
This paper is a post-print paper accepted in The Doctoral Symposium of IEEE 34th International Symposium on Software Reliability Engineering Workshop, ISSREW 2023. The final version is
available through IEEE Xplore: https://ieeexplore.ieee.org/document/10301285 . Citation Information: “C. Augusto, “Toward an efficient End-to-End test suite execution,” in Proceedings - 2023 IEEE
34th International Symposium on Software Reliability Engineering Workshop, ISSREW 2023, IEEE Computer Society, Oct. 2023, pp. 26–29. doi: 10.1109/ISSREW60843.2023.00038.” IEEE copyright
notice © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. In any current future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Abstract—End-to-end (E2E) testing is costly because of the
complex and expensive resources that are required during the test
execution coupled with the long execution times required. This
becomes even more challenging when E2E test suites are
integrated into a continuous integration (CI/CD) environment,
where they are executed with each repository change. Migrating
E2E test suite execution to the Cloud is an acknowledged trend to
achieve a better cost. However, this also introduces new challenges
in addition to those faced on-premises, such as selecting the most
suitable services from the wide range offered by Cloud Providers,
which is even more difficult considering how the test resources use
the Cloud infrastructure. This thesis aims to achieve an efficient
execution of the E2E test suites, reducing the number of
unnecessary test resource redeployments, and the execution time,
and improving the efficiency of selecting the Cloud infrastructure
that best aligns with the testing objectives. We present an
orchestration approach that aims to enable resource sharing and
avoid unnecessary redeployments. This process involves phases
like the characterization of the test resources required by the test
cases and a grouping of the test cases with compatible resource
usage and its scheduling in sequential-parallel to reduce
redeployments-time. The orchestration approach has evolved to
execute this orchestrated test suite in the Cloud, introducing a
model of the E2E test suite execution in the Cloud, which allows us
to represent both the test and the Cloud configuration. Using the
model, we estimate and compare different Cloud infrastructures
in terms of overall cost (billed by the Cloud Provider), but also the
cost invested in testing and unused infrastructure
(overprovisioning) to select the infrastructure best aligned with
the testing objectives.

Keywords— Software Reliability, Software Testing, Cloud
Computing, End-to-End Testing, Resource Optimization

I. MOTIVATION AND RELATED WORK
Continuous integration (CI) practices have shortened

development cycles from months or years to weeks or days,
impacting critical stages such as software testing. Modern
software developments have test suites composed of thousands
of test cases that are executed frequently [1], [2]. However,
handling shorter cycles may result in that test suite not being
executed as often as required. which could cause potential
defects to be missed, with an impact of 20-40% extra time and
cost [3].

E2E testing validates the entire interaction between all
system components, from the user interaction with the
application to low-level layers like persistence. The execution of
E2E test suites is expensive due to long execution times,

expensive test resources (e.g., complex databases, web servers,
or web browsers), and due to the fact that it requires the entire
system during its execution.

Test suite optimization techniques arise as a solution for
reducing both time and cost in large and complex test suites and
enabling their execution as needed. The traditional techniques,
such as test prioritization, selection, and minimization [4] have
shown good performance in detecting defects in both industry
and academia [5]–[7] while optimizing execution cost/time.

However, when it comes to End-to-End (E2E) testing, these
traditional test optimization techniques [4] may not be as
effective as expected because a subset or order of the test suite
might still require the use of the same expensive system for its
execution. Consequently, further research is required in this
area, and alternative solutions such as test dependency detection
to organize test cases and enable resource sharing [8], [9] or the
execution of tests on a Cloud infrastructure [10] emerge to
address these limitations.

Moving testing to the Cloud means that the infrastructure for
test execution is contracted over the Internet as-a-service and has
been widely acknowledged as a way to reduce the cost of testing
whilst leveraging the unlimited and scalable infrastructure
delivered on-demand [11]. The Cloud is suitable for those
testing levels that are not continuously executed but require
large amounts of infrastructure, such as concurrency, load [12],
or E2E testing. However, the efficient execution of E2E test
suites in the Cloud remains challenging, as the test resources
required to run E2E test suites do not always use the full
contracted infrastructure and there is also a broad range of
infrastructures to deploy the same test resource.

The selection of Cloud infrastructure (also referred to as
highly configurable systems) has been widely discussed in the
literature where several tools [13]–[15] have been proposed to
choose the lower-cost infrastructure under certain requirements
(e.g., memory size, number of processors, or storage). These
tools are useful with homogeneous loads but, the execution of
E2E testing in which load peaks are addressed differently and its
usage patterns differ from an application deployed in production
reduces its effectiveness.

II. RESEARCH QUESTIONS
During the Ph.D., we intend to answer the following research
questions:

Toward an efficient End-to-End test suite execution

Cristian Augusto†
Computer Science Department

University of Oviedo
Gijón, Asturias (Spain)

augustocristian@uniovi.es

CRISTIAN AUGUSTO ALONSO
Rectángulo

• RQ1: Can a smart characterization, aggrupation, and
scheduling of the test cases achieve savings in resource
usage?

• RQ2: How does the cost/efficiency of executing an E2E
test suite in the Cloud vary depending on the Cloud
Infrastructure and the test suite scheduling selected?

III. PLANNED CONTRIBUTIONS
Upon completion of the Ph.D., we intend to make the following
contributions:

• Characterization of resources required by E2E test
cases with a set of attributes that describe how they can
be used by the test cases and their access modes. The
goal of the characterization is to provide valuable
information about the nature of the test resources as well
as the operations performed by the test cases on them.

• An E2E Test Execution Orchestration approach that
identifies the test resources required by the test cases,
groups them according to their compatible usage, and
schedules them sequentially or in parallel to reduce
time/unnecessary redeployments (RQ 1).

• Cost Model of E2E test suite execution in the Cloud
that considers the overall cost (contracted) as well as the
cost invested in executing the test suite (testing) and
unused infrastructure (overprovisioned). The model
goal is to compare several Cloud infrastructures and
select those that best align with the testing objectives
(RQ 2).

IV. APPROACH
The approach is divided into two distinct parts: orchestration

and cost model. The orchestration part is responsible for
arranging the test cases in the most efficient order, aiming to
reduce both cost and time. The cost model focuses on selecting
the most suitable Cloud infrastructure that best aligns with the
testing objectives. These objectives may include cost reduction,
time optimization, or improving infrastructure utilization. The
following subsections will introduce and describe these two
components in detail:

A. RETORCH
The characterization of the test resources required by E2E

test cases is carried out through a set of attributes and access
modes to provide additional information about the test resources
and their usage by the test cases. Each test resource has one or
more attributes that provide information such as the number of
available test resources, concurrent access support, or
hierarchical relationships between test resources. The access
modes indicate how the test cases use the test resources, such as
read-only, read-write, write-only, or no-access.

The test resource characterization is the basis of the proposed
orchestration approach named RETORCH, which stands for
“Resource-aware End-to-end Test ORCHestration framework”
and consists of a four-phase process: resource identification,
grouping, scheduling, and deployment. RETORCH aims to
optimize the execution of the E2E test suite by reducing
execution time and test resource redeployments.

The first phase of the orchestration approach (Figure 1,
resource identification), receives the E2E test cases as input and
characterizes and annotates the test resources used in each test
case. In the second and third phases (Figure 1, grouping and
scheduling), the test cases with compatible test resource usage
(e.g., their execution on the same test resource does not affect
the execution of other members of the group) are grouped in the
so-called TJobs. The TJobs contain the test cases with
compatible resource usage and the test resources required for
their execution and are scheduled in sequential/parallel in the so-
called Execution Plan. The fourth phase (Figure 1, deployment)
gets as output the required script and code to execute the
Execution Plan through a continuous integration system.

Figure 1 RETORCH Orchestration Approach

B. Cost Model
The Execution Plan provided by RETORCH can be

deployed in both on-premises and Cloud infrastructures.
Deploying it in a Cloud infrastructure allows to achieve better
cost, but it also introduces new challenges on top of those
already faced on-premises. These challenges include selecting
the proper test configuration and the best allocation of test
resources; a process that becomes even more difficult with the
broad range of infrastructure types offered in the different
providers to deploy the same test resource.

In response to these challenges, we introduce a Cloud-based
E2E test execution model called RETORCH* (to distinguish it
from the RETORCH proposal). RETORCH* aims to enable the
comparison of Cloud infrastructures in terms of the cost of
executing a certain test execution plan. The RETORCH* model
is composed of two different submodels: the Test Configuration
and the Cloud Configuration. The Test Configuration represents
the different test entities (e.g., test resources, test cases) and their
attributes (e.g., how the test cases are arranged or what type of
operations are performed over the test resources). The Cloud
Configuration represents all feasible combinations of Cloud
Objects, e.g., the different virtual computing environments
contracted in the Cloud, under certain Billing Options that can
be used as the execution platform of the test suite.

Based on the information provided by the Test and Cloud
Configuration, we estimate and compare the cost of executing
the test suite in the different Cloud infrastructures, not only in
terms of the cost that is billed by the Cloud Providers (overall),
but also the cost invested in testing (testing cost) and
infrastructure not used (overprovision).

The testing cost, in turn, is composed of three different costs:
the set-up and tear-down costs of both Cloud Object Instances
(COI) and TJobs and the test execution cost. These costs are
calculated according to the capacities invested in the different
phases, some of them do not execute the test cases themselves
but impact the billing as they are required before the execution
and differ in duration, depending on the selected COI. For
instance, setting up all the infrastructure for a virtual machine
takes more time compared to a container. Moreover, it takes
even longer than a service that provides the test resource with no

Spanish Ministry of Science and Innovation under TestBUS (PID2019-
105455GB-C32) and EQUAVEL (PID2022-137646OB-C32)

set-up. To measure them, we have presented two lifecycles that
allow a fine analysis of how the infrastructure is used:

• COI lifecycle consists of three stages: the set-up (gray
in Figure 2) where the COI is provisioned, and the
necessary libraries and dependencies are installed, the
TJob execution (red border in Figure 2) that executes the
TJobs in the order specified by the Execution Plan.
Finally, the tear-down (violet in Figure 2), involves
releasing the COI and returning it to the Cloud Provider.

• TJob's lifecycle consists of three distinct stages: the set-
up (yellow in Figure 2) instantiates the required test
resources and performs any required actions to prepare
them for testing. Next, the test execution (orange in
Figure 2) executes the test cases against the previously
instantiated test resources and finally, the tear-down
(green in Figure 2) performs the cleaning and disposing
actions.

Figure 2 TJob and COI Lifecycles

The estimation of the E2E test execution cost is done
according to how the test resources required by the E2E test suite
use the Cloud Object capacities (the different specifications that
are contracted under a billing option, such as the amount of
memory, the number of processors, or storage) during the
lifecycle’s phases. Each of these capacities has a utilization
carried out by the test resources, which means the percentage of
used contracted capacity. The rest of the (unused) capacity is
allocated to overprovisioning, which results in an extra budget
cost that is wasted or can be used for other test suites/executions.

Both, the utilization and overprovisioning are displayed
graphically in the usage profile, which represents the utilization
of the different capacities of the COI during the time that is
provisioned. Figure 2 depicts an example of a profile in which
two TJobs are executed in parallel. The profile shows the
capacity usage (GB of memory in the x-axis) during the time
that the Cloud Object is provisioned (60 seconds, in the y-axis)

Figure 3 Usage Profile example

Using the information provided by the profile, we can estimate
all costs. For instance, if the price of each GB of RAM/s is $2,
the costs are calculated as follows:

• The overall cost is calculated according to the amount
of capacity contracted 60s x 2GB multiplied by the
invoiced price of $2/GBs, resulting in a total of $240.

• The testing cost is the sum of all colored areas
(excluding the blue area) which results in 90GB*s
multiplied by its invoiced price ($2/GB*s), totaling
$180.

• The overprovisioning cost is calculated as the difference
between both areas: overall (120G*s) and testing
(90GB*s) multiplied by the invoiced price ($2/GB),
resulting in a total of $60.

With the different costs, the tester compares the different
Cloud infrastructures and selects which is best aligned with the
organization's testing objectives. For example, larger enterprises
may have already contracted infrastructures that can be reused,
smaller ones may be interested in deploying as cheaply as
possible, while some enterprises may opt to contract extra
capacities for reuse in other tasks.

V. PROGRESS AND PRELIMINARY RESULTS

A. Characterization of resources required by E2E test cases.
We have developed a characterization of the test resources

used in the E2E tests which is composed of five distinct access
modes, seven dynamic attributes that change during execution
as a result of the resource usage, and five static attributes which
provide additional information regarding how each test resource
can be used. The resource characterization is continuously
enhanced with new attributes, currently following the trend to
migrate the testing to the Cloud. It has been extended with those
attributes required to represent all information about how the test
resource uses the Cloud Infrastructure.

B. RETORCH Orchestration approach
The first RETORCH experimental prototype was a result of

my Master's Thesis [16]. This RETORCH prototype analyzes
the test resources that are manually annotated in the test cases,
to group and schedule them maximizing the use of the available
test resources, giving as output the scripts and code that
automates the execution. RETORCH was validated in a real-
world application called Fullteaching [17], achieving 65%
reductions in terms of execution time and 35% in terms of test
resources. Both the characterization and the orchestration
approach were first introduced at the QUATIC19 [18]
conference, extended to Software Quality Journal [19], and
presented in the ICSE20 ACM Research Competition [20].

The prototype is intended to be enhanced through the
automation of the resource identification process by a smart
identification of the test resources required by E2E test cases
using the test code analysis.

C. RETORCH* Cost Model of E2E test suite execution in the
Cloud
RETORCH* is being validated into a real-world example

(FullTeaching), exploring the three major decisions that impact

COI
Set-up

COI
Tear-
down

TJ
ob

 1
TJ

ob
 2

TJob 1
Test Exec.

TJob 1
Set-up

TJob 1
Tear-down

TJob 2
Test Exec.

TJob 2
Set-up

TJob 2
Tear-down

TJ
ob

 n

TJob 1
Test Exec.

TJob 1
Set-up

TJob 1
Tear-down

TJob 2
Test Exec.

TJob 2
Set-up

TJob 2
Tear-down

TJob 1
Test Exec.

TJob 1
Set-up

TJob 1
Tear-down

TJob 2
Test Exec.

TJob 2
Set-up

TJob 2
Tear-down

TJob
Test Exec.

TJob
Set-up

TJob
Tear-down

TJob
Test Exec.

TJob
Set-up

TJob
Tear-down

TJob n
Test Exec.

TJob n
Set-up

TJob n
Tear-down

TJ
ob

 2
TJ

ob
 n

TJ
ob

 1
TJ

ob
 2

TJ
ob

 n

0

1

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

M
EM

O
RY

 (G
B)

TIME(SECONDS)
Overprovisioning COI Set-Up COI Tear-Down
TJob Test Execu�on TJob Set-up TJob Tear-down

0

1

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

M
EM

O
RY

 (G
B)

TIME(SECONDS)

the cost and efficiency of carrying out a test suite in the Cloud:
(1) selecting the Cloud Objects; (2) choosing the Billing
Options; and (3) determining the Execution Plan.

RETORCH* evaluation is being performed through three
case studies: The first study explores different types of Cloud
Objects, representing the most common offerings in the
industry, for a fixed Execution Plan and Billing Options. The
second study examined different Billing Options for the selected
Cloud Objects mentioned earlier. Lastly, in the third case study,
we explore different Execution Plans with different TJob
arrangements.

The preliminary results demonstrate how RETORCH*
provides cost estimations that reveal differences between
infrastructure alternatives. Interestingly, the decisions taken
relying only on the overall cost might contradict each other if we
consider the rest of the costs. For instance, Cloud Objects that
appear more expensive in terms of overall cost achieve the best
testing cost and offer extra capacities for use with other
executions/test suites, or using the cost estimation, the tester can
devise the cost of executing the test suite in already contracted
infrastructure which is shared for other purposes.

RETORCH * is intended to be the core of an advisory engine
that receives the data generated in the CI Environment (e.g.,
execution times, infrastructure usage time, or overprovisioning)
and suggests infrastructure or test configuration changes to
improve its execution in the Cloud.

Tentative date of Ph.D. Thesis defense.
The author intends to defend his Ph.D. thesis in the middle of
the year 2024.

VI. ACKNOWLEDGMENTS
The author would like to express sincere gratitude to his

Ph.D. Advisor, Dr. Claudio de la Riva, for his dedicated effort
and guidance throughout the thesis direction. Additionally,
special thanks go to Dr. Antonia Bertolino (ISTI-CNR, Pisa
Italia) for her contributions to the line of research. This work
was supported in part by the Spanish Ministry of Science and
Innovation under TestBUS (PID2019-105455GB-C32) and
EQUAVEL (PID2022-137646OB-C32)

VII. REFERENCES
[1] H. Esfahani et al., “CloudBuild: Microsoft’s distributed and caching
build service,” in Proceedings - International Conference on Software
Engineering, Austin, Texas, 2016, pp. 11–20, doi:
10.1145/2889160.2889222.
[2] A. Memon et al., “Taming google-scale continuous testing,” in
Proceedings - 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, May 2017, pp. 233–242, doi: 10.1109/ICSE-SEIP.2017.16.
[3] F. Shull et al., “What we have learned about fighting defects,” in
Proceedings - International Software Metrics Symposium, 2002, vol.
2002-Janua, pp. 249–258, doi: 10.1109/METRIC.2002.1011343.

[4] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: A survey,” Software Testing Verification and
Reliability, vol. 22, no. 2. John Wiley and Sons Ltd., pp. 67–120, Mar.
2012, doi: 10.1002/stv.430.
[5] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations
of regression test selection techniques: A systematic review,” in
ESEM’08: Proceedings of the 2008 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, 2008, pp. 22–31,
doi: 10.1145/1414004.1414011.
[6] G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Softw. Test. Verif. Reliab., vol.
12, no. 4, pp. 219–249, 2002, doi: 10.1002/stvr.256.
[7] W. E. Wong, J. R. Morgan, S. London, and A. P. Mathur, “Effect of
test set minimization on fault detection effectiveness,” Softw. - Pract.
Exp., vol. 28, no. 4, pp. 347–369, 1998, doi: 10.1002/(SICI)1097-
024X(19980410)28:4<347::AID-SPE145>3.0.CO;2-L.
[8] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing:
Detecting state-polluting tests to prevent test dependency,” in 2015
International Symposium on Software Testing and Analysis, ISSTA 2015
- Proceedings, 2015, pp. 223–233, doi: 10.1145/2771783.2771793.
[9] A. Gambi, J. Bell, and A. Zeller, “Practical Test Dependency
Detection,” Proc. - 2018 IEEE 11th Int. Conf. Softw. Testing, Verif.
Validation, ICST 2018, pp. 1–11, 2018, doi: 10.1109/ICST.2018.00011.
[10] A. Gambi, A. Gorla, and A. Zeller, “O!Snap: Cost-Efficient Testing
in the Cloud,” Proc. - 10th IEEE Int. Conf. Softw. Testing, Verif.
Validation, ICST 2017, pp. 454–459, 2017, doi: 10.1109/ICST.2017.51.
[11] A. Bertolino et al., “A systematic review on cloud testing,” ACM
Comput. Surv., vol. 52, no. 5, 2019, doi: 10.1145/3331447.
[12] K. Inçki, I. Ari, and H. Sözer, “A survey of software testing in the
cloud,” Proc. 2012 IEEE 6th Int. Conf. Softw. Secur. Reliab. Companion,
SERE-C 2012, pp. 18–23, 2012, doi: 10.1109/SERE-C.2012.32.
[13] J. García-Galán, J. M. García, P. Trinidad, and P. Fernández,
“Modelling and analysing highly-configurable services,” in ACM
International Conference Proceeding Series, 2017, vol. 1, pp. 114–122,
doi: 10.1145/3106195.3106211.
[14] J. García-Galán, O. Rana, P. Trinidad, and A. Ruiz-Cortés,
“Migrating to the Cloud: A software product line based analysis,” 2013.
doi: 10.5220/0004357104160426.
[15] C. Plewnia, “An integrated approach for cloud computing service
selection and cost estimation,” Dec. 2021, doi:
10.1145/3492323.3503505.
[16] C. Augusto, “Optimización de Recursos en Pruebas de Sistema,”
Universidad de Oviedo, Gijón (Asturias), Spain, 2020.
[17] URJC and P. F. Pérez, “Repositorio FullTeaching - ElasTest.” 2019,
[Online]. Available: https://github.com/elastest/full-teaching.
[18] C. Augusto, J. Morán, A. Bertolino, C. de la Riva, and J. Tuya,
“RETORCH: Resource-Aware End-to-End Test Orchestration,” in
Communications in Computer and Information Science, Sep. 2019, vol.
1010, pp. 297–310, doi: 10.1007/978-3-030-29238-6_22.
[19] C. Augusto, J. Morán, A. Bertolino, C. de la Riva, and J. Tuya,
“RETORCH: an approach for resource-aware orchestration of end-to-end
test cases,” Softw. Qual. J., no. SQJO-D-19-00197R1, 2020, doi:
10.1007/s11219-020-09505-2.
[20] C. Augusto, “Efficient test execution in End to End testing :
Resource optimization in End to End testing through a smart resource
characterization and orchestration,” in Proceedings - 2020 ACM/IEEE
42nd International Conference on Software Engineering: Companion,
ICSE-Companion 2020, 2020, pp. 152–154, doi:
10.1145/3377812.3382177.

	I. MOTIVATION AND RELATED WORK
	II. RESEARCH QUESTIONS
	III. PLANNED CONTRIBUTIONS
	IV. APPROACH
	A. RETORCH
	B. Cost Model

	V. Progress and preliminary results
	A. Characterization of resources required by E2E test cases.
	B. RETORCH Orchestration approach
	C. RETORCH* Cost Model of E2E test suite execution in the Cloud
	Tentative date of Ph.D. Thesis defense.

	VI. ACKNOWLEDGMENTS
	VII. REFERENCES

