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A B S T R A C T

QuantificationLib is an open-source Python library that provides a comprehensive set of algorithms for
quantification learning. Quantification, also known as prevalence estimation, is a supervised machine-learning
task where the objective is to train a model that is able to predict the distribution of classes in a set of unseen
examples or bags. This library offers a wide variety of quantification methods suited for easy prototyping and
experimentation, applicable to a wide range of quantification applications.
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. Motivation and significance

Quantification learning is a relatively new task that has gained
ncreasing attention in recent years due to its practical applications in
arious fields. Unlike classification, where the focus is on predicting
he labels of unseen examples in a test set, the goal of quantification
earning is to predict the aggregated results in the form of class label
roportions in unseen test bags. It has many applications, for instance,
onitoring the prevalence of plankton taxonomic groups in water

amples, estimating the proportion of negative, positive and neutral
eviews about certain products, predicting the prevalence of different
ypes of customer calls in a customer service centre, etc. Quantification
iffers from classification, as the focus is not on the individual labels
ut on aggregated results [1]. While classification has been extensively
tudied and applied in various fields, quantification has emerged as
task in its own right, with distinct goals, methods, techniques, and
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evaluation measures. We refer the reader to the following Refs. [2,3]
for seminal works on quantification learning.

In the field of quantification, various high-quality libraries are avail-
able (QuaPy [4], Qunfold [5] and QFy [6]). Notably, QuantificationLib
distinguishes itself through several characteristics:

1. It emphasizes efficiency, particularly evident in experiments in-
volving the comparison of multiple quantifiers using underlying
classifiers. This efficiency is achieved by training the underlying
classifiers only once and reusing it among several quantifiers.

2. It offers the capability to evaluate methods using synthetic data,
for instance when working with data from known distribu-
tions, where the probability of belonging to a certain class is
predetermined.

3. It utilizes optimization techniques to solve distribution matching-
based quantification algorithms [7] across various distance met-
rics. When optimization is not feasible, an efficient search algo-
rithm is employed.
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Table 1
Available quantification methods in QuantificationLib.
Category Package Methods

Binary quantificationlib.binary
DeBias [9]
SORD [10]
QuantY [11]

Multiclass

quantificationlib.baselines

Classify & Count (CC)
Adjusted Count (AC) [12,13]
Probabilistic Classify & Count (PCC) [14]
Probabilistic Adjusted Count (PAC) [14]

quantificationlib.multiclass.df
HDx, HDy [15]
Mixture Model (MM) [16]
DFx, DFy [7,10]

quantificationlib.multiclass.em EM [17,18]

quantificationlib.multiclass.energy EDx [19]
CvMy, EDy [20]

quantificationlib.multiclass.friedman FriedmanME [9]

quantificationlib.multiclass.knn PWKQuantifier [21]

Ordinal
quantificationlib.ordinal.ac ACOrdinal [12]

quantificationlib.ordinal.pdf PDFOrdinaly [22]

quantificationlib.ordinal.trees OrdinalQuantificationTree [23]

Decomposition quantificationlib.decomposition.multiclass OneVsRestQuantifier

quantificationlib.decomposition.ordinal FrankAndHallQuantifier [24]

Ensembles quantificationlib.ensembles EoQ [25,26]
2. Software description

QuantificationLib is an open-source quantification library written in
Python. It implements a pretty exhaustive list of quantification methods
including binary, multiclass and ordinal methods, with support also for
ensembles of quantification methods. It has been designed with ease of
use in mind, keeping a lot of similarities in its structure with other ma-
chine learning libraries as scikit-learn [8]. It has a comprehensive and
well-structured documentation,1 that allows practitioners to quickly get
started, with just a few lines of code.

2.1. Software architecture

QuantificationLib is structured as a Python library with a modular
and extensible software architecture, providing a versatile framework
for quantification learning tasks. The library is organized into distinct
modules based on the type of quantification methods, encompassing bi-
nary, multiclass, ordinal, decomposition, and ensemble categories. Each
module encapsulates specific algorithms, facilitating ease of navigation,
maintenance, and the addition of new methods. The library adopts
object-oriented principles to enhance modularity and reuse shared
functionality among the methods of the same category. This approach
facilitates a straightforward avenue for quantification practitioners to
implement new quantification methods and seamlessly integrate them
into the library.

In order to maintain high quality standards, a continuous integra-
tion (CI) system has been set up which ensures automatically that all
tests are passed before making new releases. Also the documentation is
built and deployed automatically to avoid any inconsistencies between
code changes and documentation.

2.2. Software functionalities

QuantificationLib offers a broad range of quantification methods,
which are systematically categorized using a simple and easy-
to-understand taxonomy. These methods are divided into five distinct

1 https://aicgijon.github.io/quantificationlib
2

categories summarized in Table 1. The first category is the binary
category, which includes methods that exclusively handle binary quan-
tification problems. The second category is the multiclass category,
consisting of methods that can handle quantification problems with
any number of classes. The remaining categories include the ordinal
category, which includes methods designed for ordinal quantification
problems, the decomposition category, which includes decomposition
methods for both multiclass and ordinal use cases, and the ensembles
category, which provides a method for building ensembles of quan-
tifiers. The library includes generalized versions of some methods.
For instance, following the ideas in [7,10], DFx and DFx methods
generalize HDx and HDy respectively allowing different representations
for the distributions (PDFs or CDFs) and any loss functions (e.g. L1, L2,
Topsøe) instead of just using the combination of PDFs and the Hellinger
Distance. Interestingly, Mixture Model and SORD are instances of DFy
using the combination of CDFs and L1, see [11]. The loss functions can
be also optimized with AC, PACC and ACOrdinal when the confusion
matrix computed in the training phase is not invertible.

3. Illustrative examples

3.1. Installation and basic model training pipeline

QuantificationLib is hosted on GitHub.2 Packages for Python 3 are
available through pip, using pip install quantificationlib.

To facilitate application by machine learning practitioners, the de-
sign of the library follows scikit-learn structure where each model
provides a fit and a predict method. The standard workflow is: (1)
create a new quantifier, instantiating the appropriate class; (2) train
it using the fit method and, (3) predict unlabeled bags using the
predict method, which will return a vector (with size equal to the
number of classes) containing the class prevalence values for the bag
passed as parameter.

2 https://github.com/AICGijon/quantificationlib
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Fig. 1. Graphical experiment results for 200 test bags on the sample dataset. Each horizontal line corresponds to a single testing bag, each color represents a different class and
the length of the color represents the proportion of that class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
1 #base c l a s s i f i e r
2 es t imator = Log i s t i cReg re s s i on ( )
3
4 #t ra in i ng Adjusted Count and EM q u a n t i f i e r s
5 ac = AC( e s t i m a t o r _ t r a i n=est imator , e s t i m a t o r _ t e s t=es t imator )
6 ac . f i t ( X_ t ra in , y _ t r a i n )
7 em = EM( e s t i m a t o r _ t r a i n=est imator , e s t i m a t o r _ t e s t=es t imator )
8 em. f i t ( X _ t ra in , y _ t r a i n )
9

10 #pred i c t ing a t e s t sample
11 pr in t ( ac . p red i c t (X=X _ t e s t ) )
12 pr in t (em. p red i c t (X=X _ t e s t ) )

Listing 1: Basic training/test quantification pipeline

Some quantification methods need the predictions of an underlying
classifier in order to work. All these methods inherit from a common
class WithClassifiers that unifies them under the same class hierar-
chy. Any classifier will work as long as it follows the scikit-learn stan-
dard, that is having the methods fit, predict and predict_proba
(in case the probabilities are needed by the quantification method). On
the other hand, methods inheriting from WithoutClassifiers class
do not work with an underlying classifier so they do not require an
estimator at all.

The library has been designed with efficiency in mind. This means
that when a method uses an underlying classifier, the library will check
if it is already trained or not. This saves the time of retraining multiple
classifiers and provides a method to compare different quantifiers using
the same base classifier. For instance, in Listing 1, LogisticRegression
estimator is not trained again when EM quantifier is fitted in line 8. In
addition, instead of working with estimators, the quantifiers under the
WithClassifiers class can also work with raw probabilities, using
the parameters predictions_train and predictions_test instead
of estimator_train and estimator_test. These parameters are
useful at least in two use cases: (1) to test quantifiers using controlled
scenarios, where probabilities can be drawn, for instance, from some
known probability distribution and (2) to make more flexible the
training pipeline as probabilities can be computed beforehand and then
passed to several quantification methods. Listing 2 presents an example
of this latter case, where the predictions of all testing examples are
computed only once (line 3) and then passed to two quantifiers (lines
5 and 7).

3.2. Evaluating and comparing quantifiers

The library makes it easy to compare and evaluate different quanti-
fiers [27]. Under the package quantificationlib.metrics there is
the implementation of the most used quantification error functions, for
binary or multiclass problems, as Absolute Error (AE), Relative Absolute
Error (RAE), Mean Squared Error (MSE) or Kullback–Leibler Divergence
(KLD) among others. We also provide metrics for ordinal quantification
problems such as the Earth Moving Distance (EMD). Complementing
error measures, the library also includes tools for artificially generating
3

test bags which simplifies the evaluation of quantifiers. The following
code shows a possible example of a typical evaluation pipeline:

1 bag_gen = Pr io rSh i f t _BagGenera to r ( n_bags =10, bag _ s i z e =100)
2 prev_ t rue , indexes = bag_gen . generate _bags ( X _ t e s t , y _ t e s t )
3 preds = es t imator . p red ic t _p roba ( X _ t e s t )
4 f o r n_bag in range (10) :
5 p_ha t _ac = ac . p red i c t (
6 X=None ,
7 p r e d i c t i o n s _ t e s t=preds [ indexes [ : , n_bag ] , : ] ,
8 )
9 mae = mean_abso lute _error ( p rev _ t rue [ : , n_bag ] , p _ha t _ac )

10 pr in t ( "AC MAE=%f " % mae)
11 p_hat_em = em. pred i c t (
12 X=None ,
13 p r e d i c t i o n s _ t e s t=preds [ indexes [ : , n_bag ] , : ] ,
14 )
15 mae = mean_abso lute _error ( p rev _ t rue [ : , n_bag ] , p_hat_em )
16 pr in t ( "EM MAE=%f " % mae)

Listing 2: Basic evaluation pipeline

Under the quantificationlib.bag_generator package, the user
can find the implementation for different bag generators, that simulate
different types of shift in the test bags, as prior probability shift, covariate
shift, etc.

Finally, in the package quantificationlib.plot the user can
find useful functions to plot the results and analyze them graphically.
An example can be seen in Fig. 1.

4. Impact

Quantification is the field that works on training class prevalence
estimators capable of predicting the prevalence of classes within an
unlabeled set of examples. Applications are manifold and the field
is growing rapidly, attracting researchers who seek to analyze ag-
gregated results rather than individual labels. However, conducting
experimentation for quantification papers poses challenges due to the
non-trivial implementation of various quantification methods. Address-
ing this issue, QuantificationLib introduces an alternative experimental
framework to others that exist in the field [4–6], incorporating a wide
range of quantification methods, a fast and efficient implementation
that also prioritizes ease of use. QuantificationLib extends its utility be-
yond research applications, finding practical use in diverse fields such
as marine ecology [28], sentiment analysis [29], epidemiology [30],
etc.

5. Conclusions

In this paper, we introduced QuantificationLib, a library for quan-
tification learning which allows practitioners to build end-to-end quan-
tification pipelines with just a few lines of Python code. The library
is published under an Open Source licence which makes a significant
contribution to the quantification community allowing researchers to
easily test and compare different quantification methods. Due to its
design and structure, the library easily accommodates the integration
of new methods that may arise in the field of quantification.
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