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Abstract: The variety of equipment implementing laser triangulation technology for 3D scanning
makes it difficult to analyse their performance, comparability, and traceability. In this study, three
laser triangulation sensors arranged in different configurations are analysed using high precision
spheres made of different materials and surface finishes. Three types of reference parameters were
used: diameter, form error, and standard deviation of the point cloud. The experimentation was
based on studying the quality of the point clouds generated by the three sensors, which enabled
us to find and quantify an edge effect in the horizon of the scanned surface. A procedure to reach
the optimal filtering conditions was proposed, and a chart of recommended usage of each sphere
(material and finish) was created for the different types of sensors. This filter enables removal of
both spurious points and those few points that spoil the form error, greatly improving the quality of
the measurement.

Keywords: non-contact metrology; laser scanning; outliers; point cloud filtering; reference spheres

1. Introduction

Industry increasingly requires the use of non-contact measurement systems to im-
prove metrological control procedures, adopting new working models and adapting the
procedures to new inspection technologies [1]. The rise of laser triangulation technology,
which has been under development for decades [2], is increasingly used owing to its fast
and high-precision scanning capacity. These features enable the widespread use of the
technology in metrological tasks in industrial environments, even over and above reverse
engineering tasks. The traceability of measurements is currently one of the main problems
to be solved in this field, even despite the emergence of standards aimed at verification,
coordinate measurement [3], and significant improvements in the accuracy of the most
recent sensor models. Therefore, when it is necessary to incorporate optical equipment
that needs to be qualified, the use of suitable reference elements is relevant [4]. Regarding
verification procedures, interim checking, external/internal calibration procedures, etc.;
the use of reference elements—usually precision spheres—is common [5–7]. These spheres
enable the laser sensor to be calibrated in a similar way to the touch trigger probe, such as
those mounted on coordinate measuring machines (CMM). The spheres are also used in
alignment extension (increasing the working field) and as registration targets. However, the
comparative analysis of different precision spheres, including those used to qualify laser
sensors, has not yet been conducted. Specifically, in the present study, we compared the
performance of three devices with laser triangulation technology by measuring reference
spheres, while also considering the influence of different materials and their finishes.

The evolution of non-contact measurement equipment using laser technology is over-
coming the disadvantages arising from the transition from laboratory use [8] to industrial
applications. However, systematic errors in measurements occur [9,10], and some factors
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influence the suitability of the use of the equipment in metrology [11]. Comparative analy-
sis of equipment must take the scanning strategy into consideration [12–14], which is, in
essence, completely different between fixed and portable equipment. On the one hand, it
is important to determine the direction of the scans as well as the number of scans to be
carried out. On the other hand, some factors such as depth of field (DOF), field of view
(FOV), and self-occlusion can limit the optical resolution of the process [1]. Other important
considerations include the influence of the item to be measured in terms of the material it
is made of, the surface finish, colour [15–17], and even the geometric characteristics [18,19].

Such is the case of the comprehensive research carried out at the National Physical
Laboratory (UK), where they tested 3D optical scanner changes in measured dimensions
due to artefact illumination, instrument temperature, scanner orientation, artefact surface
colour, material and finish, and artefact position within a measurement volume [20–22].

In any case, the application of 3D laser technology to metrology is conditioned by
the number of points acquired and their quality, and the influence of the aforementioned
factors has therefore been studied for different fields of application and from different
perspectives in order to improve scanning results [20–28].

In the present research, precision reference spheres made from a variety of materials
and with different finishes were used to study artifacts with different optical properties.
The study was carried out with three different triangulation sensors: one device mounted
on a coordinate measuring machine and two portable devices, both mounted on coordinate
measuring arms, with different measurement precisions. The first sensor is fully automatic
in operation (trajectories and parameters can be automated) while the other two are portable
devices and scanning is fully manual. In addition, detailed study of the different types
of filters required to improve the quality of the point clouds—and therefore increase the
precision of each type of equipment (and reference sphere)—was also conducted.

The performance of the three 3D laser sensors was analysed by establishing the
relationship between the result of the measurements carried out on different spheres and
the established reference obtained by contact measurement at the CMM of these spheres.
Metrological traceability is therefore a factor to be analysed. In this respect, Carmignato et al.
analysed the characteristics of numerous dimensional standards and classified them into
different categories according to the type of measurement (linear, shape and surface texture,
complex geometry, and angle) [29].

However, the relationship between optical measuring equipment and dimensional
standards is a field of work that has not yet been studied in detail, mainly due to the
rapid evolution of the associated technology. The research reported here provides relevant
information in this respect. On the one hand, the geometrical shape used to determine
the dimensional patterns was the sphere, as inspection of this element guarantees the
traceability of comparisons [30]. On the other hand, different materials and finishes were
used, as traceability-related problems derived from surface topography, and which arise
when calibrating optical instruments are well known [31]. Thus, once the spheres have
been measured using the coordinate measuring machine (CMM) based on two parameters
(diameter and form error), the necessary reference data are available to evaluate the suit-
ability and best technological solution (optical equipment) that adapts to each sphere and,
therefore, to each material/surface finish.

Finally, this study also includes an in-depth analysis of the treatment (filtering process)
of the point clouds captured with each of the laser devices. This is imperative given that it is
almost always necessary to eliminate points classified as “noise”. The noise originates either
from points that are not part of the surface scanned (points on the tooling, supports, etc.)
or from spurious points, generated by reflections or by scanning the horizon or edge of
the scanned surface. Based on this in-depth analysis of the filters applied to eliminate or
minimise the noise, it is suggested which filtering level should be used so that the sphere
detected with the sensor is as similar as possible to the reference sphere. Thus, the material
and its finish are correlated with the optimum filter configuration for the sensor. The study
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findings also enable identification of the reference sphere that will best allow calibration of
a sensor with similar characteristics to any of those analysed.

Using the data obtained and by applying a filter based on the standard deviation
of the point cloud, it is possible to determine the optimum filtering level for each sensor
depending on the sphere measured. Thus, the material and surface finish that characterises
the standard (sphere) can be identified for calibration of laser triangulation devices with
similar technical characteristics to any of those analysed in this study.

2. Materials and Methods

Reference standards are essential elements in contact coordinate metrology (e.g., coordi-
nate measuring machines, CMMs), as elements that are used to periodically qualify sensors,
interim checking, instant verification, and certification of measurements. However, even in
the case of 3D sensors, reference standards are required for qualification and calibration
and to ensure the traceability of the measurements [32]. The most commonly used elements
are spheres, as they are canonical geometric forms whose diameter and form error can
be precisely and simply specified, both mathematically and metrologically. In fact, mea-
surement software already incorporates routines and optimised procedures for measuring
spheres. The position of the centres, the diameters of the spheres, and the form error are
metrologically stable and consistent characteristics. The use of this geometry as a reference
feature is also widely used in other applications—such as industrial photogrammetry,
total station, target-based triangulation, and laser tracking [33]—or in the calibration of
computed tomography (CT) devices [34].

In this research, 6 spheres are used with similar diameter ranges, Ø20 to Ø25 mm
(Table 1), made from three different types of material (metal, ceramic, and polymer),
and with two types of finish (glossy and matte). The characteristics of each type are
summarized in Table 1. All spheres are commercial precision spheres (quality grades G10
to G100 according to ISO 3290-1 [35]). In terms of the materials, the spheres were a stainless
steel AISI 316L sphere (ref. Sb-1), a polymer-coated AISI 440C steel sphere (ref. Co-1), a
tungsten carbide sphere (ref. TC-1), and three different ceramic spheres (Ce-i). One of the
ceramic spheres was made from pure zirconium oxide (ZrO2, ref. Ce-1), one from pure
alumina (Al2O3, ref. Ce-3), and the other from a mixture of alumina and zirconium oxide
(10% ZrO2 and 90% Al2O3, ref. Ce-2), referred to as “Aluzir” or ZTA (Zirconia Toughened
Alumina [36]). Half of the spheres (stainless steel, polymer-coated steel, and ZTA) had a
matte finish, while the other three (tungsten carbide, ZrO2, and Al2O3) had a glossy finish
(Figure 1).

Table 1. Characteristics of the spheres used in the research.

Id. Material Finish Nominal ∅D
(mm)

Nominal Precision Grade
(Deviation from Spherical

Form, ISO 3290)

TC-1 Tungsten carbide Glossy 25 G5 (0.13 µm)
Ce-1 Zirconium dioxide (ZrO2) Glossy 20 G10 (0.25 µm)

Ce-2 ZTA (10% ZrO2, 90%
Al2O3) Matte 20 G40 (1 µm)

Ce-3 Alumina (Al2O3) Glossy 22 G20 (0.5 µm)

Co-1 Polymer-coated steel (core
of AISI 440C) Matte 25 G200 (5 µm)

Sb-1 Stainless steel (AISI 316L) Matte 25 G100 (2.5 µm)
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On the other hand, a coordinate measuring machine (CMM), model DEA Global Image
091508 (X = 900 mm, Y = 1500 mm, Z = 800 mm) was used as the reference metrological
equipment. This device was used to carry out high-precision contact measurements,
enabling assessment of the metrological quality of the laser triangulation sensors. For this
study, the machine was equipped with a Renishaw PH10MQ indexing head with an SP25M
probe, to which a 30 mm long ceramic stylus with a Ø4 mm ruby sphere end was attached.
The machine control uses the PC DMIS 2018 R2 Computer Aided Inspection software. This
control enables automated programming and execution of measurement routines, which
allowed a uniform and dense distribution on the spheres, confirming the calibrated values
of diameter and form error of the spheres. Regarding the metrological performance of
this machine, the maximum permissible error in the length indication fits the equation
E0,MPE = 2.2 + 3 L/1000 µm (L in mm), while the maximum radial error in repeatability is
R0,MPL = 2.2 µm.

As for the laser triangulation sensors used for non-contact measurements of the
spheres, three sensors were used in two different arrangements (Table 2), in terms of
their portable capacity and potential automation. One of them is a sensor coupled to the
indexable head of the CMM, with automatable parameters, orientations, and trajectories.
Specifically, it is the sensor model HP-L-10.6 from Hexagon Metrology (LS-CMM). The
other two were fully manually operated portable sensors, in both cases attached to the
wrists of two coordinate measuring arms (AACMM or CMA). One of them is the RS6
Laser Scanner (LS-ARM-1), mounted on an Absolute Arm 7-axis. The scanner sensor
specifications are a data rate of 1.2 million points/sec and a probing form error of 26 µm,
certified according to ISO 10360-8:2013 [3]. The second manually operated laser sensor, the
Romer Sigma R-SCAN (LS-ARM-2), was mounted on a Romer Sigma Portable Measuring
Arm. This second portable sensor is from a generation previous to the RS6, and therefore
of lower accuracy, as its probing error is 44 µm and with a maximum point acquisition
rate of 19,200 points/sec. The technical specifications of the three available laser sensors
are compared in Table 2, which shows the technical capacities and difference in accuracy
of each.
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Table 2. Laser line scanners used in the study.

Laser Triangulation Scanner
Mounted on CMM (LS-CMM)

Laser Triangulation Scanner
Mounted on

Coordinate Measuring Arm
(LS-ARM-1)

Articulated Arm Laser
Romer Sigma R-SCAN

(LS-ARM-2)

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17 
 

 

Table 2. Laser line scanners used in the study. 

Laser Triangulation Scanner 
Mounted on CMM (LS-CMM) 

Laser Triangulation 
Scanner Mounted on 

Coordinate Measuring 
Arm (LS-ARM-1) 

Articulated Arm Laser 
Romer Sigma R-SCAN 

(LS-ARM-2) 

  

 

 

HP-L-10.6® from Hexagon  
Metrology 

RS6 Laser Scanner 
mounted on Absolute 
Arm 85 from Hexagon 

Metrology 

R-SCAN from Romer 
Sigma 

Data rate: 30,000 points/s Data rate: 1,200,000 
points/s 

Data rate: 19,200 
points/s 

Stand-off and DOF: 170 ± 30 mm 
Min. point spacing: 0.030 mm 

Stand-off and DOF: 165 ± 
50 mm 

Min. point spacing: 0.027 
mm 

Scanning distance: 124–
222 mm 

Min. point spacing: 
0.100 mm 

Line rate (max.): 53 Hz 
Laser line width: 24, 60 or 123 mm 

Line rate (max): 300 Hz 
Laser line width (mid.): 

150 mm 

Line rate: 30 Hz 
Laser line width (max): 

110 mm 

Probing form error: 0.022 mm 
Probing form error: 0.026 

mm Probing error: 0.044 mm 

3. Experimentation 
The methodology followed in the experimentation (Figure 2) was divided into five 

sequential phases, each corresponding to the following activities: 
(a) Contact measurement of the spheres and establishment of the main reference param-

eters (diameter and form error) in order to produce the reference values (both dimen-
sional and geometrical) with maximum accuracy. 

(b) Non-contact measurement of the spheres. Each of the six spheres were measured 
with the three laser triangulation devices to obtain the point clouds. The most appro-
priate parameters were used in each case to reliably obtain high-quality point clouds. 

(c) Cleaning, trimming, and filtering of the point clouds. The inspection software was 
used to trim the point clouds, and the spurious points were cleaned by applying the 
corresponding filters. 

(d) Determination of the analysed parameters (number of points captured, diameter, 
form error, and standard deviation). Once the appropriate filter was applied, the 
spheres were fitted with the remaining points, obtaining the values of the parameters 
to be compared with the reference ones (form error and diameter), as well as the 
parameters used to characterise the behaviour of the equipment (number of points 
and standard deviation). 

(e) Analysis of results. The results obtained were analysed in relation to the equipment 
and spheres used, as well as the filters applied. 

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17 
 

 

Table 2. Laser line scanners used in the study. 

Laser Triangulation Scanner 
Mounted on CMM (LS-CMM) 

Laser Triangulation 
Scanner Mounted on 

Coordinate Measuring 
Arm (LS-ARM-1) 

Articulated Arm Laser 
Romer Sigma R-SCAN 

(LS-ARM-2) 

  

 

 

HP-L-10.6® from Hexagon  
Metrology 

RS6 Laser Scanner 
mounted on Absolute 
Arm 85 from Hexagon 

Metrology 

R-SCAN from Romer 
Sigma 

Data rate: 30,000 points/s Data rate: 1,200,000 
points/s 

Data rate: 19,200 
points/s 

Stand-off and DOF: 170 ± 30 mm 
Min. point spacing: 0.030 mm 

Stand-off and DOF: 165 ± 
50 mm 

Min. point spacing: 0.027 
mm 

Scanning distance: 124–
222 mm 

Min. point spacing: 
0.100 mm 

Line rate (max.): 53 Hz 
Laser line width: 24, 60 or 123 mm 

Line rate (max): 300 Hz 
Laser line width (mid.): 

150 mm 

Line rate: 30 Hz 
Laser line width (max): 

110 mm 

Probing form error: 0.022 mm 
Probing form error: 0.026 

mm Probing error: 0.044 mm 

3. Experimentation 
The methodology followed in the experimentation (Figure 2) was divided into five 

sequential phases, each corresponding to the following activities: 
(a) Contact measurement of the spheres and establishment of the main reference param-

eters (diameter and form error) in order to produce the reference values (both dimen-
sional and geometrical) with maximum accuracy. 

(b) Non-contact measurement of the spheres. Each of the six spheres were measured 
with the three laser triangulation devices to obtain the point clouds. The most appro-
priate parameters were used in each case to reliably obtain high-quality point clouds. 

(c) Cleaning, trimming, and filtering of the point clouds. The inspection software was 
used to trim the point clouds, and the spurious points were cleaned by applying the 
corresponding filters. 

(d) Determination of the analysed parameters (number of points captured, diameter, 
form error, and standard deviation). Once the appropriate filter was applied, the 
spheres were fitted with the remaining points, obtaining the values of the parameters 
to be compared with the reference ones (form error and diameter), as well as the 
parameters used to characterise the behaviour of the equipment (number of points 
and standard deviation). 

(e) Analysis of results. The results obtained were analysed in relation to the equipment 
and spheres used, as well as the filters applied. 

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17 

Table 2. Laser line scanners used in the study. 

Laser Triangulation Scanner 
Mounted on CMM (LS-CMM) 

Laser Triangulation 
Scanner Mounted on 

Coordinate Measuring 
Arm (LS-ARM-1) 

Articulated Arm Laser 
Romer Sigma R-SCAN 

(LS-ARM-2) 

HP-L-10.6® from Hexagon 
Metrology 

RS6 Laser Scanner 
mounted on Absolute 
Arm 85 from Hexagon 

Metrology 

R-SCAN from Romer
Sigma 

Data rate: 30,000 points/s Data rate: 1,200,000 
points/s 

Data rate: 19,200 
points/s 

Stand-off and DOF: 170 ± 30 mm 
Min. point spacing: 0.030 mm 

Stand-off and DOF: 165 ± 
50 mm 

Min. point spacing: 0.027 
mm 

Scanning distance: 124–
222 mm 

Min. point spacing: 
0.100 mm 

Line rate (max.): 53 Hz 
Laser line width: 24, 60 or 123 mm 

Line rate (max): 300 Hz 
Laser line width (mid.): 

150 mm 

Line rate: 30 Hz 
Laser line width (max): 

110 mm 

Probing form error: 0.022 mm 
Probing form error: 0.026 

mm Probing error: 0.044 mm 

3. Experimentation
The methodology followed in the experimentation (Figure 2) was divided into five 

sequential phases, each corresponding to the following activities: 
(a) Contact measurement of the spheres and establishment of the main reference param-

eters (diameter and form error) in order to produce the reference values (both dimen-
sional and geometrical) with maximum accuracy.

(b) Non-contact measurement of the spheres. Each of the six spheres were measured
with the three laser triangulation devices to obtain the point clouds. The most appro-
priate parameters were used in each case to reliably obtain high-quality point clouds.

(c) Cleaning, trimming, and filtering of the point clouds. The inspection software was
used to trim the point clouds, and the spurious points were cleaned by applying the
corresponding filters.

(d) Determination of the analysed parameters (number of points captured, diameter,
form error, and standard deviation). Once the appropriate filter was applied, the
spheres were fitted with the remaining points, obtaining the values of the parameters
to be compared with the reference ones (form error and diameter), as well as the
parameters used to characterise the behaviour of the equipment (number of points
and standard deviation).

(e) Analysis of results. The results obtained were analysed in relation to the equipment
and spheres used, as well as the filters applied.

HP-L-10.6® from
Hexagon Metrology

RS6 Laser Scanner mounted on
Absolute Arm 85 from

Hexagon Metrology

R-SCAN from
Romer Sigma

Data rate: 30,000 points/s Data rate: 1,200,000 points/s Data rate:
19,200 points/s

Stand-off and DOF: 170 ± 30 mm
Min. point spacing: 0.030 mm

Stand-off and DOF: 165 ± 50 mm
Min. point spacing: 0.027 mm

Scanning distance:
124–222 mm

Min. point spacing:
0.100 mm

Line rate (max.): 53 Hz
Laser line width: 24, 60 or

123 mm

Line rate (max): 300 Hz
Laser line width (mid.): 150 mm

Line rate: 30 Hz
Laser line width (max):

110 mm

Probing form error: 0.022 mm Probing form error: 0.026 mm Probing error: 0.044 mm

3. Experimentation

The methodology followed in the experimentation (Figure 2) was divided into five
sequential phases, each corresponding to the following activities:

(a) Contact measurement of the spheres and establishment of the main reference pa-
rameters (diameter and form error) in order to produce the reference values (both
dimensional and geometrical) with maximum accuracy.

(b) Non-contact measurement of the spheres. Each of the six spheres were measured with
the three laser triangulation devices to obtain the point clouds. The most appropriate
parameters were used in each case to reliably obtain high-quality point clouds.

(c) Cleaning, trimming, and filtering of the point clouds. The inspection software was
used to trim the point clouds, and the spurious points were cleaned by applying the
corresponding filters.

(d) Determination of the analysed parameters (number of points captured, diameter,
form error, and standard deviation). Once the appropriate filter was applied, the
spheres were fitted with the remaining points, obtaining the values of the parameters
to be compared with the reference ones (form error and diameter), as well as the
parameters used to characterise the behaviour of the equipment (number of points
and standard deviation).

(e) Analysis of results. The results obtained were analysed in relation to the equipment
and spheres used, as well as the filters applied.

Contact measurement of the precision spheres was carried out with the DEA Global
Image CMM according to ISO 10360-5:2020 [37] with the upper hemisphere of each sphere
as the reference area. In this area, 50 points distributed into nine meridians were recorded.
The procedure was repeated 10 times for each sphere; average values were obtained and



Sensors 2024, 24, 2410 6 of 17

checked to ensure that the differences between the 10 measurements were always less
than 0.002 mm (below the maximum scanning error of the CMM). This procedure enabled
determination of the diameter and the reference form error. The latter is defined as the
radial difference between the outermost and innermost points of the best-fit sphere. The
contact measurement strategy followed for the different spheres, and an image of the stylus
during one of the measurement processes are shown in Figure 3.
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Figure 3. (a) Measurement made with the CMM on the Ø25 mm sphere. (b) Contact measure-
ment strategy.

The six spheres were then scanned with the three laser triangulation devices. In the
case of the automatic equipment (Sensor HP-L-10-6, LS-CMM) and in order to obtain
adequate coverage of the spheres, the points were captured from five different orientations:
four with the sensor tilted at 45◦ and one with the sensor oriented vertically downward.
One of them is shown in Figure 4a, and spatial orientation axes are shown in Figure 4b. The
appropriate parameters were configured using the PC-DMIS control software to obtain the
best capture on all spheres. This configuration corresponds to a normal gain, an average or
standard point density of 16.8 points/mm, and a line width of 123 mm, while the incidence
angle filter was set at 75◦.
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Figure 4. (a) 45◦ position of the HP-L-10.6 sensor (LS-CMM). (b) Sensor representation according to
spatial orientation axes.

The above experimentation methodology was also applied to two other laser triangu-
lation devices, in this case portable (Figure 5a,b), where human interaction has a greater
influence. The operator is required to have the necessary experience and skill to achieve ad-
equate coverage of the geometry to be captured with the minimum possible exposure and
time while also minimising the dispersion of values. In both cases, the capture of the point
clouds was performed 10 times and by two different operators. Before starting the data
capture, the sensors were qualified using procedures recommended by the manufacturer,
to maximise accuracy.
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Figure 5. (a) RS6 Laser Scanner mounted on Absolute Arm 85 (LS-ARM-1). (b) R-SCAN mounted on
articulated arm laser Romer Sigma (LS-ARM-2).

The raw point clouds captured with the sensors (Figure 6a) were treated with Geo-
magic Control X inspection software to first remove all the information generated that did
not belong to the spheres being scanned. The cleaning was continued by removing points
that were below the established reference plane (with a spherical coverage angle φ = 220◦

to ensure that at least the hemisphere points are always captured) in order to homogenise
the data acquired with the three sensors (Figure 6b).
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the points captured in these areas to decrease drastically as the laser beam is almost tan-
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Figure 6. (a) Raw point cloud captured with LS-CMM sensor. (b) Spherical coverage angle.

Once the spheres were cleaned of noise (fragments and non-sphere elements), a
mathematical sphere was fitted to the scanned point clouds, in this case using the least
squares method. This “best fit” mathematical sphere yields the diameter and the position of
the centre of the sphere. The quality of each individual point captured can be determined
from both values, and distances or bands of distance from the mean value (diameter of
the best-fit sphere) can be established. For these ranges, the standard deviation parameter
(σ) and its multiples (k-factors) were used. Considering that the distribution of the data
obtained follows a normal distribution (Figure 7), we can use a multiple k of the standard
deviation (σ) as a filter that rejects or eliminates the points furthest away from the mean
diameter. Thus, for example, a filter of ±3σ (6σ amplitude) would leave the cloud intact
(eliminating only 0.27% of the furthest points), while a filter of ±1σ would leave the cloud
with only the points in the central zone, eliminating 31.73% of the points furthest from the
diameter (or, in other words, leaving 68.26% of the closest points).
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Figure 7. (a) Normal distribution of the point cloud on the best-fit sphere. (b) example of a point
cloud and distribution analysis (highlighted in red, inside the circle, are the points removed with
filter 2σ).

Figure 8 shows the zenith views of the point clouds obtained with the LS-CMM
automatic sensor versus one of the portable sensors (LS-ARM-2). The first view (Figure 8a)
shows the banding patterns generated by the horizon effect, which causes the accuracy
of the points captured in these areas to decrease drastically as the laser beam is almost
tangential to the surface. The second view (Figure 8b) shows the completely random line
patterns generated by the different filters used in the manual scanning. This effect of
curvature on the measurement quality of sensors similar to those studied has been reported
by other authors [38,39] in the measurement of surfaces with a large variation in curvature,
such as gear profiles.
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To estimate the uncertainty associated with the measurement results obtained in this
study, the procedure recommended by the Guide to the Expression of Uncertainty in
Measurement (GUM) can be applied. This procedure involves the quadratic propagation
of uncertainties from the various influencing factors. These factors include the standard
uncertainty of calibration of the spheres, uSph. Despite some spheres having calibration
certificates, we consider it an overestimation that the expanded uncertainty assignable
to each sphere is the maximum allowed by the used CMM (R0,MPL). On the other hand,
the standard uncertainty associated with each sensor is obtained from the information
provided by each manufacturer (probing error), uSenMan, considering a coverage factor
k = 2. Thus, the estimation of uncertainty for each sensor (subscript i), ui, is as shown in
Equation (1). The contribution from temperature variations is disregarded, as all measure-
ments were conducted in a metrology laboratory with controlled temperatures within the
range 20 ± 1 ◦C.

ui =
√

u2
Sph + u2

SenMani
, being i = 1 to 3 (1)

Thus, Table 3 presents the estimation of uncertainty for the analyzed sensors.

Table 3. Estimation of uncertainty budget for the sphere’s measurements (mm).

Contribution Evaluation Type Standard
Uncertainty

LS-CMM
(HP-L-10.6)

LS-ARM-1
(RS6)

LS-ARM-2
(R-SCAN)

uSph
Calibration gauge (Sphere)

Type B, stated in
calibration (CMM) uSph 0.0011 0.0011 0.0011

uSenMan
Laser sensor standard uncertainty

Type B, stated by
manufactured 1 uSenMan 0.0110 0.0130 0.0220

Combined standard uncertainty, ui: 0.0111 0.0130 0.0220
1 This evaluation was Type A for the manufacturers.

4. Results and Discussion

Once the methodology was established and the parameters that will allow the analysis
of the point clouds of each sensor were defined, this section presents the results obtained.
The reference values obtained with the contact CMM are shown in Table 4. The geometrical
quality of all the spheres is consistent with the nominal accuracy and with the measurement
capacity of the CMM. It is also consistent with the manufacturing process and finishes of
the spheres, with measurements of the sandblasted and polymer-coated spheres being less
accurate, although the error in the values did not exceed 5 µm in any case.

Based on these data and bearing in mind that the main objective of the research was
to analyse and evaluate the performance of the three laser triangulation sensors used to
scan the different materials and finishes, the quality of the point clouds captured from
the six reference spheres was then compared. Thus, once the cloud was trimmed, leaving
the points between the reference plan of each sphere and the pole, and the spurious
points removed, each point cloud captured with each of the three sensors and for each
sphere was examined (Figure 9). Regarding the standard deviation of the best-fit clouds,
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significant differences were observed between sensors, both quantitatively (point density)
and qualitatively (cloud standard deviation). As the diameter of the spheres was different,
the bar graphs in Figure 9 used the density of the point cloud (expressed in points/mm2)
instead of the number of points.

Table 4. Reference values (CMM contact measurements).

Identifier Material Finish
CMM Measurements

Diameter (mm) Form Error (µm)

TC-1 Tungsten carbide (WC) Glossy 24.9994 0.4
Ce-1 Zirconium dioxide (ZrO2) Glossy 19.9995 0.8
Ce-2 Aluzir (ZTA) Matte 20.0021 0.8
Ce-3 Alumina (Al2O3) Glossy 22.0005 1.5

Co-1 Polymer-coated steel (AISI
440C) Matte 25.4878 4.6

Sb-1 Stainless steel (ASIS 316L) Matte 25.0100 2.6
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Figure 9. Quality of point clouds of spheres based on point density and standard deviation (σ).

On the one hand, it is significant that neither the lower-performing portable sensor
LS-ARM-2 or the automatic sensor LS-CMM were capable of capturing information from
the tungsten carbide sphere (TC-1), which had the shiniest finish.

In addition, the LS-ARM-2 sensor yielded very different results depending on the
sphere scanned, with contrasting values for two of the spheres with a matte finish. The dot
density for the sphere painted with polymeric material (Co-1), 62 points/mm2, was much
lower than obtained for the ceramic sphere (Ce-2), 1286 points/mm2.

Regarding the point density, more homogeneous measurements were obtained for all
of the spheres scanned using the most modern sensors (the automatic LS-CMM and the
portable LS-ARM-1). The LS-ARM-2 sensor is extremely sensitive to the strategy chosen
for manual scanning, while the other two sensors incorporate “ad-hoc” software filtering,
which avoids duplication of points with coordinates that are very close together. In fact,
these sensors automatically eliminate points whose coordinates are very close to others
that have already been recorded, allowing for less dense capture without loss of precision.

The range of the point cloud density for the six spheres scanned with the different
sensors can be observed in Table 5. Once again, the more modern LS-CMM and LS-
ARM-1 sensors performed best in this respect. The differences between the minimum and
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maximum values of the point density generated by these sensors for the different spheres
were 38 points/mm2 and 100 points/mm2 respectively. Of these, the RS6 sensor yielded
the highest point density, an average of 485 points/mm2 for all spheres.

Table 5. Quality of the raw point cloud (without filtering).

LS-CMM (HP-L-10.6) LS-ARM-1 (RS6) LS-ARM-2 (R-SCAN)

Sphere σ (µm) PD
(points/mm2) σ (µm) PD

(points/mm2) σ (µm) PD
(points/mm2)

TC-1 - - 16 500 - -
Ce-1 39 67 20 556 78 242
Ce-2 30 75 12 471 45 1286
Ce-3 39 75 17 456 67 300
Co-1 20 37 10 473 77 62
Sb-1 18 75 14 457 63 327

In regard to the scan quality, the standard deviation σ of the cloud relative to the best-
fit sphere provides useful information (Table 5). The LS-ARM-1 sensor (RS6) is extremely
constant (standard deviation between 10 and 20 µm), followed by the automatic LS-CMM
sensor (HP-L-10-6). The LS-ARM-2 sensor (R-SCAN) again yielded the most variable
results depending on the spheres, both for the absolute values and the dispersion, with
values ranging from 45 µm to 78 µm. The manual scanning greatly affected this model,
which does not incorporate default noise reduction routines for the duplication (proximity
of coordinates) of scanned points as the LS-ARM-1 sensor does.

The parameters provide a good idea of the influence of the capacities and performance
of the equipment for use with different materials and surface finishes.

Analysis of the Influence of the Filter

There is a clear relationship between the standard deviation (σ) of the point clouds and
the form error yielded by the sensor. An ideal sensor of maximum precision would generate
a point cloud whose form error of the sphere would be equal to the form error obtained by
contact. By geometric form error, we mean the difference between the outermost point and
the innermost point of each point cloud (“Dmax-Dmin”).

We therefore studied the influence of the application of a “Sigma” type filter or k·σ
filter (k being the multiple of the standard deviation) on the form error. The aim of this
study is to determinate the capacity of this type of filter to eliminate the furthest points, but
without distorting the measurement, improving the metrological performance of the sensors
for each sphere. The values obtained for the three sensors and the six reference spheres
were plotted in a graph (Figure 10), in which the standard deviation values correspond to
the raw cloud, removing obvious outliers (equivalent to applying a k > 6 filter).

While the laser sensor LS-ARM-1 (RS6) provides the lowest values of the three devices
and use of the filter had comparatively less influence (values of around 90 µm for any k·σ
filter range always below 61 µm), the form error obtained with the automatic LS-CMM
(HP-L-10.6) sensor was clearly dependent on and proportional to the k·σ filter. In this case,
the least suitable sphere was the zirconium oxide sphere (Ce-1 ceramic), which produced
values of 510 µm for scarcely filtered data (k = 6) and 184 µm for k = 2 (±2σ or 4.2% of the
discarded points). On the other hand, this sensor yielded the best results for the sphere
with the polymeric material coating (Co-1), and the values were less dependent on the filter
applied (linear response and lower slope). As for the values obtained with the third sensor,
the LS-ARM-2 (R-SCAN), the heterogeneity of the results with each sphere and with the
application of the different filters is evident. The high level of variability can be explained
by the age of the sensor and its poorer performance. The form error yielded by this sensor
with the sphere with which the best results were obtained (Ce-2 ceramic) was greater than
the form errors yielded by the other two sensors with this sphere (for any k with the RS6
sensor and for k > 2 with the HP-L-10.6 sensor).
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of the spheres, for each of the three laser sensors.

By comparing the diameter measurements obtained with the sensors and the reference
measurements obtained with the contact CMM (Figure 11a) and, similarly, comparing the
form errors yielded by the three sensors and the contact CMM (Figure 11b), we can analyse
the quality of the reconstructions of the spheres as a function of the filters ±k·σ applied (all
with a coverage angle φ = 220◦, Figure 5b).

Thus, in the study of the differences in the diameters evaluated (Figure 11a), we can
see that, for the spheres measured with the manual sensors (LS-ARM-1 and LS-ARM-2), the
two laser sensors generate point clouds whose diameter deviations relative to the reference
point clouds are independent of the filter level (k·σ). Only the automatic sensor LS-CMM
was somewhat influenced by the type of filter, although only strong filters, k = 2 or k = 1,
produced substantial variations in the measured diameter.

The values of diametric deviations (Figure 11a) varied greatly from one sensor to
another and with the different spheres. The LS-CMM sensor was very sensitive to the
type of material and its finish, as it produced better measurements of the diameters of the
matte-finished spheres, such as sandblasted (Sb-1) or coated (Co-1) spheres. At the other
extreme are the glossier spheres (ceramic material such as Ce-3 and Ce-2) and the glossiest
TC-1 sphere, which cannot even be measured with this sensor. With the LS-ARM-1 sensor,
all spheres can be measured with good repeatability (independently of the filter), even the
glossiest sphere (TC-1). In general, the differences relative to the reference measurements
(CMM) were significantly lower than those produced by the LS-CMM automatic laser.
Focusing on the manual LS-ARM-2 sensor, the differences between spheres were even
greater, varying between the sandblasted Sb-1 sphere (+100 µm) and the Co-1 sphere
(−400 µm). The scarce influence that the filtering had on the diameter value measured by
this sensor is striking. Thus, from the point of view of diameter measurement, there is no
need to remove many points from the clouds, and they can be left almost intact by applying
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very weak filters (e.g., k = 6, ±6σ), which are sufficient to eliminate spurious points and
minimise the “horizon effect” or “edge effect”.
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Focusing on the deviations of the form error FE (Figure 11b), very low values of this
parameter were obtained with the CMM for the spheres (FECMM < 5 µm), especially in
comparison with the form errors of the adjusted spheres of each one of the sensors (FEf).
Therefore, the graphs constructed for FEf-FECMM are similar, with the values almost the
same as those represented in Figure 10. However, the performance of the sensors, in terms
of the form error, is included in Figure 11b, modifying and adapting the scale of each of
the graphs of each sensor to observe the influence of the filter k·σ value in greater detail
(mainly in the LS-ARM-1 sensor).

5. Conclusions

This paper reports a study of the performance of three laser triangulation sensors
for scanning different precision spheres: an automatic sensor coupled to a fixed CMM;
and two manually operated, fully portable sensors, coupled to two AACMMs of different
generations. These sensors, with different resolutions and similar fields of application,
were used to scan precision spheres made of six different materials and with two types of
surface finishes. Precision spheres were chosen as reference elements for the study because
they are widely used and commercially available; they are commonly used as verification,
adjustment, and/or calibration standards. In addition, they are easy to characterise from a
mathematical and metrological point of view.
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To assess the possible influence of the finishes of the spheres, half of the samples had
a glossy finish while the other half had a matte finish. The study is based on reference
information for each sphere, obtained from high-precision contact measurements using the
CMM. The extent to which the reconstruction of the spherical geometries from the point
clouds obtained with the sensors is close to the first ones in geometric and dimensional
quality was then analysed. Finally, the work was completed by studying the influence
of using a standard filter, the “σ” filter, or “k·σ” filter, to eliminate residues based on the
statistical distribution (which tends to a normal distribution) of the points generated. Under
these premises, the following conclusions were reached:

Analysis of the capacity of the sensors to capture points on the different spheres
showed that the LS-ARM-1 sensor (Romer RS6) produced the best results, both quanti-
tatively (higher density of points captured) and qualitatively (homogeneity between the
different spheres). This was also the only sensor capable of capturing points on polished,
glossy spheres (TC-1). The less accurate LS-ARM-2 sensor (Romer R-SCAN) produced the
worst results, producing disperse values depending on the type of sphere (the best results
were obtained with ceramic material and matte finish, and worst results with any glossy
finish), even not capturing points on the glossiest sphere, the polished TC-1 sphere.

The qualities of the point clouds, which are also determined, among other things, by
the standard deviation, also differed between the three sensors when filtering was not
applied (k >> 6). The LS-ARM-1 sensor again produced the best results (10 µm for the Co-1
sphere), ahead of the LS-CMM (18 um for the Sb-1 sphere) and the LS-ARM-2 (45 µm for the
Ce-2 sphere of Aluzir). The fact that the best value was obtained with the Co-1/LS-ARM-1
pairing is reasonable if we consider the capacity and performance of this new generation
sensor, and that these coated spheres are usually supplied for calibration and qualification
of laser sensors. The glossy ceramic spheres (Ce-3 made from Al2O3 and Ce-1 made from
ZrO2) yielded the poorest results with almost all sensors, with a value of up to 78 µm in
the standard deviation of the cloud with the R-SCAN sensor.

On the other hand, considering the geometrical quality of the spheres, understood
as the deviation from the form error of the reconstructed spheres (Figure 9), the filtering
level has a strong influence. However, this influence was quantitatively smaller with the
LS-ARM-1 sensor than with the other two sensors. The LS-ARM-2 proved to be the worst
performing of the three devices, and it was more susceptible to including noise in the
point clouds. Detailed analysis (Figure 11b) of the data produced by the LS-ARM-1 sensor
indicated that strong filters (k = 3 or even k = 2) were required before the effects of the point
removal were observed in the form error value. For the other two sensors, the deviations of
the form errors were much higher than for the LS-ARM-1 sensor, reaching the order of one
millimetre in the case of the R-SCAN with the Ce-1 (ZrO2) sphere, so that use of this sphere
with this sensor should be ruled out.

In the sensor with automatable trajectories (LS-CMM), the linearity of the performance
regarding the form error is very noticeable when filters are applied (Figure 11b). The fact
that the trajectories can be automated and capture the different spheres in the same areas
undoubtedly generated the high linear effect when applying filters. The slopes of the
straight lines of the different spheres were higher for glossy spheres than for matte spheres,
so the matte spheres are suitable for qualifying this type of sensor (Table 6).

Table 6. Recommended usability for sensor calibration and qualification.

Sphere LS-CMM (HP-L-10.6) LS-ARM-1 (RS6) LS-ARM-2 (R-SCAN)

TC-1 (WC, glossy) X
√

X
Ce-1 (ZrO2, glossy) X X X
Ce-2 (ZTA, matte)

√ √√ √√

Ce-3 (Al2O3, glossy) X
√

X
Co-1 (white coated, matte)

√√ √√√ √

Sb-1 (AISI 316, matte)
√√ √√ √
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In summary, the best spheres for calibrating or qualifying each of the sensors are
shown in Table 6. Although the sigma filtering recommended for working with diameters
is sufficient (k = 6), in the case of form error of the spheres, use of a strong filter (range k = 2)
is advisable, as this substantially improves the quality of all the point clouds captured by
laser triangulation sensors.

A study regarding the best type of filter, which is always necessary to apply with this
type of sensor, was carried out. This filter enabled removal of both spurious points and
points that spoil the form error, greatly improving the measurement that these sensors
can obtain from point clouds. In particular, as the filter that yields the best diameter and
form error measurements is considered the best, we can conclude that the sandblasted
stainless-steel sphere (Sb-1) is quite suitable for the automatable sensor (LS-CMM) with
application of a k = 2 filter. This sandblasted sphere would also provide acceptable results
for the LS-ARM-2 sensor together with the Co-1 coated sphere. For the LS-ARM-2 sensor,
the best results were obtained with the Aluzir sphere (Ce-2), also with a strong filter (k = 2).
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