where x = z
1
4 . If we had −α/α′′ = 1, this would be the behaviour of a stack of D6 branes

localised within (AdS3, S
3, y), with NS5-branes wrapped along (AdS3, S

3) and smeared in
the y direction. However, −α/α′′ ̸= 1 in general and, therefore, we have a generalisation of
this instead. In our case, the NS5-branes are not smeared along y, making said direction
an isometry, but they form a y-dependent distribution. Finally, for c < 0 we can fix
c = −b4 and the metric is bounded from below at x = b, where one sees the behaviour of
ONS5 fixed planes3 that are smeared along y. The most interesting behaviour is that of
c > 0 and, therefore, we assumed it for the rest of the paper4.

Before constructing the 2d quivers dual to the solutions defined by (6.38), we present
the value of the holographic central charge computed using (3.20) for later comparison
with the field theory result,

chol =
26

37π4

∫
dxdy x3 (−αα′′). (6.41)

6.2.3. Surface defect CFTs

In this subsection the 2d quivers that flow in the IR to the CFTs dual to the solutions
defined by (6.38) are presented. It is also shown how in a certain limit these quivers can
be embedded in the 6d quivers living on the D6-NS5-D8 intersection.

We start by analysing the brane charges associated to the D2-D4-D6-NS5-D8 brane
set-up underlying the solutions. One can see from the expressions for F0 and F2 in (6.38)
that the D8 and D6 quantised charges of the AdS3 solutions coincide with those of the
AdS7 backgrounds, given by equations (6.26) and (6.29). In turn, for finite x there are

3The S-dual of O5-planes.
4See our discussion on smeared ONS5s below around equation (6.64).
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NS5-branes located at fixed values in y and also in x. Since we are interested in embedding
the 2d CFT in the 6d CFT associated to the D6-NS5-D8 subsystem, we will take x large
enough such that we can neglect the (H3)xS2 component of the NSNS 3-form flux and take
the NS5-branes located at fixed positions in y, as in the D6-NS5-D8 subsystem. The fluxes
associated to the AdS3 solutions are then compatible with the brane intersection depicted
in Table 6.1, that we repeat in Table 6.3 below in a generic system of coordinates for a
better reading. Note that the R-symmetry of the 2d field theory living in the brane set-up

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D2 × × × − − − − − − −
D4 × × − × × × − − − −
D6 × × × − − − × × × ×
D8 × × − × × × × × × ×
NS5 × × − − − − × × × ×

Table 6.3: 1
8 -BPS brane intersection underlying the AdS3 solutions (6.38). (x0, x1) are the

directions where the 2d dual CFT lives. x2 is the field theory direction, which we identify
with y, where the NS5-branes are located (for x sufficiently large). The D2- and D6-branes are
stretched in this direction. (x3, x4, x5) are the directions associated to the isometries of the S2

while (x6, x7, x8, x9) are those associated to the S3.

is the SO(3)R ⊂SO(4) symmetry group of the S3, while for the 6d field theory living in the
D6-D8-NS5 brane intersection it is identified with the SO(3) symmetry group of the S2.
This is exactly what happens for 2d N = (4, 4) field theories arising upon compactification
from 6d (1, 0) CFTs, where the SO(3) R-symmetry of the 6d theory becomes the R-
symmetry of the Coulomb branch of the 2d theory, and the SO(3)L×SO(3)R R-symmetry
of the Higgs branch of the 2d theory arises in the dimensional reduction [134–136]. In our
N = (0, 4) theories there is just a Higgs branch, since the Coulomb branch contains no
scalars, and the R-symmetry is just the SO(3)R arising in the dimensional reduction.

Let us now consider the Hanany-Witten brane set-up depicted in Figure 6.2. The
D2-branes in it play the role of colour branes. They are extended along the y-direction,
which is split into intervals of length 1 in our units, where the NS5-branes are located.
The D6-branes are stretched along the x and y directions, the former one coordinate being
non-compact and rendering these branes flavour ones. The D4- and D8-branes lie as well
along the x direction and, therefore, they also behave as be flavour branes. The quiver that
lives in this set-up is determined by the quantisation of the open strings stretched between
the different branes5. In our case and due to the presence of non-compact dimensions,
there are only four types of massless modes:

D2-D2 strings: First we have to specify whether the two end-points of the string
lie on the same stack of D2-branes or on two different stacks, separated by an NS5-
brane. In the former case, D2-branes stretched between NS5-branes give rise to

5This quiver gauge theory has been studied before in detail. The reader may consult [49], for instance.
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Figure 6.2: Hanany-Witten brane set-up associated to the AdS3 solutions (6.38).

an N = (0, 4) vector multiplet and an N = (0, 4) adjoint twisted hypermultiplet,
coming from the motion of the D2-branes along the (x6, x7, x8, x9) directions. The
scalars within the hypermultiplet are charged under the R-symmetry and, therefore,
they combine into a twisted one. The N = (0, 4) vector multiplet and the N = (0, 4)
adjoint twisted hypermultiplet then combine into an N = (4, 4) vector multiplet.

Now we discuss the case in which the end-points of the string lie on adjacent stacks
of D2-branes, separated by an NS5-brane. The massless modes arise from the inter-
section of the two stacks of D2-branes and the NS5-brane. This fixes the degrees of
freedom moving along the (x6, x7, x8, x9) directions, leaving only the perturbations
in the (x3, x4, x5) directions and the A2 component of the gauge field. These fields
combine into an N = (4, 4) untwisted hypermultiplet in the bifundamental repre-
sentation, since the scalars are not charged under the R-symmetry of the solution.

D2-D4 strings: Strings with one end on D2-branes and the other end on D4-branes
in the same interval contribute with fundamental N = (4, 4) hypermultiplets. They
come from the degrees of freedom associated to the motion of the strings along the
(x3, x4, x5) directions and the A2 component of the gauge field.

D2-D6 strings: Strings with one end on D2-branes and the other end on D6-branes
in the same interval between NS5-branes contribute with fundamental N = (0, 4)
twisted hypermultiplets, codifying the motion of the string along the (x6, x7, x8, x9)
directions. These coordinates are charged under the R-symmetry of the solution,
thus explaining that the hypermultiplets are twisted. Strings with one end on D2-
branes and the other end on D6-branes in adjacent intervals contribute with N =
(0, 2) Fermi multiplets in the fundamental representation.

D2-D8 strings: Strings with one end on D2-branes and the other end on orthogo-
nal D8-branes in the same interval contribute with fundamental N = (0, 2) Fermi
multiplets.

These multiplets are gathered in Table 6.4 for easier consult.
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String Interval Multiplet Representation
D2-D2 Same N = (4, 4) vector Adjoint
D2-D2 Adjacent N = (4, 4) hyper Bifundamental
D2-D4 Same N = (4, 4) hyper Bifundamental
D2-D6 Same N = (0, 4) twisted hyper Bifundamental
D2-D6 Adjacent N = (0, 2) Fermi6 Bifundamental
D2-D8 Same N = (0, 2) Fermi Bifundamental

Table 6.4: Summary of the multiplets associated to the brane intersection in Table 6.3. The
column interval indicates whether the branes on which the string ends are on the same or adjacent
intervals [k, k + 1] interval in y ≡ x2.

The previous fields give rise to a field theory that can be described via the quivers
represented in Figure 6.3. In these quivers the D6 and D8 brane charges are the ones

Figure 6.3: 2d quivers associated to the AdS3 solutions (6.38). Circles denote N = (4, 4)
vector multiplets, black lines N = (4, 4) bifundamental hypermultiplets, grey lines N = (0, 4)
bifundamental twisted hypermultiplets and dashed lines N = (0, 2) bifundamental Fermi multi-
plets.

given by equations (6.29) and (6.26), while the D2 and D4 brane charges at each interval
are given by

Q
(k)
D2 =

1

(2π)5

∫
Ix,S2,S3

F̂6 =
4

34π2

∫
Ix

dx
2x3√
c+ x4

αk (6.42)

and

∆Q
(k)
D4 =

1

(2π)3

∫
Iy ,S3

F̂4 =
4

34π2

√
c+ x4

∫ k+1

k

dy α′′
k . (6.43)

As the x-direction is semi-infinite the D2-brane charges diverge, as one would have foreseen
due to their interpretation as defect branes. As for the anomaly cancellation for the gauge
groups associated to them, it is given by the following condition at each of these nodes,

2Q
(k)
D6 = Q

(k−1)
D6 +Q

(k+1)
D6 +∆Q

(k)
D8 . (6.44)

6Only when vol(T3) is of stringy size.
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In order to obtain this condition, we took into account that N = (0, 4) fundamental
multiplets contribute 1 to the gauge anomaly, N = (0, 2) fundamental Fermi multiplets
contribute −1/2 and the remaining vector and matter fields do not contribute since they
are N = (4, 4)7.

Let us now explore the computation of the central charge. For a 2d N = (0, 4) CFT
it can be computed away from criticality, since it equals the anomaly in the two-point
function of the R-symmetry current, as given by (5.4), which is a t’ Hooft anomaly. In
order to compute nhyp and nvec, we first need to choose the precise way in which we would
like to close the y interval. The conditions we picked consist on setting α = α′ = α′′ to
zero at both ends of the interval, and to glue the quiver to a symmetric version of itself at
a given value y = P + 1, in a continuous way. The resulting quivers are the ones depicted
in Figure 6.4, where the notation is that of Figure 6.3. We remark that this is just one of

Figure 6.4: 2d quivers completed in a symmetric way.

many possible ways in which the y-direction can be globally defined. For this quiver, we
have the numbers below,

nhyp = 2
P∑
k=1

Q
(k)
D2Q

(k)
D4 +Q

(P+1)
D2 Q

(P+1)
D4 + 2

P∑
k=1

Q
(k)
D2Q

(k+1)
D2 (6.45)

and

nvec = 2
P∑
k=1

(Q
(k)
D2)

2 + (Q
(P+1)
D2 )2 , (6.46)

which lead to

cR = 6
[(

2
P∑
k=1

Q
(k)
D2Q

(k)
D4+Q

(P+1)
D2 Q

(P+1)
D4

)
+
(
2

P∑
k=1

Q
(k)
D2(Q

(k+1)
D2 −Q(k)

D2)−(Q
(P+1)
D2 )2

)]
. (6.47)

A prescription is needed in order to regularise the infinite D2-brane charge and render
it finite. The one we chose consists on evaluating all charges at a given value of x and
summing over all of them. Doing this, one can see that the contribution of the second

7The reader is referred to [49,94] for more details.
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big bracket in (6.47) to cR is subleading in x compared to that of the first big bracket.
The expression we arrived at diverges with the same power of x as the holographic central
charge computed in (6.41), and agrees with it to leading order in P , i.e. for long quivers.
More concretely, the leading order in P of (6.47) turns out to be

cR =
27

37π4

∫
Ix

dx x3
P∑
k=1

µkγk . (6.48)

Before showing the matching with the holographic central charge, we recall that it is given
by [137]

chol =
cL + cR

2
. (6.49)

Thus, one needs to compute cL before comparing the central charges. The following
formula is useful for this purpose,

cL − cR = Trγ3 , (6.50)

which leads to [49]

cL − cR = 2n
(0,4)
H − n

(0,2)
F , (6.51)

where n
(0,4)
H refers to the number of isolated8 N = (0, 4) hypermultiplets and n

(0,2)
F to the

number of isolated N = (0, 2) Fermi multiplets. It can be proven that for our quivers the
expression (6.51) identically vanishes because of the anomaly cancellation condition (6.44)
and, therefore, chol = cR. Consequently, the leading order in P is given by the following
formula,

chol =
26

37π4

∫
dx x3

[
2

P∑
k=0

∫ k+1

k

dy(−αα′′)
]
=

27

37π4

∫
Ix

dx x3
P∑
k=1

µkγk + . . . , (6.52)

which exactly matches (6.48) to leading order.
As expected, these quantities diverge in x due to its non-compact character. This

shows that the 2d quiver QFTs associated to the (6.38) solutions are not well-defined by
themselves. Only in the UV, they have a physical meaning when the extra dimensions
where the 6d CFTs live emerge. Nevertheless, the previous analysis shows that, for x
large enough, the D2 and D4 defect branes can be non-anomalously embedded within the
6d quiver theories living in the D6-NS5-D8 mother brane intersection, giving rise to 2d
quiver theories.

6.3. N = (4, 4) AdS3 from D2-D4-NS5 branes

In this section we explore the subclass of the solutions (6.2) where the coordinates
(z1, z2, z3) describe a 3-torus T3 that the warp factors are independent of. We will see

8By isolated, we mean that they do not combine into a larger multiplet.
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that the brane intersection in Table 6.3 boils down to the N = (4, 4) D2-D4-NS5 Hanany-
Witten brane set-ups studied in [138, 139]. As we explained at the beginning of chapter
4, the Dp-NS5-D(p+ 2) brane intersections describe Hanany-Witten brane set-ups which
realise p-dimensional field theories with 8 supercharges that flow to CFTs in certain limits.
Type II solutions displaying AdSp+1 geometries with 16 supercharges dual to these CFTs
have been constructed in the literature for p = 6, 5, 4, 3 (see [110, 126, 128, 129, 140–147])
and partially for p = 1 (see [40]). As for the p = 2 case, it was not fully understood
before9. This section is thus dedicated to solving this problem by presenting explicit
AdS3 × S3 duals to the quivers living in the N = (4, 4) D2-D4-NS5 brane set-ups, albeit
with additional O-planes.

In subsection 6.3.1 we study the supergravity solution in (6.2) for the particular case
where (z1, z2, z3) parametrise a T3 and particularise for the massless case. In turn, the 2d
quivers living in the brane set-up are built in subsection 6.3.2. The duality of these quivers
and the supergravity solutions is supported by the agreement between the central charges
computed from both sides of the duality. Subsection 6.3.3 is dedicated to the discussion
of the the M-theory realisation of these solutions, which allows us to relate them to the
AdS3 × S2 × T4 × I solutions of massless Type IIA supergravity constructed in [38]. We
show that they share a common M-theory origin, implying that they flow to the same 2d
dual CFT in the IR. This can be interpreted as a manifestation of mirror symmetry, as
discussed in [138, 139]. Finally, in subsection 6.3.4 we apply T-duality in order to derive
new N = (0, 4) solutions of Type IIB supergravity from the previous ones. One such
class is holographically dual to D3-brane boxes constructions [149] with small N = (0, 4)
supersymmetry.

6.3.1. AdS3 × S3 × T3 solutions with N = (4, 4) supersymmetries

Let us consider the condition that the coordinates (z1, z2, z3) of the solutions given
by (6.2) span a 3-torus T3 of which the warp factors are independent. This leads one to
the following subclass of solutions,

ds2 =
q√
h

[
ds2(AdS3) + ds2(S3)

]
+

g√
h
dρ2 + g

√
h ds2(T3) ,

e−Φ =
h

3
4

√
g
, H3 = ∂ρ(hg) vol(T3) ,

F0 =
∂ρh

g
, F4 = 2q vol(AdS3) ∧ dρ+ 2q vol(S3) ∧ dρ ,

F6 =2q gh vol(T3) ∧ (vol(S3) + vol(AdS3)) ,

(6.53)

where g, h are functions of ρ and the Bianchi identities boil down to

∂ρ

(
∂ρh

g

)
= 0 , ∂2ρ(gh) = 0 , F0∂ρ(gh) = 0 (6.54)

9In [148] a probe brane analysis revealed an AdS3×S3 geometry as gravity dual of an N = (4, 4) CFT.
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and imply the equations of motion. We remark that both g and h have being delocalised
along the T3, thus simplifying the underlying brane intersection. As for the solution (6.53),
we no longer have an RR 2-form flux and the NSNS 3-form flux is simpler than in (6.2).
For the remainder of this section, we consider the massless limit F0 = 0, while the non-
vanishing Romans’ mass case is expounded in section 6.4. Once more, we point out that
F0 = 0 implies

h = h0 = constant, (6.55)

and the second PDE in (6.54) yields the constraint

g′′ = 0 . (6.56)

As in the considered subclass of solutions both F0 and F2 vanish, we are excluding the
D8- and D6-branes from the set-up of Table 6.1, thus obtaining the D2-NS5-D4 brane
intersection we are interested in. We recall that (6.55) implies that supersymmetry is
enhanced to N = (4, 4), as discussed at the end of subsection 6.1.1. We thus obtain a
class of N = (4, 4) AdS3 × S3 × T3 backgrounds fibred over an interval whose underlying
brane intersection is the one depicted in Table 6.5. The quantised charges of the D2-

branes x0 x1 z1 z2 z3 ρ ζ θ1 θ2 θ3

D2 × × − − − × − − − −
D4 × × × × × − − − − −
NS5 × × − − − − × × × ×

Table 6.5: 1
4 -BPS brane intersection underlying the solution (6.53) with F0 = 0. (x0, x1) are

the directions where the 2d dual CFT lives, (z1, z2, z3) describe the T3 along which the D4-branes
are wrapped, ζ is the radial coordinate of the AdS3, the θ

i parametrise the S3 and ρ is the field
theory direction.

D4-NS5 branes are computed from the F4, H3 and F6 magnetic fluxes. However, one
encounters a problem with the Page fluxes: a B2 cannot be globally defined, as it should
be invariant under the isometries of the torus, i.e. it should be proportional to vol(T3),
which is impossible. We then realised that the flux we had to use in order to compute the
quantised D2-brane charges is given by

f̂6 = f6 − C3 ∧H3 = 2 q h0(g − ρ g′) vol(T3) ∧ vol(S3) , (6.57)

where f̂p stands for the magnetic component of Fp. We assume that h0 = 1 without
loss of generality, as it can be absorbed by rescaling ρ and the Anti-de Sitter radius. We
observe that the f̂6, and consequently the Page charge associated to the D2-branes, is
gauge dependent because it is sensitive to the choice of C3. This is accounted for by
picking as representative of C3 the one satisfying the following condition in units with
α′ = gs = 1,

1

(2π)3

∫
S3
C3 ∈ [0, 1] . (6.58)
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We observe that (6.58) is analogous to the more familiar requirement of the NSNS 2-form
potential lying in the fundamental region. It can be implemented by the choice below,

C3 = −2 q

(
ρ− 2π

q
k

)
vol(S3) (6.59)

for ρ ∈ [2π
q
k, 2π

q
(k+1)]. With these considerations the D4-brane charge can be computed,

Q
(k)
D4 =

1

(2π)3

∫
Iρ,S3

F̂4 , (6.60)

which gives Q
(k)
D4 = 1 for I = [2π

q
k, 2π

q
(k+1)]. This means that there is a single D4-brane

within each interval. If we take the whole interval spanned by ρ to be [0, 2π
q
(P + 1)] for

some integer P , then the brane set-up contains a total of (P + 1) D4-branes.
The next step is to solve (6.56). In order to achieve this, we need to take into

consideration that g must be continuous, but g′ may present discontinuities at the locations
of the D4-branes, where ρ = 2π

q
k. The most general solution is obtained by solving the

equation (6.56) at each interval ρ ∈ [2π
q
k, 2π

q
(k + 1)],

gk = αk +
βk
2π

(
ρ− 2π

q
k
)

for ρ ∈
[
2π

q
k,

2π

q
(k + 1)

]
. (6.61)

Imposing that the space begins and ends at ρ = 0, 2π
q
(P + 1), where g vanishes, we find

g(ρ) =


β0
2π
ρ , 0 ≤ ρ ≤ 2π

q
,

αk +
βk
2π
(ρ− 2π

q
k) , 2π

q
k ≤ ρ ≤ 2π

q
(k + 1) , k = 1, ...., P − 1

αP + βP
2π
(ρ− 2π

q
P ) , 2π

q
P ≤ ρ ≤ 2π

q
(P + 1) .

(6.62)

The condition g (2π
q
(P + 1)) = 0 imposes that

βP = −q αP , (6.63)

while continuity across the different intervals gives rise to the following set of constraints,

αk =
1

q

k−1∑
j=0

βj , k = 1, . . . , P . (6.64)

At the boundaries of the interval ρ = 0, 2π
q
(P +1), the solution behaves as an ONS5 plane

(the S-dual of an O5 plane) smeared over the T3. Said smearing is not really physically
allowed in string theory, as the plane should lie at the fixed point of the orientifold in-
volution. This is relevant because, although we are working in the supergravity regime,
when we approach the ONS5 the curvature becomes large and that description must be
supplemented with α′ corrections. There is still the hope that these higher order effects
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conspire, producing a localised ONS5 in string theory 10. If one insists in having fully
localised O-planes in the supergravity solution, there is still hope. Indeed, the compatibil-
ity of a class of solutions with smeared O-planes often suggests that it is also compatible
with localised ones. Such solutions are obviously harder to derive, but the one at hand
(6.53) provides a good foundation for this purpose. We expect such generalisations to
exhibit qualitatively similar physical behaviour, although the subtle effects caused by the
boundaries of the space should be taken into account.

The quantised charges in each interval ρ ∈
[
2π
q
k, 2π

q
(k + 1)

]
are thus given by

Q
(k)
D2 =

1

(2π)5

∫
T3,S3

F̂6 = q
(
g − g′(ρ− 2π

q
k)
)
= q αk =

k−1∑
j=0

βj ,

Q
(k)
NS5 =

1

(2π)2

∫
T3

H3 = βk , Q
(k)
D4 =

1

(2π)3

∫
Iρ,S3

F̂4 = 1 .

(6.65)

Finally, the central charge computed with the formula (3.20) gives, for this class of solu-
tions, the below expression11

chol =
3

π
q2
∫
dρ h g. (6.66)

This result will be compared to the field theory one in sections 6.3.2 and 6.4.

6.3.2. 2d dual CFTs

In order to compute the quiver QFTs living in the D2-NS5-D4 intersection underlying
the class of solutions (6.53), several considerations must be noticed. We need to take into
account the ordering of the NS5-branes along the ρ direction, the total number of D2-
branes ending on each of them and the D4-branes orthogonal to both types of branes.
As always, the massless modes, the ones that appear in the quiver QFT, are associated
to open strings stretching between the D-branes either in the same or adjacent intervals
between NS5-branes. We arrived at the three massless modes below:

D2-D2 strings: This kind of strings behave as the analogous ones in section 6.2. As
before, there are two possible cases. Open strings with both end points lying on the
same stack of D2-branes give rise to N = (4, 4) vector multiplets, while those with
end points on stacks in adjacent intervals give rise to N = (4, 4) hypermultiplets in
the bifundamental representation.

D4-D4 strings: Whether these strings give rise to massless modes or not depends
on the size of the T3, as the D4-branes are wrapped around it. We remark that
there is a single D4-brane at each ρ = 2π

q
k and that D4-D4 strings are T-dual to

10Indeed, this argument was pursued in [150], where it is suggested that smeared O-planes are a good
approximation to localised ones under certain circumstances.

11Note that this result is also valid when F0 ̸= 0.
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D2-D2 strings. Thus, the considered strings would contribute an N = (4, 4) vector
multiplet in the scenario where the size of the T3 is of the order of magnitude of the
string length.

D2-D4 strings: Strings with an end on D2-branes and another on orthogonal D4-
branes in the same interval yield fundamentalN = (4, 4) hypermultiplets, associated
to the oscillations of the strings along the (z1, z2, z3) directions plus the A5 component
of the gauge field.

In order to build the quivers associated to these massless modes we computed the linking
numbers of the D4-branes and the NS5-branes. Said numbers were defined thanks to the
fact that our brane intersection, described in Table 6.5, is T-dual to the Type IIB one
explored in [108]. The definitions we arrived at are the following,

li = ni + LNS5i , for the D4-branes,

l̂j = −n̂j +RD4
j , for the NS5-branes,

(6.67)

where ni denotes the number of D2-branes ending on the ith D4-brane from the right
minus the number of D2-branes ending on it from the left, n̂j is the analogous for the jth
NS5-brane, LNS5i is the number of NS5-branes lying on the left of the ith D4-brane, and
RD4
j is the number of D4-branes lying on the right of the jth NS5-brane12. An important

property of these linking numbers is that they are invariant under the interchange via
crossing of adjacent D4- and NS5-branes (Hanany-Witten moves) because of the Hanany-
Witten brane creation effect13.

Similarly to what we did in chapter 4, we followed [111] in order to infer the QFT living
in the brane set-up from the linking numbers, namely, the gauge groupG =U(N1)× · · ·×U(Nk);
the bifundamental fields transform in the (Ni, N̄i+1) representations, and the fundamen-
tal matter, under U(Mi) for each group. The way to proceed is as follows. The linking
numbers define an integer N ,

N =

p∑
i=1

li =

p̂∑
j=1

l̂j , (6.68)

where p and p̂ are the numbers of D4-branes and NS5-branes, respectively. In order to
understand the meaning of N , we first notice that any brane set-up of the kind we are
studying can be related via suitable Hanany-Witten moves to another one where the D4-
branes are located on the “left” and the NS5-branes, on the “right”. In this new brane
configuration, N represents the number of D2-branes that end on the left on the collection
of D4-branes and on the right on that of NS5-branes. In order to derive the quiver, we
consider the partition N =

∑p̂
j=1 l̂j, where the order of the NS5-branes have to satisfy

l̂1 ≥ l̂2 ≥ · · · ≥ l̂p̂, and a second partition defined from a list of positive integer numbers

12Our conventions are related through T and S dualities to those assumed in [111].
13We observe that the D2-D4-NS5 intersection presented in Table 6.5 is related to a D3-D5-NS5 brane

set-up through a T-duality along one of the θi coordinates. The original brane set-up explored by Hanany
and Witten (see Table 4.1) is the flat space version of this D3-D5-NS5 brane set-up.
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satisfying q1 ≥ q2 ≥ · · · ≥ qr with N =
∑r

s=1Msqs, where Ms are integers counting
how many times each qs appears in the partition. Let mj be the number of terms in the
decomposition equal or bigger than a given integer j, i.e.

mj =
k∑
s=1

Ms for qk ≤ j < qk+1 . (6.69)

Then the qs are chosen to meet

i∑
j=1

mj ≥
i∑

j=1

l̂j ∀ i = 1, . . . , p̂ . (6.70)

The ranks of the different U(Ni) gauge groups of the quiver are given by

Ni =
i∑

j=1

(mj − l̂j) , (6.71)

which are non-negative integers because of condition(6.70). On the other hand, the num-
bers Ms convey the ranks of the fundamental matter groups that couple to each gauge
group 14.

Let us particularise this analysis to our solutions, parametrised by the function g(ρ)
in (6.62). The brane set-up we are considering can be built by considering the number of
branes at each ρ ∈ [2π

q
k, 2π

q
(k + 1)] interval, given by equations (6.65). Furthermore, as

discussed below equation (6.62), βP anti-NS5-branes15 must end the space at ρ = 2π
q
(P+1).

The resulting brane set-up is then the one depicted in Figure 6.5. From it the linking

D4 D4 D4 D4 D4

β0 NS5 β1 NS5 β2 NS5 βP−1 NS5 βP NS5

α1 D2

α2 D2 αP −1 D2

αP D2

Figure 6.5: Brane set-up associated to the quantised charges (6.65), in units of q.

numbers for the D4-branes turn out to be the following ones,

li =
i−2∑
r=0

βr + 2βi−1 , i = 1, . . . , P (6.72)

14For a detailed derivation of this result, reference [110] can be consulted.
15The fact that we have anti-NS5-branes and not regular ones comes from the negative sign in (6.63).
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and for the NS5-branes we have the ones below,

l̂1 = l̂2 = · · · = l̂β0 = P ,

l̂β0+1 = l̂β0+2 = · · · = l̂β0+β1 = P − 1 ,

...

l̂β0+β1+···+βP−3+1 = l̂β0+β1+···+βP−3+2 = · · · = l̂β0+β1+···+βP−2
= 2 ,

l̂β0+β1+···+βP−2+1 = · · · = l̂β0+β1+···+βP−1
= 1 ,

l̂β0+β1+···+βP−1+1 = · · · = l̂β0+β1+···+βP−1+βP = 1 .

(6.73)

From these linking numbers we can compute

N =
P∑
i=1

li =

2βP∑
j=1

l̂j = βP . (6.74)

This value of N can be used to obtain the quiver field theory. The linking numbers of the
NS5-branes in our brane set-up are ordered as l̂1 ≥ l̂2 ≥ · · · ≥ l̂β0+.̂..+βP , thus defining a

partition N =
∑2βP

j=1 l̂j. Besides, for the D4-branes we take

N = β0︸︷︷︸+ β0 + β1︸ ︷︷ ︸+ β0 + β1 + β2︸ ︷︷ ︸+ · · ·+ β0 + β1 + · · ·+ βP−2︸ ︷︷ ︸+
+ 2 (β0 + β1 + · · ·+ βP−1)︸ ︷︷ ︸ (6.75)

from where we compute the mj numbers as in (6.69),

m1 = m2 = · · · = mβ0 = P + 1 ,

mβ0+1 = · · · = mβ0+β1 = P ,

...

mβ0+β1+···+βP−3+1 = · · · = mβ0+β1+···+βP−2
= 3 ,

mβ0+β1+···+βP−2+1 = · · · = mβ0+β1+···+βP−1
= 2 .

(6.76)

It is clear that these numbers satisfy the condition (6.70) ∀ i = 1, . . . , (β0 + · · · + βP ).
The ranks of the gauge groups turn out to be the following ones,

N1 = m1 − l̂1 = P + 1− P = 1 , N2 = N1 +m2 − l̂2 = 2 , . . . Nβ0 = β0 ,

Nβ0+1 = β0 + 1 , . . . Nβ0+β1+···+βP−1
= β0 + β1 + · · ·+ βP−1 ,

Nβ0+β1+...βP−1+1 = β0 + β1 + · · ·+ βP−1 − 1 , . . . Nβ0+β1+...βP−1+βP−1 = 1 .

(6.77)

We observe that these ranks increase in one unit at a time, parallelly to the subscript, till
the value β0+β1+ · · ·+βP−1 is reached, to then start decreasing, again in units of one, till
the gauge group of rank 1 is reached, corresponding to the D2-branes stretched between
the last pair of NS5-branes. From the partition (6.75) we read

Mβ0 =Mβ0+β1 = · · · =Mβ0+β1+···+βP−2
= 1 , Mβ0+β1+···+βP−1

= 2 , (6.78)
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which, as explained above, correspond to the number of times each lj appears in the
partition. We conclude from this that the gauge groups with ranks β0 = q α1, β0 + β1 =
q α2 , . . . β0 + · · · + βP−2 = q αP−1 have U(1) flavour groups attached to them, while the
gauge group with rank β0 + β1 · · · + βP−1 = q αP has flavour group U(2). The rest of
gauge groups have no flavour symmetries. In Figure 6.6 the quiver is displayed. It can be

Figure 6.6: 2d quiver associated to the brane set-up in Figure 6.5. Circles denote N = (4, 4)
vector multiplets and black lines N = (4, 4) bifundamental hypermultiplets. The gauge groups
with ranks αk, with k = 1, . . . , P − 1 have U(1) flavour symmetries. The gauge group with rank
αP has U(2) flavour symmetry. The rest of gauge groups do not have attached any flavours.

checked that, as expected, the number of gauge nodes equals the total number of NS5-
branes minus 1. In this quiver circles denote N = (4, 4) vector multiplets and black lines
N = (4, 4) bifundamental hypermultiplets. It must be noticed that it has been rescaled
so that the intervals have length [0, 2π], as it is more standard in the literature. In this
parametrisation we have that (6.64) reads

αk =
k−1∑
j=0

βj for k = 1, . . . , P . (6.79)

We propose that the QFTs defined by these quivers flow in the IR to the 2d CFTs
dual to the subset of the class of solutions in (6.53) that satisfy h =constant and g given
by (6.62). We provided a non-trivial check of this proposal, consisting on the matching
between the field theory and holographic central charges. Nevertheless, before we can
present it, we should recall that the Higgs and Coulomb branches of 2d N = (4, 4)
theories are given by different CFTs. The different branches have different R-symmetries
and usually different central charges [134, 135]. Which of these branches is described
holographically by our class of solutions? In [135] it is argued that the scalars should be
singlets under the SO(4) R-symmetry of the 2d CFT. In our case this symmetry arises as
the isometry group of the 3-sphere in the internal space. The scalars in the Higgs branch
are singlets under this group and, therefore, the Higgs branch flows to a CFT with R-
symmetry coming from this SO(4). On the other hand, the scalars in the Coulomb branch
transform in the (2, 2) representation of SO(4). This implies that said branch must flow
to a 2d CFT with R-symmetry coming from the SU(2) associated to the S2 within the
T3. This symmetry should be enhanced to SO(4) at strong coupling, as we will explore
in more detail in the next subsection. This argument points towards our solutions being
holographically dual to the Higgs branch 2d CFT. Accordingly, the holographic central
charge must match the central charge of the Higgs branch.
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As our theories display N = (4, 4) supersymmetry, we can use the expression for the
central charge of the left- or right-moving SU(2) of R-symmetries to compute the central
charge of the Higgs branch via equation (5.4), c = 6(nhyp − nvec), where nhyp stands
for the number of N = (0, 4) hypermultiplets and nvec for the number of N = (0, 4)
vector multiplets. We observe that they can be substituted, respectively, by the number
of N = (4, 4) hypermultiplets and N = (4, 4) vector multiplets. This is more useful
for our purposes, as the N = (0, 4) Fermi multiplets and N = (0, 4) adjoint twisted
hypermultiplets do not contribute to the R-symmetry anomaly. For our quivers of Figure
6.6 we have

nhyp = 2

αP−1∑
k=1

k(k + 1) + q
P−1∑
k=1

αk + 2q αP and nvec = 2

αP−1∑
k=1

k2 + α2
P , (6.80)

yielding a central charge of

c = 6 q
P∑
k=1

αk. (6.81)

We want to compare this result with the holographic central charge in (6.66). Taking
h = 1 and g as defined by (6.62) it turns out to be

chol = 6 q
P∑
k=1

αk (6.82)

after using (6.63) and (6.64), finding exact agreement with the field theory calculation.
An example of interest in our class of solutions is the scenario where the ρ interval is

periodically identified, rendering g constant. In this case the quantised charges read

QD2 = qg , QD4 = 1 for ρ ∈
[
0,

2π

q

]
(6.83)

or alternatively
QD2 = g , QD4 = q for ρ ∈ [0, 2π] . (6.84)

This solution is T-dual to the D1-D5 system in the particular case where the CY2 is
a T4, and the T-duality takes place along one of the circles of the T4. The D5-branes
become D4-branes smeared on the T-duality direction and the quiver collapses to the one
describing the D1-D5 system, depicted in Figure 6.7 (for ρ ∈ [0, 2π]). Equation (5.4) gives
the well-known result c = 6QD2QD4 for the central charge and agrees with the holographic
result.

6.3.3. Realisation in M-theory

We now shift our gaze towards the M-theory regime of the brane intersection in Table
6.5, which we studied in the previous subsection. At strong coupling the D4-branes become
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QD4

QD2

Figure 6.7: Quiver associated to the solution with g = constant, corresponding to the T-dual
of the D1-D5 system.

M5-branes, its extra worldvolume direction being the 11th one, while the NS5-branes give
rise to M5′-branes transverse to it. Consequently, from this viewpoint the Hanany-Witten
set-up consists on M2-branes stretched between M5′-branes with M5-branes orthogonal
to them. As the M5- and M5′-branes are clearly equally non-perturbative, one could
alternatively consider the configuration in which the M2-branes are stretched between
the M5-branes with the M5′-branes orthogonal to them. In order to derive the field
content associated to this alternative configuration in weakly coupled string theory we
need to reduce to ten dimensions in a direction in which the M5-branes become NS5-
branes. According to Table 6.5 this can be achieved by reducing along the Hopf-fibre
direction within the S3, which is transverse to the M5-branes. This halves the number of
supersymmetries and creates a D6-brane. Furthermore, in the reduction the T3 combines
with the S1 that was the 11th direction (denoted by ψ) to produce a T4. The resulting
brane set-up is summarised in Table 6.6, which is the one underlying the AdS3×S2×T4×I
solutions first presented in [38], restricted to the massless case. In the brane intersection

branes x0 x1 z1 z2 z3 ψ ρ ζ θ1 θ2

D2 × × − − − − × − − −
NS5 × × × × × × − − − −
D4 × × − − − − − × × ×
D6 × × × × × × × − − −

Table 6.6: 1
8 -BPS brane intersection associated to the solutions in [38]. (x0, x1) are the di-

rections where the 2d dual CFT lives. (z1, z2, z3, ψ) span the T4, on which the NS5- and
D6-branes are wrapped. The coordinates (ζ, θ1, θ) are the transverse directions realising the
SO(3)-symmetry of the S2.

underlying our solutions there are αj D2-branes16 and a D6-brane wrapped around the
T4 stretched between NS5-branes, which play the role of colour branes. Nevertheless, the
number of D6-branes should be large in order to have a consistent Type IIA supergravity
background. This means that S3 has to be modded by Zk in the 11-dimensional solution,

16The αj defined as in (6.79).
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which gives rise to k D6-branes upon reduction. At each interval, we also have (βj−1−βj)
orthogonal D4-branes, which play the role of flavour branes. The holographic central
charge can be particularised from the formula in [94], where this quantity was computed for
the general class of solutions in [38]. It can be checked that for our configuration it coincides
with the holographic central charge in (6.82), multiplied by k due to the Zk orbifolding of
the S3. The field theory living in the brane intersection can also be alternatively obtained
from the general study in [94]17. The result is the gauge theory whose quiver can be
found in Figure 6.8. In this figure circles represent N = (0, 4) vector multiplets, blue

Figure 6.8: 2d quiver associated to the AdS3 × S2 ×T4 × I solutions with αk D2-branes and k
D6-branes wrapped on the T4. Circles denote N = (0, 4) vector multiplets, blue lines N = (4, 4)
twisted hypermultiplets, red lines N = (0, 4) hypermultiplets and dashed lines N = (0, 2) Fermi
multiplets.

lines N = (4, 4) twisted hypermultiplets, red lines N = (0, 4) hypermultiplets and dashed
lines N = (0, 2) Fermi multiplets. We remind that 2d N = (0, 4) theories do not have
a Coulomb branch, as N = (0, 4) vector multiplets contain no scalars. Besides, for the
Higgs branch one can use (5.4) to compute18

cR = 6 q k
P∑
j=1

αj . (6.85)

As the considered theory is N = (0, 4) supersymmetric, expression (6.51) can be used
to see that cL = cR = c, due to the condition of anomaly cancellation. This expression
agrees with the central charge of (the Higgs branch of) the quiver in Figure 6.6, given by
expression (6.81) times k (due to the orbifolding of the S3 by Zk). This result shows that
the different light multiplets appearing in the quivers depicted in Figures 6.6 and 6.8, both
of which coming from precise derivations of perturbative string theory, lead to the same
central charge. Clearly the underlying reason for this agreement is the common origin
in M-theory of both classes of solutions. From the field theory perspective, we found a
realisation of the mirror symmetry of the dual CFT, in the precise sense discussed below.

17See also [49], where some corrections to the analysis in [94] were pointed out.
18The factor of q appears because the quiver needs to be rescaled by q in order to be consistent with

Figure 6.6.
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6.3.4. Realisation in Type IIB

The common M-theory origin of both classes of Type IIA supergravity solutions
implies that they are related by a chain of T-S-T dualities, as explained in subsection 1.4.3.
This supports the idea of them flowing to the same CFT in the IR. Which deformation
of the field theory is more convenient to use away from the critical point depends on
the concrete value of the gauge coupling. Besides, both classes of Type IIB supergravity
solutions are N = (0, 4) supersymmetric. The reason behind this is that T-duality on
the Type IIA solutions in (6.53) takes place along the Hopf-fibre of the S3, halving the
supersymmetries to give N = (0, 4)19. The resulting Type IIB solutions are interesting on
their own, since they provide explicit holographic duals to D3-brane boxes constructions
[149], realising in this case small N = (0, 4) supersymmetry20. In the remainder of the
subsection we explore this class of Type IIB backgrounds, and show that they are related
through an SL(2,R) transformation to the T-duals (along a circle within the T4) of the
AdS3 × S2 × T4 × I solutions of massless Type IIA constructed in [38].

The brane set-up underlying the T-dual of the AdS3×S3×T3×I solutions studied in
section 6.3 is summarised in Table 6.7, while that of the T-dual of the AdS3×S2×T4× I
solutions presented in [38] appears in Table 6.8. These brane set-ups can be proven to
be S-dual to each other. It can be seen that S-duality interchanges the N = (0, 4)

branes x0 x1 z1 z2 z3 ρ ζ ψ θ1 θ2

D3 × × − − − × − × − −
D5 × × × × × − − × − −
NS5 × × − − − − × × × ×
NS5′ × × × × × × − − − −

Table 6.7: 1
8 -BPS brane intersection T-dual to that of Table 6.5, realising a D3-brane box

model. (x0, x1) parametrise the space where the field theory lives. (z1, z2, z3) span the T3. ρ is
the direction where the NS5-branes are located. ζ and θi are respectively the radial coordinate of
AdS3 and the angles that parametrise the S2. ψ describes the S1 generated upon the dualisation,
where the NS5′-branes are located. (ρ, ψ) are thus the two directions of the brane box.

hypermultiplets and N = (0, 4) twisted hypermultiplets associated to the massless string
modes living in the studied brane intersections. This turns out to be the 2d manifestation
of the mirror symmetry. It is known that in 3d gauge theories [108,151] mirror symmetry
interchanges the scalars in the hypermultiplets and vector multiplets, and therefore the
Higgs and Coulomb branches. Since N = (0, 4) vector multiplets contain no scalars, 2d
N = (0, 4) field theories lack a Coulomb branch. Therefore, 2d mirror symmetry cannot
result in the interchanging of both branches. Remarkably, mirror symmetry is realised in

19The 2d dual CFT is the same, independently on the number of supersymmetries appearing in the
UV.

20The D3-brane boxes constructed in [149] have SO(4)R R-symmetry and consequently should be dual
to AdS3 solutions with large N = (0, 4) supersymmetry instead.
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branes x0 x1 z1 z2 z3 ψ ρ ζ θ1 θ2

D3 × × − − − × × − − −
NS5 × × × × × × − − − −
D5 × × − − − × − × × ×
D5′ × × × × × − × − − −

Table 6.8: 1
8 -BPS brane intersection T-dual to the brane intersection depicted in Table 6.6.

(x0, x1) are the directions where the field theory lives. (z1, z2, z3) span a T3. ψ is the T-duality
circle and ρ is the field theory direction. This set-up is clearly S-dual to the configuration in
Table 6.7.

the set-ups of Tables 6.7 and 6.8 as the interchange between the scalars transforming under
the SU(2)R R-symmetry, i.e those belonging to the twisted hypermultiplets, with those
that are singlets under the SU(2)R, i.e the ones belonging to the untwisted hypermultiplets.
This extends very naturally the mirror symmetry present in 3d gauge theories to these 2d
ones and parallels the interchange between chiral and twisted chiral superfields inherent
to mirror symmetry in supersymmetric sigma models.

Solutions of Type IIB supergravity

We now complement the above holographic discussion with the explicit construction
of the Type IIB supergravity solutions. To attain this purpose, we start by presenting the
T-dual of the solutions studied in section 6.3. Namely, we T-dualise along the Hopf fibre
of the S3 of the AdS3 × S3 × T3 solutions in (6.53), thus arriving at the following class of
Type IIB backgrounds,

ds2 =q h−1/2
[
ds2(AdS3) + 4−1 ds2(S2)

]
+ q−1 h1/2 dψ2+

+ g
[
h−1/2dρ2 + h1/2 ds2(T3)

]
,

e−Φ =(q h)1/2 g−1/2 , H3 = ∂ρ (hg) vol(T3)− 2−1 vol(S2) ∧ dψ,
F1 =g

−1 ∂ρ h dψ , F3 = −2−1q vol(S2) ∧ dρ,
F5 =2 q vol(AdS3) ∧ dρ ∧ dψ + 2−1 q g h vol(T3) ∧ vol(S2) ,

(6.86)

where ψ parametrises the T-duality circle21. In order to provide the local representation
of the brane set-ups of Tables 6.7 and 6.8 we need to focus on the particular situation

h = constant , g′′ = 0 , (6.87)

which corresponds to the massless solutions in Type IIA. In this case the metric exhibits
the characteristic behaviour of NS5-branes wrapped on an AdS3 × S2 × S1 geometry.
Indeed, it can be verified that these solutions arise as the near-horizon limit of the brane

21This solution is a particular example contained within the class of solutions presented in [51] section
3.1: one should identify (h, g) and (P,G) there, restrict u′ = 0 and impose that ∂zi are all isometries.
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solution associated to Table 6.7. More concretely, this happens in the particular case
where the D3-D5-NS5′ branes have been fully localised within the worldvolume of the
NS5-branes, as it was done for the HD2(ζ) and HD4(ζ) harmonic functions in subsection
6.1.2. We will restrict to this subclass of solutions, characterised by a vanishing axion, in
the rest of this subsection.

Let us now perform an SL(2,R) rotation of this subclass of solutions as described in
subsection 1.4.2. The result is a family of solutions parametrised by the angle ξ ∈

[
0, π

2

]
,

ds2 =∆1/2
[
q h−1/2

[
ds2(AdS3) + 4−1 ds2(S2)

]
+ q−1 h1/2 dψ2+

+g
[
h−1/2dρ2 + h1/2 ds2(T3)

]]
,

∆ =c2 + q h g−1 s2 , e−Φ = ∆−1(h q)1/2 g−1/2 , C0 = sc∆−1
(
h q g−1 − 1

)
,

H3 =c h ∂ρ g vol(T3)− 2−1 cvol(S2) ∧ dψ − 2−1 s q vol(S2) ∧ dρ,
F3 =− 2−1 q c∆−1vol(S2) ∧ dρ− s q h2g−1∆−1∂ρ g vol(T3)+

+ 2−1s q h g−1∆−1vol(S2) ∧ dψ ,
F5 =2 qvol(AdS3) ∧ dρ ∧ dψ + 2−1 q g h vol(T3) ∧ vol(S2) ,

(6.88)

where s = sin ξ and c = cos ξ22. In particular, the family of S-dual solutions is obtained
by setting ξ = π

2
in (6.88). The result is displayed below,

ds2 =q3/2g−1/2
(
ds2(AdS3) + 4−1ds2(S2)

)
+ q−1/2h g−1/2dψ2

+ q1/2g1/2dρ2 + q1/2g1/2 h ds2(T3),

e−Φ =(q h)−1/2g1/2 , H3 = −2−1q vol(S2) ∧ dρ
F3 =− h ∂ρ g vol(T3) + 2−1vol(S2) ∧ dψ,
F5 =2 qvol(AdS3) ∧ dρ ∧ dψ + 2−1 q g h vol(T3) ∧ vol(S2) .

(6.89)

As expected, the 5-branes exchanged their roles. In turn, the metric exhibits the charac-
teristic behaviour of D5-branes wrapped on an AdS3 × S2 × S1 geometry, originated by a
D3-D5′-NS5 fully-backreacted intersection. These solutions can be proven to arise in the
near-horizon limit of the brane intersection depicted in Table 6.8, in the particular case
where the D3-D5′-NS5 branes are fully localised within the worldvolume of the D5-branes.

The class of solutions presented in this subsection can be related to the Type IIB
N = (0, 4) AdS3 solutions constructed in [46], from slightly more general D3-D5-NS5-D5′-
NS5′ brane set-ups. The easiest way to show this is by relating the solution with ξ = π

2

given in (6.89) with equation (2.7) in [46]. One needs to impose that HNS5′ = 1, rename
HD5′ = g and smear the solution in [46] in such a way that HD5′ = g is delocalised over
the internal R3 and it can be replaced by a T3.

22This generalised solution is an example contained in the class of [51] section 3.2: again one should
identify (h, g) with (P,G) there, restrict u′ = 0 and impose that ∂zi are all isometries.
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6.4. AdS3 × S3 × T3 in Type I′

We go back to the solutions constructed in section 6.3, but we now explore the massive
case F0 ̸= 0. We recall that said backgrounds display AdS3 × S3 × T3 geometries fibred
over an interval given by (6.53), with defining functions satisfying the Bianchi identities
(6.54). In the massive case we can write (g, h) in terms of a certain positive real function
u as below,

h =
√
u , g =

c√
u
, (6.90)

such that the Bianchi identities are satisfied with c constant and u a linear function. The
solutions are accordingly rewritten as follows,

ds2 =
q

u
1
4

[
ds2(AdS3) + ds2(S3)

]
+

c

u
1
4

[
ds2(T3) +

1√
u
dρ2
]
, e−Φ =

u
5
8

√
c
,

F0 =
u′

2c
, F4 = 2 q

(
vol(AdS3) + vol(S3)

)
∧ dρ ,

F6 =2 q cvol(T3) ∧ (vol(S3) + vol(AdS3)) .

(6.91)

The underlying brane set-up is the one in Table 6.9. As mentioned above, u has to be a

x0 x1 z1 z2 z3 ρ ζ θ1 θ2 θ3

D2 × × − − − × − − − −
D4 × × × × × − − − − −
D8 × × × × × − × × × ×

Table 6.9: 1
8 -BPS brane intersection underlying the geometry (6.91). (x0, x1) are the directions

where the 2d dual CFT lives. (z1, z2, z3) span the T3, around which the D4s and the D8s are
wrapped. ρ is the field theory direction, where the D2 branes are stretched and θi parametrise
the S3.

linear function in order to satisfy the Bianchi identities. We will take it to be piecewise
linear so that D8-branes can be inserted at the different discontinuities of its derivative,
according to the expression for F0 in (6.91). We take ρ to parametrise an interval which
begins at ρ = 0 and ends at ρP , where u vanishes. At the zeros of u the solutions behave
as

ds2 =
q√
x

[
ds2(AdS3) + ds2(S3) + c ds2(T3)

]
+ 4c

√
xdx2 , e−Φ =

x
5
4

√
c
, (6.92)

where ρ = x2, which is the behaviour of a localised D8/O8 system on AdS3×S3×T3. We
will then define the solutions globally by embedding them into Type I’ string theory23.

23Type I′ string theory is the T-dual of Type I along a circle direction. It can also be seen as the
orientifold of Type IIA compactified on a circle that results after gauging the worldsheet parity symmetry
and the reflection symmetry of the circle. These projections identify left- and right-moving modes on the
worldsheet and the opposite points on the circle, respectively. For further information, one can read [152].
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This is achieved by introducing O8 orientifold fixed points at both ends of the space and
16 D8-branes (together with their mirrors under Z2) at arbitrary positions in ρ. Taking
ρP = ρ17 = π and the 16 D8-branes located at arbitrary points ρ1, . . . , ρ16 between ρ = 0
and ρ17 = π, u(ρ) turns out to be

u(ρ) =



−16c
2π
ρ , 0 ≤ ρ1 ,

α1 − 14c
2π

(ρ− ρ1) , ρ1 ≤ ρ ≤ ρ2 ,
...

αk +
2c(k−8)

2π
(ρ− ρk) , ρk ≤ ρ ≤ ρk+1 ,

...
α15 +

14c
2π

(ρ− ρ15) , ρ15 ≤ ρ ≤ ρ16 ,
α16 +

16c
2π

(ρ− π) , ρ16 ≤ ρ ≤ π ,

(6.93)

where for continuity the αk must satisfy

αk = αk−1 −
2c

2π
(9− k)(ρk − ρk−1) for k = 1, . . . , 16 . (6.94)

Furthermore, the condition u(π) = 0 imposes that the positions of the D8-branes must
satisfy

17∑
k=1

(9− k)(ρk − ρk−1) = 0 . (6.95)

Note that this is trivially met when ρ17−k = π − ρk for k = 1, . . . , 8, i.e. when the D8-
branes are symmetrically distributed along the interval, and also when the D8-branes are
equally spaced, such that ρk − ρk−1 = π/16 for all k.

Besides the D8-brane charge increasing in one unit at the position of each D8-brane,
we have the following quantised charges

Q
(k)
D2 =

1

(2π)5

∫
T3,S3

f6 = c q , Q
(k)
D4 =

1

(2π)3

∫
Iρ,S3

F4 =
q

2π
(ρk+1 − ρk) . (6.96)

The number of D2-branes must thus be the same in all intervals, with c = QD2/q, while
the jumps in the D4-brane charge are given by the second expression in (6.96).

Now one can take into account the previous results in order to build the quiver gauge
theories that flow in the IR to the CFTs dual to the solutions in (6.91). In order to infer the
different massless fields that appear in the quivers, we study the quantisation of the open
strings stretched between the different branes in the set-up of Table 6.9. Following [153]24

we find:

D2-D2 strings: Open strings with both ends on the same stack of D2-branes give
rise to N = (0, 4) SO(QD2) vector multiplets and N = (0, 4) hypermultiplets in the
symmetric representation of SO(QD2).

24In this reference the projection induced by the orientifold fixed points was carefully analysed for the
Type I D1-D5 system, T-dual to our D2-D4-D8 brane set-up.
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D2-D4 strings: Open strings stretched between D2- and D4-branes give rise to N =
(0, 4) hypermultiplets in the bifundamental representation of SO(QD2)×Sp(2QD4).

D2-D8 strings: Open strings stretched between D2- and D8-branes give rise to N =
(0, 2) Fermi multiplets in the bifundamental representation of SO(QD2)×SO(QD8).

Figure 6.9: Quiver associated to the AdS3 × S3 × T4 solutions in Type I’. In it the circles
correspond to N = (0, 4) vector multiplets plus hypermultiplets in the symmetric representa-
tion of SO(QD2). The dashed lines denote N = (0, 4) hypermultiplets in the bifundamental
representation of SO(QD2)×Sp(2QD4) and the red lines are N = (0, 2) Fermi multiplets in the
bifundamental representation of SO(QD2)×SO(QD8).

These massless modes give rise to the N = (0, 4) disconnected quivers depicted in Figure
6.9. In these quivers anomaly cancellation imposes that

2Q
(k)
D4 = ∆Q

(k)
D8 = 1 , (6.97)

as explained below equation (6.44). Given that D4-branes in Type I′ carry 1/2 units
of charge [154], in order to obtain a consistent CFT in the IR the D4-branes must be
located in exactly the same positions in ρ as the D8-branes. This fixes the total number
of D4-branes to 1625. This condition needs to be imposed on the supergravity solution in
order to describe a proper Type I’ background with a well-defined 2d dual CFT. Finally,
substituting (6.90) in (6.66), the holographic central charge for this class of solutions is
obtained,

chol = 48QD2 . (6.98)

We observe that this matches exactly the field theory result, obtained from (5.4), which
gives in this case

cR = cL = 6
16∑
k=1

QD2Q
(k)
D4 = 48QD2 . (6.99)

25Note that it is possible to consider the situation in which some of the ρk coincide, such that a group
of D8-D4 branes are located at that position.
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Chapter 7

AdS2/SCQM in Type II

This chapter is devoted to presenting the study of the AdS2/SCQM correspondence
performed in [65, 67, 68]. In these works we built new AdS2 Type II backgrounds. As
explained in section 5.1, this was achieved by either adding defect branes to a well-known
brane set-up or performing a duality transformation on a known (brane or AdS) solution.
In particular, we explored non-Abelian T-duality (NATD) as a solution generating tech-
nique that relates inequivalent backgrounds. This is quite relevant, as NATD is not fully
understood yet. On the other hand, whenever we knew the brane intersection underlying
a new supergravity solution, we built the quiver quantum mechanics living in said brane
set-up. We also addressed the problem of computing the central charge of a SCQM. As
we explained in section 5.3, it has been conjectured that the central charge of a 1d field
theory dual to an AdS2 Type II supergravity solution can always be computed by using
the conventions and formulae of two-dimensional field theory. This hypothesis was tested
with our solutions by comparing the central charge so obtained with the one derived from
the dual AdS2 solution in the IR.

In sections 7.1-7.3 we explore new AdS2 × S2 Type IIA/B backgrounds, the last
section also containing the field theory interpretation. Section 7.4 is devoted to presenting
a new class of Type IIA solutions obtained via non-Abelian T-duality. Its field theory
interpretation as defects is then performed in section 7.5. Finally, in sections 7.6-7.8 we
revisit another new class of Type IIB brane solutions also obtained via NATD.

7.1. The F1-D2-D4′-NS5′-D4-NS5 brane system

In this section we present a new class of solutions to Type IIA supergravity that can
be described by a set-up consisting of F1-D2-D4′-NS5′ branes ending on a D4-NS5 bound
state. In the near-horizon limit, these solutions are characterised by N = 4 AdS2 × S2 ×
S̃2 × R2 × S1 geometries foliated over a line. We show that an appropriate distribution
of charges of the D4-NS5 branes produces a non-compact solution within this class that
asymptotes locally to an AdS5 vacuum. Moreover, these AdS5 solutions are associated
to the D4-NS5 brane intersection and belong to the class of so-called Gaiotto-Maldacena
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geometries introduced in [143]. This can be used to resolve the divergences associated
to the non-compactness of the internal space within the AdS5 geometry, and to interpret
the solution as describing a line defect CFT within the N = 2 4d CFT dual to the
aforementioned AdS5 vacuum.

7.1.1. The brane solutions to Type IIA

We first consider the brane set-up depicted in Table 7.1. This is a BPS/8 brane inter-
section that can be regarded as a F1-D2-D4′-NS5′ brane intersection ending on a BPS/4
bound state of D4-NS5 branes. We assume the F1-D2-D4′-NS5′ system of defect branes

branes t ρ φ1 φ2 y z ψ r θ1 θ2

D4 × × × × − − × − − −
NS5 × × × × × × − − − −
F1 × − − − − × − − − −
D2 × − − − × − × − − −
D4′ × − − − × − − × × ×
NS5′ × − − − − × × × × ×

Table 7.1: 1
8 -BPS brane intersection describing F1-D2-D4′-NS5′ branes ending on a D4-NS5

bound state. The field theory living in this brane set-up can be regarded as an N = 4 line defect
SCQM within the N = 2 4d CFT living in the D4-NS5 branes.

to be completely localised within the four dimensional worldvolume of the orthogonal D4-
NS5 background. This condition makes the equations describing both sets of branes to
decouple from one another. This prescription leads to the condition that their associated
warp functions HF1, HD2, HD4′ and HNS5′ must depend only on ρ. Moreover, we assume
that the D4- and NS5-branes are completely localised in their respective transverse spaces,
except for the latter ones being smeared along the circle direction ψ. This requirement
implies that we must have HD4 = HD4(y, z, r) and HNS5 = HNS5(r).

Under these restrictions, the fields generated by this brane set-up display the following
form,

ds210 =H
−1/2
D4

[
−H−1

F1H
−1/2
D2 H

−1/2
D4′ dt2 +H

1/2
D2 H

1/2
D4′HNS5′

(
dρ2 + ρ2ds2S2

)]
+H

1/2
D4

[
H

−1/2
D2 H

−1/2
D4′ HNS5′ dy

2 +H−1
F1H

1/2
D2 H

1/2
D4′ dz

2
]

+HNS5H
−1/2
D4 H

−1/2
D2 H

1/2
D4′ dψ

2 +HNS5H
1/2
D4 H

1/2
D2 H

−1/2
D4′

(
dr2 + r2ds2

S̃2

)
,

eΦ =H
1/2
NS5H

−1/4
D4 H

−1/2
F1 H

1/4
D2 H

−1/4
D4′ H

1/2
NS5′ ,

H(3) =− ∂ρH
−1
F1 dt ∧ dρ ∧ dz + ∂ρHNS5′ ρ

2 volS2 ∧ dy + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(4) =∂ρH
−1
D2dt ∧ dρ ∧ dy ∧ dψ + ∂ρHD4′ ρ

2 volS2 ∧ dz ∧ dψ+
+ ∂rHD4 r

2 dy ∧ dz ∧ volS̃2 +HD2H
−1
NS5′HNS5∂yHD4 r

2 dz ∧ dr ∧ volS̃2

−HF1H
−1
D4′HNS5∂zHD4 r

2 dy ∧ dr ∧ volS̃2 .

(7.1)
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Here S2 is the 2-sphere spanned by the coordinates (φ1, φ2) in Table 7.1, and S̃2 the
one parametrised by (θ1, θ2). It can be seen that, as mentioned above, the equations
of motion and Bianchi identities for (7.1) decouple into two groups. The equations for
F1-D2-D4′-NS5′ defect branes are equivalent to the PDEs below,

∇2
R3
ρ
HD2 = 0 with HNS5′ = HD2 ,

∇2
R3
ρ
HF1 = 0 with HD4′ = HF1 ,

(7.2)

while the D4-NS5 system satisfies the following equations,

∇2
R3
r
HD4 +HNS5∇2

R2
(y,z)

HD4 = 0 and ∇2
R3
r
HNS5 = 0 . (7.3)

We observe that the PDEs in (7.2) do not impose any warping within the 2d subspace
R2

(y,z) parametrised by y and z. This is a direct consequence of the defect branes being

completely smeared within this subspace. Besides HD4(y, z, r) and HNS5(r) describe a
D4-NS5 bound state localised in the subspace R2

(y,z) × R3
r with R3

r parametrised by r and

S̃2.

In order to derive the background with AdS2 geometry we first choose the particular
solutions below,

HD2 = 1 +
qD2

ρ
and HF1 = 1 +

qF1
ρ
, (7.4)

where qD2 and qF1 are integration constants related to the quantised charges of the defect
branes. Taking the near-horizon limit ρ→ 0 we arrive at the desired solution1,

ds210 =q
3/2
D2 q

1/2
F1 H

−1/2
D4

(
ds2AdS2

+ ds2S2

)
+ q

1/2
D2 q

−1/2
F1 H

1/2
D4

(
dy2 + dz2

)
+ q

−1/2
D2 q

1/2
F1 HNS5H

−1/2
D4 dψ2 +HNS5H

1/2
D4 q

1/2
D2 q

−1/2
F1

(
dr2 + r2ds2

S̃2

)
,

eΦ =q
3/4
D2 q

−3/4
F1 H

1/2
NS5H

−1/4
D4 ,

H(3) =− qD2(volAdS2 ∧ dz + volS2 ∧ dy) + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(4) =qF1(volAdS2 ∧ dy − volS2 ∧ dz) ∧ dψ+
+ r2 [∂rHD4 dy ∧ dz +HNS5∂yHD4 dz ∧ dr −HNS5∂zHD4 dy ∧ dr] ∧ volS̃2 .

(7.5)

This is a new class of backgrounds characterised by a geometry AdS2×S2×S̃2×R2
(y,z)×S1

ψ,

fibred over an interval parametrised by r. We have that HD4(y, z, r) and HNS5(r) must
satisfy the equations (7.3). These new backgrounds constitute a vast class of N = 4
solutions to Type IIA string theory, determined by the charge distribution of the D4-NS5
system.

In the next subsection we will explore a solution in the class (7.5) associated to a par-
ticular choice of HD4 and HNS5 in which the AdS2×S2 geometry reproduces asymptotically
locally an AdS5 vacuum related by T-duality to AdS5 × S5/Zn.

1In order to reproduce unitary AdS2 at the horizon we rescaled the time as t→ qD2qF1t.
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7.1.2. F1-D2-D4′-NS5′ line defects within AdS5

As we have mentioned several times before, a key property of the brane system de-
picted in Table 7.1 is the possibility of decoupling the dynamics of the F1-D2-D4′-NS5′

defect branes from that of the D4-NS5 bound system. This is manifest at the level of
the equations of motion, with the PDEs in (7.2) describing the F1-D2-D4′-NS5′ subsys-
tem and those in (7.3), the D4-NS5 bound state. At the level of the solution (7.1), this
property can be exploited by taking the ρ → +∞ limit in (7.4), thus “zooming out” the
F1-D2-D4′-NS5′ defect branes and recovering the background associated to the D4-NS5
branes. This D4-NS5 brane system was explored in [155], where an explicit AdS5 solution
was derived by applying an appropriate change of coordinates and taking a concrete limit.
This AdS5 solution falls within the class of so-called Gaiotto-Maldacena geometries.

The Gaiotto-Maldacena backgrounds are a class of Type IIA supergravity solutions
first introduced in [143]2. They preserve N = 2 supersymmetry, display an AdS5 factor
and can be parametrised by a potential V (σ, η). Denoting V ′ = ∂ηV and V̇ = σ∂σV , a
generic Gaiotto-Maldacena solution can be written as follows [146,147],

ds2 =α′
(
2V̇ − V̈

V ′′

)1/2 [
4ds2AdS5

+ µ22V
′′V̇

∆
ds2S2+

+µ22V
′′

V̇
(dσ2 + dη2) + µ2 4V ′′σ2

2V̇ − V̈
dβ2

]
,

e4Φ =4
(2V̇ − V̈ )3

µ4V ′′V̇ 2∆2
, B2 = 2µ2α′

(
V̇ V̇ ′

∆
− η

)
volS2 ,

C1 =2µ4
√
α′ 2V̇ V̇ ′

2V̇ − V̈
dβ , C3 = −4µ4α′3/2 V̇

2V ′′

∆
dβ ∧ volS2 ,

∆ =(2V̇ − V̈ )V ′′ + (V̇ ′)2 ,

(7.6)

where the radius of the space is µ2α′ = L2. The problem of writing a solution in this
class then boils down to finding a function V that solves a Laplace equation with charge
density λ(η),

∂σ[σ∂σV ] + σ∂2ηV = 0 , λ(σ) = σ∂σV |σ=0 . (7.7)

We remark that the metric, dilaton and fluxes depend on V̇ , V̇ ′, V̈ and V ′′ = −σ−2V̈ .
Hence, a choice of V̇ determines a solution in the class of Gaiotto-Maldacena backgrounds.
Regarding the boundary conditions, Gaiotto and Maldacena found them by imposing a
correct charge quantisation and the smooth-shrinking of some submanifolds. They can be
summarised as below [146,147]:

V̇ (σ = 0, η) = λ(η) must vanish at η = 0.

λ(η) must be a piecewise linear continuous function λ = aiη + qi with ai an integer.

2Reference [93] was consulted for the following description of these solutions.
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The change in slope between consecutive intervals must be a negative integer, i.e.
ai − ai−1 < 0. A kink in which the slope changes by k units is associated with the
presence of D6-branes.

The positions of the kinks must be integers in the η-axis.

Some solutions satisfy λ(N∗) = 0. In that case, η is bounded in [0, N∗]. The
associated electrostatic problem can then be understood as a line charge density
λ(η) bounded by two ‘conductive plates’ located at η = 0 and η = N∗.

Let us now come back to the more general situation in which we have F1-D2-D4′-NS5′

defect branes ending on the D4-NS5 system. In particular, we are interested in the ρ→ 0
limit of (7.4) and, therefore, in the N = 4 backgrounds defined by (7.5). We remark
that these solutions display the crucial property: the backreaction of the F1-D2-D4′-NS5′

branes on the D4-NS5 system modifies only the 4d worldvolume space of the D4-NS5
solution, keeping intact its R2

(y,z) × R3
r transverse space. This follows from the fact that

the equations of motion associated to the F1-D2-D4′-NS5′ branes, given by (7.2), and
those of the D4-NS5 system, given by (7.3), are completely independent. This implies,
among other things, that the PDEs for the D4-NS5 intersection must coincide with the
equations in (7.3). Consequently, we can still consider the semi-localised warp factors

HD4 = 1 +
4πqD4qNS5

(y2 + z2 + 2qNS5r)2
and HNS5 =

qNS5

2r
, (7.8)

which were introduced for the D4-NS5 bound state in [155]3. We then introduce the
following new coordinates (µ, α, ϕ) [155],

y = µ sinα cosϕ , z = µ sinα sinϕ and r = 2−1 q−1
NS5 µ

2 cos2 α . (7.9)

Nevertheless, the presence of the defect branes breaks the isometries of the 4d worldvolume
of the D4-NS5 intersection, giving rise to an AdS2 ×S2 backreacted geometry. It is useful
to change from the (y, z, r) coordinates to (µ, α, ϕ) as in (7.9). This brings to light an
asymptotically locally AdS5 geometry when µ → 0. The fields in said coordinates and

3We remark that there are some precedents of similar semi-localised warp factors in [156–158].
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limit are the ones below,

ds210 =q
1/2
D2 q

−1/2
F1 (4πqNS5qD4)

1/2

locally AdS5 geometry︷ ︸︸ ︷[
(4πqNS5qD4)

−1 qD2 qF1µ
2
(
ds2AdS2

+ ds2S2

)
+
dµ2

µ2

]
+

+ q
1/2
D2 q

−1/2
F1 (4πqNS5qD4)

1/2
[
dα2 + s2dϕ2 + q−1

D2qF1qNS5(4πqD4)
−1c−2dψ2+

+4−1c2ds2S2

]
,

eΦ =q
3/4
D2 q

−3/4
F1 q

3/4
NS5(4πqD4)

−1/4 c−1 ,

H(3) =− qD2 (s̃ volAdS2 + c̃ volS2) ∧ (s dµ+ µc dα)− qD2µs (c̃ volAdS2 − s̃ volS2) ∧ dϕ
− 2−1qNS5dψ ∧ volS̃2 ,

F(4) =qF1 (c̃ volAdS2 − s̃ volS2) ∧ (s dµ+ µc dα) ∧ dψ
− qF1µs (s̃ volAdS2 + c̃ volS2) ∧ dϕ ∧ dψ + 4πqD4 c

3s dϕ ∧ dα ∧ volS̃2 ,∧dµ
(7.10)

with s = sinα, c = cosα, s̃ = sinϕ and c̃ = cosϕ. We remark that the internal space
of the above solution is the same one of the AdS5 vacuum that arises as the near-horizon
limit of the D4-NS5 bound system studied in [155].

Summing up, the previous analysis has brought to the fore that the general class of
brane solutions in (7.1) with the particular profiles (7.4) for the F1-D2-D4′-NS5′ branes
and the semi-localised profile (7.8) for the D4-NS5 system gives rise to two interesting
regimes. The first remarkable behaviour appears in the ρ → 0 limit. In this case the
defect branes are resolved, producing a fully backreacted AdS2 × S2 geometry within the
4d worldvolume of the D4-NS5 system, displaying explicitly the breaking of its isometries.
The second regime becomes manifest in the system of coordinates introduced in (7.9)
when, after taking the ρ → 0, one also sends µ → 0, thus approaching the origin of the
R2

(y,z) plane. In this regime the metric is split into a 5d “external” part, asymptotically
reproducing a locally AdS5 geometry, and a 5d internal manifold, which coincides exactly
with that of the pure AdS5 vacuum geometry associated to the D4-NS5 brane system
studied in [155]. The isometries of the AdS5 vacuum are however broken by the background
fluxes, as shown by their expressions in (7.10). The extra terms show that a 5d observer
located at µ→ 0 feels the effect of the global charges of the defect branes. They backreact
warping the 5d geometry to give a curved domain wall with AdS2 × S2 slicings, which
is only asymptotically locally AdS5. It is clear that the presence of the extra terms in
the fluxes prevents the supersymmetry to enjoy an enhancement to the (four-dimensional)
N = 2 supersymmetry displayed by the AdS5 solution found in [155]. These two limits
of the solution (7.1), underlying the F1-D2-D4′-NS5′-D4-NS5 brane intersection of Table
7.1, along with the ρ→ +∞ regime, are collected in Figure 7.1

We observe that our class of solutions (7.5) realises in Type IIA supergravity a con-
formal line defect within the 4d N = 2 SCFT that results by orbifolding the 4d N = 4
SYM CFT by Zn. This is the 4d field theory dual to the AdS5 solution in [155]. The
defect is described by a superconformal quantum mechanics that is holographically dual
to an AdS2 geometry with N = 4 supersymmetries (in one dimension). In the µ → 0
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Pure D4 - NS5 system:
AdS5 ×M5

Defect within D4 - NS5:
locally AdS5 ×M5

F1 - D2 - D4′ - NS5′ - D4 - NS5
intersection ρ→0

//

ρ→+∞
OO

AdS2 × S2 × S̃2 × R2
(y,z) × I

µ→0

OO

Figure 7.1: The ρ→ +∞ and ρ→ 0 limits of the F1-D2-D4′-NS5′-D4-NS5 brane configuration
depicted in Table 7.1, along with its defect structure. The ρ → +∞ limit zooms out the F1-
D2-D4′-NS5′ branes, leaving behind the AdS5 × M5 solution associated to the D4-NS5 bound
system. The ρ → 0 limit, on the contrary, zooms in the defect branes, giving rise to an AdS2
geometry in the near-horizon. In turn, this geometry asymptotically approaches AdS5 ×M5 in
the µ→ 0 limit, allowing one to interpret the F1-D2-D4′-NS5′ brane intersection as describing a
defect within the 4d SCFT associated to the D4-NS5 system.

limit, where this class of solution asymptotes to AdS5, the defect is perceived by a 5d
observer as an angular wedge located at the conformal boundary of AdS2. This can be
made explicit by rewriting the asymptotically locally AdS5 part of the metric in (7.10) as
below,

ds25 ∼ f−2
(
−dt2 + dρ̃2 + ρ̃2ds2S2 + ρ̃2dλ2

)
, (7.11)

where f−2 = µ2ρ̃−2, dλ = µ−2dµ and ρ̃ parametrises the radial direction of the AdS2 in
Poincaré coordinates. From the above expression one can see that the metric in the (ρ̃, λ)
plane develops a conical defect at ρ̃ = 0. This fixes the locus of the defect and allows one
to interpret µ as an angular coordinate parametrising the wedge in which a 5d observer
probes the defect geometry.

7.2. The D1-F1-D5-NS5-D3-KK brane system

This section is dedicated to the Type IIB realisation of the constructions in the pre-
vious one, where the main features already discussed become more transparent. For this
purpose, we built a new class of AdS2 solutions to Type IIB supergravity with N = 4 su-
persymmetry, and showed that such solutions find an interesting line defect interpretation
within AdS5 × S5/Zn. It is critical to notice that the AdS5 solution that arises far away
from the Type IIA defects is the T-dual of the Type IIB AdS5 ×S5/Zn background. This
latter solution arises in the near-horizon of a semi-localised system containing D3-branes
and KK-monopoles. The appropriate change of coordinates in which the AdS5 × S5/Zn
geometry becomes manifest appears in [159] and we recommend the reader to check said
reference if they are not familiar with the solution. In our case, the T-duality of the D4-
NS5 brane intersection should be performed along the circular ψ direction, transforming
the D4-branes into D3-branes and the NS5-branes into KK-monopoles. This latter objects
produce a foliation of the circle and the emergence of the Lens space S5/Zn. When the
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KK charge is one, the round S5 is recovered and the D3-branes become isotropic.

We start in subsection 7.2.1 with the thorough analysis of the T-dual realisation of the
F1-D2-D4′-NS5′-D4-NS5 intersection discussed in subsection 7.1.1. This becomes a bound
state of F1-D1-D5-NS5 branes ending on a D3-KK intersection, of which we provide both
the full brane solution and its near-horizon limit. Said limit gives rise to a new class of
N = 4 Type IIB backgrounds characterised by AdS2 × S2 × S2 × R2 × S1 geometries
foliated over a line. Then in subsection 7.2.2, we show that a suitable prescription for
the distribution of charges of the D3-KK system yields a solution within this class that
asymptotes locally to the AdS5 ×S5/Zn vacuum. This allows us to interpret this solution
as holographically dual to a line defect CFT within N = 4 SYM modded by Zn. In the
absence of KK-monopoles the solution describes a line defect CFT within 4d N = 4 SYM,
which preserves 1/4 of the supersymmetries.

7.2.1. The brane solution to Type IIB

Let us consider the Type IIA brane set-up of Table 7.1. By T-dualising it along the
ψ circular direction, the F1-D2-D4′-NS5′ defect branes become a D1-F1-D5-NS5 brane
system localised within the common worldvolume of the D3-KK branes. The background

branes t ρ φ1 φ2 y z ψ r θ1 θ2

D3 × × × × − − − − − −
KK × × × × × × ISO − − −
D1 × − − − × − − − − −
F1 × − − − − × − − − −
D5 × − − − × − × × × ×
NS5 × − − − − × × × × ×

Table 7.2: BPS/8 intersection describing D1-F1-D5-NS5 branes ending on the D3-KK system.
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fields generated by these brane configuration are the ones below,

ds210 =H
−1/2
D3

[
−H−1/2

D1 H−1
F1H

−1/2
D5 dt2 +H

1/2
D1 H

1/2
D5 HNS5

(
dρ2 + ρ2ds2S2

)]
+

+H
1/2
D3

[
H

−1/2
D1 H

−1/2
D5 HNS5dy

2 +H
1/2
D1 H

−1
F1H

1/2
D5 dz

2
]
+

+H
1/2
D3 H

1/2
D1 H

−1/2
D5

[
H−1

KK

(
dψ + 2−1qKKω

)2
+HKK

(
dr2 + r2ds2

S̃2

)]
,

eΦ =H
1/2
NS5H

−1/2
D5 H

−1/2
F1 H

1/2
D1 ,

H(3) =− ∂ρH
−1
F1 dt ∧ dρ ∧ dz + ∂ρHNS5 ρ

2 volS2 ∧ dy ,
F(3) =− ∂ρH

−1
D1dt ∧ dρ ∧ dy − ∂ρHD5 ρ

2 volS2 ∧ dz ,
F(5) =HD5HNS5ρ

2 dt ∧ dρ ∧ volS2 ∧ (∂rH
−1
D3 dr + ∂yH

−1
D3 dy + ∂zH

−1
D3 dz)+

− r2∂rHD3dy ∧ dz ∧ dψ ∧ volS̃2+

−HF1H
−1
D5HKKr

2∂zHD3dy ∧ dψ ∧ dr ∧ volS̃2+

+HD1H
−1
NS5HKKr

2∂yHD3dz ∧ dψ ∧ dr ∧ volS̃2 ,

(7.12)

where dω = volS̃2 and qKK is the KK-monopole charge. The warp factors of the background
system are taken to be HKK = HKK(r) and HD3 = HD3(y, z, r). Besides, the defect branes
are taken to have charge distributions localised within the worldvolume of the D3 branes.
In other words, they only depend on ρ and read HD1(ρ), HF1(ρ), HNS5(ρ) and HD5(ρ).

As usual, the equations of motion and Bianchi identities decouple into two groups of
PDEs. Those for the D1-F1-D5-NS5 defect branes are given by

∇2
R3
ρ
HD1 = 0 with HNS5 = HD1 ,

∇2
R3
ρ
HF1 = 0 with HD5 = HF1 ,

(7.13)

while for the D3-KK bound system we have

∇2
R3
r
HD3 +HKK∇2

R2
(y,z)

HD3 = 0 with HKK =
qKK

2r
. (7.14)

Mirroring what we did in section 7.1, we are interested in studying the near-horizon limit
of the solution at hand. In order to achieve this, we consider the particular solution for
the defect branes,

HD1 = 1 +
qD1

ρ
and HF1 = 1 +

qF1
ρ
, (7.15)

where qD1 and qF1 are integration constants related to the quantised charges of the re-
spective branes. As in the Type IIA case, the ρ → +∞ limit corresponds the situation
in which the defect branes are taken far away from D3-KK, recovering the background
associated to this latter subsystem. In turn, the ρ → 0 limit gives rise to a new class of
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N = 4 AdS2 backgrounds4 of Type IIB string theory,

ds210 =q
3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2AdS2

+ ds2S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
H−1

KK

(
dψ + 2−1qKKω

)2
+HKK

(
dr2 + r2ds2

S̃2

))
,

eΦ =qD1q
−1
F1 , H(3) = −qD1volAdS2 ∧ dz − qD1volS2 ∧ dy ,

F(3) =− qF1volAdS2 ∧ dy + qF1volS2 ∧ dz ,
F(5) =q

2
D1q

2
F1∂rH

−1
D3 volAdS2 ∧ volS2 ∧ dr + q2D1q

2
F1∂yH

−1
D3 volAdS2 ∧ volS2 ∧ dy

+ q2D1q
2
F1∂zH

−1
D3 volAdS2 ∧ volS2 ∧ dz − r2∂rHD3dy ∧ dz ∧ dψ ∧ volS̃2

−HKKr
2∂zHD3dy ∧ dψ ∧ dr ∧ volS̃2 +HKKr

2∂yHD3dz ∧ dψ ∧ dr ∧ volS̃2 ,

(7.16)

where HD3 solves the master equation (7.14). These geometries represent a new class of
solutions to Type IIB supergravity, displaying AdS2 × S2 × S̃2 × R2 × S1 foliations over
a line. A simple check shows that these backgrounds are related by T-duality along the
ψ direction to the AdS2 one in (7.5), which describes the near-horizon of the F1-D2-D4′-
NS5′-D4-NS5 brane intersections discussed in section 7.1.

7.2.2. Defects within 4d SCFTs in Type IIB

In this subsection we draw inspiration from subsection 7.1.2 to provide a defect inter-
pretation for the background (7.16). As in the aforementioned subsection, the key feature
that allows to find such an interpretation is the decoupling between the dynamics of the
D1-F1-D5-NS5 defect branes and that of the D3-KK system. In other words, the equations
of motion and Bianchi identities of the two groups of branes, given by (7.13) and (7.14),
respectively, are completely independent. Since we are searching for a possible completion
within an AdS5 vacuum, we choose the semi-localised solution for the D3-KK system [157],

HD3 = 1 +
4πqD3qKK

(y2 + z2 + 2qKKr)2
and HKK =

qKK

2r
. (7.17)

and introduce the new coordinates (µ, α, ϕ) [155,159],

y = µ sinα cosϕ , z = µ sinα sinϕ and r = 2−1 q−1
KK µ

2 cos2 α . (7.18)

With these considerations in mind, the backgrounds (7.16) take the form of a stack of
D3-branes wrapping the AdS2 × S2 backreacted geometry. The D3-branes are intersected
with n KK-monopoles, orbifolding the S5 transverse space into S5/Zn,

ds210 =q
3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2AdS2

+ ds2S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dµ2 + µ2ds2S5/Zn

)
,

ds2S5/Zn =dα2 + s2dϕ2 + c2ds2S3/Zn , HD3 = 1 +
4πqKKqD3

µ4
.

(7.19)

4In order to obtain a unitary AdS2 at the horizon we rescaled the time as t→ qD1qF1t.

132



HOLOGRAPHIC DUALITY, THEORY OF DEFECTS AND BLACK HOLES

Analogously to what happened in the Type IIA case, the defect branes do not modify
the space transverse to the D3-branes. Thus, the defect branes are only manifest by
curving the worldvolume of the D3-branes in the fully-backreacted AdS2 × S2 geometry.
Interestingly, in these coordinates the geometry of this background locally asymptotes to
AdS5 × S5/Zn in the µ→ 0 limit,

ds210 =(4πqKKqD3)
1/2q

1/2
D1 q

−1/2
F1

locally AdS5 geometry︷ ︸︸ ︷[
(4πqKKqD3)

−1 qD1 qF1µ
2
(
ds2AdS2

+ ds2S2

)
+
dµ2

µ2

]
+ (4πqKKqD3)

1/2q
1/2
D1 q

−1/2
F1

[
dα2 + s2dϕ2 + c2ds2S3/Zk

]
,

eΦ =qD1q
−1
F1 ,

H(3) =− qD1 (s̃volAdS2 + c̃volS2) ∧ (sdµ+ µcdα)− qD1µs (c̃volAdS2 − s̃volS2) ∧ dϕ ,
F(3) =qF1 (−c̃volAdS2 + s̃volS2) ∧ (sdµ+ µcdα) + qF1µs (s̃volAdS2 + c̃volS2) ∧ dϕ ,
F(5) =4q2F1q

2
D1(4πqKKqD3)

−1µ3volAdS2 ∧ volS2 ∧ dµ
− 4πqD3c

3sdϕ ∧ dα ∧ dψ ∧ volS̃2 ,

(7.20)

where s = sinα, c = cosα and s̃ = sinϕ, c̃ = cosϕ.
In complete analogy with the Type IIA analysis of section 7.1, the constructions in

this section show that starting with the general brane intersection specified by the solutions
(7.12) and taking the particular profiles (7.15) for the D1-F1-D5-NS5 branes and the semi-
localised profile (7.17) for the D3-KK system, two interesting regimes emerge. The first
regime appears in the ρ→ 0 limit. In this case the defect branes are resolved into a fully
backreacted AdS2 × S2 geometry within the 4d worldvolume of the D3-KK bound state,
making manifest the breaking of its isometries. The second regime becomes manifest in
the system of coordinates introduced in (7.18), when apart from taking the ρ → 0 limit
one also sends µ → 0, thus approaching the origin of the R2

(y,z) plane. In this regime the
metric is split into a 5d “external” part, reproducing locally an AdS5 geometry, and a 5d
internal manifold, which coincides with that of the pure AdS5×S5/Zn vacuum [159]. The
isometries of the AdS5 vacuum are however broken by the background fluxes in (7.20).
The extra terms show that a 5d observer placed at µ → 0 feels the global charges of the
defect branes. They backreact into a geometry described by a 5d curved domain wall
with AdS2 × S2 slicings that is only asymptotically locally AdS5. We observe that the
presence of the extra terms in the fluxes forbids any supersymmetric enhancement to the
(four-dimensional) N = 2 supersymmetry of the AdS5 solution.

Similarly to what we obtained in subsection 7.1.2, our construction realises a confor-
mal line defect in 4d N = 4 SYM modded by Zn, this time in terms of D1-F1-D5-NS5
branes. Nevertheless, the Type IIB realisation allows one to study the interesting case
in which these defect branes are introduced within 4d N = 4 SYM, breaking the super-
symmetries to 1/4 BPS. In this case it should be possible to interpret the D5- and the
F1-branes as realising the baryon vertex of 4d N = 4 SYM, and the AdS2 solutions as
describing the corresponding backreacted geometries. In the IR the gauge symmetry on
the D3-branes would become global, turning them into flavour branes, with the D5-branes
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becoming the new colour branes. However, we highlight that in the backreacted geometry
there are as well D1 colour branes. These should find an interpretation in terms of instan-
tons within the worldvolume of the D5-branes. The possibility of such an interpretation
will become clearer after our field theory analysis in the next section.

7.3. The F1-D2-D4′-NS5′-D4-NS5-D6 brane system

In this section we generalise the F1-D2-D4′-NS5′-D4-NS5 brane intersection studied in
section 7.1 to include D6-branes localised within the R2

(y,z) plane. We will see that adding
D6-branes challenges the construction of a solution with AdS5 asymptotics. However, by
taking a simplified ansatz, we will see that it is possible to construct an explicit quiver
quantum mechanics that can be interpreted as describing D2-D4′ baryon vertices within
the 4d SCFT living in the D4-NS5-D6 brane intersection.

7.3.1. Adding D6-branes to the brane set-up

The brane set-up thoroughly explored in subsection 7.1.1 can be extended by includ-
ing D6-branes localised within the R2

(y,z) plane. The result is the extended brane set-up
depicted in Table 7.3. This generalisation does not imply any further breaking of su-

branes t ρ φ1 φ2 y z ψ r θ1 θ2

D6 × × × × − − − × × ×
D4 × × × × − − × − − −
NS5 × × × × × × − − − −
D2 × − − − × − × − − −
F1 × − − − − × − − − −
D4′ × − − − × − − × × ×
NS5′ × − − − − × × × × ×

Table 7.3: BPS/8 intersection describing F1-D2-D4′-NS5′ branes ending on a D4-NS5-D6 bound
state.

persymmetries. However, as we mentioned above, finding an AdS5 completion is a more
difficult task in this case.

For simplicity, we consider that the D6-branes are smeared along the ψ direction.
Consequently, the associated warp factor is HD6 = HD6(y, z). The resulting background
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is given by the following fields,

ds210 =H
−1/2
D6 H

−1/2
D4

[
−H−1

F1H
−1/2
D2 H

−1/2
D4′ dt2 +H

1/2
D2 H

1/2
D4′HNS5′

(
dρ2 + ρ2ds2S2

)]
+

+H
1/2
D6 H

1/2
D4

[
H

−1/2
D2 H

−1/2
D4′ HNS5′ dy

2 +H−1
F1H

1/2
D2 H

1/2
D4′ dz

2
]
+

+H
1/2
D6 HNS5H

−1/2
D4 H

−1/2
D2 H

1/2
D4′ dψ

2+

+H
−1/2
D6 HNS5H

1/2
D4 H

1/2
D2 H

−1/2
D4′

(
dr2 + r2ds2

S̃2

)
,

eΦ =H
−3/4
D6 H

1/2
NS5H

−1/4
D4 H

−1/2
F1 H

1/4
D2 H

−1/4
D4′ H

1/2
NS5′ ,

H(3) =− ∂ρH
−1
F1 dt ∧ dρ ∧ dz + ∂ρHNS5′ ρ

2 volS2 ∧ dy + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(2) =−HF1H
−1
D2∂zHD6dy ∧ dψ +HD4′H

−1
NS5′∂yHD6dz ∧ dψ+ ,

F(4) =HD6∂ρH
−1
D2dt ∧ dρ ∧ dy ∧ dψ +HD6∂ρHD4′ ρ

2 volS2 ∧ dz ∧ dψ+
+HD2H

−1
NS5′HNS5∂yHD4 r

2 dz ∧ dr ∧ volS̃2

−HF1H
−1
D4′HNS5∂zHD4 r

2 dy ∧ dr ∧ volS̃2 +HD6∂rHD4 r
2 dy ∧ dz ∧ volS̃2 ,

F(6) =HD4′HNS5′ρ
2
(
∂yH

−1
D4dy + ∂zH

−1
D4dz + ∂rH

−1
D4dr

)
∧ dt ∧ dρ ∧ volS2 ∧ dψ+

−HNS5HD4∂ρHD2r
2ρ2volS2 ∧ dz ∧ dr ∧ volS̃2+

−HD4HNS5r
2∂ρH

−1
D4′dt ∧ dρ ∧ dy ∧ dr ∧ volS̃2 .

(7.21)

As in the absence of D6-branes, the equations of motion and Bianchi identities decouple
into two groups of PDEs, one associated to the F1-D2-D4′-NS5′ defect branes,

∇2
R3
ρ
HD2 = 0 with HD4′ = HNS5′ = HF1 = HD2 , (7.22)

and an independent one describing the D4-NS5-D6 brane system,

HD6∇2
R3
r
HD4 +HNS5∇2

R2
(y,z)

HD4 = 0 , ∇2
R3
r
HNS5 = 0 and ∇2

R2
(y,z)

HD6 = 0 . (7.23)

In order to extract the AdS2 near-horizon geometry we make the following choice for the
warp factor describing the defect branes,

HD2 = 1 +
qD2

ρ
, (7.24)

where qD2 is an integration constant related to the quantised charges of the defect branes.
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We then obtain the near-horizon limit of the considered background by sending ρ→ 05,

ds210 =q
2
D2H

−1/2
D6 H

−1/2
D4

(
ds2AdS2

+ ds2S2

)
+H

1/2
D6 H

1/2
D4 (dy2 + dz2)

+H
1/2
D6 HNS5H

−1/2
D4 dψ2 +H

−1/2
D6 HNS5H

1/2
D4

(
dr2 + r2ds2

S̃2

)
,

eΦ =H
−3/4
D6 H

1/2
NS5H

−1/4
D4 ,

H(3) =− qD2volAdS2 ∧ dz − qD2volS2 ∧ dy + ∂rHNS5 r
2 dψ ∧ volS̃2 ,

F(2) =− ∂zHD6dy ∧ dψ + ∂yHD6dz ∧ dψ ,
F(4) =qD2HD6(volAdS2 ∧ dy − volS2 ∧ dz) ∧ dψ +HD6∂rHD4 r

2 dy ∧ dz ∧ volS̃2

+HNS5∂yHD4 r
2 dz ∧ dr ∧ volS̃2 +HNS5∂zHD4 r

2 dy ∧ dr ∧ volS̃2 ,

F(6) =q
4
D2

(
∂yH

−1
D4dy + ∂zH

−1
D4dz + ∂rH

−1
D4dr

)
∧ volAdS2 ∧ volS2 ∧ dψ

+ qD2HD4HNS5r
2
(
−volAdS2 ∧ dy + volS2 ∧ dz

)
∧ dr ∧ volS̃2 .

(7.25)

These fields define a new class of N = 4 AdS2×S2× S̃2×R2×S1 geometries fibred over a
line, parametrised by r. The functions HD4(y, z, r), HNS5(r) and HD6(y, z) are solutions to
the equations in (7.23), and describe a D4-NS5-D6 bound state localised in the subspace
R2

(y,z)×R3
r, where R3

r is spanned by Ir and S̃
2. A solution in the class given by (7.25) is thus

specified by the D4-NS5-D6 charge distributions that solve these equations. The explicit
study of the solutions becomes more involved than in section 7.1, due to the logarithmic
behaviour of HD6. Moreover, the defect interpretation found in that section in terms of
semi-localised D4-NS5 branes is lost in the presence of the D6-branes, making challenging
the construction of an explicit solution that asymptotes to an AdS5 vacuum.

In order to proceed further with an explicit analysis of the solutions we take the y
direction inside the R2

(y,z) plane as a circular direction, and the D6- and the D4-branes

smeared along it. Under this assumption the background (7.25) turns out to be driven
by the functions HD4(z), HNS5(r) and HD6(z), and their master PDEs take the following
simpler form,

∂2zHD4 = 0 , ∂2zHD6 = 0 with HNS5 =
qNS5

r
. (7.26)

Even if in this case we could not construct a solution with AdS5 asymptotics, we show in
the next subsections that it is possible to interpret a wide subclass of these solutions in
terms of D2-D4′ baryon vertices within the 4d CFT living in D4-NS5-D6 branes.

7.3.2. Quantised charges

The most general solution to the equations of motion defined by (7.26) consists on
HD4 and HD6 being piecewise linear functions of z. This allows one to introduce D4 and
D6 source branes in the geometry. This is compatible with the quantised charges obtained
from the Page fluxes, as we show below.

5In order to reproduce unitary AdS2 at the horizon we rescaled the time as t→ q2D2t.
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We start by computing the F1-strings charge. The F1-strings are electrically charged
with respect to the NSNS 3-form. Their quantised charges in units with α′ = gs = 1 take
the following form6,

Qe
F1 =

1

(2π)2

∫
AdS2×Iz

H(3) . (7.27)

Regularising the volume of AdS2 as VolAdS2 = 4π7 we find that

Qe
F1 =

1

π
qD2(zf − zi) , (7.28)

where this must be computed at both ends of the Iz interval. Therefore, there are k qD2

F1-strings in the z ∈ [0, kπ] interval. We set qD2 = 1 for simplicity, so that one F1-string
is created as we move in z-intervals of length π. This is equivalent to imposing that B(2)

lies in the fundamental region when it is integrated over AdS2 (see [43]),

1

4π2

∣∣∣∣∫
AdS2

B(2)

∣∣∣∣ ∈ [0, 1] , (7.29)

therefore we must take

Be
(2) = −(z − kπ)volAdS2 with z ∈ [kπ, (k + 1)π] (7.30)

for the electric part of B(2). The large gauge transformation parameter k affects the electric

components of the RR Page fluxes, F̂ = F ∧ e−B(2) , as follows,

F̂(p) → F̂(p) − kπF(p−2) ∧ volAdS2 for z ∈ [kπ, (k + 1)π] . (7.31)

In particular, we have that

F̂ e
(4) =

(
HD6 − (z − kπ)∂zHD6

)
volAdS2 ∧ dy ∧ dψ ,

F̂ e
(6) = −HNS5r

2
(
HD4 − (z − kπ)∂zHD4

)
volAdS2 ∧ dr ∧ volS̃2

(7.32)

for z ∈ [kπ, (k + 1)π]. These electric fluxes give rise to D2 and D4′ electric quantised
charges, respectively. In units with α′ = gs = 1, they can be computed by applying

Qe
Dp =

1

(2π)p+1

∫
AdS2×Σp

F̂ e
(p+2), (7.33)

For the D4- and D6-branes it will be more convenient to compute their magnetic charges,
associated to the magnetic components of F̂(4) and F̂(2), respectively, which are given by

F̂m
(4) = −HNS5∂zHD4r

2dy ∧ dr ∧ volS̃2 , F̂m
(2) = −∂zHD6dy ∧ dψ . (7.34)

6We use the superscript e to explicitly indicate that this is an electric charge.
7This regularisation prescription is based on the analytical continuation that relates the AdS2 space

with an S2.
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In the presence of sources the Bianchi identities in equation (7.26) are modified so that

dF̂(4) = ∂2zHD4dz ∧ dy ∧ dr ∧ volS̃2 , dF̂(2) = ∂2zHD6dz ∧ dy ∧ dψ . (7.35)

Therefore, the D4- and D6-branes provide sources localised in the z direction. They are
thus flavour branes. They span, respectively, the AdS2×S2×S1

ψ and AdS2×S2× Ir× S̃2

subspaces of the solution (see below).
We need to specify now the linear functions HD4 and HD6. We take both to be

piecewise linear in the different z ∈ [kπ, (k + 1)π] intervals, with the space starting and
ending at z = 0 and z = π(P + 1), where both HD4 and HD6 are assumed to vanish.
This parallels the analysis performed in [42, 43] for the AdS2 solutions presented in said
works, which, in turn, was based on the field theory interpretation in [94,160] of the AdS3

solutions constructed in [38]8. In this way the singularity structure at both ends of the
space is given by

ds2 ∼ x−1(ds2AdS2
+ ds2S2) + x(dy2 + dx2) + dψ2 + dr2 + r2ds2

S̃2 , eΦ ∼ x−1 , (7.36)

where x = z close to z = 0 and x = π(P + 1)− z close to z = π(P + 1). It corresponds to
a superposition of D4-branes wrapped on AdS2 × S2 × S1

ψ and smeared on (y, r, S̃2), and

D6 branes wrapped on AdS2 × S2 × Ir × S̃2 and smeared on (ψ, y)9. The HD4 and HD6

functions then read

HD4(z) =


β0
π
z with 0 ≤ z ≤ π ,

αk+
βk
π
(z − πk) with πk ≤ z ≤ π(k + 1) , k = 1, .., P − 1 ,

αP − αP
π
(z − πP ) with πP ≤ z ≤ π(P + 1),

(7.37)

HD6(z) =


ν0
π
z with 0 ≤ z ≤ π ,

µk +
νk
π
(z − πk) with πk ≤ z ≤ π(k + 1) , k = 1, ...., P − 1 ,

µP − µP
π
(z − πP ) with πP ≤ z ≤ π(P + 1) ,

(7.38)

where αk, βk, µk and νk are integration constants. They must satisfy the following condi-
tion (see [43]),

αk =
k−1∑
j=0

βj, µk =
k−1∑
j=0

νj with k = 1, . . . , P (7.39)

which comes from the requirement of continuity of HD4 and HD6. Their continuity ensures,
in turn, that of the metric and dilaton. However, the fluxes can have discontinuities, which
give away the presence of branes.

Note that in order to find well-defined quantised charges from the electric and mag-
netic fluxes in (7.32) and (7.34), we need to globally define the r-direction. This is done

8One can check [161], a review article which summarises these developments.
9Note that the same behaviour is obtained from a superposition of O4 and O6 orientifold fixed planes.
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by taking the Ir × S̃2 space to span a 3-torus T 3. The resulting quantised charges are
given by

Q
e(k)
D2 = µk , Q

e(k)
D4′ = αk , Q

e(k)
F1 = 1 , Q

m(k)
D4 = βk , Q

m(k)
D6 = νk (7.40)

in the different z ∈ [kπ, (k + 1)π] intervals. Here we have also used that y ∈ [0, π]10. The
charges in (7.40) show that the integration constants αk, βk, µk and νk must be integer
numbers. Moreover, the conditions (7.39) imply that the D2 and D4′ charges at each
z ∈ [kπ, (k + 1)π] interval equal the sum of the D6 and D4 charges, respectively, in the
previous [0, kπ] intervals. We will find an explanation for this fact when we give a field
theory interpretation to these solutions in the next subsections. The number of D4 and
that of D6 source branes present at each interval are given, respectively, by

Fk = βk−1 − βk , F̃k = νk−1 − νk, (7.41)

consistently with the derivatives

∂2zHD4 =
1

π

P∑
k=1

(βk−1 − βk)δ(z − πk) , ∂2zHD6 =
1

π

P∑
k=1

(νk−1 − νk)δ(z − πk) , (7.42)

which follow from (7.37) and (7.38).
Finally, we would like to briefly discuss the role played by the NS5- and NS5′-branes

in the brane set-up. As we have discussed, the D2- and D4′-branes play the role of colour
branes of the configuration. The D2-branes are wrapped on the two circular directions
(y, ψ). Furthermore, they are stretched in the y direction between NS5′-branes, which
are located at y = 0, π and are periodically identified, and between two NS5-branes11 in
the ψ direction, located at ψ = 0, 2π and periodically identified. The field theory that
lives in them is therefore one-dimensional at low energies. In turn, the D4′-branes are
wrapped around y and the T 3. In the y direction, they extend between NS5′-branes. The
field theory that lives in them is, therefore, also one-dimensional at low energies. Our
conjecture is that the N = 4 quantum mechanics that lives in the D2-D4′ branes flows to
a super conformal quantum mechanics in the IR that is dual to the backgrounds defined by
the functions (7.37), (7.38). We turn to this analysis in subsection 7.3.4, after discussing
the holographic central charge in the next subsection.

7.3.3. Holographic central charge

Although, as mentioned before, the definition of a central charge for a conformal
quantum mechanics is a subtle issue, there is a notion of holographic “central charge” that
can be computed by applying the formula that we introduced in (3.20) to the supergravity

10The reason for this particular periodicity will become clear in the conclusions when we discuss the
relation between these geometries and the double analytical continuation of the AdS3 × S2 geometries
studied in [46].

11We take qNS5 = 1 for simplicity.
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solution. In the case of a Type IIA/B supergravity solution with two-dimensional external
space this formula boils down to

chol =
3

4πGN

∫
dθ⃗
√
e−4Φ det(gij) , (7.43)

where GN is the ten-dimensional Newton’s constant, GN = 8π6, gij is the metric of the

inner space and θ⃗ are coordinates defined over it. For our class of backgrounds we find

chol =
6

π

∫ π(P+1)

0

HD4HD6 dz . (7.44)

Substituting here the expressions for HD4 and HD6 given by (7.37) and (7.38) we arrive at
the final result,

chol = 6
P∑
k=0

(
αkµk +

1

3
βkνk +

1

2
(αkνk + βkµk)

)
. (7.45)

We will compare this value with the “central charge” of the superconformal quantum
mechanics built in subsection 7.3.5.

7.3.4. Dual quiver quantum mechanics

In this subsection we propose quiver quantum mechanics supported by our solutions.
The dynamics of the quivers is described in terms of the matter fields associated to the open
strings that connect the different branes. We will follow closely the detailed description
of the matter fields given in [43] (see Appendix B therein), since our brane system is
related by two T-dualities (along the y and ψ directions) to the D0-D4-F1-D4′-D8 brane
intersections studied there. As in that reference we will use 2d N = (0, 4) notation for the
1d N = 4 matter fields.

As all D-branes are localised in the z-direction, strings stretched between branes in
adjacent [πk, π(k + 1)] intervals are long, thus describing massive states. Therefore, they
will not contribute to the quiver quantum mechanics. We will discuss their role in the
field theory in subsection 7.3.6. Therefore, the full Hilbert space of the system is given by
the sum of the individual Hilbert spaces of the D2-D4′-D4-D6 branes in each [πk, π(k+1)]
interval, whose degrees of freedom we summarise next:

D2-D2: Given that the D2 branes are wrapped on the y and ψ directions they are
effectively point like. They contribute with a N = (4, 4) vector and a N = (4, 4)
hypermultiplet in the adjoint.

D4′-D4′: Given that the D4′ branes are wrapped on y and on the T 3 they are
also effectively point like. They contribute as well with a N = (4, 4) vector and a
N = (4, 4) hypermultiplet in the adjoint.

D2-D4′: The D2-D4′ subsystem is related by two T-dualities to the D0-D4 system
in [43]. They contribute with a N = (4, 4) hypermultiplet in the bifundamental
representation of the two gauge groups.

140



HOLOGRAPHIC DUALITY, THEORY OF DEFECTS AND BLACK HOLES

D2-D4: This subsystem is related by two T-dualities to the D0-D4′ system in [43].
They contribute with a N = (4, 4) bifundamental twisted hypermultiplet.

D2-D6: This is related by two T-dualities to D0-D8. They contribute with a N =
(0, 2) bifundamental Fermi multiplet.

D4′-D4: This is related by two T-dualities to D4-D4′. They contribute with a
N = (0, 2) bifundamental Fermi multiplet.

D4′-D6: This is related by two T-dualities to D4-D8. They contribute with a N =
(4, 4) bifundamental twisted hypermultiplet.

These multiplets were summarised in Table 7.4. Considering this table, along with the

String Multiplet Representation
D2-D2 N = (4, 4) vector and N = (4, 4) hyper Adjoint
D4′-D4′ N = (4, 4) vector and N = (4, 4) hyper Adjoint
D2-D4′ N = (4, 4) hyper Bifundamental
D2-D4 N = (4, 4) twisted hyper Bifundamental
D2-D6 N = (0, 2) Fermi Bifundamental
D4′-D4 N = (0, 2) Fermi Bifundamental
D4′-D6 N = (4, 4) twisted hyper Bifundamental

Table 7.4: Summary of the multiplets associated to the brane intersection in Table 7.3. The
considered open strings end on the specified branes, which lie on the same z ∈ [πk, π(k + 1)]
interval.

ranks of the gauge and flavour groups associated to the D2-D4′-D4-D6 branes in a given
z ∈ [πk, π(k+1)] interval, which are given by µk, αk, βk−1−βk and νk−1−νk, respectively
(see equations (7.40) and (7.41)), we get the field content depicted in Figure 7.2. In
this figure circles represent N = (4, 4) vector multiplets, black lines N = (4, 4) twisted
hypermultiplets, grey lines N = (4, 4) hypermultiplets and dashed lines N = (0, 2) Fermi
multiplets. We remark that this is the same quiver quantum mechanics discussed in [43]
(see section 3.3 therein), now associated to a different brane system. As in said paper, the
quantum mechanics will find an interpretation as Wilson lines (more specifically, baryon
vertices) within a higher dimensional QFT, once we introduce the massive F1-strings
stretched between the branes in the z-direction. Before turning to this description in
subsection 7.3.6, we briefly address the computation of the quantum mechanical central
charge.

7.3.5. Quantum mechanical central charge

In this subsection we address the computation of the central charge, following closely
[43]. The usual caveats involved in the definition of a superconformal quantum mechan-
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Figure 7.2: Disconnected quivers describing the SCQMs dual to the class of solutions (6.14).

ical central charge are present in our current set-up. The central charge should then be
interpreted as counting the degeneracy of ground states of the system.

Following the reasoning presented in section 5.3, we arrived at the conclusion that
expression (5.5) could be used to compute the dimension of the Higgs branch of the quivers
depicted in Figure 7.2, as they are Kronecker. It is straightforward to check that for these
quivers the dimension of the Higgs branch so obtained agrees with the central charge
computed using (5.4), up to a factor of 112 and the global normalisation. The quantum
mechanical central charge computed from (5.4) was shown to agree to leading order with
the corresponding holographic expression in a number of examples [43].

We will thus use (5.4) to compute the central charge of our quantum mechanics
described by the quivers in Figure 7.2. In this computation, as remarked in [49], nhyp
counts the number of ordinary (as opposed to twisted) N = 4 hypermultiplets, since the
U(1)R-charge of the fermions in twisted hypermultiplets vanishes. For the case at hand,
we have that

nhyp =
P∑
k=1

(αkµk + α2
k + µ2

k), nvec =
P∑
k=1

(α2
k + µ2

k), (7.46)

and, therefore,

c = 6
P∑
k=1

αkµk, (7.47)

identically. Keeping in mind the definitions of αk, µk, given by (7.39), we find that this
expression agrees in the large number of nodes limit, i.e. P → ∞, with the holographic
expression (7.45). Moreover, the agreement is exact in the absence of any of the two types

12This factor of 1 is irrelevant in the holographic limit, but we are lacking a precise understanding of
the origin of this discrepancy.
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of flavour branes. It would be interesting to have a more precise understanding of this
exact agreement.

7.3.6. Baryon vertex interpretation

In this subsection we explore the interpretation of the massive F1-strings. The dis-
cussion will again follow very closely the field theory interpretation given to the AdS2

solutions constructed in [43]. The key point is to realise that the orientation between the
D4- and the D4′-branes is such that one can consider F1-strings stretched between said
branes, which is also the case for the D6- and D2-branes. These strings have as their
lowest energy excitation a fermionic field, which upon integration leads to a Wilson loop.

In [113, 162] it was shown that a half-BPS Wilson loop in a U(N) antisymmetric
representation of 4d N = 4 SYM can be described by an array of M D5-branes with
fundamental strings dissolved in their worldvolumes. This is the realisation in the near-
horizon limit of a configuration of M stacks of D5-branes separated a distance L from
N D3-branes, with (m1,m2, . . .mM) F1-strings stretched between the stacks. The brane
set-up is depicted in Table 7.5. It can easily checked that this is precisely the relative

branes t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × × − − − − − −
D5 × − − − − × × × × ×
F1 × − − − × − − − − −

Table 7.5: Brane set-up associated to the D3-D5-F1 brane configuration that describes Wilson
loops in antisymmetric representations of 4d U(N) N = 4 SYM.

orientation between the D4-, the F1- and the D4′-branes in Table 7.3 and the D6, the F1
and the D2 branes. Indeed, the couplings that describe Wilson lines in the worldvolumes
of the D4′ and D2 colour branes are, respectively,

SD4′ = T4

∫
F̂(4) ∧ At, SD2 = T2

∫
F̂(2) ∧ At . (7.48)

In the first expression the D4′-branes are wrapped on y and the T 3, therefore they capture
the F̂m

(4) magnetic flux given in (7.34). In turn, the D2-branes are wrapped on y and ψ,

so they capture the F̂m
(2) magnetic flux. Substituting these fluxes in the [πk, π(k + 1)]

z-interval we arrive at

SD4′ = βkTF1

∫
dtAt , SD2 = νkTF1

∫
dtAt . (7.49)

These expressions describe, respectively, βk and νk Wilson lines. If we add now the con-
tributions of the F1-strings stretched between the D4′-branes in the k-th interval and the
D4-branes in all previous intervals, and the same for the D2-branes and the D6-branes, as

143



CHAPTER 7. ADS2/SCQM IN TYPE II

α1 D4
′

⊗

ν0 D6

⊗

β0 D4

µ1 D2

α2 D4
′

⊗

⊗
µ2 D2

β1 D4

ν1 D6

· · ·

αP D4′

⊗

⊗
µP D2

βP−1 D4

νP−1 D6

z

Figure 7.3: Hanany-Witten brane set-up associated to the quantised charges of the solutions.

depicted in Figure 7.3, we find Wilson lines in the (β0, β1, . . . , βk−1) and (ν0, ν1, . . . , νk−1)
antisymmetric representations of the U(αk) and U(µk) gauge groups. This is precisely the
realisation of the baryon vertices associated to these gauge groups.

Indeed, the brane set-up depicted in Figure 7.3 can be related after the combination
of a T-duality, an S-duality, successive Hanany-Witten moves and a further T-duality to
the brane set-up depicted in Figure 7.4. This relation is carefully explained in [43]. For

α1 D4′

⊗

ν0 D6⊗

β0 D4

µ1 D2

α2 D4′

µ2 D2

β1 D4

ν0 F1

· · ·

αP D4′

µP D2
νP−1 D6

z

⊗⊗
...

· · ·
⊗
...⊗ βP−1 D4

β0 F1 β0 F1 β0 F1

β1 F1 β1 F1

βP−1 F1

Figure 7.4: Hanany-Witten brane set-up equivalent to the brane configuration in Figure 7.3.

the D4′-F1-D4 brane subsystem it follows directly from the analysis of the D4′-F1-D4
brane system in [43]13, while for the D2-F1-D6 subsystem it follows from the analysis of
the D0-F1-D8 subsystem therein after two T-dualities. The reader can find more details
about this description in that reference.

Our previous description is consistent with an interpretation of the AdS2 solutions
given by (7.25), with the profiles specified by (7.37) and (7.38), as describing backreacted
baryon vertices within the 4d N = 2 CFT living in the D4-NS5-D6 branes. In this
interpretation the SCQM arises in the very low energy limit of a D4-NS5-D6 brane system
in which one-dimensional defects are introduced. The one-dimensional defects consist on
D4′ baryon vertices, connected to the D4-branes with F1-strings, and D2-brane baryon
vertices, connected to the D6 by F1-strings. In the IR the gauge symmetry on the D4-
branes becomes global, turning them from colour to flavour branes. In turn, the D4′

13Note that the D4′- and the D4-branes are interchanged in that reference.
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and D2 defect branes become the new colour branes of the backreacted geometry. This
interpretation goes in parallel with the proposed defect interpretation for the classes of
AdS2 solutions found in [43] and [45]. Interestingly, for the first class of geometries the
AdS6 solution of Brandhuber-Oz [140] was shown to arise locally far away from the defect
[34]. In our case we should be able to find the AdS5 geometry dual to the D4-NS5-D6
brane intersection far away from the defect. This deservers further research.

7.4. A new class of AdS2 × S2 × S2 solutions to Type

IIA via non-Abelian T-duality

In this section we take as our starting point the class of AdS2 × S3 × S2 solutions to
Type IIB supergravity we presented in (7.16)14. In the previous subsection we explained
how some evidence was gathered supporting the proposal that the line defect operators
these solutions are dual to are baryon vertices in N = 4 SYM. These operators would be
realised in string theory as (p, q) strings stretched between stacks of (q, p) 5-branes and D3
colour branes, generalising the constructions in [113,114] by acting with SL(2,Z). We also
showed in subsection 7.2.1 that these solutions are mapped through Abelian T-duality to
AdS2 × S2 × S2 solutions to Type IIA supergravity arising in the near-horizon limit of
F1-D2-D4′-NS5′ defect branes embedded in the Type IIA realisation of 4d N = 4 SYM,
namely the semi-localised D4-NS5 brane intersection studied in [93,155–158,163].

Now we want to construct more general AdS2 geometries in Type IIA supergravity,
admitting a similar holographic interpretation as line defects within 4d N = 2 SCFTs
dual to Gaiotto-Maldacena geometries. We obtain these new backgrounds by acting with
non-Abelian T-duality on the class of AdS2 × S3 × S2 solutions to Type IIB supergravity
constructed in (7.16). The new backgrounds are fibrations of AdS2×S2×S2 over four in-
tervals and contain a particular solution that asymptotes locally to the Gaiotto-Maldacena
geometry introduced in [164]. We will show that it is possible to give an explicit interpre-
tation for this AdS2 solution as a baryon vertex defect embedded in the 4d N = 2 SCFT
dual to the Gaiotto-Maldacena geometry studied in [93].

Let us go back to our results. We start by rewriting the class of solutions (7.16) in
the absence of KK-monopoles as below15,

ds210 =q
3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2AdS2

+ ds2S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2 + dr2 + r2ds2S3

)
,

eΦ =qD1q
−1
F1 , H3 = −qD1volAdS2 ∧ dz − qD1volS2 ∧ dy ,

F3 =− qF1volAdS2 ∧ dy + qF1volS2 ∧ dz ,
F5 =d[q

2
D1q

2
F1H

−1
D3 volAdS2 ∧ volS2 ]+

+ r3[(∂zHD3dy − ∂yHD3dz) ∧ dr − ∂rHD3dy ∧ dz] ∧ volS3 ,

(7.50)

14In the next sections we restrict ourselves to the n = 1 case. This does not affect the number of
preserved supersymmetries.

15We have substituted the r coordinate in (7.16) as r → (2qKK)
−1r2 for convenience and then set

qKK = 1 in order to obtain the solution at hand.
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with HD3 satisfying the master equation

∇2
R4
r
HD3 +∇2

R2
(y,z)

HD3 = 0 . (7.51)

These solutions arise in the near-horizon limit of the brane intersection depicted in Table
7.6, and preserve small N = 4 supersymmetry, with the SU(2) R-symmetry group realised
on the S2.

branes t x1 x2 x3 z y x6 x7 x8 x9

D3 × × × × − − − − − −
D1 × − − − − × − − − −
F1 × − − − × − − − − −
D5 × − − − − × × × × ×
NS5 × − − − × − × × × ×

Table 7.6: BPS/8 intersection describing D1-F1-D5-NS5 branes ending on D3 branes. x1, x2, x3

are the coordinates realising the SO(3) R-symmetry.

We now perform a non-Abelian T-duality transformation (as explained in subsection
1.4.1) along the S3, that we parametrise as

ds2S3 =
(
dψ +

ω

2

)2
+

1

4
ds2

S̃2
. (7.52)

After this transformation the S3 group manifold is replaced by an open subset of R3. The
new class of solutions to Type IIA supergravity reads,

ds210 =q
3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2AdS2

+ ds2S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2 + dr2

)
+ 4q

−1/2
D1 q

1/2
F1 H

−1/2
D3 r−2(dρ2 +Hρ2ds2

S̃2) ,

eΦ =8q
1/4
D1 q

−1/4
F1 H

−3/4
D3 H1/2r−3 ,

B2 =qD1(z volAdS2 + y volS2) +
16qF1ρ

3

16qF1ρ2 + qD1HD3r4
volS̃2 ,

F2 =− 8−1r3[(∂zHD3 dy − ∂yHD3 dz) ∧ dr − ∂rHD3 dy ∧ dz] ,
F4 =(volAdS2 ∧ dy − volS2 ∧ dz) ∧ (qF1ρ dρ− 8−1qD1HD3r

3 dr)+

+
16qF1ρ

3

16qF1ρ2 + qD1HD3r2
volS̃2 ∧ F2 ,

F6 =d[q
2
D1q

2
F1ρH

−1
D3 volAdS2 ∧ volS2 ∧ dρ]+

+ ρ2Hr−2 d[qF1ρr
2(volAdS2 ∧ dy − volS2 ∧ dz) ∧ volS̃2 ] ,

(7.53)

where we have defined

H =
qD1HD3r

4

16qF1ρ2 + qD1HD3r4
. (7.54)
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HD3 satisfies (7.51) and (ρ, S̃2) parametrise the open subset of R3 that arises after the
non-Abelian T-duality transformation. Note that, as it is common after non-Abelian T-
duality, the brane intersection from where the AdS geometry arises in the near-horizon
limit cannot be easily identified16. The obvious candidate as brane intersection underlying
the solutions (7.53) would be the non-Abelian T-dual of the brane intersection underlying
the AdS2 solutions (7.50). We will see that the brane intersection depicted in Table 7.7 is
fully consistent with the quantised charges associated to the solutions (7.53), ergo we will
take it as the starting point of our quiver constructions. Note that the solutions described
by (7.53) preserve the same amount of supersymmetry as the original class of solutions,
since the S2 is left untouched after the non-Abelian T-duality transformation.

branes t x1 x2 x3 z y ρ x7 x8 x9

D4 × × × × − − × − − −
D6 × × × × − − − × × ×
NS5 × × × × × × − − − −
D2 × − − − − × × − − −
F1 × − − − × − − − − −
D4′ × − − − − × − × × ×
NS5′ × − − − × − × × × ×

Table 7.7: BPS/8 intersection describing D2-F1-D4′-NS5′− branes ending on D4-D6-NS5
branes, associated to the class of solutions (7.53). As before, x1, x2, x3 parametrise the directions
realising the SO(3) R-symmetry.

In the next subsection we turn to the defect interpretation of the solutions.

7.4.1. F1-D2-D4′-NS5 line defects within AdS5

Analogously to what we did in subsection 7.2.2, we consider the semi-localised profile
defined by [157]

HD3 = 1 +
4πqD3

(y2 + z2 + r2)2
, (7.55)

and perform the change of coordinates

y = µ sinα cosϕ , z = µ sinα sinϕ , r = µ cosα (7.56)

16The reader is referred to [165], where this is discussed for the AdS5 geometry constructed in [164], by
performing non-Abelian T-duality on the AdS5 × S5 background. Even in this simpler example the non-
Abelian T-dual of the solution associated to N D3-branes cannot be easily interpreted as a D4-NS5-D6
brane intersection.
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in order to obtain a solution that asymptotes locally to an AdS5 geometry in the µ → 0
limit. This solution reads17

ds210 =

locally AdS5 geometry︷ ︸︸ ︷
µ2 (ds2AdS2

+ ds2S2) +
dµ2

µ2
+dα2 + s2dϕ2 + 4c−2

(
dρ2 +

ρ2c4

16 ρ2 + c4
ds2

S̃2

)
,

eΦ =2π−1q−1
D3c

−1(16 ρ2 + c4)−1/2 ,

B2 =µs(s̃volAdS2 + c̃volS2) +
16 ρ3

16 ρ2 + c4
volS̃2 ,

F2 =− 2πqD3sc
3dα ∧ dϕ ,

F4 =d[4πqD3ρµs(c̃volAdS2 − s̃volS2) ∧ dρ] + 16 ρ3

16 ρ2 + c4
volS̃2 ∧ F2+

+ 2−1πqD3c
3[(c̃volAdS2 − s̃volS2) ∧ dµ ∧ dα+

+ s(s̃volAdS2 + c̃volS2) ∧ d(µc dϕ)] ,

F6 =− 4πqD3ρ
3c4

16 ρ2 + c4
d[µs(c̃ volAdS2 − s̃ volS2)] ∧ d[log

(
ρµ2c2

)
volS̃2 ]+

+ 16πqD3ρµ
3 volAdS2 ∧ volS2 ∧ dµ ∧ dρ .

(7.57)

Note that in order to obtain this solution we could have alternatively non-Abelian T-
dualised the solution (7.16) that asymptotes to AdS5 × S5.

The geometry defined by the metric in (7.57) asymptotes locally to the Gaiotto-
Maldacena geometry constructed in [164], by acting with non-Abelian T-duality on AdS5×
S5. The fluxes associated to said solution are the ones below,

F2 =− 2πqD3sc
3dα ∧ dϕ ,

F4 =− 25πqD3sc
−1ρ3Hdα ∧ dϕ ∧ volS̃2 ,

H3 =d

(
16 ρ3

16 ρ2 + c4

)
∧ volS̃2 .

(7.58)

However, the isometries of the AdS5 solution are broken by the presence of the extra
contributions to the fluxes in (7.57), which are subleading in µ. These terms give rise to
new global charges associated to the defect branes. These branes, in turn, backreact into a
geometry described by a 5d curved domain wall with AdS2×S2 slicings that is only locally
AdS5. The presence of the extra fluxes also forbids any supersymmetry enhancement. Note
that, as in the examples discussed in [46, 58, 66], the R-symmetry of the 4d N = 2 AdS5

solution is realised on the internal space (in this case on the S̃2 × S1
ϕ subspace), while the

R-symmetry of the AdS2 solution becomes part of the superconformal group of the higher
dimensional theory.

Let us now proceed with a detailed analysis of the solution described by (7.57).

17We have fixed the constants such that the AdS5 subspace has radius one.
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7.5. Line defects within 4d N = 2 SCFTs and brane

boxes

In this section we construct the brane set-up underlying the solution (7.57) and show
that it consists on D2 colour branes stretched between perpendicular NS5-branes. This
realises a one-dimensional brane box model from which the 1d quiver QFT can be read.
We show that this theory can be embedded within the 4d N = 2 SCFT dual to the
Gaiotto-Maldacena geometry arising in the asymptotics, described by a linear quiver with
gauge groups of increasing ranks [93]. Furthermore, we discuss in detail the interpretation
of the F1-strings present in the brane intersection, and show that together with the D2
and one of the families of D4-branes describe baryon vertices in the 4d SCFT.

7.5.1. The 4d Superconformal Background Theory

As a Gaiotto-Maldacena geometry, the AdS5 solution constructed in [164] is dual to
a 4d N = 2 superconformal field theory living in a D4-NS5-D6 brane intersection. This
CFT was thoroughly studied in [93], to which the reader is referred for more details. The
D4-NS5-D6 intersection is described by the first three lines in Table 7.7. We start by
computing the quantised charges associated to the NS5-branes, following [93]. Integrating

BS̃2

2 =
16 ρ3

16 ρ2 + c4
volS̃2 (7.59)

on the cycle defined by the S̃2 positioned at α = π/2, we have,

1

(2π)2

∫
Σ2

BS̃2

2 =
ρ

π
. (7.60)

Since this quantity has to take values between 0 and 1 in order to have a well-defined
partition function, the ρ direction must be divided in intervals of length π, such that when
ρ ∈ [nπ, (n + 1)π] a large gauge transformation of parameter n must be performed for

(7.60) to be satisfied. BS̃2

2 must thus be modified as

BS̃2

2 =
( 16 ρ3

16 ρ2 + c4
− nπ

)
volS̃2 for ρ ∈ [nπ, (n+ 1)π] . (7.61)

One effect of this split into intervals is that upon crossing ρ = nπ a NS5-brane is created,
generating a Hanany-Witten brane creation effect. Indeed, we have in each interval

QNS5 =
1

(2π)2

∫
Σ3

H3 =
1

(2π)2

∫ (n+1)π

nπ

∫
Σ2

H3 = 1 (7.62)

with Σ2 the S̃2 located at α = π/2. Moreover, the n term in (7.61) contributes to the
4-form Page flux with S̃2 component such that

F̂ S̃2

4 = nπ volS̃2 ∧ F2 , (7.63)
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which, knowing that in units with gs = α′ = 1,

QDp =
1

(2π)7−p

∫
Σ8−p

F̂8−p , (7.64)

gives
QD4 = nQD6 with ρ ∈ [nπ, (n+ 1)π] , (7.65)

where18

QD6 =
π

2
qD3. (7.66)

These quantised charges give rise to the Hanany-Witten brane set-up depicted in Figure
7.5, where the D4-branes play the role of colour branes and there are no D6 flavour
branes, as the D6-brane charge remains constant across intervals. Note that this brane

Figure 7.5: Brane set-up associated to the 4d background theory. NS5-branes are located at
ρn = nπ and nQD6 D4-branes are stretched between them in each [ρn, ρn+1] interval.

set-up extends infinitely in the ρ-direction, due to the non-compact character of the ρ-
coordinate. This happens because after the non-Abelian T-duality transformation the
S3 of the original solution is replaced by an open subset of R3, and due to our lack
of knowledge of how non-Abelian T-duality extends beyond spherical worldsheets it is
not possible to infer its global properties [166]. In view of this in [93] different ways of
terminating the brane set-up were discussed. Here we will choose the simplest scenario,
namely, we will terminate the brane set-up at ρP = Pπ by adding a set of PQD6 D6-branes
(or semi-infinite D4-branes). The resulting quiver is the one depicted in Figure 7.6. One
can check that at each node of the quiver the condition on the ranks of the gauge groups,
li,

2ln = ln+1 + ln−1, (7.67)

required for the β-function to vanish [109], is satisfied. Moreover, the field theory and holo-
graphic central charges can be shown to agree to leading order in P , i.e. the holographic
limit in these quiver constructions [93].

18Note that as usual the quantised charges need to be renormalised after a non-Abelian T-duality
transformation. This can be done through a redefinition of Newton’s constant. This will affect our
normalisation of the holographic central charge in subsection 7.5.4 (see for instance [93]).
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Figure 7.6: Quiver describing the 4d N = 2 SCFT dual to the background geometry.

7.5.2. The line defect theory

We proceed now to the description of the D2-F1-D4′-NS5′ defect branes whose back-
reaction in the AdS5 geometry generates the AdS2 solution. We start focusing on the F1-
and NS5′-branes. For this purpose, it is useful to define

y = µ sinα cosϕ , z = µ sinα sinϕ , (7.68)

as in equation (7.56). The B2 field then reads

B2 = z volAdS2 + y volS2 +
16 ρ3

16 ρ2 + c4
volS̃2 . (7.69)

The component along the S̃2 is associated to the NS5-branes of the 4d background theory,
as we saw in the previous subsection, so we will no longer discuss it. In turn, the first
and second components are associated to the F1 and NS5′ defect branes. Let us start by
looking at the NS5′-branes. A very similar analysis to the one performed in the previous
subsection for the NS5-branes of the background theory shows that we must divide the
y-direction in [mπ, (m+1)π] intervals and perform a large gauge transformation of gauge
parameter m in each one of them to satisfy that B2 lies in the fundamental region. This
fixes

BS2

2 = (y −mπ)volS2 for y ∈ [mπ, (m+ 1)π] (7.70)

and creates NS5′-branes along the y direction at each y = mπ. Let us now turn our
attention to the electric component of B2. The F1-strings are electrically charged with
respect to the NSNS 3-form. Therefore, their charges are computed according to

Qe
F1 =

1

(2π)2

∫
H3 =

1

(2π)2

∫
AdS2

Be
2 , (7.71)

where we use the superscript e to denote that we are referring to electric as opposed to
magnetic charges. Regularising the volume of the AdS2 space such that VolAdS2 = 4π19

and dividing the z direction into intervals of length [kπ, (k + 1)π], a single F1-string lies
in each such interval. This is also implied by the condition that the integral of B2 lies
in the fundamental region, as previously discussed (see [43]) . In this case a large gauge
transformation of gauge parameter k must be performed for z ∈ [kπ, (k + 1)π], such that

Be
2 = (z − kπ)volAdS2 (7.72)

19This regularisation prescription is based on the analytical continuation that relates the AdS2 space
with an S2.
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in this interval. We will come back to the physical interpretation of this condition after
we discuss the quiver quantum mechanics associated to the solution.

For this purpose, let us now look at the D2 and D4′ defect branes. The large gauge
transformations of parameters m and k modify the S2 and AdS2 components of the Page
fluxes, according to

F̂4 → F̂4 +mπF2 ∧ volS2 + kπF2 ∧ volAdS2 ,

F̂6 → F̂6 +mnπ2F2 ∧ volS2 ∧ volS̃2 + knπ2F2 ∧ volAdS2 ∧ volS̃2 ,
(7.73)

generating a Hanany-Witten brane creation effect. This affects the (α, ϕ) components of
the Page fluxes, where F2 lies. Since, in the absence of large gauge transformations, we
have for these components that

F4 = F2 ∧B2 and F6 = F4 ∧B2 −
1

2
F2 ∧B2 ∧B2 , (7.74)

we find that

F̂4 =kπF2 ∧ volAdS2 +mπF2 ∧ volS2 + nπF2 ∧ volS̃2 ,

F̂6 =mnπ
2F2 ∧ volS2 ∧ volS̃2 + knπ2F2 ∧ volAdS2 ∧ volS̃2+

+ kmπ2F2 ∧ volAdS2 ∧ volS2 .

(7.75)

Let us focus on the magnetic components. Equations (7.75) imply that D4′-branes are
created across NS5′-branes as we move in the y-direction, and D2-branes are created both
across NS5′-branes as we move in the y-direction and across NS5-branes as we move in
the ρ-direction. To this we have to add the D4-branes that were already created across
NS5-branes in the ρ-direction in the background theory. The corresponding quantised
charges in the y ∈ [mπ, (m+ 1)π], ρ ∈ [nπ, (n+ 1)π] intervals are given by

QD4′ = mQD6 , QD2 = mnQD6 , QD4 = nQD6 . (7.76)

We thus find a brane scenario in which two directions, y and ρ, play the role of field theory
directions. The D2-branes, stretched between both types of NS5- and NS5′-branes in these
directions, are interpreted as the colour branes where a 1d supersymmetric field theory
lives. In turn, the charges carried by the D4′- and D4-branes are induced by the D2-
branes they end on, with which they share the y and ρ field theory directions, respectively
(see Table 7.7). The brane set-up in the (ρ, y) plane is then the one depicted in Figure
7.7. Once we have identified the brane set-up we can proceed to construct the quiver
that describes the field theory living in the D2-branes. In order to achieve that goal, we
must look at the quantisation of the open strings that stretch between the branes in the
different boxes. As it is customary for 1d N = 4 multiplets, we will use 2d N = (0, 4)
notation. We will follow closely [149], where the quantisation of open strings in D3-brane
box models realising 2d N = (0, 4) field theories was studied in detail. Our brane set-up is
simply related to the D3-NS5-D5-NS5’-D5’ brane intersection studied in [149] by Abelian
T-duality along the x1 direction therein, and thus realises a 1d N = 4 instead of a 2d
N = (0, 4) field theory. Except for this subtlety, the analysis is completely analogous.
There are four types of D2-D2 strings to consider:
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Figure 7.7: Brane set-up associated to the AdS2 solution (7.57) (in units of QD6 = 1).

When the end-points of the string lie on the same stack of D2-branes, the projections
induced by both the NS5 and the NS5′ branes leave behind an N = (0, 4) vector
multiplet, since the D2-branes cannot move in any of the transverse directions.

When the end-points of the string lie on two different stacks of D2-branes separated
by an NS5-brane, the degrees of freedom along the (x7, x8, x9) directions are fixed,
leaving behind the scalars associated to the (x1, x2, x3) directions. Together with
the Ay component of the gauge field, they combine into an N = (0, 4) twisted
hypermultiplet in the bifundamental representation, since the scalars are charged
under the R-symmetry.

When the end-points of the string lie on two different stacks of D2-branes separated
by an NS5′-brane, the degrees of freedom along the (x1, x2, x3) directions are fixed,
leaving behind the scalars associated to the (x7, x8, x9) directions. The unconstrained
coordinates, together with the Aρ component of the gauge field, give rise to an
N = (0, 4) hypermultiplet in the bifundamental representation, since the scalars are
uncharged under the R-symmetry.

Finally, when the end-points of the string lie on two different stacks of D2-branes
separated by both an NS5- and an NS5′-brane, all the scalars are fixed, leaving behind
the fermionic mode associated to a bifundamental N = (0, 2) Fermi multiplet.

These multiplets give rise to the planar quiver in Figure 7.8. This quiver consists of
two arrows of linear quivers, associated to the D2-branes stretched between NS5-branes
in the ρ direction and NS5′-branes in the y direction, with mutual interactions consisting
of N = (0, 2) Fermi multiplets. The quiver is terminated in both directions with two
families of flavour groups, arising from nP ′ D6-branes (or semi-infinite D4′-branes) placed
at ρ = nπ, with n = 1, 2, . . . , P , yP ′ = P ′π and mP D6-branes (or semi-infinite D4-branes)
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placed at ρP = Pπ, y = mπ with m = 1, 2, . . . , P ′. This allows to construct a well-defined
one dimensional quiver quantum mechanics, from which one can compute the degrees of
freedom of the 1d SCQM that arises in the IR, as will be pursued in subsection 7.5.4.

Figure 7.8: Quiver quantum mechanics associated to the AdS2 solution given by (7.57). Circles
denote N = (0, 4) vector multiplets, red lines N = (0, 4) bifundamental twisted hypermultiplets,
black lines N = (0, 4) bifundamental hypermultiplets and dashed lines bifundamental N = (0, 2)
Fermi multiplets. We have taken units in which QD6 = 1.

Our proposal is that the quiver depicted in Figure 7.8 describes a 1d field theory that
flows in the IR to the 1d SCQM dual to the AdS2 solution. Note that, as a one-dimensional
field theory, there is no condition for gauge anomaly cancellation. However, it is striking
that the quiver mechanics satisfies the conditions for gauge anomaly cancellation of a 2d
N = (0, 4) field theory. This can be checked right away in our 2d N = (0, 4) notation
for the superfields. For this matter, we need to recall the contribution from the different
fields to the U(N) gauge anomaly (see for instance [49,94,116,149]):

N = (0, 4) twisted or untwisted hypermultiplets contribute with a factor 2N if they
are in the adjoint, or with a factor 1 if they are in the fundamental representation.

N = (0, 4) vector multiplets contribute with a factor −2N .

N = (0, 2) Fermi multiplets in the fundamental contribute with a factor -1/2.

With these contributions one can easily check that all nodes in the quiver in Figure 7.8
satisfy that the gauge anomaly vanishes. We will further discuss this property of the
quiver when we interpret our result for the central charge in section 7.5.4.
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Let us now explore another interesting property of the quiver in 7.8: it can be seen
as the result of embedding the D2-D4′-NS5′-F1 defect branes in the 4d N = 2 SCFT
living in the D4-NS5-D6 brane intersection. From the point of view of the 4d theory the
R-symmetry is realised on the x7, x8, x9 directions, as mentioned in section 7.4. The 4d
quiver depicted in Figure 7.6 is then decomposed in terms of 2d N = (0, 4) matter fields
as shown in Figure 7.9.

Figure 7.9: Field theory living in the D4-NS5-D6 subsystem (in units of QD6 = 1) in terms of
2d N = (0, 4) multiplets.

In this decomposition the 4d N = 2 vector multiplet gives rise to a 2d N = (0, 4) vector
multiplet with gauge field Aα, α = t, z, plus a 2dN = (0, 4) adjoint hypermultiplet, arising
from combining the reduction of the gauge field along the (x1, x2, x3) directions and the
fluctuations in the y-direction. In turn, the 4d N = 2 bifundamental hypermultiplet gives
rise to a 2d N = (4, 4) bifundamental twisted hypermultiplet, arising from combining the
Aρ component of the gauge field with the fluctuations in (x7, x8, x9). These decompositions
can be summarised as

4d N = 2 vector → 2d N = (0, 4) vector + 2d N = (0, 4) adjoint hyper ,

4d N = 2 bifundamental hyper → 2d N = (4, 4) bifundamental twisted hyper .
(7.77)

We can consider in an analogous way the D4′-NS5′-D6 brane subsystem of the brane
set-up shown in Table 7.7. The 4d SCFT living in this brane subsystem is again the one in
Figure 7.6, but this time y plays the role of field theory direction. However, in the decom-
position into 2d N = (0, 4) matter multiplets, the 4d N = 2 vector multiplet decomposes
into a 2d N = (0, 4) vector multiplet plus a 2d N = (0, 4) adjoint twisted hypermultiplet,
arising from combining the reduction of the gauge field along the (x7, x8, x9) directions
and the fluctuations in the ρ-direction. It is well-known that these multiplets combine
into an N = (4, 4) vector multiplet. The difference with the decomposition of the gauge
field living in the D4-branes is that the scalars are now charged with respect to the SU(2)
R-symmetry. On the other hand, the 4d N = 2 bifundamental hypermultiplet gives rise
to an N = (4, 4) bifundamental hypermultiplet, arising from combining the Ay component
of the gauge field with the fluctuations in (x1, x2, x3). Again, the difference with the de-
composition of the 4d hypermultiplet living on the D4-branes is that the scalars are now
uncharged with respect to the SU(2) R-symmetry. These decompositions are collected
below,

4d N = 2 vector → 2d N = (0, 4) vector + 2d N = (0, 4) adjoint twisted hyper ,

4d N = 2 bifundamental hyper → 2d N = (4, 4) bifundamental hyper .
(7.78)

The 4d quiver living in the D4′-NS5-D6 branes is represented in terms of 2d N = (0, 4)
multiplets in Figure 7.10.
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Figure 7.10: Field theory living in the D4′-NS5′-D6 subsystem (in units of QD6 = 1) in terms
of 2d N = (0, 4) multiplets. Red circles represent N = (4, 4) vector multiplets.

The quiver depicted in Figure 7.8 can now be seen as the result of assembling the
two quivers represented in Figures 7.9 and 7.10. In this assembly the charges carried by
the D4 and D4′-branes are now carried by D2-branes, that stretch in both the ρ and y
field theory directions. Our proposal is that the 1d field theory described by this quiver
flows in the IR to the SCQM dual to the AdS2 solution (7.57). We would like to stress
that the SCQM proposed in this section is far more elaborated than those previously
constructed in the literature [42, 43, 45, 47, 65, 167, 168], since it involves the highly non-
trivial brane box models constructed in [149], now realising an N = 4 supersymmetric
quantum mechanics. Moreover, we have at our disposal the explicit holographic dual, and
therefore a well-controlled string theory realisation that allows to study these constructions
geometrically. We will see that this is particularly useful when addressing the non-trivial
issue of computing the central charge. Our construction provides, to our knowledge, the
first example in which a brane box model has been described holographically20. We would
like to emphasise the non-trivial role played by non-Abelian T-duality in making this
possible.

In the next subsection we turn to a more precise interpretation of the massive F1-
strings present in the defect sector of the theory. This discussion follows very closely
the analysis carried out in subsection 7.3.6. We recall that, although in that case we
were working with a class of AdS2 solutions missing AdS5 asymptotics, the field theory
analysis allowed to interpret the D2-D4′-F1 branes as baryon vertices for the D4-D6-NS5
subsystem. This suggests that a defect interpretation should still be possible. We will
show that the previous baryon vertex interpretation goes through, as expected, for our
AdS2/CFT1 set-up, which finds in this way a defect interpretation from both the field
theory and the geometrical sides.

20See [46] for AdS3 solutions dual to D3-brane boxes with one circular direction.
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7.5.3. Baryon vertex interpretation

In this subsection we turn to the interpretation of the F1-strings of the solution.
We show that, together with the D2- and the D4′-branes, they find a baryon vertex
interpretation within the 4d N = 2 background theory.

Let us start looking at the D2-branes by considering the below worldvolume coupling,

SD2 = T2

∫
F2 ∧ At . (7.79)

It shows that a D2-brane lying on (t, ϕ, α) behaves as a baryon vertex for the D6-branes,
since it carries QD6 units of F1-string charge. Analogously, the coupling

SD4′ = T4

∫
F̂4 ∧ At (7.80)

in the worldvolume of a D4′-brane shows that a D4′-brane lying on (t, ϕ, α, S̃2) and located
at a fixed position in ρ ∈ [nπ, (n + 1)π] behaves as a baryon vertex for the D4-branes in
this ρ-interval. This can be understood as the D4′-brane carrying QD4 = nQD6 units of
F1-string charge. Indeed, the relative orientation between the D4′- and the D4-branes in
the brane set-up allows to create F1-strings stretched between them, as depicted in Figure
7.11. And the same can be stated about the D2- and D6-branes.

Figure 7.11: Wilson loop in the QD6 (QD4) antisymmetric representation of U(QD2) (U(QD4′)).

Coming back to our brane configuration, the relevant fluxes that give the quantised electric
charges of the D2- and D4′-branes playing the role of baryon vertices are the (AdS2, ϕ, α)
and (AdS2, ϕ, α, S̃

2) components of F̂4 and F̂6 found in (7.75), given by

F̂ e
4 = kπ F2 ∧ volAdS2 , F̂ e

6 = nkπ2 F2 ∧ volAdS2 ∧ volS̃2 . (7.81)

These fluxes give rise to the quantised charges below,

Qe
D2 =k QD6 for z ∈ [kπ, (k + 1)π] ,

Qe
D4′ =nQ

e
D2 = nk QD6 for z ∈ [kπ, (k + 1)π] and ρ ∈ [nπ, (n+ 1)π] .

(7.82)

From these charges we can read the brane set-up along the z direction for constant y and
ρ, as depicted in Figure 7.12. In this set-up the stacks of D6-branes located at ρ = nπ,
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yP ′ = P ′π that terminated the quiver quantum mechanics in the y direction allow us to
also terminate the brane set-up in the z direction, if we locate them at zP ′ = P ′π 21.

Figure 7.12: Brane set-up in the z-direction, for y and ρ constants. The numbers of D4-
and D6-branes at each interval are given by their respective magnetic charges. Instead, for the
numbers of D2- and D4′-branes we give their electric charges (7.82) as these are the ones that
play a role in their interpretation as baryon vertices.

The brane set-up depicted in Figure 7.12 can now be related by a combination of a
T-duality, an S-duality, successive Hanany-Witten moves and a further T-duality to the
brane set-up depicted in Figure 7.13. This is carefully explained in [43] (see also [65]).

Figure 7.13: Hanany-Witten brane set-up equivalent to the brane configuration in Figure 7.12.

In this description of the system the relation with the constructions in [113, 114]
becomes manifest. In our case the sum of the F1-strings stretched between each D2 (D4′)
and the flavour D6 (D4) branes coincides with the rank of the gauge group of the D2
(D4′) branes. This implies that the Wilson lines are in the fundamental representation
of the gauge groups. Therefore, the D2-D4′ branes describe baryon vertices for the D6-
D4 branes of the 4d background theory. As we move in the ρ direction the NS5-branes

21Note that the relations (7.68) imply that z and y must reach the same maximum values.
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located in the different positions in ρ allow to create D4-branes stretched between them
in an increasing number in units of QD6. Exactly the same phenomenon takes place for
the D4′-branes, which are created, orthogonal to the D4-branes, as the NS5-branes are
crossed, in an increasing number in units of Qe

D2, since they carry electric charge. In turn,
as the number of D2-branes varies as we move in the z direction, the same happens with
the D4′-branes. In this way one finds an analogous interpretation to that of the D2-branes
for the D4′-branes, as baryon vertices for the D4-branes.

The conclusion of our analysis in this subsection is that the AdS2 solution can be
interpreted as describing backreacted baryon vertices within the 4d N = 2 CFT living in
the D4-NS5-D6 branes. Consistently with this interpretation the AdS5 solution associated
to the D4-NS5-D6 intersection arises asymptotically locally far away from the defect. Even
if the baryon vertices are described in terms of D2-D4′-F1 branes, NS5′-branes need also be
introduced in the background so that a solution to Type IIA supergravity arises. The full
brane set-up allows then for a field theory description of the AdS2 solution in terms of D2-
branes stretched between both the NS5-branes and the NS5′-branes in two perpendicular
directions.

7.5.4. Computation of the central charge

In this subsection we show that the SCQM proposed in the previous sections provides
one further example in which the central charge computed from the 2d expression is in
agreement with the holographic calculation. If we now use the formula in (5.4) for our 1d
quiver in Figure 7.8 we find22,

nhyp =
P−1∑
n=1

P ′−1∑
m=1

n2m(m+ 1)Q2
D6 , nvec =

P−1∑
n=1

P ′−1∑
m=1

n2m2Q2
D6 . (7.83)

We thus arrive at the following value for the central charge

cR =
1

2
P (P − 1)(2P − 1)P ′(P ′ − 1)Q2

D6 . (7.84)

In the large number of nodes limit, i.e. to leading order in P and P ′, it behaves as

cR ∼ P 3P ′2Q2
D6 . (7.85)

In order to compare with the holographic calculation, we need to compute cL as well, since

chol =
1

2
(cL + cR) . (7.86)

It can be obtained cL from the relation below,

cL = cR + Tr
(
γ3
)
. (7.87)

22Here we have reinstated QD6 ̸= 1.
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We can easily see that Tr(γ3) = 0 for our quiver in Figure 7.8, therefore cL = cR.
Let us compute now the holographic central charge. We remark that we need to apply

the proper normalisation of Newton’s constant, as mentioned previously, arriving at the
following,

chol =
3

25π8
Vint =

3

25π8

∫
dθ⃗ e−2Φ

√
det(gij) , (7.88)

where gij is the metric of the inner space and θ⃗ are coordinates defined over it. Using
this expression and integrating ρ between [0, Pπ] and µ between [0, P ′π], we find that the
holographic central charge reads

chol = P 3P ′2Q2
D6 , (7.89)

in perfect agreement with the field theory calculation, in the large number of nodes limit.

7.6. The D1-F1-D3-D5-NS5-D7 brane set-up

In this section we construct a new family of AdS2 solutions to Type IIB supergravity
preserving N = 4 supersymmetries. We obtain these solutions as near-horizon geometries
of D1-F1-D3 branes ending on the D5-NS5-D7 brane system where the 5d Sp(N) gauge
theory lives.

Such an intersection reproduces a class of AdS2 × S3 × S2 × S1 geometries foliated
over two intervals in the near-horizon. We show that a subset of non-compact backgrounds
within this class flows asymptotically locally to the AdS6 × S2 × Σ2 vacuum of Type IIB
supergravity constructed in [159, 169]. This AdS6 vacuum geometry was obtained by
Abelian T-dualising the Brandhuber-Oz solution to massive Type IIA supergravity [140],
and it is the only explicit solution within the general classification of AdS6 × S2 × Σ2

solutions in [142,170,171] with Σ2 an annulus (see [145]).
This asymptotic property of our AdS2 solutions allows us to interpret them as holo-

graphic duals to line defects within the 5d Sp(N) fixed point theory. In favour of this
duality we show that they are related by T-duality to the AdS2 × S3 ×CY2 × I solutions
constructed in [43] (for CY2 = R4), which were interpreted as line defects within the 5d
Sp(N) CFT, as shown in [43,58,161].

Let us consider the brane picture summarised in Table 7.8, consisting on D1-F1-D3
branes ending on a D5-NS5-D7 system. Under certain conditions, this brane set-up gives
rise to the aforementioned family of solutions to Type IIB supergravity, consisting on
AdS2 × S3 × S2 × S1 fibrations over a 2d Riemann surface.

Our first assumption consists on taking the D1-F1-D3 defect branes completely lo-
calised within the worldvolume of the orthogonal D5-NS5-D7 system of background branes,
i.e. the R4 parametrised by ρ and the S3. In other words, the associated warp factors
HD1, HF1 and HD3 are just functions of the radial coordinate ρ. As we saw before, this
allows to decouple the field equations of the defect branes from those of the background
ones.
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branes t ρ φ1 φ2 φ3 z ψ r θ1 θ2

D7 × × × × × − − × × ×
D5 × × × × × − × − − −
NS5 × × × × × × − − − −
D1 × − − − − − × − − −
F1 × − − − − × − − − −
D3 × − − − − − − × × ×

Table 7.8: 1
8 -BPS brane intersection of D5-NS5-D7 background branes with D1-F1-D3 branes

ending on them.

The second assumption that we make is to take the D7 and NS5 charges smeared over
a shared transverse direction ψ, which parametrises a circle. In terms of the warp factors
this implies that HNS5 = HNS5(r) and HD7 = HD7(z)

23. This condition restricts one to
the D5-NS5-D7 brane set-up where the 5d Sp(N) gauge theory lives, thus recovering the
asymptotically locally AdS6×S2×Σ2 solution of Type IIB dual to this SCFT, constructed
in [159,169].

Finally, we take completely localised D5-branes, i.e. its warp factor satisfies HD5 =
HD5(z, r). Under these considerations, the brane set-up at hand gives rise to the fields
below,

ds210 =H
−1/2
D7 H

−1/2
D5

[
−H−1/2

D1 H
−1/2
D3 H−1

F1 dt
2 +H

1/2
D1 H

1/2
D3

(
dρ2 + ρ2ds2S3

)]
+

+H
1/2
D7 H

1/2
D5 H

1/2
D1 H

1/2
D3 H

−1
F1 dz

2 +H
1/2
D7 H

−1/2
D5 HNS5H

−1/2
D1 H

1/2
D3 dψ

2+

+H
−1/2
D7 H

1/2
D5 HNS5H

1/2
D1 H

−1/2
D3

(
dr2 + r2ds2S2

)
,

eΦ =H−1
D7H

−1/2
D5 H

1/2
NS5H

1/2
D1 H

−1/2
F1 ,

H(3) =− ∂ρH
−1
F1 dt ∧ dρ ∧ dz + ∂rHNS5 r

2 dψ ∧ volS2 ,

F(1) =H
−1
D1HF1 ∂zHD7 dψ ,

F(3) =−HD7∂ρH
−1
D1dt ∧ dρ ∧ dψ −HD7 ∂rHD5 r

2dz ∧ volS2+

+HF1H
−1
D3HNS5 r

2 ∂zHD5 dr ∧ volS2 ,

F(5) =−HD5HNS5 ∂ρH
−1
D3 r

2 dt ∧ dρ ∧ dr ∧ volS2 +HD7∂ρHD3 ρ
3 volS3 ∧ dz ∧ dψ .

(7.90)

For this background, the equations of motion and Bianchi identities of Type IIB super-
gravity decouple in two groups. One group is associated to the D1-F1-D3 defect branes,

∇2
R4
ρ
HD1 = 0 with HD1 = HF1 = HD3 (7.91)

23In the absence of D1-F1-D3 branes, one can T-dualise the D7-D5-NS5 subsystem in Table 7.8 along
the ψ direction in order to obtain the D4-D8-KK system whose near-horizon geometry is the AdS6 vacuum
of massive IIA (orbifolded by Zk [144]). The KK-monopoles arise from the dualisation of the NS5-branes.
In the presence of D1-F1-D3 branes an extra D0-F1-D4′ bound state ending on the D4-D8-KK system
is obtained. AdS2 solutions associated to these brane intersections were constructed in [34, 43, 46], and
interpreted as dual to D0-F1-D4′ baryon vertices within the 5d Sp(N) fixed point theory.
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and the other to the D5-NS5-D7 background branes,

HD7∇2
R3
r
HD5 +HNS5 ∂

2
zHD5 = 0 , ∇2

R3
r
HNS5 = 0 and ∂2zHD7 = 0 . (7.92)

If we now pick the following particular solution to (7.91),

HD1 = 1 +
qD1

ρ2
(7.93)

and we take the near-horizon limit by sending ρ→ 0, the following family of backgrounds
arises24,

ds210 =4−1qD1H
−1/2
D7 H

−1/2
D5

[
ds2AdS2

+ 4ds2S3

]
+H

1/2
D7 H

1/2
D5 dz

2+

+H
1/2
D7 H

−1/2
D5 HNS5dψ

2 +H
−1/2
D7 H

1/2
D5 HNS5

(
dr2 + r2ds2S2

)
,

H(3) =− 2−1q
1/2
D1 volAdS2 ∧ dz + ∂rHNS5 r

2dψ ∧ volS2 , eΦ = H−1
D7H

−1/2
D5 H

1/2
NS5 ,

F(1) =∂zHD7 dψ ,

F(3) =− 2−1q
1/2
D1 HD7volAdS2 ∧ dψ −HD7∂rHD5 r

2dz ∧ volS2+

+HNS5 r
2 ∂zHD5 dr ∧ volS2 ,

F(5) =− 2−1q
1/2
D1 HD5HNS5 r

2 volAdS2 ∧ dr ∧ volS2 − 2qD1HD7 volS3 ∧ dz ∧ dψ .

(7.94)

These backgrounds preserve N = 4 SUSY. The simplest way to infer this is to note that
they are related to the N = (0, 4) AdS3×S2 solutions constructed in [46] through a double
analytical continuation25. We thus obtained a class of N = 4 AdS2 × S3 × S2 × S1 × Iz ×
Ir geometries. Each solution of this class is characterised by a particular choice of the
three functions HD7(z), HD5(z, r), HNS5(r), which are solutions of the equations (7.92)
and describe the dynamics of a D5-NS5-D7 bound state wrapping an AdS2 × S3 curved
geometry.

7.6.1. Line defects within AdS6 × S2 × Σ2 vacua

In our previous analysis we derived the supergravity solution describing D1-F1-D3
branes ending on a D5-NS5-D7 system. We also showed that in the near-horizon limit the
brane solution gives rise to a class of N = 4 AdS2×S3×S2×S1×Iz×Ir geometries. These
backgrounds are defined by the functions HD7(z), HD5(z, r), HNS5(r) solving the equations
of motion of the D5-NS5-D7 bound state, given by equation (7.92). We also mentioned
that our solutions can be related via double analytic continuation to the N = (0, 4)
AdS3 × S2 solutions constructed in [46]. These other solutions originate from D3-D5-NS5
branes ending on a D5-NS5-D7 system, and under certain assumptions can be interpreted
as holographic duals to surface defects within the 5d Sp(N) fixed point theory. One can
check that the equations describing the D5-NS5-D7 subsystem of our brane set-up, given

24In order to have AdS2 with unitary radius we performed the rescaling t→ 2−1q
3/2
D1 t.

25See the solutions (5.13) of [46].
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by (7.92), are exactly the same ones that allowed to find such defect interpretation in [46].
Therefore, we can take the same profiles for HD7, HD5 and HNS5 in order to find AdS6

arising in the asymptotics26. These profiles are given by [159],

HD5 = 1 +
qD5(

4qNS5r +
4
9
qD7z3

)5/3 , HNS5 =
qNS5

r
, HD7 = qD7z , (7.95)

where the parameters qD5, qD7 and qNS5 are the charges of the D5-, D7- and NS5-branes.
As in [46], the AdS6 × S2 × Σ2 geometry constructed in [159, 169] comes out after the
change of coordinates,

r = 9−1qD7 µ
3 cosα2 , z = q

1/3
NS5 µ sinα2/3 , (7.96)

with µ > 0 and α ∈ [0, π
2
]. Indeed, rewriting the backgrounds (7.94), considering the warp

factors (7.95) written in this parametrisation and taking the µ→ 0 limit, one obtains,

ds210 =s
−1/3[

locally AdS6 geometry︷ ︸︸ ︷
4−1qD1 q

2/3
NS5µ

2
(
ds2AdS2

+ 4ds2S3

)
+
dµ2

µ2
+

+
4

9
dα2 + 9q2NS5c

−2s2/3dψ2 + 9−1c2ds2S2 ] ,

(7.97)

where the 6d external part of the metric asymptotes locally to an AdS6 geometry with
unit radius. From this expression it is manifest that in the µ → 0 limit, the solutions
take the form of a AdS6 × S2 × Σ2 vacuum, where the Riemann surface Σ2 is an annulus
parametrised by the coordinates (α, ψ). Note however that AdS6 arises only locally since
extra, subleading, fluxes are also present in the solution that break the AdS6 isometries.
We also remark that, as the internal space in (7.97) is non-compact along the µ direction,
the holographic central charge for the dual superconformal quantum mechanics turns out
to be infinite. Indeed, using the formula for the AdS2 case (7.43)27 (see [105, 106, 172]),
one finds the following holographic central charge,

chol =
3

8π6

∫
M8

d8y
√
g8 e

−2Φ (7.98)

∝ q
3/2
D1 q

3
D5

∫
dψ dα dµ cos3 α sin1/3 αµ2 ,

where the integration has been performed along the M8 8d internal manifold of the AdS2

spacetime. In this expression the divergence along the µ direction (which plays the role of
AdS6 radial coordinate) is manifest. This is exactly the situation one would expect for a 1d
CFT dual to a conformal defect embedded in a higher dimensional CFT (see [34,46,66]).

Finally, it is easy to check that the new AdS2 × S3 × S2 × S1 × Σ2 solutions defined
by (7.94) are related by T-duality along the ψ direction to the AdS2 × S3 × CY2 × I

26For a detailed derivation see subsection 5.3 of [46].
27We fixed the ten-dimensional Newton’s constant as GN = 8π6.
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solutions to massive IIA supergravity constructed in [43] in the case where CY2 = R4.
After the duality, the S2 and the ψ direction give rise to a second S3, which together with
the r direction build up the R4. As already mentioned, it was shown in [34,46] that these
Type IIA solutions describe D0-F1-D4′ branes ending on the D4-D8 system. Furthermore,
the detailed analysis of the dual field theory performed in [43] allowed to interpret the
D0-branes as baryon vertices associated to the D8-branes of the background, and the
D4′-branes as baryon vertices associated to the D4-branes28. Analogously, the D1-F1-D3
defect branes present in our AdS2 solutions find an interpretation as D1 and D3 baryon
vertices for the D7 and D5 background branes, respectively. The T-duality symmetry that
relates these constructions guarantees that the 1d quivers constructed in [43], now built
out of D1-D3 colour branes and D7-D5 flavour branes, describe 1d QMs that flow in the
IR to the SCQMs dual to our solutions.

7.7. SL(2,R) rotation of the D1-F1-D3-D5-NS5 brane

set-up

In this section we focus on the subclass of solutions associated to the brane intersection
depicted in Table 7.8 in the absence of D7-branes. Acting with a rotation included in
the SL(2,R) S-duality group of Type IIB supergravity, we obtain a covariant class of
solutions depending on the parameter associated to the SL(2,R) transformation. As usual,
since only SL(2,Z) is a symmetry of Type IIB string theory, continuous transformations
determine new inequivalent backgrounds in the supergravity limit.

The exclusion of D7-branes is required so that a local analysis of SL(2,R) rotations
can be performed. This is because the NS7-brane (the S-dual of the D7-brane) is not
well understood due to its highly non-perturbative nature. Note that this leaves the
supersymmetries unaltered. Globally one is, of course, free to take the general brane
set-up depicted in Table 7.8 and perform an S-duality transformation involving the D7-
branes. However, we will refrain from doing this, as we are mainly interested in the local,
supergravity description.

Taking as seed solution the brane intersection described by (7.90), setting HD7 = 1
and applying rules introduced in subsection 1.4.2, we arrive at the following family of

28The field theory is described by quiver-like constructions involving different nodes, and therefore
different gauge groups, for both the D4- and the D8-branes. It is worth pointing out that in these
constructions the D4- and D8-branes turn from colour branes, where the 5d Sp(N) gauge theory lives, to
flavour branes, once the defect branes are introduced. The reader is referred to [43, 161] for more details
on this description.
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backgrounds,

ds210 =∆1/2

[
H

−1/2
D5

(
−H−1/2

D1 H
−1/2
D3 H−1

F1 dt
2 +H

1/2
D1 H

1/2
D3

(
dρ2 + ρ2ds2S3

))
+H

1/2
D5 H

1/2
D1 H

1/2
D3 H

−1
F1 dz

2 +H
−1/2
D5 HNS5H

−1/2
D1 H

1/2
D3 dψ

2

+H
1/2
D5 HNS5H

1/2
D1 H

−1/2
D3

(
dr2 + r2ds2S2

)]
,

eΦ =∆H
−1/2
D5 H

1/2
NS5H

1/2
D1 H

−1/2
F1 , C(0) = ∆−1

(
HD5

HNS5

HF1

HD1

− 1

)
sc ,

H(3) =− c ∂ρH
−1
F1 dt ∧ dρ ∧ dz + c ∂rHNS5 r

2 dψ ∧ volS2 − s ∂ρH
−1
D1dt ∧ dρ ∧ dψ

− s ∂rHD5 r
2dz ∧ volS2 + sHF1H

−1
D3HNS5 r

2 ∂zHD5 dr ∧ volS2 ,

F(3) =− c∆−1∂ρH
−1
D1dt ∧ dρ ∧ dψ + c∆−1HF1H

−1
D3HNS5 r

2 ∂zHD5 dr ∧ volS2

− c∆−1∂rHD5 r
2dz ∧ volS2 + s∆−1 HD5

HNS5

HF1

HD1

∂ρH
−1
F1 dt ∧ dρ ∧ dz

− s∆−1 HD5

HNS5

HF1

HD1

∂rHNS5 r
2 dψ ∧ volS2 ,

F(5) =−HD5HNS5 ∂ρH
−1
D3 r

2 dt ∧ dρ ∧ dr ∧ volS2 + ∂ρHD3 ρ
3 volS3 ∧ dz ∧ dψ ,

∆ = c2 +
HD5

HNS5

HF1

HD1

s2 ,

(7.99)

where the family is parametrised by ξ and we have denoted s = sin ξ, c = cos ξ. The
equations of motion and Bianchi identities are preserved by the SL(2,R) rotation, therefore
HD5 and HNS5 must still satisfy equation (7.92) for HD7 = 1. We highlight that, in the
absence of D7-branes, we have that

∇2
R4
ρ
HD1 = 0 and ∇2

R4
ρ
HF1 = 0 with HD3 = HF1 ̸= HD1 (7.100)

are satisfied instead of (7.91). We can then choose the particular solutions

HD1 = 1 +
qD1

ρ2
, HF1 = 1 +

qF1
ρ2
, (7.101)

and send ρ→ 0. In this way we get a new class of N = 4 AdS2 × S3 × S2 × S1 × Iz × Ir

165



CHAPTER 7. ADS2/SCQM IN TYPE II

backgrounds to Type IIB supergravity of the form29

ds210 =4−1∆1/2

[
q
1/2
D1 q

1/2
F1 H

−1/2
D5

[
ds2AdS2

+ 4ds2S3

]
+ q

1/2
D1 q

−1/2
F1 H

1/2
D5 dz

2

+H
−1/2
D5 HNS5 q

−1/2
D1 q

1/2
F1 dψ

2 +H
1/2
D5 HNS5q

1/2
D1 q

−1/2
F1

(
dr2 + r2ds2S2

)]
,

eΦ =∆H
−1/2
D5 H

1/2
NS5 q

1/2
D1 q

−1/2
F1 with ∆ = c2 +

qF1
qD1

HD5

HNS5

s2 ,

H(3) =− 2−1c q
1/2
D1 volAdS2 ∧ dz + c ∂rHNS5 r

2dψ ∧ volS2 − 2−1s q
−1/2
D1 qF1volAdS2 ∧ dψ

− s ∂rHD5 r
2dz ∧ volS2 + sHNS5 r

2 ∂zHD5 dr ∧ volS2 ,

F(1) =sc∆
−2H−1

NS5

qF1
qD1

[
∂zHD5dz +

(
∂rHD5 −H−1

NS5HD5∂rHNS5

)
dr

]
,

F(3) =− 2−1c∆−1q
−1/2
D1 qF1volAdS2 ∧ dψ − c∆−1 ∂rHD5 r

2dz ∧ volS2+

+ c∆−1HNS5 r
2 ∂zHD5 dr ∧ volS2 + 2−1s∆−1HD5H

−1
NS5qF1q

−1/2
D1 volAdS2 ∧ dz

− s∆−1HD5H
−1
NS5qF1q

−1
D1∂rHNS5 r

2dψ ∧ volS2 ,

F(5) =− 2−1q
1/2
D1 HD5HNS5 r

2 volAdS2 ∧ dr ∧ volS2 − 2qF1 volS3 ∧ dz ∧ dψ .
(7.102)

Here HD5 and HNS5 must satisfy the equations

∇2
R3
r
HD5 +HNS5 ∂

2
zHD5 = 0 and ∇2

R3
r
HNS5 = 0 . (7.103)

The above class of solutions describes (p′, q′) strings and D3-branes ending on orthogonal
(p, q) 5-branes. It is in this sense more general than the class of solutions constructed in
section 7.6. This is reflected by the fact that the D5 and NS5 charges are now distributed
along the (z, ψ, ρ) directions while the D1 and F1 charges are mixed along (z, ψ). The
interpretation of these solutions should be as holographic duals to D3 baryon vertices
introduced in the 5d field theory living in D5-NS5 branes, with F1 (D1) strings in the
completely antisymmetric representation of the D5 (NS5) gauge groups stretched between
the D3 and the D5 (NS5) branes. It would be interesting to provide a concrete realisation
of this set-up, along the lines of [43, 45,47,65].

It will be useful for our constructions in section 7.8 to have the explicit form of the
solutions (7.102) particularised to ξ = 0, π

2
, that is, the two families of solutions in this

29As in the previous section we rescaled the coordinates as t → 2−1q
1/2
D1 qF1t to have AdS2 with unit

radius.
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class that are S-dual to one another. For ξ = 0 we have

ds210 =4−1q
1/2
D1 q

1/2
F1 H

−1/2
D5 (ds2AdS2

+ 4ds2S3) + q
1/2
D1 q

−1/2
F1 H

1/2
D5 dz

2

+H
−1/2
D5 HNS5 q

−1/2
D1 q

1/2
F1 dψ

2 +H
1/2
D5 HNS5q

1/2
D1 q

−1/2
F1

(
dr2 + r2ds2S2

)
,

eΦ =H
−1/2
D5 H

1/2
NS5 q

1/2
D1 q

−1/2
F1 ,

H(3) =− 2−1 q
1/2
D1 volAdS2 ∧ dz + ∂rHNS5 r

2dψ ∧ volS2 ,

F(3) =− 2−1q
−1/2
D1 qF1volAdS2 ∧ dψ − ∂rHD5 r

2dz ∧ volS2+

+HNS5∂zHD5 r
2 dr ∧ volS2 ,

F(5) =− 2−1q
1/2
D1 HD5HNS5 r

2 volAdS2 ∧ dr ∧ volS2 − 2qF1 volS3 ∧ dz ∧ dψ .

(7.104)

Note that this class of solutions is a generalisation of the backgrounds (7.94) with HD7 = 1.
In this case, HD1 ̸= HF1 and therefore both qD1 and qF1 quantised charges are present. In
turn, for ξ = π

2
the fields read

ds210 =4−1qF1H
−1/2
NS5 (ds2AdS2

+ 4ds2S3) +H
−1/2
NS5 HD5dz

2+

+ qF1q
−1
D1H

1/2
NS5dψ

2 +H
1/2
NS5HD5(dr

2 + r2ds2S2) ,

eΦ =H
−1/2
NS5 H

1/2
D5 q

1/2
F1 q

−1/2
D1 ,

H(3) =− 2−1qF1q
−1/2
D1 volAdS2 ∧ dψ − ∂rHD5r

2dz ∧ volS2+

+HNS5∂zHD5r
2 dr ∧ volS2 ,

F(3) =2−1q
1/2
D1 volAdS2 ∧ dz − ∂rHD5r

2 dψ ∧ volS2 ,

F(5) =− 2−1q
1/2
D1 HD5HNS5r

2 volAdS2 ∧ dr ∧ volS2 − 2qF1volS3 ∧ dz ∧ dψ .

(7.105)

Finally, we can provide a unified expression for the central charge of the whole family
of SL(2,R) solutions, since this quantity is SL(2,R) invariant. Substituting the metric
and dilaton of the backgrounds (7.102) in (7.98) we indeed find

chol =
3

8π6

∫
M8

d8y
√
g8 e

−2Φ =
3

8π6
q
1/2
D1 qF1VolS3VolS2

∫
dψ dr dz r2HD5HNS5 , (7.106)

which is independent on the ξ-parameter.

7.7.1. Web of dualities and M-theory origin

In this subsection we discuss the Type IIA realisation and M-theory origin of the
S-dual solutions to Type IIB that we built in the previous subsection. As we already
mentioned the defect interpretation within AdS6 × S2 × Σ2 is lost. Instead, the solutions
allow for an interesting realisation as line defects within the 6d N = (1, 0) CFT dual to
AdS7/Zk × S4 in M-theory.

The two S-dual solutions with ξ = 0, π
2
in (7.104) and (7.105) are related by T-duality

to the AdS2 × S3 ×R4/Zk solutions constructed in [43]30, and to the AdS3/Zk′ × S3 × S2

30Restricted to the massless case, since we are not allowing for D7-branes.
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solutions to massless IIA supergravity constructed in [58]31, respectively. As shown in [58]
these solutions share a common origin in M-theory, in the form of AdS3 × S3 × S3/Zk
backgrounds (AdS3/Zk′ in our case), also classified in said reference. These solutions to
11d supergravity were shown to asymptote to AdS7/Zk×S4 in the UV. Our solutions are
thus interpreted as duals to line defects in the 6d N = (1, 0) CFT dual to this background,
once uplifted to M-theory. The web of dualities connecting these classes of solutions is
depicted in Figure 7.14, that we now explain in detail. Starting with the bottom left

M0 - M2 - M5 on M5′ - KK

AdS3/Zk′ × S3 × R4/Zk × Iz
χ

tt

ψ

**

D0 - F1 - D4′ on D4-KK

AdS2 × S3 × R4/Zk × Iz
OO

Tψ
��

wave - D2 - D4 on NS5 - D6

AdS3/Zk′ × S3 × S2 × Iz × Ir
OO

Tχ
��

D1 - F1 - D3 on D5 - NS5

AdS2 × S3 × S2 × S1
ψ × Iz × Ir

Soo //
F1 - D1 - D3 on NS5 - D5

AdS2 × S3 × S2 × S1
χ × Iz × Ir

Figure 7.14: Web of dualities that relate the new AdS2 solutions in Type IIB written in (7.104)
and (7.105) to the Type IIA and M-theory solutions constructed in [43] and [58].

solution of Type IIB and performing a T-duality along the S1
ψ circle, an S3 is built up

with the S1
ψ and the S2. This S3 gives rise to an R4/Zk space together with the Ir interval.

Here the integer k is the number of NS5-branes present in the Type IIB solution, which
become KK-monopoles in Type IIA. The result is a Type IIA background contained within
the class found in [43], for CY2 = R4/Zk. The underlying brane set-up is described by a
D4-KK-F1-D4′-D0 intersection studied in [34] and it is depicted in Table 7.9a. We already
referred to this T-duality transformation in Section 7.6, for the more general situation in
which D7-branes were also present. If we now uplift the Type IIA solution to M-theory, the

branes t ρ φ1 φ2 φ3 z ψ r θ1 θ2

D4 × × × × × − − − − −
KK × × × × × × ISO − − −
F1 × − − − − × − − − −
D4′ × − − − − − × × × ×
D0 × − − − − − − − − −

(a) Brane intersection consisting on D0-F1-D4′ branes ending
on a D4-KK bound system. This Type IIA brane set-up is T-
dual to the the original Type IIB one depicted in Table 7.8 in
the absence of D7-branes.

branes t χ ρ φ1 φ2 φ3 z r θ1 θ2

NS5 × × × × × × − − − −
D6 × × × × × × × − − −
D2 × × − − − − × − − −
D4 × × − − − − − × × ×
W × ISO − − − − − − − −

(b) Brane intersection consisting on W-D2-D4 branes ending
on a NS5-D6 bound system. This Type IIA brane set-up is
related by a chain of TST dualities to the the one in Table 7.8
in the absence of D7-branes, as it can be seen in Figure 7.14.

Table 7.9: The 1
8 -BPS brane set-ups in Type IIA appearing in Figure 7.14.

result is an AdS3/Zk′ space, built up with the AdS2 and the M-theory circle (parametrised

31With the AdS3 modded out by Zk′ , but this is a trivial extension of the solutions in [58].
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by the χ coordinate). Here k′ is the number of F1-strings in the Type IIA solution,
which become waves, or units of momentum, in M-theory. The M-theory intersection
underlying these solutions is depicted in Table 7.10 and it is defined by an intersection
of M5′-KK-M2-M5-M0 branes. The corresponding class of AdS3/Zk′ × S3 × R4/Zk × Iz

branes t χ ρ φ1 φ2 φ3 z ψ r θ1 θ2

M5′ × × × × × × − − − − −
KK × × × × × × × ISO − − −
M2 × × − − − − × − − − −
M5 × × − − − − − × × × ×
M0 × ISO − − − − − − − − −

Table 7.10: 1/8-BPS brane set-up in M-theory consisting on M2-M5-M0 branes ending on M5′-
branes with KK-monopoles. The reduction to Type IIA can be performed over either χ or ψ,
giving rise to the Type IIA brane set-ups in Table 7.9 that parametrise the isometric directions
and are respectively associated to the momentum waves M0 and the KK-monopoles.

solutions to M-theory was found in [173]. In turn, it belongs to the more general class of
AdS3 × S3 × S3/Zk × Σ2 solutions presented in [58], in our case orbifolded by Zk′ .

Taking now these 11d solutions as our starting point, but reducing instead along the
S1
ψ/Zk Hopf fibre of the S3/Zk contained in R4/Zk, we obtain a solution in Type IIA in the

class constructed in [58]32, with extra k′ waves, or units of momentum. The corresponding
brane set-up is presented in Table 7.9b and it is given by an intersection of D6-NS5-D4-
D2 branes with momentum waves W. T-dualising along the Hopf fibre of the AdS3/Zk′
subspace we finally arrive at the Type IIB solution shown at the bottom right of Figure
7.14, containing k′ F1-strings. As expected due to their common M-theory origin, both
solutions in Type IIB are related to each other by S-duality.

7.8. Non-Abelian T-duals to the S-dual solutions

In this section we present new AdS2 solutions to Type IIA supergravity preserving
4 supercharges obtained by performing a non-Abelian T-duality transformation along the
S3 on the two S-dual backgrounds with ξ = 0 and ξ = π/2 given in (7.104) and (7.105).
These Type IIA backgrounds depend on two defining functions HD5 = HD5(z, r) and

32And later generalised to the massive case in [66].
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HNS5 = HNS5(r) satisfying the master equations below 33,

∇2
R3
r
HD5 +

qF1
qD3

HNS5 ∂
2
zHD5 = 0 and ∇2

R3
r
HNS5 = 0 . (7.107)

Under non-Abelian T-duality the S3 of the original background is transformed into an
open subset of R3, parametrised by the radial coordinate R and the 2-sphere S̃2. For
ξ = 0 the new class of non-Abelian T-dual solutions is given by,

ds210 = 4−1q
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D1 q

1/2
D3 H

−1/2
D5 ds2AdS2

+ q
1/2
D1 q

1/2
D3 q

−1
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1/2
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2 + q
−1/2
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−1/2
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2+

+ q
1/2
D1 q

−1/2
D3 H

1/2
D5 HNS5

(
dr2 + r2ds2S2

)
+ q

−1/2
D1 q

−1/2
D3 H

1/2
D5 4(dR

2 +HR2ds2
S̃2) ,

eΦ = 8q
−1/4
D1 q

−1/2
F1 q

−3/4
D3 H

1/4
D5 H

1/2
NS5H

1/2 ,

H(3) = −2−1 q
1/2
D1 q

1/2
D3 q

−1/2
F1 volAdS2 ∧ dz + ∂rHNS5 r

2dψ ∧ volS2

+ ∂zHRdz ∧ volS̃2 + ∂rHRdr ∧ volS̃2 + ∂R((H − 1)R) dR ∧ volS̃2 ,

F(2) = −4−1qD3 dz ∧ dψ ,
F(4) = d[2−1q

−1/2
D1 q

1/2
F1 q

1/2
D3 (3/2 + (H − 1)−1)R2volAdS2 ∧ dψ]

+ 4q−1
D1HR

3HD5 dz ∧ dψ ∧ volS̃2 − 4−1qD1HD5HNS5 r
2 dz ∧ dr ∧ volS2+

+ r2R(qF1q
−1
D3HNS5 ∂zHD5dr − ∂rHD5 dz) ∧ volS2 ∧ dR = ,

(7.108)

where we have defined the function below,

H =
qD1qD3

qD1qD3 + 16R2HD5

. (7.109)

33In this section we restore the integration constant qD3 associated to D3 defect branes in the S-dual
Type IIB backgrounds (7.104) and (7.105). We recall that this parameter was fixed as qD3 = qF1 at
the level of the brane solution HD3 = 1 + qD3

ρ2 , HF1 = 1 + qF1

ρ2 in (7.102) by the conditions ∇2
R4

ρ
HD3 =

∇2
R4

ρ
HF1 = 0 and HD3 = HF1 coming from the equations of motion for the defect branes (written in

(7.100)). The freedom to keep qD3 unconstrained at the near-horizon is provided by the fact that the
condition HD3 = HF1 is a particular realisation of the slightly more general condition HD3H

′
F1 = H ′

D3HF1,
implied by the equations of motion. Outside of the near-horizon these two conditions are equivalent and
imply that qD3 = qF1, but in the ρ → 0 limit the absence of the “1” factor in the harmonic functions
HD3 = qD3

ρ2 , HF1 = qF1

ρ2 allows one to avoid any constraint on qD3 in terms of the other integration
constants. The AdS2 factor with unitary radius in the metrics of the S-dual solutions in Type IIB is

realised by the rescaling of the time direction t→ 2−1q
1/2
D1 q

1/2
D3 q

1/2
F1 t.
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In turn, for ξ = π
2
we find the new class,
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D3 (3/2 + (H̃ − 1)−1)R2volAdS2 ∧ dz]+

+ r2(4−1qF1HD5HNS5 dr +R∂rHD5 dR) ∧ dψ ∧ volS2

− 4−1qD3R
−1(H̃ − 1) dz ∧ dψ ∧ volS̃2 ,

(7.110)

where we have denoted

H̃ =
qF1qD3

qF1qD3 + 16R2HNS5

. (7.111)

The fluxes of these solutions are compatible with the brane configurations shown in Table
7.11. We point out that, as usual for non-Abelian T-dual solutions, a clear prescription
to construct the full brane solutions describing the set-ups of Table 7.11 and reproducing
(7.108) and (7.110) in the near-horizon limit is not available. Nevertheless we can consider

branes t ρ R χ1 χ2 z ψ r θ1 θ2

D4 × × − × × − × − − −
D2 × × − − − − × − − −
NS5 × × × × × × − − − −
D2′ × − × − − − × − − −
D4′ × − × × × − × − − −
F1 × − − − − × − − − −
D4′′ × − × − − − − × × ×
D6 × − × × × − − × × ×
NS5′ × − − − − × × × × ×

branes t ρ R χ1 χ2 z ψ r θ1 θ2

D4 × × − × × × − − − −
D2 × × − − − × − − − −
NS5 × × × × × − × − − −
D2′ × − × − − × − − − −
D4′ × − × × × × − − − −
F1 × − − − − − × − − −
D4′′ × − × − − − − × × ×
D6 × − × × × − − × × ×
NS5′ × − − − − × × × × ×

Table 7.11: Brane set-ups compatible with the fluxes of the non-Abelian T-dual solutions
(7.108) and (7.110). The coordinates (R,χ1, χ2) parametrise the open subset of R3 generated by
the action of non-Abelian T-duality on the S3 factor of the Type IIB backgrounds.

their M-theory uplifts. In subsection 7.7.1 we discussed the M-theory interpretation of the
Abelian T-duals of the Type IIB backgrounds with ξ = 0 and ξ = π

2
, observing that

the two corresponding 11d solutions arise from the same intersection in M-theory (with
different smearing of brane charges). Even if for the non-Abelian T-dual backgrounds we
do not have full control over the brane solutions behind the AdS2 backgrounds (7.108)
and (7.110), it is possible to show that their M-theory uplifts are related to each other,
provided that one makes some assumptions on the spacetime dependence of the function
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HD5, which implies a particular choice of the charge distribution of branes underlying the
non-Abelian T-dual solutions.

The backgrounds (7.108) and (7.110) can be uplifted to 11d supergravity by applying
(1.226). For the 11d backgrounds to be related, one needs to choose the same gauge
potential for the F(2) flux of the original Type IIA solutions, namely

C(1) =
qD3

8
(ψdz − zdψ) , (7.112)

which is invariant under the following relabelling of the coordinates, (z, ψ) → (ψ,−z). We
observe that the parameter qD3, whose inclusion in the non-Abelian T-dual backgrounds
was discussed in footnote 33, gains a natural interpretation in M-theory as KK-monopole
charge.

It was shown in [93] that the Abelian T-dual of a certain background can be obtained
from the corresponding non-Abelian T-dual one by sending the radial direction of the
dual space R3 to infinity and further compactifying it to the interval [0, π]. Taking this
limit in the solution (7.108), we recover the Abelian T-dual of the ξ = 0 solution (7.104),
where now R ∈ [0, π]. From this Abelian T-dual, we can take the uplift to 11d along
the χ direction, rotate the coordinates as (χ,R) → (R,−χ) and go back to Type IIA.
This recovers the Abelian T-dual of the ξ = π

2
solution. Such a procedure confirms the

reliability of the non-Abelian T-dual backgrounds, since the corresponding Abelian T-
duals are shown to be related to the S-dual solutions in Type IIB with ξ = 0 and ξ = π

2
.

Furthermore, the two circular coordinates (χ,R) parametrise the 2-torus in M-theory that
provides the geometrisation of the S-duality transformation in Type IIB.

As it was expected, the 11d uplifts of the solutions (7.108) and (7.110) are not related
anymore by a simple rotation of the coordinates as for their Abelian limits. This is
reflecting an “exotic” charge distribution as underlying the intersections depicted in Table
7.11, which modifies the standard chain of dualities connecting Type IIB string theory to
M-theory. Such an “exotic” charge distribution could be related to the presence of dyonic
membranes, which, as shown in [59], define an additional warping between the AdS factor
and the internal space, as in (7.108) and (7.110). A dyonic membrane is basically an exotic
bound state where a regular brane carries charge of another kind of brane dissolved in its
worldvolume. For instance, in the aforementioned reference the M5 dyonic membrane, an
M5-brane with M2 charge dissolved in its worldvolume, was explored.
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Conclusions

In this thesis, we have built new AdS2 and AdS3 solutions to Type II supergravities
and explored the holographic correspondence through them.

As explained in chapter 5, this was attained by following a series of steps. The
first one is to obtain one of these low-dimensional AdS backgrounds. This was achieved
either by taking the near-horizon limit of brane configurations, via S- or T-duality of
known backgrounds or by restricting a more general class of solutions with a certain
amount of supersymmetry (computed using G-structure tools). After finding one such
solution, the next step consists on computing the quantised charges in order to obtain the
brane distribution and then consider a compatible Hanany-Witten brane set-up. Next one
considers the massless modes of open strings ending on the different branes, which gives
rise to the possible multiplets of the dual quiver theory. These theories are conjectured to
be UV deformations of the CFTs dual to the corresponding AdS supergravity solutions.
In order to support this hypothesis, one can then compare the central charge computed
from the supergravity solution to that of the quiver field theory living in the underlying
brane set-up. These two quantities coincide in the IR for our solutions, heavily implying
that the aforementioned hypothesis should be true.

Chapter 6 was dedicated to the AdS3/CFT2 scenario. We started in section 6.1 by
presenting a new class of AdS3×S3×M4 solutions to massive IIA supergravity and studying
its supersymmetry. We showed that in the most general case it arises in the near-horizon
limit of a D2-D4-D6-NS5-D8 brane intersection. Next we explored two relevant subclasses
of solutions.

The first one consists on the case whereM4 = S2×Σ2, where Σ2 is a Riemann surface.
In section 6.2 we showed that such geometries in the UV flow asymptotically locally to the
AdS7 × S2 × I backgrounds built in [126]. We then embedded the 2d N = (0, 4) quivers
associated to the AdS3 solutions into the 6d quivers that describe the 6d N = (1, 0) CFTs
dual to the AdS7 spaces. Our analysis proved the exact agreement between the field theory
and holographic central charges, even if both quantities are divergent due to the existence
of the non-compact direction inherent to the defect. The defect interpretation is based
on the fact that the presence of the non-compact direction allows to build up the AdS7

geometry asymptotically and therefore to complete the non-compact AdS3 solutions in the
UV.

The second subclass of AdS3 solutions takes place when M4 = T3 × I. The study of
these backgrounds was particularised for the massless and massive cases. The former was
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explored in section 6.3, where we showed that supersymmetry is enhanced to N = (4, 4)
and that this subclass arises in the near-horizon limit of a D2-D4-NS5 brane intersection
and is holographically dual to 2d CFTs with 8 supercharges. Although these set-ups were
studied long ago in [138,139], their dual field theories had not been explored and, therefore,
our results have contributed in filling this gap. We remark that the global description we
found for these AdS3 solutions requires the presence of ONS5 orientifold fixed planes.
Although they are well-defined objects in string theory, they must be fully localised and
not smeared, as they are along the T3 in our case. We argued that this smearing may
be just an artefact of the supergravity approximation which disappears in string theory.
Nevertheless, if one considers a more conservative approach, the existence of solutions
with smeared ONS5 planes suggest that there may be similar solutions where the ONS5
planes are localised, as it is often the case when O-planes are present. Such constructions
are much harder than the ones we used and lie outside the scope of this thesis, but our
results provide some hope of them being possible. Besides, we connected this class of
AdS3 solutions of massless Type IIA with M-theory, thus relating our solutions to those
constructed in [38], characterised by an AdS3×S2 × T4 × I geometry. This realisation
provides a new interpretation for the dualN = (4, 4) quiver QFTs we built and also for the
N = (0, 4) ones in [38] as deformations of a 2d N = (4, 4) QFT whose amount of preserved
supersymmetry depends on how it is deformed in the UV. We have completed our analysis
with a study in Type IIB string theory, thus connecting our AdS3/CFT2 pair with the one
studied in [38] by S-duality. The realisation in Type IIB shows that mirror symmetry in
2d interchanges the scalars in the hypermultiplets and twisted hypermultiplets, instead of
the scalars in the vector multiplets and hypermultiplets (and therefore the Coulomb and
Higgs branches) as in 3d [108, 151]. That mirror symmetry can still be realised in this
way in theories without a Coulomb branch is a remarkable output of our analysis. These
AdS3 solutions in Type IIB provide concrete examples within the broad classification of
AdS3×S2×M5 vacua with M5 supporting an identity-structure derived in [51].

Finally, in section 6.4 we studied the massive case of this class of AdS3 ×S3 ×T3 × I
solutions. We obtained solutions with non-compact parts glued together with localised
D8-branes, bounded between D8/O8s. These solutions were globally embedded in Type I′

string theory. This permitted us to propose a dual CFT, which was supported by the exact
agreement of the central charges of both theories. In this case the condition for anomaly
cancellation of the 2d quivers implies an additional constraint on the dual supergravity
background. We had to implement this condition by hand, but it would be interesting to
reproduce it with a gravity computation.

In chapter 7, we studied new AdS2 solutions and, when possible, presented the un-
derlying brane intersection and constructed the dual quiver quantum mechanics. This
provides new evidence for the AdS2/SCQM correspondence.

In section 7.1 we built a vast class of AdS2×S2×S2×R2×S1× I solutions to Type
IIA supergravity preserving four supercharges. They arise in the near-horizon limit of
D2-F1-D4′-NS5′ branes ending on a bound state of D4-NS5 branes. A particular solution
within this class is determined by a choice of the D4-NS5 charge distribution. A particular
semi-localised profile for said branes gives rise to two interesting regimes. The first one
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consists on approaching the D2-F1-D4′-NS5′ defect branes, which are resolved into a fully
backreacted AdS2×S2×S2×R2×S1× I geometry. The second regime becomes manifest
only after a non-linear change of coordinates of the previous solution, and allows one to
move away from the defect branes. In this regime an AdS5 geometry arises asymptotically,
which corresponds to the near-horizon geometry of the D4-NS5 branes. This particular
AdS5 vacuum is the T-dual of the AdS5 × S5/Zn solution to Type IIB supergravity,
holographically dual to 4d N = 4 SYM modded by Zn. This fact has allowed us to
interpret this class of solutions as dual to line defect CFTs within 4d N = 4 SYM modded
by Zn.

We then turned to the Type IIB analysis in section 7.2 by considering solutions linked
via T-duality along a circle direction ψ to the ones studied in the previous section. In
this case we obtained a new family of AdS2 × S2 × S2 × R2 × S1 × I solutions with
the same supersymmetries as before, now emerging in the near-horizon limit of D1-F1-
D5-NS5 branes ending on a D3-KK system. We computed the analogue to the second
regime described above, where an AdS5×S5/Zn solution of Type IIB supergravity emerges
asymptotically locally. The solutions thus admit as well a line defect interpretation, this
time in terms of D1-F1-D5-NS5 defect branes.

In section 7.3 we went back to the F1-D2-D4′-NS5′-D4-NS5 brane intersection and
generalised it to include D6-branes. The choice of the semi-localised profile for the D4-
NS5 branes is no longer available so the regime where the solution asymptotes locally
to the AdS5 vacuum is lost here. We then focused on a detailed analysis of the dual
quiver quantum mechanics, taking a simplified ansatz which consisted on taking y to be
a circle direction so the D4- and D6-branes are smeared along it. Remarkably, these are
the same quiver quantum mechanics that flow in the IR to the 1d CFTs studied in [43],
dual to the N = 4 AdS2 × S3 × CY2 × I solutions to massive Type IIA studied therein.
The underlying reason behind this agreement is that, when the branes are smeared on
y, our brane system is related by two T-dualities to the brane system discussed in [43],
consisting on a D0-F1-D4-D4′-D8 intersection. The 1d dual CFT associated to this class
of solutions was interpreted in terms of baryon vertices within 5d fixed point theories
living in D4-D8 intersections, and an asymptotically locally AdS6 geometry was shown to
arise for certain solutions. Our findings show that the same quiver quantum mechanics
describe in the UV line defect CFTs associated to baryon vertices within 4dN = 2 SCFTs.
However, in our case we are still lacking a defect completion within an AdS5 vacuum in
Type IIA. Nevertheless, the smearing in y allows to make connection with the class of
AdS3 × S2 × S2 × S1 × Σ2 solutions to Type IIB supergravity studied in [46], for which
an interpretation as surface defects within AdS6 × S2 × Σ2 Type IIB vacua was found.

We constructed in section 7.4 a new class of AdS2 solutions to Type IIA supergravity
with N = 4 supersymmetry realised as AdS2 × S2 × S2 foliations over 4 intervals. These
backgrounds arise after performing a non-Abelian T-duality transformation (with respect
to a freely acting SU(2) group) on the class of solutions to Type IIB supergravity of section
7.2.

We then focused on their defect CFT interpretation in section 7.5. We saw that
for a particular brane profile the resulting background asymptotes locally to a Gaiotto-
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Maldacena geometry, which suggests that it should be dual to a line defect CFT within the
4d N = 2 SCFT dual to this geometry. By computing the quantised charges, we realised
that the supergravity solution was generated by D2-F1-D4′-NS5′ branes ending on a D4-
D6-NS5 bound system. From this brane set-up we constructed a 1d quiver quantum
mechanics that, we propose, flows in the IR to the SCQM dual to the AdS2 solution. We
stress that the 1d quiver field theory that we have constructed is an elaborated quantum
mechanics described by a D2-brane box model of the type constructed in [149]. It is, in
deed, the first holographic realisation of a general brane box. We showed that this quiver
can be interpreted as a result of embedding the defect branes of the solution in the 4d
N = 2 background theory. Following [43] we gave an interpretation to the massive F1-
strings present in the solution in terms of baryon vertices within the 4d N = 2 SCFT,
analogously to what was done in section 7.3. This is consistent with an interpretation of
the AdS2 solution as describing backreacted baryon vertices within the 4d N = 2 SCFT,
living in a D4-NS5-D6 subsystem of the complete brane set-up. In this interpretation
the SCQM arises in the low energy limit of a system of D4-NS5-D6 branes in which one-
dimensional defects are introduced. These defects consist on D4′-brane baryon vertices,
connected to the D4-branes with F1-strings, and D2-brane baryon vertices connected to
the D6 with F1-strings. In the IR the gauge symmetry on the D4-branes, which played
the role of colour branes in the 4d SCFT, becomes global, turning them from colour to
flavour branes. In turn, the D2-branes, stretched between the two field theory directions
present in the brane set-up, become the new colour branes of the backreacted geometry.
Extra NS5′-branes present in the brane set-up make this possible.

We next considered in section 7.6 a class of N = 4 AdS2 ×S3 ×S2 ×S1 backgrounds
fibred over two intervals in Type IIB supergravity. Such solutions arise in the near-
horizon limit of a brane solution describing D1-F1-D3 branes ending on the D5-NS5-D7
bound state, which is related by T-duality along the y direction to the F1-D2-D4′-NS5′-
D4-NS5-D6 intersection we studied in section 7.3. By choosing semi-localised profiles
for the background D5-NS5-D7 branes and taking the near-horizon limit, we arrived at
an asymptotically locally AdS6 × S2 × Σ2 geometry, which is the Abelian T-dual of the
Brandhuber-Oz solution of massive Type IIA supergravity. This behaviour allowed us
to propose an interpretation of the AdS2 solution as holographically dual to an N = 4
superconformal quantum mechanics realising a defect within the N = 1 Sp(N) 5d SCFT
dual to the AdS6 geometry.

In section 7.7, we focused on the particular subclass of N = 4 AdS2 × S3 × S2 ×
S1 solutions fibred over two intervals featured by the absence of D7-branes. Even if
this requirement implies that the defect interpretation in AdS6 is lost, this subclass is
interesting since we could act locally with an SL(2,R) transformation to generate a vast
class of inequivalent backgrounds parametrised by a continuous parameter ξ ∈ [0, π

2
]. We

then considered the two S-dual backgrounds with ξ = 0 and ξ = π
2
, and studied their Type

IIA realisation by acting with Abelian T-duality along the S1 present in both backgrounds.
In this way we constructed the entire chain of dualities providing the M-theory origin of
our S-dual pair of solutions. This allowed us to show that they belong to the general class
of N = (0, 4) AdS3 solutions to M-theory classified in [173]. Remarkably, we showed that
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the T-dual of the ξ = π
2
solutions is related to the AdS3 × S3 × S3 backgrounds studied

in [58], which were shown to asymptote locally to the AdS7/Zk × S4 vacuum geometry of
M-theory. Thus, in the absence of D7-branes we lost the line defect interpretation within
AdS6 in Type IIB, but we recovered a surface defect interpretation within the N = (1, 0)
6d SCFT dual to the AdS7/Zk solution in M-theory.

We concluded in section 7.8 by deriving the non-Abelian T-duals in Type IIA of the
S-dual pairs with ξ = 0 and ξ = π

2
and discussing their embeddings in M-theory.

All in all, we have further the study of the holographic correspondence for low-
dimensional AdS backgrounds. In doing this, we have also opened new paths which can
be followed in order to obtain new interesting results. For instance, new AdS2 and AdS3

solutions to Type II supergravities have been constructed, but we still lack a complete
classification of these solutions. In particular, non-Abelian T-duality deserves a special
mention. It has being used to construct new AdS2 solutions, also proving very useful for
holography. Furthermore, the success of its applicability in our work suggests that it may
be possible to use this tool to obtain a general classification of AdS2 solutions that asymp-
tote to Gaiotto-Maldacena geometries in the UV. In more general terms, non-Abelian
T-duality still lacks a full understanding so it deserves further study.

It would also be interesting to construct a more general and systematic classification
ofN = 4 AdS2×S3 solutions to Type IIB supergravity, containing those in sections 7.6 and
7.7. In particular including an additional warping between the AdS2 and the S3 factors.
One could try to search for these solutions in lower dimensional gauged supergravities,
as initiated in [34]. These more general backgrounds would be described in terms of a
brane intersection involving dyonic membranes, as it has been highlighted in M-theory for
AdS3 × S3 backgrounds [59]. Another interesting research direction is the construction
of the quiver defining the superconformal quantum mechanics dual to the AdS2 solution
studied in subsection 7.6.1, following the ideas of [58, 66, 67]. Such a field theory would
explicitly describe a conformal line defect within the 5d SCFT dual to the AdS6×S2×Σ2

background emerging in the asymptotics.
We have also shown that mirror symmetry can be realised in the absence of a Coulomb

branch. In particular, we saw an example of a CFT2 where S-duality interchanges twisted
and untwisted hypermultiplets. This is quite surprising and deserves more research.

Besides, the first example of a holographic dual of a general brane box system was
obtained for a particular AdS2 solution. However, one expects that this interpretation of
the dual SCQM as line defect within a 4d N = 2 SCFT should be possible for a class of
solutions which locally asymptotes to more general Gaiotto-Maldacena solutions.

With respect to the AdS1/SCQM correspondence, we have explored the concept of
central charge of a SCQM. In particular, we have followed the hypothesis that the same
formula that is valid for 2d CFTs should be valid for SCQMs. The agreement of the
central charges obtained in this way with that of the dual supergravity solutions provides
support for this conjecture. Nevertheless, more investigation is necessary in order to arrive
at a final conclusion.
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Conclusiones

En esta tesis hemos construido nuevas soluciones AdS2 y AdS3 a las supergravedades
de Tipo II y explorado la correspondencia holográfica a través de ellas.

Como se explica en el caṕıtulo 5, esto se logró a través de una serie de pasos.
El primero es obtener uno de estos fondos AdS de dimensión baja. Esto se consiguió
tomando el ĺımite de horizonte cercano, mediante dualidad-S o -T de fondos conocidos o
restringiendo una clase más general de soluciones con una cierta cantidad de supersimetŕıa
(calculada usando herramientas de estructura-G). Tras encontrar una tal solución, el sigu-
iente paso consiste en calcular las cargas cuantizadas para obtener la distribución de branas
y luego considerar una configuración de branas de Hanany-Witten compatible. Después
uno considera los modos sin masa de las cuerdas abiertas que acaban en las diferentes
branas, lo cual da lugar a los posibles multipletes de la teoŕıa de quiver dual. Se conjetura
que estas teoŕıas son deformaciones en el UV de las CFTs duales a la correspondiente
solución AdS de supergravedad. Para apoyar esta hipótesis, uno puede comparar la carga
central obtenida a partir de la solución de supergravedad con la de la teoŕıa de campos de
quiver que vive en la configuración de branas subyacente. Estas dos cantidades coinciden
en el IR para nuestras soluciones, implicando que la hipótesis antes mencionada debeŕıa
ser cierta.

El caṕıtulo 7 se dedicó al escenario AdS3/CFT2. Comenzamos en la sección 6.1
presentando una nueva clase de soluciones AdS3 × S3 ×M4 de supergravedad masiva de
Tipo IIA y estudiando su supersimetŕıa. Mostramos que en el caso más general aparece
en el ĺımite de horizonte cercano de una intersección de branas D2-D4-D6-NS5-D8. Tras
esto exploramos dos clases de soluciones relevantes.

La primera consiste en el caso dondeM4 = S2×Σ2 con Σ2 una superficie de Riemann.
En la sección 6.2 mostramos que tales geometŕıas en el UV fluyen asintótica y localmente
a los fondos AdS7 × S2 × I construidos en [126]. Entonces embebimos los quivers 2d con
N = (0, 4) asociados a las soluciones AdS3 en los quivers 6d que describen las CFTs 6d con
N = (1, 0) duales a los espacios AdS7. Nuestro análisis prueba la coincidencia exacta entre
la cargas central de la teoŕıa de campos y la holográfica, incluso siendo ambas cantidades
divergentes debido a la naturaleza no compacta del defecto. La interpretación de defectos
se basa en el hecho de que la presencia de la dirección no compacta permite construir la
geometŕıa asintóticamente AdS7 y, por tanto, completar las soluciones AdS3 no compactas
en el UV.

La segunda subclase de soluciones AdS3 tiene lugar cuando M4 = T3 × I. El estudio
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de estos fondos se particularizó para los casos sin y con masa. El primero fue explorado
en la sección 6.3, donde mostramos que la supersimetŕıa aumenta a N = (4, 4) y que
esta subclase aparece en el ĺımite de horizonte cercano de una intersección de branas
D2-D4-NS5 y es holográficamente dual a CFTs 2d con 8 supercargas. A pesar de que
estas configuraciones fueron estudiadas hace mucho tiempo en [138, 139], sus teoŕıas de
campos duales no hab́ıan sido exploradas y, por tanto, nuestros resultados han contribuido
a completar esta laguna. Destacamos que la descripción global que hallamos para estas
soluciones AdS3 requiere de la presencia de planos fijos orientifold ONS5. Aunque son
objetos bien definidos en teoŕıa de cuerdas, deben estar completamente localizados y no
deslocalizadas, como lo están a lo largo del T3 en nuestro caso. Argumentamos que la
deslocalización podŕıa ser simplemente un artefacto de la aproximación de supergravedad
que desaparece en teoŕıa de cuerdas. Sin embargo, si uno considera un planteamiento
más conservador, la existencia de soluciones con planos ONS5 deslocalizados sugiere que
debe haber soluciones similares donde los planos ONS5 están localizados, como suele ser
el caso cuando aparecen O-planos. Tales construcciones son mucho más complicadas que
las que empleamos y están fuera del alcance de esta tesis, pero nuestras soluciones proveen
esperanza de que son posibles. Por otro lados, conectamos esta clase de soluciones AdS3 de
Tipo IIA sin masa con teoŕıa M, de este modo relacionando nuestras soluciones con aquellas
construidas en [38], caracterizadas por una geometŕıa AdS3×S2×T4×I. Este conocimiento
provee una nueva interpretación para las QFTs de quiver duales con N = (4, 4) que
construimos y también para aquellas con N = (0, 4) en [38] somo deformaciones de una
QFT 2d con N = (4, 4) cuya cantidad de supersimetŕıa preservada depende de cómo haya
sido deformada en el UV. Hemos completado nuestro análisis con un estudio en teoŕıa de
cuerdas Tipo IIB, conectando de esta manera nuestro par AdS3/CFT2 con el estudiado
en [38] a través de dualidad-S. Este desarrollo en Tipo IIB muestra que la simetŕıa especular
en 2d intercambia los escalares de los multipletes vectoriales y los hipermultipletes (y por
tanto las ramas de Coulomb y Higgs) como en 3d [108, 151]. Que la simetŕıa especular
pueda aún llevarse a cabo de esta manera en teoŕıas que carecen de una rama de Coulomb
es un resultado destacable de nuestro análisis. Estas soluciones AdS3 en Tipo IIB proveen
ejemplos concretos dentro de la amplia clasificación de vaćıos AdS3 × S2 ×M5 con M5

compatible con una estructura de identidad derivada en in [51].

Finalmente, en la sección 6.4 estudiamos el caso masivo de la clase de soluciones
AdS3 × S2 ×T4 × I. Obtuvimos soluciones con partes no compactas pegadas entre śı con
D8-branas localizadas, delimitadas entre D8/O8s. Estas soluciones pueden ser embebidas
globalmente en teoŕıa de cuerdas Tipo I′. Esto nos permitió proponer una CFT dual,
la cual fue apoyada por la coincidencia exacta de las cargas centrales de ambas teoŕıas.
En este caso la condición para la cancelación de anomaĺıas de los quivers 2d implica una
ligadura adicional en el fondo de supergravedad dual. Tuvimos que implementar esta
condición a mano, pero seŕıa interesante reproducirlo con un cálculo de supergravedad.

En el caṕıtulo 7, estudiamos nuevas soluciones AdS2 y, cuando fue posible, presenta-
mos las intersecciones de branas subyacentes y construimos la mecánica cuántica de quiver
dual. Esto provee nueva evidencia para la correspondencia AdS2/SCQM.

En la sección 7.1 construimos una vasta clase de soluciones AdS2×S2×S2×R2×S1×I
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de supergravedad Tipo IIA que preservan cuatro supercargas. Estas aparecen en el ĺımite
de horizonte cercano de branas D2-F1-D4′-NS5′ acabando en un estado ligado de branas
D4-NS5. Una solución particular dentro de esta clase queda determinada por la elección de
la distribución de carga D4-NS5. Cierto perfil semilocalizado para estas branas da lugar
a dos reǵımenes interesantes. El primero consiste en acercarse a las branas de defecto
D2-F1-D4′-NS5′, las cuales se resuelven en una geometŕıa AdS2 × S2 × S2 × R2 × S1 × I
completamente retrorreaccionada. El segundo régimen se manifiesta solo tras un cambio
de coordenadas no lineal de la solución anterior, y permite a uno alejarse de las branas de
defecto. En este régimen, una geometŕıa AdS5 emerge asintóticamente, lo cual corresponde
a la geometŕıa de horizonte cercano de las branas D4-NS5. Este vaćıo AdS5 en particular
es el dual-T de la solución AdS5 × S5/Zn de supergravedad Tipo IIB holográficamente
dual a SYM 4d con N = 4 modulado por Zn. Este hecho nos ha permitido interpretar
esta clase de soluciones como duales a CFTs de defectos de ĺınea dentro de SYM 4d con
N = 4 modulado por Zn.

Luego nos dedicamos al análisis en Tipo IIB en la sección 7.2 considerando soluciones
relacionadas v́ıa dualidad-T a lo largo de una dirección circular ψ a las estudiadas en la
sección previa. En este caso obtuvimos una nueva clase de soluciones AdS2×S2×S2×R2×
S1 × I con las mismas supersimetŕıas que antes, ahora emergiendo del ĺımite de horizonte
cercano de branas D1-F1-D5-NS5 acabando en un sistema D3-KK. Calculamos el análogo
al segundo régimen descrito arriba, donde una solución AdS5 × S5/Zn de supergravedad
de Tipo II emerge asintótica y localmente. Las soluciones entonces admiten también
una interpretación como defectos de ĺınea, esta vez en términos de las branas de defecto
D1-F1-D5-NS5.

En la sección 7.3 volvemos a la intersección F1-D2-D4′-NS5′-D4-NS5 y la general-
izamos para incluir D6-branas. La elección del perfil semilocalizado para las D4-NS5
branas ya no es válida, por lo que el régimen donde la solución se aproxima asintótica loca-
mente al vaćıo AdS5 se pierde aqúı. Nos enfocamos en un análisis detallado de la mecánica
cuántica de quiver dual, tomando un ansatz simplificado que consistió en suponer que y
es una dirección circular de modo que las D4- y D6-branas están deslocalizadas a lo largo
de esta. Es destacable que estas son las mismas mecánicas cuánticas de quiver que fluyen
en el IR a las CFTs estudiadas en [43], duales a las soluciones AdS2 × S3 × CY2 × I de
Tipo IIA masiva con N = 4 alĺı estudiadas. La razón subyacente tras este acuerdo es que,
cuando las branas están deslocalizadas en y, nuestro sistema de branas está relacionado
mediante dos dualidades-T al sistema de branas discutido en [43], que consiste en una
intersección D0-F1-D4-D4′-D8. La CFT 1d dual asociada a esta clase de soluciones fue
interpretada en términos de vértices bariónicos dentro de teoŕıas de punto fijo 5d que
viven en intersecciones D4-D8, y se demostró que una geometŕıa asintótica y localmente
AdS5 emerge en ciertas soluciones. Nuestros descubrimientos demuestran que las mismas
mecánicas cuánticas de quiver describen en el UV CFTs de defecto de ĺınea asociadas a
vértices bariónicos dentro de SCFTs 4d con N = 2. No obstante, en nuestro caso carece-
mos de una compleción de defecto dentro de un vaćıo AdS5 en Tipo IIA. Sin embargo, la
deslocalización en y permite conectar con la clase de soluciones AdS3 ×S2 ×S2 ×S1 ×Σ2

de supergravedad de Tipo IIB estudiadas en [46], para las cuales se halló la interpretación
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como defectos de superficie dentro de vaćıos AdS6 × S2 × Σ2 de Tipo IIB.

Construimos en la sección 7.4 una nueva clase de soluciones AdS2 de supergravedad
de Tipo IIA con supersimetŕıa N = 4 realizada como foliaciones de AdS2 × S2 × S2

sobre 4 intervalos. Estos fondos aparecen tras realizar una transformación de dualidad-
T no abeliana (con respecto a un grupo SU(2) que actúa libremente) sobre la clase de
soluciones de supergravedad Tipo IIB de la sección 7.2.

Después nos enfocamos en la interpretación como CFT de defecto en la sección 7.5.
Vimos que para un perfil de branas particular el fondo resultante se aproxima asintótica
y localmente a una geometŕıa de Gaiotto-Maldacena, lo cual sugiere que debeŕıa ser dual
a una CFT de defecto de ĺınea dentro de la SCFT 4d con N = 2 dual a esta geometŕıa.
Calculando las cargas cuantizadas, nos dimos cuenta de que la solución de supergravedad
fue generada por branas D2-F1-D4′-NS5′ acabando en un sistema ligado D4-D6-NS5. Para
esta configuración de branas construimos una mecánica cuántica de quiver 1d que, pro-
ponemos, fluye en el IR a la SCQM dual a la solución AdS2. Recalcamos que la teoŕıa de
quiver 1d que hemos construido es una mecánica cuántica bastante compleja descrita por
un modelo de caja de D2-branas del tipo construido en [149]. El nuestro es, de hecho, la
primera descripción holográfica de una caja de branas general. Mostramos que este quiver
puede interpretarse como el resultado de embeber las branas de defecto de la solución en la
teoŕıa de fondo 4d con N = 2 . Siguiendo [43] dimos una interpretación a las F1-cuerdas
masivas presentes en la solución en términos de vértices bariónicos dentro de la SCFT
4d con N = 2, análogamente a lo hecho en la sección 7.3. Esto es consistente con la
interpretación de la solución AdS2 como vértices bariónicos retrorreaccionados dentro de
la SCFT 4d con N = 2, la cual vive en el subsistema D4-NS5-D6 de nuestra configuración
de branas completa. En esta interpretación la SCQM emerge en el ĺımite de baja enerǵıa
de un sistema de D4-NS5-D6 branas en el que se introducen defectos unidimensionales.
Estos defectos consisten en vértices bariónicos de D4-branas, conectadas a las D4′-branas
a través de F1-cuerdas, y vértices bariónicos de D2-branas, conectas a las D6-branas con
F1-cuerdas. En el IR la simetŕıa gauge en las D4-branas, las cuales jugaron el papel de
branas de color en la SCFT 4d, se vuelve global, cambiándolas de branas de color a branas
de sabor. A su vez, las D2-branas, extendidas entre las dos direcciones de teoŕıa de campos
presentes en la configuración de branas, se convierten en las nuevas branas de color de la
geometŕıa retrorreaccionada. Las NS5′-branas adicionales presentes en la configuración de
branas hacen que esto sea posible.

A continuación consideramos en la sección 7.6 una clase de fondos AdS2×S3×S2×S1

fibrados sobre dos intervalos en supergravedad Tipo IIB. Tales soluciones aparecen en el
ĺımite de horizonte cercano de una solución de branas que describe D1-F1-D3 branas aca-
bando en el estado ligado D5-NS5-D7, que está relacionada mediante dualidad-T a lo
largo de la dirección y a la intersección F1-D2-D4′-NS5′-D4-NS5-D6 que estudiamos en
la sección 7.3. Eligiendo perfiles semilocalizados para las D5-NS5-D7 branas de fondo y
tomando el ĺımite de horizonte cercano, llegamos a una geometŕıa asintótica y localmente
AdS6 × S2 × Σ2, que es la dual-T abeliana de la solución de Brandhuber-Oz de super-
gravedad masiva Tipo IIA. Este comportamiento nos permitió proponer una interpretación
para la solución AdS2 como dual holográfica a una mecánica cuántica superconforme con
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N = 4 que describe un defecto dentro de la SCFT Sp(N) 5d conN = 1 dual a la geometŕıa
AdS6.

En la sección 7.7 nos enfocamos en la subclase particular de soluciones AdS2×S3×S2×
S1 fibradas sobre dos intervalos caracterizadas por la ausencia de D7-branas. incluso si este
requerimiento implica que la interpretación de defecto en AdS6 se pierde, esta subclase es
interesante dado que podemos actuar localmente en ella con una transformación SL(2,R)
para generar una vasta clase de fondos no equivalentes parametrizados por un parámetro
continuo ξ ∈ [0, π

2
]. Entonces consideramos los fondos duales-S con ξ = 0 y ξ = π

2
,

y estudiamos su realización en Tipo II tras actuar en ellos con dualidad-T abeliana a lo
largo de la S1 presente en ambos fondos. De esta manera construimos una cadena completa
de dualidades y proveemos el origen de teoŕıa M de nuestra pareja de soluciones duales-S.
Esto nos permitió mostrar que pertenecen a la misma clase general de soluciones AdS3

con N = (0, 4) de teoŕıa M clasificadas en [173]. Mostramos que la dual-T a la solución
con ξ = π

2
está relacionada con los fondos AdS3 ×S3 ×S3 estudiados en [58], los cuales se

aproximan asintótica y localmente al vaćıo AdS7/Zk × S4 de teoŕıa M. De este modo, en
ausencia de D7-branas perdemos la interpretación como defecto de ĺınea dentro de AdS6

en Tipo IIB, pero recuperamos una interpretación como defecto de superficie dentro de la
SCFT 6d con N = (1, 0) dual al la solución AdS7/Zk en teoŕıa M.

Concluimos en la sección 7.8 derivando los duales-T no abelianos en Tipo IIA del par
dual-S con ξ = 0 y ξ = π

2
y discutiendo su embebimiento en teoŕıa M.

Para resumir, hemos avanzado el estudio de la correspondencia holográfica para fon-
dos AdS de dimensión baja. Al hacer esto, también hemos abierto nuevos caminos que
pueden ser seguidos para obtener nuevos resultados interesantes. Por ejemplo, hemos con-
struido nuevas soluciones AdS2 y AdS3 de supergravedad Tipo II, pero aún carecemos de
una clasificación completa de dichas soluciones. En particular, la dualidad-T no abeliana
merece una mención especial. Se ha usado para construir nuevas soluciones AdS2, resul-
tando muy útil para la holograf́ıa. Aún más, el éxito de su aplicabilidad en nuestro trabajo
sugiere que podŕıa se posible usar esta herramienta para obtener una clasificación general
de soluciones AdS2 que se aproximan asintótica y localmente a geometŕıa de Gaiotto-
Maldacena en el UV. En términos generales, la dualidad-T no abeliana carece de una
comprensión completa y, por tanto, merece seguir siendo estudiada.

También seŕıa interesante construir una clasificación más sistemática y general de
las soluciones AdS2 × S3 de supergravedad Tipo IIB, la cual contenga aquellas de las
secciones 7.6 y 7.7. En particular que incluya una distorsión adicional entre los factores
AdS2 y S

3. Uno podŕıa intentar buscar estas soluciones en supergravedades gaugeadas de
dimensión baja, como se inició en [59]. Otra ĺınea de investigación interesante consiste en
construir los quivers que definen la mecánica cuántica superconforme dual a la solución
AdS2 estudiada en la subsección 7.6.1, siguiendo las ideas de [58, 66, 67]. Tal teoŕıa de
campos describiŕıa expĺıcitamente un defecto de ĺınea conforme dentro de la SCFT 5d
dual al fondo AdS6 × S2 × Σ2 que aparece en las aśıntotas.

Además, el primer ejemplo de dual holográfico a un sistema de cajas de branas gen-
eral se obtuvo para una solución AdS2 particular. Sin embargo, uno espera que esta
interpretación de la SCQM dual como defecto de ĺınea dentro de una SCFT 4d con N = 2
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debeŕıa ser posible para una clase de soluciones que se aproxime asintótica y localmente a
una clase más general de soluciones de Gaiotto-Maldacena.

Con respecto a la correspondencia AdS1/SCQM, hemos explorado el concepto de
carga central de una SCQM. En particular, hemos seguido la hipótesis de que la fórmula
válida para las CFTS 2d debeŕıa ser también válida para las SCQM. La concordancia de las
cargas centrales obtenidas de esta manera con aquellas de las soluciones de supergravedad
dual provee apoyo para esta conjetura. Sin embargo, se requiere de más investigación para
llegar a una conclusión final.
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