
Automatic Debugging of Design Faults in
MapReduce Applications

Jes�us Mor�an , Antonia Bertolino , Claudio de la Riva , and Javier Tuya , Member, IEEE

Abstract—Among the current technologies to analyse large data,
the MapReduce processing model stands out in Big Data.
MapReduce is implemented in frameworks such as Hadoop, Spark
or Flink that are able to manage the program executions according
to the resources available at runtime. The developer should design
the program in order to support all possible non-deterministic
executions. However, the program may fail due to a design fault.
Debugging these kinds of faults is difficult because the data are
executed non-deterministically in parallel and the fault is not
caused directly by the code, but by its design. This paper presents a
framework called MRDebug which includes two debugging
techniques focused on the MapReduce design faults. A spectrum-
based fault localization technique locates the root cause of these
faults analysing several executions of the test case, and a Delta
Debugging technique isolates the data relevant to trigger the
failure. An empirical evaluation with 13 programs shows that
MRDebug is effective in debugging the faults, especially when the
localization is done with the reduced data. In summary, MRDebug
automatically provides valuable information to understand
MapReduce design faults as it helps locate their root cause and
obtains a minimal data that triggers the failure.

Index Terms—Debugging aids, testing and debugging.

I. INTRODUCTION

THE data generated during recent years has grown exponen-
tially, and consequently several challenges arise to store,

transform and analyse this information. Traditional technologies
are not able to handle huge amounts of data in a scalable way
and the Big Data paradigm [1] has emerged to tackle these chal-
lenges through novel technologies. Most of the de facto standard
Big Data frameworks are based on the MapReduce processing
model, among others Hadoop MapReduce [2], Spark [3] or Flink
[4]. One study in Microsoft [5] indicates that at least 34% of data
scientists (Big Data and non Big Data) use frameworks based on

MapReduce. The MapReduce processing model [6] divides one
big problem into several small subproblems that are distributed
in a large cluster, and the execution is automatically managed by
a framework. One program can be executed in different ways
because the framework allocates the resources not only based on
the program design, but also based on the resources available at
runtime. For example, the framework could execute the same
program with more or less parallelism, or re-execute part of the
program in case of infrastructure failures. If that same program
code executes the same dataset several times and sometimes suc-
ceeds but other times fails, depending on how the framework
manages the execution, then this program is incorrectly designed.
The developer should design the program so that it behaves cor-
rectly in all possible executions, because the framework will
manage the execution depending on, among others, the runtime
resources. To avoid these failures, the program should satisfy the
semantics required by the MapReduce processing model like
idempotency, and commutativity/associativity, among others.

The quality of the MapReduce programs becomes crucial,
especially in those used in health (e.g., DNA alignment [7]),
security (e.g., ballistics [8]), or other critical sectors. An analysis
performed in the MapReduce clusters at Yahoo! indicates that
around 3% of the programs do not finish the execution [9].
Another study places this percentage between 1.38% and
33.11% [10]. Concerning the characterization of faults, another
study of 507 programs reveals at least five different kinds of
faults are caused by an erroneous design [11]. Other works iden-
tify and categorize further more faults that are caused by an
incorrect design of theMapReduce applications [12], [13].

In our previous work we have devised a testing technique that
can detect these design faults automatically when the same test
case executed several times does not yield similar outputs [14].
According to an empirical study [15], sometimes the developers
erroneously think that these design faults are caused by the
framework malfunction and report it, but in fact the fault lies in
the program design and not in the underlying framework. Not
only are design faults difficult to detect during testing, they are
also difficult to debug as the execution generally exhibits paral-
lelism and timing issues, among others. Sometimes the design
faults are masked, and other times manifest themselves in a
non-deterministic way due to the distributed execution of Map-
Reduce. According to a large-scale study conducted by Bagher-
zadeh et al. [16],MapReduce and debugging are among the three
most requested topics in Stack Overflow about Big Data. In the
case of debugging, some studies suggest that developers could
benefit by the integration of several debugging techniques [17].

Manuscript received 31 March 2023; revised 8 September 2023; accepted
13 February 2024. Date of publication 26 February 2024; date of current
version 19 April 2024. This work was supported in part by the project
PID2019-105455GB-C32 under Grant MCIN/AEI/10.13039/501100011033
(Spain), in part by the project PID2022-137646OB-C32 under Grant MCIN/
AEI/10.13039/501100011033/FEDER, UE, and in part by the project
RDS_2022-2024_2.1_Progetto_CYBER under Grant MASE/PTR_22_24_INT_
2_1 (Italy). Recommended for acceptance by N. Nagappan. (Corresponding
author: Jes�us Mor�an.)

Jes�us Mor�an, Claudio de la Riva, and Javier Tuya are with the Computer
Science Department, University of Oviedo, 33203 Oviedo, Spain (e-mail:
moranjesus@uniovi.es; claudio@uniovi.es; tuya@uniovi.es).

Antonia Bertolino is with the ISTI-CNR, 56124 Pisa, Italy (e-mail: antonia.
bertolino@isti.cnr.it).

Digital Object Identifier 10.1109/TSE.2024.3369766

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

956 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

https://orcid.org/0000-0002-7544-3901
https://orcid.org/0000-0001-8749-1356
https://orcid.org/0000-0001-5592-9683
https://orcid.org/0000-0002-1091-934X
mailto:moranjesus@uniovi.es
mailto:claudio@uniovi.es
mailto:tuya@uniovi.es
mailto:antonia.bertolino@isti.cnr.it
mailto:antonia.bertolino@isti.cnr.it
https://

This paper proposes, integrates and implements in a frame-
work called MRDebug two debugging techniques aimed to
help developers during the understanding of the MapReduce
design faults. Indeed, identifying the causes and locations of
MapReduce design faults can be complex due to the many dif-
ferent ways in which the Big Data framework can execute the
program and the size of input data. For this reason, we propose
a specific debugging framework that addresses both i) the
automatic localization of the root cause of the fault using a
fault localization technique, and ii) the automatic isolation of
the data that trigger the failure using an input reduction tech-
nique. These two debugging techniques focus on different
aspects of the fault and are complementary, as they contribute
to facilitate the comprehension of the bug in orthogonal way:
the first identifies the suspicious pattern of execution that
triggers the failure and the second identifies the suspicious
input data.

While either technique is obtained by applying well-
established debugging approaches (Spectrum-based fault locali-
zation [18] and Delta-Debugging [19], [20], respectively), the
novelty/originality of MRDebug is in the tailoring of such
general-purpose debugging approaches to the specific-domain
of MapReduce design faults. Spectrum-based fault localization
techniques usually locate faulty lines of code, but the
MapReduce design faults are triggered in non-deterministic way
depending on how the framework executes the program. This
means that the same faulty code with the same data could some-
times fail, and other times succeed. Therefore, instead of locat-
ing the lines of code, the proposed fault localization technique
(MRDebug-FL) analyses several executions and characterizes
the pattern of the non-deterministic executions that cause the
failure: this pattern searched by MRDebug-FL relies on the
peculiar characteristics ofMapReduce configurations.

Besides, in the faulty execution configuration, only a small
subset of the input data could be sufficient to trigger the failure
and the proposed input reduction technique (MRDebug-IR) iter-
atively shrinks the test input data until finding a minimal (or
reduced) failing subset. MRDebug-IR is obtained by adapting
the general-purpose Delta-Debugging technique to reducing the
MapReduce input data.

The two techniques can be fruitfully integrated so to improve
the fault localization efficiency through the execution of fault
localization after the input reduction (MRDebug-IR-FL). In this
way, the fault localization technique is executed with only the data
relevant to understand the fault, because the irrelevant data that
can cause noise are first removed by the input reduction technique.

Note that, differently from existing approaches, neither
MRDebug-FL nor MRDebug-IR need an oracle, as they both
embed our previous test technique called MRTest [14], which
can determine whether a test execution passes or fails by apply-
ing metamorphic testing (however MRTest by itself does not
support fault localization or input reduction). MRDebug also
differs from general-purpose debugging techniques as it only
requires one test case that is executed several times by incorpo-
rating small changes at each execution: according to the Lewis
Counterfactual theory of causality [21], the root cause of the
fault is the one of these small changes that turns the execution

from success to failure. In summary, the contributions of this
paper include:
� MRDebug-FL: A MapReduce specific Spectrum-based

fault localization [18] technique to obtain the root cause
of the fault discovering the characteristic(s) that are com-
mon among the executions that trigger the failure.

� MRDebug-IR: A MapReduce specific Input reduction
technique based on Delta Debugging algorithm [19], [20]
to isolate the data that trigger the failure.

� MRDebug-IR-FL: The integration of the Input reduction
technique followed by the Fault localization technique
aimed to obtain better results than the two techniques
applied separately.

� Automation of both fault localization and input reduction
techniques without using a user-defined oracle.

� Experimentation with test cases executed against real-
world and seeded programs to analyse both the effective-
ness and efficiency of the debugging techniques proposed.

The scenario of use of MRDebug is when developer/tester
executes locally the unit test cases and one of them triggers a
failure caused by a design fault. In that case, MRDebug auto-
matically provides both the root cause of the design fault and
the minimal data that trigger the failure.

It is worth noting that eachMapReduce framework is slightly
different because it adopts the MapReduce processing model in
different ways. The proposed debugging framework, MRDebug,
is implemented for Hadoop MapReduce applications executed
in development environment with smaller data than the produc-
tion data.

The remainder of this paper is organized as follows. Section II
describes the background of MapReduce, design faults and fault
localization. The debugging framework is presented in Section III.
The fault localization technique is defined in Section IV, the input
reduction technique in Section V, and the integration of both
techniques in Section VI. The experimentation is performed in
Section VII. Finally, the related work is discussed in Section VIII
and the conclusions are drawn in Section IX.

II. BACKGROUND

To understand the underlying concepts and terminology of
the paper, this section introduces the MapReduce processing
model, the testing technique used by the proposed debugging
approach (MRTest [14]), and the bases of fault localization.

A. MapReduce Processing Model

The MapReduce processing model [6] allows developers to
process massive data in parallel through the “divide and con-
quer” principle. In one of the most basic designs, the developer
only needs to implement two MapReduce functions: Mapper
and Reducer. The Mapper function receives the input and pro-
duces <key, value> pairs where the key is the identifier of one
subproblem and the value is the part of the data needed to solve
it. Next, the Reducer receives all values grouped by key (<key,
[values]> pairs) and solves the subproblems. In order to scale
to massive data, the program is executed in a Big Data cluster
on frameworks such as Hadoop [2], Spark [3] or Flink [4],

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 957

among others. The program uses the distributed resources avail-
able in the cluster to execute several Mapper processes in paral-
lel and, when they finish, it also executes several Reducer
processes in parallel. These parallel executions decrease the exe-
cution time, but the high quantities of <key, value> pairs emit-
ted from Mapper to Reducer may cause net bottlenecks. This
issue can be avoided if the developer designs the program with
anotherMapReduce function called Combiner (e.g., combineBy-
Key in Spark or CombineFunction in Flink). In this scenario, a
Combiner is executed after eachMapper and decreases the num-
ber of <key, value> pairs by solving the subproblems with the
data available locally in the Mapper process. Once the Com-
biner obtains the partial solutions for eachMapper, these partial
solutions are emitted to the Reducers that obtain the global
solutions.

For example, suppose a program that calculates the average
temperature per year given an input of “year; temperature”
rows. This program can be divided in one subproblem per year
(key) and can be designed in the following way: the Mapper
function emits <year, temperature> pairs, and both Combiner
and Reducer receive <year, [temperatures]> and emit <year,
average of temperatures>. Depending on the resources avail-
able during runtime, the program is executed with different
numbers of theseMappers, Combiners and Reducers. Fig. 1 rep-
resents a simple execution with 2 Mappers, one Combiner per
Mapper, and 2 Reducers. First, each Mapper receives a subset
of years and the temperatures as input, and produces an out-
come with one <year, temperature> pair per input. After each
Mapper has finished, a Combiner receives an input with the
<year, temperature> pairs from the Mapper, but grouped by
the key (<year, [subset of temperatures]> pairs). Next, each
Combiner calculates the average with the partial temperatures.
Once all Mappers and Combiners have finished, the Reducer
receives inputs composed by one year with all partial averages
(<year, [partial averages]>), and finally the Reducer calculates
the global average per year.

In a development environment, the program is usually exe-
cuted in one computer without parallelism. However, the execu-
tion in the production environment is carried out in several
servers and the infrastructure failures are frequent. The execu-
tion of the program is automatically managed by a framework
that divides the dataset to be analysed in parallel, allocates
resources, and handles the common infrastructure failures,
among others. Delegating the management of the program exe-
cution to a framework is an advantage for developers because
they can focus on designing the program functionality without
having to deal with the underlying distributed execution. How-
ever, this is also a disadvantage for testers because the program
should succeed in all possible configurations/executions and

testers do not have fine-grained control of the processes exe-
cuted because the parallel execution is automatically handled by
the framework. Even a faulty MapReduce program can some-
times succeed, and other times fail, depending only on how the
framework decides to execute the program processes.

For example, Fig. 1 and Fig. 2 represent two different execu-
tions of the same program with the same input data, but one of
them triggers a failure. The failure is triggered when the execu-
tion of Combiner/Reducer is not commutative/associative as in
the execution of Fig. 2, and succeeds in other cases. The pro-
gram is wrongly designed because if Combiner emits the local
average temperatures, then the Reducer is not always able to cal-
culate the global average temperature from these local average
temperatures: for the year 1999, avg avg 4�ð Þ,avg 2�, 3�ð Þ� �

6¼
avg 4�, 2�, 3�ð Þ because 3:25� 6¼ 3�. The first Combiner of Fig. 2
receives 4� and emits 4� (avg 4�ð Þ ¼ 4�). At the same time, the
second Combiner of Fig. 2 transforms the temperatures 2� and
3� into 2.5� (avgð2�, 3�Þ ¼ 2:5�). Therefore, the Reducer
receives for the year 1999 the local average temperatures 4� and
2.5�, and emits their average 3.25� (avg 4�, 2:5�ð Þ ¼ 3:25�). This
Reducer (Fig. 2) is incorrect because the average temperature
should be 3� (avg 4�, 2�, 3�ð Þ ¼ 3�) as happens in Fig. 1.

This kind of faults are referred to as design faults in this paper.
A design fault is when the program is not correctly designed in
accordance with the MapReduce semantics/correctness proper-
ties [22] (partition-isolation and commutativity, among others).
When aMapReduce program is implemented with a design fault,
it could execute correctly one time and fail in the next execution
even with the same code and data. The program fails intermit-
tently because when theMapReduce semantics/correctness prop-
erties are not satisfied, the program does not support all possible
non-deterministic executions that can happen in production. To
avoid design faults, the developer must design the program with
the properMapper, Reducer and/or Combiner functions in accor-
dance with the MapReduce semantics/correctness properties.
There are different types of design faults, some of them are intro-
duced when the developer tries to optimize the program with a
wrong Combiner, for example implementing a Combiner func-
tionality that is not idempotent, or Combiner-Reducer functions
that are not commutative/associative. Other design faults can be
introduced by the wrong assumptions about the data placement,
for example when the Combiner/Reducer functions expect the
data sorted in some way, but they are not due to the distributed
execution, or when one of the Mapper/Combiner/Reducer func-
tions requires some data that are in another computer.

Design faults are not only difficult to detect, but also to
debug. Some faults could be fixed changing few lines of code,
but other faults can require to change much more code or even
add/remove some MapReduce functions. For example, if the

Fig. 1. Execution of MapReduce program. Fig. 2. Failure execution of MapReduce program.

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

fault is in Combiner, the developer can easily fix it by removing
the Combiner function: in Hadoop Streaming this only needs to
remove the parameter call “-combiner”, inHadoopMapReduce
to remove the API call “setCombinerClass”, or in Flink to
remove the “combine” function from a Reducer class called reduc-
eGroup. However, the previous changes are not the best solution
because the fixed program will not execute the Combiner optimi-
zations. Another way to fix the fault is redesigning the Mapper-
Combiner-Reducer functions: in Flink program the developer can
implement the Reducer interface “GroupCombineFunction”
by including/changing the Combiner code, in Spark by changing
the Reducer function “reduceByKey” to another Reducer func-
tion called “aggregationByKey” with the new Combiner
code. In the faulty program that calculates the average temperature
per year, the fault can be fixed removing the Combiner, or rede-
signing the whole program. In this last case, the developer can
change theCombiner so that instead of calculating the partial aver-
age of temperatures, it calculates both the partial sum of tempera-
tures and also the number of temperatures added together. Despite
this change seems simple, it requires to re-design the whole pro-
gram: Mapper now should emit <year, {temperature, 1}> to fol-
low the same syntax and semantic of Combiner, and Reducer now
should implement a new logic because it does not receive temper-
atures but both sums and counts of temperatures.

We are not aware of any research survey that analyses how
prevalent are the design faults in the MapReduce programs, but
an analysis of 507 programs reveals that at least 5 programs
have a design fault and 58% of Reducers do not satisfy the com-
mutative property [11]. The programs of these Reducers could
also have a design fault depending on the Combiner code if
any. There are also other design faults beyond the non-
commutativity of Combiner/Reducer [12], [13].

B. Automatic Testing in MapReduce: MRTest

In previous work [14], we devised a testing technique called
MRTest that is able to automatically detect the design faults of
the MapReduce applications using Partition [23], Combinatorial
[24], [25] and Metamorphic Testing [26], [27]. MRTest receives
test input data and detects a fault when different executions of
the same program on the same data do not yield the same out-
puts. It is not feasible to execute all possible executions that can
occur in production, but MRTest executes a representative sub-
set of them. After the execution, MRTest checks automatically
that the outputs of all executions are equal. MRTest and their
underlying concepts (design fault, characteristics, configurations
and execution) are used in the debugging approach proposed in
this paper to both enhance and automate the debugging informa-
tion about the design faults.

Design fault: A fault of the MapReduce programs whose
functionality can be rightly implemented but does not satisfy the
semantics/correctness of the MapReduce programming model.
A wrongly designed program can obtain two different outputs if
the program is executed twice. This is because the program is
not correctly designed to support all possible executions that
could happen in production. Given a set S of all semantics that
all MapReduce programs must satisfy (e.g. partition-isolation,

among others [22]), a MapReduce program P has a design fault
when the program does not satisfy some of these semantics:
9 s 2 S j P 6‘s. A design fault could be triggered non-
deterministically depending on how the framework manages the
distributed execution of the program.

Characteristic: A characteristic chi defines an execution pat-
tern of a MapReduce program in a parallel framework, for
example, “>1 Mapper”. The set of characteristics of a MapRe-
duce program (CH) is obtained by means of partitioning [23],
considering the execution structure and the data distribution of
the MapReduce program as the input domain, where each parti-
tion is a characteristic. In total, for the Hadoop MapReduce
framework CH has the following 17 characteristics1: “1
Mapper”, “>1 Mapper”, “data executed in the same order as in
the input”, “data executed in different order as in the input”,
“data equally distributed in the Mappers”, “data non-equally
distributed in theMappers”, “0 Combiner”, “1 Combiner”, “>1
Combiner”, “Mapper output equally distributed in the
Combiners”, “Mapper output non-equally distributed in the
Combiners”, “0 data directly from Mapper to Reducer”, “>0
data directly from Mapper to Reducer”, “1 iterative executions
of Combiner”, “>1 iterative executions of Combiner”, “1
Reducer” and “>1 Reducer”. More details about these charac-
teristics are given in [14].

Configuration: A configuration confi ¼ ch1, ch2, :::h i is a
combination of characteristics that represents a potential execution
of a MapReduce program in a parallel framework. For example,
the configurations conf1 ¼ > 1 Mapper, :::, 1 Reducerh i and
conf2 ¼ > 1 Mapper, :::, > 1 Reducerh i represent the MapRe-
duce program execution of Figs. 1 and 2, respectively. The set of
configurations used in MRTest to test the MapReduce program is
denoted CONF and it is generated applying combinatorial testing
[24], [25] to the set of the characteristics. In 2-wise combination
there are 11 different configurations. Note that not all characteris-
tics can be combined in the same configuration due to possible
constraints between them. For example, a configuration with
“1 Combiner” must have “Mapper output equally distributed in
the Combiners”, because there is only 1 Combiner. The configura-
tions generated with the combinations and their constraints are
both defined and detailed in [14]. A special case of configuration is
the base configuration confbase, that represents an execution of the
MapReduce program with neither parallelism nor optimizations.

Execution: Given a test input data t and a configuration confi,
an execution exec t, confið Þ is the distributed flow of Mapper,
Combiner and Reducer processes executed according to the con-
figuration confi and t as input. The execution exec t, confið Þ pro-
duces an output formed by the <key, value> pairs emitted by
this program execution. For example, Figs. 1 and 2 show the
exec t, conf1ð Þ and exec t, conf2ð Þ, respectively, which produce
different outputs.

MRTest aims to check if a program has a design fault or not.
To this end, MRTest receives a test input data, generates the
configurations, executes the program covering these configura-
tions, and finally checks that all of these executions produce the

1Other MapReduce frameworks (e.g. Spark or Flink) could have different
characteristics.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 959

same output. The MRTest technique is summarized in the
pseudo-code of Fig. 3.

First, MRTest executes the program according to the most
basic configuration (confbase) and saves the output (base output).
Next, MRTest generates other configurations and executes the
program according to these configurations. There are several
potential executions per each configuration because the same
characteristic can be covered in different ways, for example
“>1Mapper” can be covered in executions with 2Mappers or 3
Mappers, among others. For each configuration generated,
MRTest executes randomly the program yet assuring that the
whole configuration is covered. Each one of the executions is
called a follow-up execution according to the terminology of
Metamorphic testing [27]. Finally, MRTest compares the output
of each execution against the base output (metamorphic rela-
tion). In case one of the executions produces different output,
then MRTest reports a failure due to a design fault because the
fault is triggered or masked depending on how the program is
executed. In the reporting of failure, MRTest also indicates the
configuration that triggers the failure. Note that MRTest is able
to detect the design faults automatically for every MapReduce
program without knowing either the expected output or the
semantics of the program. According to our previous experi-
ments [14], MRTest is accurate and can be used as automatic
partial oracle [28].

For example, suppose that a tester wants to test the MapRe-
duce program that calculates the average temperature per year
with the Mapper, Combiner and Reducer functions described in
Section II-A (Fig. 1 and Fig. 2). The tester designs a test case
with 4 input data composed by year 1999 with 4�, 2� and 3�,
and year 2000 with 5�. MRTest automatically generates the 11
configurations based on the 2-wise combination of the character-
istics. Next, MRTest executes the test case following these con-
figurations (follow-up executions), and checks if all of them
produce the same output. Two of the executions are depicted in
Fig. 1 and Fig. 2 and their outputs are different, so MRTest has
automatically detected a design fault.

C. Debugging Techniques

There are several debugging techniques that help the tester in
different ways, among others the fault localization and the input
reduction techniques. While fault localization helps testers
locate the root cause of the fault, the input reduction techniques
help them understand the fault by providing the minimal input

data that trigger the failure. The main concepts of these two
techniques are detailed below.

The fault localization technique most used in research is the
spectrum-based fault localization that analyses the common
behaviour between the test executions that fail and the different
behaviour in those that succeed [18]. For example, if all test
cases that fail cover one line that is not covered in successful test
cases, then this line is suspected as the cause of the failures. The
spectrum-based fault localization techniques obtain a ranking of
the most suspicious causes of the fault according to the following
procedure: (1) definition of the behaviour to be analysed, e.g.,
line coverage (program spectra), (2) generation of several test
cases, (3) execution and monitoring of the test cases, and (4)
analysis of the behaviours observed during the execution.

The observed behaviour that is used to find the root cause of
the fault is defined according to program spectrum [29], [30]
such as the coverage of code, parts of the execution, or other
execution-related data. For example, if the program spectra used
are the lines of code, then spectrum-based fault localization
observes the lines covered and not covered by the test cases and
obtains a ranking of the lines that are most suspicious to trigger
the failures. The first line of the ranking is the most suspicious
to be the root cause of the fault. This ranking is called
“suspiciousness ranking” and is obtained analysing the
similarity/distance from the vector that contains the failures of
all test cases (failure) to the vector of the coverage of each line
in all executions (behaviour covered). Those lines that are both
covered during the failures and not covered in the succeeded test
cases, are more likely to be the root cause of the fault. That is,
the line that has the highest suspiciousness to be the root cause
of the fault is the one that has the most similar vector of cover-
age to the failure vector. There are several ranking metrics in the
literature that can be used to calculate this similarity, but no sin-
gle one is the best in all domains of fault localization [31].

Many fault localization techniques proposed in the literature
obtain the suspiciousness ranking analysing the source code,
like the lines or branches covered by the test cases. However,
the root cause of the fault is not always the source code. For
example, the localization techniques of product lines locate the
root cause of the faults in features sets instead of the source code
[32]. In the case of the design fault ofMapReduce programs, the
root cause of the fault is not the code itself either because the
same faulty code sometimes triggers the failure and other times
masks it depending only on how the external framework exe-
cutes this code. Locating which are the patterns in common
among those executions that trigger the failure could help the
tester to understand the design fault and fix it. Therefore, the
root cause of the fault is the characteristic that have in common
the configurations that expose the design fault, such as the num-
ber of Mappers executed in parallel or the number of
Combiners. Once the fault has been located, the developer
would fix the program redesigning it usually by changing sev-
eral faulty lines of code and adding/removing new operations.

Input reduction techniques use different strategies to reduce
the data until a minimal data that triggers the failure is obtained.
One of these strategies is Delta Debugging [19], [20] that finds
the first local minimum using recursively a greedy algorithm

Fig. 3. MRTest pseudo-code.

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

with a binary-search. In the first step, Delta Debugging divides
the test input data in two halves (binary-search). If one of the
halves still triggers the failure, then this half is again divided fur-
ther with the binary-search approach and the other half is dis-
carded (greedy). However, if neither of the two new halves
triggers the failure (i.e., the failure is triggered by a mix of the
two halves), then the granularity of the search space is
increased: one of the two halves is selected together with one
half of the other half. This approach is applied recursively until
the first local minimum is reached.

III. DEBUGGING FRAMEWORK: MRDEBUG

This paper describes the MRDebug framework that aims to
help testers during the debugging of the MapReduce design
faults. This framework, depicted in Fig. 4, automatically locates
the root cause of the design faults and provides the minimal data
that trigger the failure. To this extent, MRDebug combines two
orthogonal debugging techniques: fault localization (MRDebug-
FL) and input reduction (MRDebug-IR). These debugging
techniques start with a test case failure: test input data and con-
figuration that trigger the failure (e.g., obtained by MRTest dur-
ing the testing). Both techniques execute MRTest several times
as automatic partial oracle to obtain valuable information to
debug the programs automatically. The fault localization and the
input reduction techniques can be executed separately or in com-
bination (MRDebug-IR-FL):
� MRDebug-FL: reveals the characteristics that cause the

design fault (root cause of the fault). For example, if
MRDebug-FL indicates “>1 Combiner” as root cause of
the fault for the program that calculates the average tem-
perature per year, this means that the test case usually
fails in configurations with “>1 Combiner” and also does
not usually fail in other configurations. Despite the fact
that the characteristic “>1 Combiner” is the root cause of
the fault, this fault is not always triggered with “>1
Combiner”, as the failures depend not only on the config-
uration executed but also on the input data executed.

� MRDebug-IR: obtains the minimal data of the test case
that still trigger the failure. For example, in Fig. 4 the test
case reveals the fault with 4 <key, value> pairs, but
MRDebug-IR indicates that the failure can still be trig-
gered with only 3 <key, value> pairs. In this example
MRDebug-IR has only reduced the input data of 1 <key,
value> pair (from 4 to 3), but note that the example is
illustrative and MRDebug-IR is able to reduce several
<key, value> pairs until reaching minimal data that still
triggers the failure.

� MRDebug-IR-FL: first reduces the data (MRDebug-IR)
and then localizes the root cause of the fault (MRDebug-

FL) among these reduced data. Executing both techni-
ques together is more effective than executing them sepa-
rately because the fault localization in MRDebug-IR-FL
only receives the data that cause the failure and does not
receive noise from other irrelevant data.

Using multiple debugging techniques could benefit the devel-
opers [17]. In the case of MRDebug, the two techniques of fault
localization and input reduction provide complementary infor-
mation because they are focused on debugging different parts.
The fault localization technique is focused on the characteristic
of the execution that triggers the failure, and the input reduction
technique is focused on the minimal data that trigger the failure.
This combined debugging information obtained automatically
by MRDebug can help testers understand the fault.

MRDebug debugs MapReduce applications implemented for
Hadoop MapReduce framework. During the debugging, the unit
test cases are re-executed several times in a local environment to
guarantee both a fine-grain control and reproducibility. In pro-
duction environment it would be quite difficult to guarantee the
previous because the framework manages the execution in a
non-deterministic way according to the resources available.
Hadoop MapReduce has more than 190 parameters that can
affect the execution [33] and the official documentation indi-
cates that some of these parameters interact subtly with the exe-
cution making the fine-control even more complex [34].

The deployment scenario of MRDebug is when a unit test
case fails due a design fault. The tester uses MRDebug to obtain
automatically information related to the fault: either of the two
provided debugging techniques can be used alone, or they could
be used in combination (in which case we suggest to first apply
data reduction and then fault localization). The tester uses the
fault localization technique, MRDebug-FL, to obtain the infor-
mation related to the non-deterministic executions that trigger
the failure. On the other hand, the tester uses the input reduction
technique, MRDebug-IR, to obtain information related to which
part of the input data is the one that triggers the failure. The tes-
ter could also use both techniques together with MRDebug-IR-
FL to obtain information of the fault related to both data and
execution. Section IV details further the fault localization tech-
nique, Section V the input reduction technique, and Section VI
the combination of both techniques.

IV. MRDEBUG-FL: FAULT LOCALIZATION

The spectrum-based fault localization proposed in this paper,
MRDebug-FL, uses the characteristics as program spectra with
the goal of automatically identifying which characteristic causes
the design fault in theMapReducer programs. As Fig. 5 summa-
rizes, MRDebug-FL receives a test case failure, and provides a
ranking of the most suspicious characteristics to cause the fail-
ure. To this end, MRDebug-FL starts generating several

Fig. 4. MapReduce debugging framework.
Fig. 5. Fault localization technique in MapReduce programs.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 961

configurations varying their characteristics (Generation of con-
figurations). Next, the test input data is executed according to
these configurations using MRTest in order to monitor if the
execution succeeds or not (Execution and monitoring of config-
urations). Finally, MRDebug-FL analyses with a ranking metric
which characteristics are more frequently executed in the config-
urations that produce a failure and which ones in those that suc-
ceed (Analysis of suspiciousness). MRDebug-FL executes the
algorithm of Fig. 6 as described below.

Generation of configurations: The configurations are gener-
ated based on the Lewis counterfactual theory of causality [21]
like other fault localization techniques [35]. In such a way,
MRDebug-FL generates new configurations (CONFFL) where
each new configuration (confFL) has the same characteristics as
the configuration that failed in testing (conffail), bar one that is
changed. For example, if conffail ¼ “> 1 Mapper”, ch2, :::h i,
then a new configuration confFL ¼ “1 Mapper”, ch2, :::h i is gen-
erated changing only ch1, and other new configurations are gen-
erated in the same way, changing each other chi. The goal of
this single change is to check whether the characteristic changed
between the conffail and the confFL is able to mask the fault or
continue to fail. In both cases, the configuration confFL provides
clues about the root cause of fault.

Fig. 7 summarizes the generation of these new configurations
for the program of Section II-A. First, the configuration conffail
fails during testing with the following characteristics:
conffail ¼ <“>1 Mapper”, … , “>1 Combiner”,… >.
MRDebug-FL generates new configurations (CONFFL) varying
each characteristic: the “>1 Mappers” is changed to
“1 Mapper” in confFL A, and “>1 Combiner” is changed to

“0 Combiners” in confFL B. Note that each new configuration
confFL only changes one characteristic in comparison with
conffail and the other characteristics of confFL remain the same.
The figure only shows two confFL (A and B), but there is one
confFL per each characteristic changed.

Execution and monitoring: For each configuration confFL
generated in CONFFL, MRDebug-FL executes the program with
the input data of the test case t, and monitors if the execution
triggers a failure or not. This execution is carried out by MRTest
because it is able to both detect the design faults automatically
and guarantee that the program is executed according to all the
characteristics of confFL. In the best case, the characteristic that
causes the fault would trigger the failure each time that a config-
uration with this characteristic is executed, but this is not always
true in practice due to the coincidental masking of the faults. To
avoid this problem, MRDebug-FL executes K times each
confFL, where K is a tester supplied parameter (default is K ¼
5). Note that a configuration can be executed in different ways,
for example a configuration confFL ¼ “> 1 Mapper”, ch2, :::h i
must be executed with more than one Mapper, and this is possi-
ble in different ways: 2 Mappers, 3 Mappers, or 2 Mappers but
different data in each one, among others. Each configuration
confFL is executed K times randomly but forced to cover the
characteristics of the confFL. The more the executions, the better
the results, but at the expense of more execution time.

In the example depicted in Fig. 7, one execution triggers a
failure (the execution of confFL A), but another execution masks
the fault (the execution of confFL B). Note that Fig. 7 only illus-
trates one execution of two confFL.

Analysis of suspiciousness: After finishing all executions,
MRDebug-FL obtains the suspiciousness ranking by analysing
the following information of these executions: if each execution
succeeds or fails, and the characteristics executed in each execu-
tion. This analysis is done by a ranking metric that obtains per
each characteristic how much it is suspicious, and then ranks
these characteristics from more to less suspicious. The ranking
metrics usually consider that one characteristic is more suspi-
cious of causing the fault when the executions that execute this
characteristic fail. In the same way, a characteristic is also suspi-
cious when the executions that succeed do not execute this char-
acteristic. The ranking metrics compute the suspiciousness of
each characteristic (suspiciousness_chi) based on the similarity
of two binary vectors: one of the vectors indicates per each exe-
cution if the failure was triggered or not (EXEC_FAILURES),
and the other vector indicates also per each execution if the char-
acteristic was executed or not (COVERAGE_CHi). The more
the vectors are similar, the more the characteristic is suspicious,
because either the executions usually fail when the characteristic
is executed, or the executions usually do not fail when the char-
acteristic is not executed. MRDebug-FL implements the most
common ranking metrics from the literature [18], [36], [37]
(there are 52 of them), and each one computes the
suspiciousness_chi based on the existing notions of similarity
between two binary vectors, but they weight the computation in
different ways. One of these ranking metrics is Ochiai1 and its
computations is suspiciousness_chi ¼ NCF=

ffi
NF � ðNCF þNCSÞ

p
,

where NF is the number of failing executions, NCF is the number

Fig. 6. MRDebug-FL pseudo-code.

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

of failing executions that cover chi, and NCS is the number of
successful executions that cover chi. Other ranking metrics also
compute NS (successful executions), NC (executions that cover
chi), NU (executions that do not cover chi), NUS (successful exe-
cutions that do not cover chi), and NUF (failing executions that
do not cover chi). Finally, the first positions of the suspiciousness
ranking contain those characteristics that are most suspicious to
cause the design fault according to one of the 52 ranking metrics
selected by the tester.

In the example represented in Fig. 7, MRDebug-FL obtains
the suspiciousness ranking based on the Ochiai1 metric, com-
paring the similarity between the EXEC_FAILURES vector and
the coverage vector of each characteristic: “1 Mapper”, “>1
Mapper, and the others not depicted in Fig. 7. The vector of
“>1 Mapper” is different than the vector of failures because
despite some executions with “>1 Mapper” fails (the execution
of conffail), there are other executions that succeed with “>1
Mapper” (the execution of confFL B). According to the Ochiai1
ranking metric, the suspiciousness of “>1 Mapper” is 0.37. We
cannot say if this suspiciousness is high or low because it
depends on how much more/less suspicious other characteristics
are. In the case of “>1 Combiner”, the coverage vector is quite
similar to the vector of failures because the executions that fail
usually execute “> 1 Combiner” (executions of conffail and
confFL B). The suspiciousness of “>1 Combiner” according to
Ochiai1 is 0.46. Finally, MRDebug-FL ranks the characteristics
based on the computed suspiciousness, and “>1 Combiner” is
the characteristic most suspicious to cause the design fault. Note
that the suspiciousness of “>1 Combiner” is not 1 because there
are some executions not depicted in Fig. 7 that succeed when
executing “>1 Combiner” due to coincidental masking.

V. MRDEBUG-IR: INPUT REDUCTION

Given a test case failure, the input reduction technique,
MRDebug-IR, applies Delta Debugging to recursively select
only a subset of the input data until a minimal input data that still
triggers the failure is reached. The reduction technique executes
the algorithm of Fig. 8 as described below. This algorithm is
similar to Delta Debugging but with slight differences. During
the reduction, MRDebug-IR uses MRTest to check whether the
reduced data still trigger the failure, and also allows to stop the
reduction when the test input data is small enough. To this end,

MRDebug-IR has an optional parameter “threshold” in case the
tester wants to indicate how much test input data is small
enough, regardless of whether it is possible to reduce the
data further.

In the first part of the reduction, the test input data are divided
into two subsets with half of the data each (binary-search). Next,
MRDebug-IR executes each subset using MRTest [14] as auto-
mated partial oracle in order to check automatically if the subset
of the test input data still triggers the failure or not. If one of
these subsets triggers the failure, then this subset is divided
again. In the case that neither of the two subsets of data triggers
the failure, the granularity is increased (e.g., one of the subsets
together with half of the other subset). The algorithmic details
of howMRDebug-IR works are described below.

MRDebug-IR executes recursively the input reduction algo-
rithm trying in each iteration to reduce a little bit the subset of
the test input data that triggers the failure. This subset is repre-
sented in the algorithm by treducted and in the first iteration it is
the whole test input data. MRdebug splits this subset into num-
berKVsplits sub-subsets of it called splits. In the first itera-
tion, numberKVsplits is 2, which means that the test input
data is divided into two splits. Each time one of the splits trig-
gers a failure, the algorithm tries to reduce recursively this faulty
split into 2 splits. When none of these 2 splits triggers a failure,
the faulty data is partially assigned in one split and partially in
the other split. In that case, the algorithm increases the granular-
ity analyzing again the same subset of data but with the double
of numberKVsplits. Next, MRDebug analyzes each one of
the splits of the subset (KVsubset) together with their comple-
ments (KVcomplement). A complement is the subset minus
each one of the splits, this means that the first time the comple-
ment is one half of the subset together with one half of the other
half of the subset. The algorithm is executed in this way recur-
sively until either it reaches the minimal data or exceeds the
threshold. A minimal test input data is reached when the subset
that triggers the failure cannot be split in more parts because the
number of splits is already bigger or equal than the number of
<key, value> pairs of the subset.

Fig. 9 illustrates how MRDebug-IR reduces the input data
from a test case that fails. First, the 4 <key, value> pairs of the
input data are divided into two halves: the first half has the first
2 pairs (treduced A), and the second half the other 2 pairs
(treduced B). Next, each half is executed using MRTest, but

Fig. 7. Example of the fault localization technique.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 963

neither of them triggers the failure. Therefore, MRDebug-IR
increases the granularity because the failure might be triggered
with some data of the first half and other data of the second half.
MRDebug-IR starts with the first half together with the half of
the second half (treduced C), this means a subset of the three first
<key, value> pairs. This subset is executed with MRTest and
reveals the failure with only three <key, value> pairs
(treduced C). Finally, MRDebug-IR is executed recursively in
order to check if it is possible to reduce more <key, value>

pairs, but in this illustrative example it is not possible because it
has reached the minimum test input data.

VI. MRDEBUG-IR-FL: INPUT REDUCTION

AND FAULT LOCALIZATION

MRDebug-IR-FL debugs automatically the MapReduce pro-
grams with a sequence of input reduction followed by fault
localization. The goal of MRDebug-IR-FL is to improve the
localization of the design faults using input reduction to remove
those <key, value> pairs that are not relevant to trigger
the failure.

First, the input reduction technique, MRDebug-IR, reduces
automatically the input data until either a threshold configured
by the tester or a minimal data that triggers the failure (treduced)
is reached. Next, the fault localization technique, MRDebug-FL,
localizes the design fault automatically (RANKING). There are
some potential benefits to execute the fault localization with the
reduced data. The fault localization could be more effective
with reduced data because these data have less noise and there-
fore produce less coincidental masking. On the other hand, the
fault localization with less data could be faster than with the full
data. The experiments of Section VII-C confirm that the fault
localization of MRDebug-IR-FL is both more effective and
more efficient than MRDebug-FL.

In the example used in the previous sections, the test input
data have 4 <key, value> pairs (Fig. 4). MRDebug-IR-FL exe-
cutes MRDebug-IR and obtains that the failure can be triggered
with only the 3 <key, value> pairs represented in Fig. 9
(treduced C). Next, MRDebug-IR-FL executes MRDebug-FL
with these 3 <key, value> pairs and obtains that the root cause
of the fault is “> 1 Combiner”.

VII. EVALUATION

The goal of the experiments is to evaluate both the effective-
ness and the efficiency of MRDebug-FL, MRDebug-IR and
MRDebug-IR-FL in debugging the MapReduce design faults.
Regarding MRDebug-FL, we aim to answer the following
research questions:

RQ1.1. Is MRDebug-FL more effective at locating the
root cause of MapReduce design fault than a ran-
dom localization (baseline)?

RQ1.2. In what position of the suspiciousness ranking
obtained by MRDebug-FL is the root cause of the
MapReduce design fault?

RQ1.3. How much execution time does MRDebug-FL
employ to locate the MapReduce design fault?

RQ1.4. Can MRDebug-FL achieve a trade-off between the
design faults located and execution time by vary-
ing the number of times that each configuration is
executed (parameter K)?

The research questions about MRDebug-IR are:
RQ2.1. Is MRDebug-IR more effective at isolating the test

input data that trigger theMapReduce design faults
than a random reduction (baseline)?

Fig. 8. MRDebug-IR pseudo-code.

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

RQ2.2. How effective is MRDebug-IR in reducing the test
input data of the MapReduce design faults?

RQ2.3. How much execution time does MRDebug-IR
employ to reduce the test input data of the MapRe-
duce design faults?

The research questions about MRDebug-IR-FL are:
RQ3.1. Is MRDebug-IR-FL more effective at locating the

MapReduce design faults than MRDebug-FL?
RQ3.2. Is MRDebug-IR-FL able to decrease the execution

time of MRDebug-FL?
RQ3.3. How much data should MRDebug-IR-FL reduce

to localize the faults in both a more effective and
more efficient way?

To answer the research questions, we have selected the sub-
ject programs using Purposive sampling [38] which is the sam-
pling technique most used in recent high-quality software
engineering research [39]. In total, we have selected 13 subject
programs (P1-13): 5 are real-world programs that have a known
design fault (P1-P5), and the other 8 programs (P6-P13) are
fromMapReduce benchmarks used in the literature [40], [41] in
which we have injected a design fault. The method followed for
the fault seeding is Expert Human Seeder [42], which proposes
to inject faults manually in order to cover the different types of
design faults based on the knowledge about both MapReduce
and the type of faults. The faults injected represents a wide vari-
ety of design faults according to the different MapReduce
semantics, grouped in the following fault categories: commuta-
tivity/associativity/idempotency (P3, P6 and P12), wrong
assumptions regarding to the order of the information in the
input/intermediate data (P1, P2 and P13), Shuffle phase distribut-
ing the data incorrectly in different Reducers (P7, P8 and P10),
and Mappers wrongly partitioned/processed (P4, P5, P9 and
P11). Moreover, each one of the faults has been injected to fail
in very different way than others from the same category using
different MapReduce functions/functionalities: Mapper, Com-
biner, Reducer, In-Mapper Combiner, composite key, compos-
ite value, setup, or cleanup, among others. In the following,
we provide a description of both functionality and faults of sub-
ject programs:
(P1) Open Ankus [43] is a recommendation system that recom-
mends to the users some items like books based on those pre-
ferred by similar users. The Reducer incorrectly matches the
first item of the first user with the first prediction done even
when the prediction is for another item. The program fails

when data about the same both user and item are unsorted due
the parallel execution of the framework.
(P2) Data quality analysis [44] measures the quality of the
data interchanged by companies. The program fails when
some particular data under analysis are not processed in the
same order as in the input due to parallelization issues done by
the framework. The fault is actually fixed.
(P3) Movie analysis [45] obtains statistics about movies. The
Combiner is incorrectly implemented with a non-
commutative/non-associative functionality. The program fails
when several Combiners are executed with the partial data of
the same movie and Reducer is not able to aggregate them.
(P4) Data cleaner Knn analysis [46] cleans the data using a
machine learning program to make clusters of similar data.
The Mapper incorrectly tries to access the non-local available
data. The program fails when the framework splits the data of
the same cluster in several Mappers and the Mapper is not
able to access all of them.
(P5) PageRank [47] calculates the importance/popularity of a
web page based on the links connected. Reducer requires the
information of the web page and all its links, but the Mapper
incorrectly returns to the Reducer only the links that are
locally available in this Mapper. The program fails when the
framework parallelizes the links of a web page in severalMap-
pers and Reducer only receives part of the links.
(P6) Wordcount counts the number of times each word is
repeated in a text. The Combiner is incorrectly implemented
with a non-idempotent functionality that instead of increasing
the counter by 1, sets the counter to 1 after the second iterative
execution. The program fails when the framework executes
the Combiner iteratively several times.
(P7) Grep counts the times that a pattern is repeated in a text.
The Mapper emits a composite key containing the grep pat-
tern, but the Shuffle phase is incorrect because it does not guar-
antee that all data of the same pattern go to the same Reducer.
The program fails when the partial counts of the same grep
pattern are in different Reducers due the parallel execution of
the framework.
(P8) Flyinghours finds the total flying hours per departure
hour-airport. The Mapper incorrectly emits the departure hour
as a value instead of as part of composite key. The program
fails when a Reducer does not receive all data of the same
departure hour-airport due the parallelization of the
framework.

Fig. 9. Example of input reduction.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 965

(P9) CommuteModeTrips calculates the number of trips done
by each transport mode. The program has an In-Mapper Com-
biner and the Reducer incorrectly does not aggregate the par-
tial data from this type of In-Mapper Combiner. The program
fails when the input data of the same transport mode is split by
the framework in several Mappers and Reducer does not
aggregate them.
(P10) MovieAge counts the number of movies that can be
watched per each age based on the recommended age. For
each target age, Reducer counts the movies from age 0 to the
target age. However, Mapper uses incorrectly the recom-
mended age of the movie as key, and the Reducer could not
receive all movies from age 0 to the target age. The program
fails when a Reducer receives the movies of one age but does
not receive those of the lower ages due the parallelism done
by the framework.
(P11) studentGPA calculates the GPA from several grades.
The Mapper calculates the GPA of those grades locally avail-
able, and Reducer incorrectly emits them directly without
aggregating them. The program fails when the framework
splits the grades of the same student in several Mappers, and
Reducer does not aggregate the partial GPAs.
(P12) CarAccidents calculates the average visibility level per
severity type. The program has an In-Mapper Combiner fol-
lowed by another Combiner incorrectly implemented with a
non-commutative/non-associative functionality. The program
fails when the framework executes the Combiner.
(P13) weatherAnalysis obtains a delta between the maximum
and minimum snowfall per each state-month. The Mappers
receive the snowfall sorted by state-month and for each one
only emit the first and last snowfall. However, the Reducer
incorrectly calculates the delta from the first and last snowfall
of each state-month, even when they are not the maximum or
minimum. The program fails when the snowfalls are unsorted
due the parallel execution of the framework and Reducer is
not aware of that.

The population of the experiments is composed by all test
cases that trigger MapReduce design faults, and each of these
test cases is taken as the experimentation unit. The test cases are
generated randomly for each of the previous subject programs
guaranteeing that they trigger a design fault. The experiments
could be affected by the number of test input data, hence a
blocking factor [48] is established with different numbers of
<key, value> pairs varying between 10 and 99999 pairs. This
means that the experiments are replicated with different blocks,
each one indicates the lower and upper limit of number of<key,
value> pairs and analysed individually to both control and
detect some influence of the number of test input data in the
debugging techniques. Hence, the test cases are not only gener-
ated randomly but also with the number of <key, value> pairs
established in the blocking factors designed per each research
question. The research questions related to MRDebug-FL,
RQ1.1-RQ1.4 and RQ3.1-RQ3.2, have the following blocking
factors: between 10 and 99 <key, value> pairs, and between
100 and 999 <key, value> pairs, respectively. The research
questions that execute the input reduction, RQ2.1-RQ2.3 and
RQ3.3 have the following blocking factors: between 10 and 99,

100 and 999, 1000 and 9999, and between 10000 and 99999
<key, value> pairs. The following subsections address the
research questions repeating each experiment 30 times for each
subject program and blocking factor. The experiment environ-
ment is a Linux server with 10GB of RAM, the subject programs
are implemented using Hadoop MapReduce, and they are exe-
cuted in local. The size of the test input data varies from 10 up to
99999<key, value> pairs depending on the blocking factor.

Subsection VII-A addresses the research questions of
MRDebug-FL, Subsection VII-B the RQs of MRDebug-IR, and
Subsection VII-C the RQs of MRDebug-IR-FL. Finally, Sub-
section VII-D discusses the general results, and Subsection
VII-E the limitations of the experiments. The supplemental
material with the test cases and the scripts used in the evaluation
are in Zenodo [49].

A. MRDebug-FL Evaluation

This section addresses the research questions RQ1.1-RQ1.4
by executing MRDebug-FL with the test cases and the program
subjects described above. MRDebug is executed with K ¼ 5
(we evaluate the impact of this parameter in RQ1.4) and using
the 52 ranking metrics listed in the supplemental material:
Ochiai1 and Tarantula, among others, that are the most common
in the literature [18], [36], [37]. This section only shows the
aggregated results with the Ochiai1 ranking metric due to the
limitation in space. The results of each blocking factor, subject
program or ranking metric are similar to those shown in this sec-
tion, and they are provided as supplemental material.

In fault localization it is common to have ties in the ranking
[50]. A tie occurs when MRDebug-FL assigns the same suspi-
ciousness to multiple characteristics and they are simultaneously
in the same ranking position. Since it is not possible to rank sev-
eral characteristics in the same position as the tester can only
analyse one of them at a time, the tester breaks the tie by ran-
domly selecting the characteristics of the tie one by one. This
randomness can have an impact on the results of the experi-
ments when the root cause of the fault is tied with other charac-
teristics because ranking one before the other is a matter of
chance. To control this randomness during the evaluation of
MRDebug-FL, the following three tie-breaking scenarios are
applied: best, average and worst scenarios of each tie that con-
tains the root cause of the fault. The best scenario breaks the tie
by ranking the root cause of the fault above the other character-
istics of the tie, i.e., the tester analyses the root cause of the fault
before the other characteristics of the tie. In the same way, the
worst scenario ranks it below the other characteristics of the tie
i.e., the tester analyses the root cause of the fault after the other
characteristics of the tie. Finally, the average scenario ranks it in
the middle of the tie. In the evaluation of MRDebug-FL, we ana-
lyse the ranking of the potential root causes of faults (character-
istic ranking) obtained by the fault localization technique, and
execution time. Precisely, the dependent variables or response
variables are: the position of the root cause of fault in the char-
acteristic ranking, and execution time in seconds. The experi-
ments answer the research questions using different statistical
measures and qualitative analyses described below. Among the

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

statistic metrics, the p-values and effect sizes are used to validate
the hypotheses proposed in the research questions. The p-values
indicate whether an effect exists in the hypothesis, and the effect
sizes indicate how large that effect is. We consider that p-value
>¼ 0.05 indicates a non-statistical significance for the effect,
whereas p-value < 0.05 indicates a statistical significance. In
the case of the effect sizes, we use the Cohen effect sizes and the
interpretation of Coolican [51]: r > 0.5 indicates large effect, r
> 0.3 is medium effect, r > 0.1 is small effect, and r < 0.1 indi-
cate no effect.

RQ1.1. Is MRDebug-FL more effective at locating the
root cause of MapReduce design fault than a random locali-
zation (baseline)? To answer this research question we use the
EXAM score [52] which is one of the most used evaluation met-
rics in fault localization [36], and the normalized AUC (Area
Under Curve), because it allows comparison between ranking
metrics [53]. The EXAM score measures the percentage of the
characteristic ranking that must be examined until the position
of the root cause of the fault is reached. The AUC considers per
each test case the position of the root cause of the fault in the
characteristic ranking, and it is defined as the sum per each test
case of the percentage of characteristic ranking not analysed.
We compare the characteristic rankings provided by both ran-
dom localization (baseline) and MRDebug-FL using the non-
parametric statistic test Wilcoxon Sign Rank test that measures
the differences between the paired medians with the following
one-tail null hypothesis: H01: The position of the root cause of
the fault in the characteristic ranking obtained by MRDebug-FL
is worse than or equal to that obtained by a random location.

Fig. 10 shows that MRDebug-FL is better than random locali-
zation in locating the root cause of the faults in the first positions
of the characteristic ranking. The figure has three plots, one per
each tie-breaking strategy, and each plot is the distribution of
the positions in the characteristic ranking in which the fault is
located by MRTest-FL and random localization for all programs
and blocking factors. The Y-axis of each plot is the ranking met-
ric used. The X-axis of each plot is the position of the fault in
the characteristic ranking using both the position in the ranking
and the EXAM score. Position 1 of the ranking means that the
debugging technique correctly locates the fault in the best posi-
tion, and the worst position is 17. In other terms, a debugging
technique is more effective when the root cause of the fault is
closer to position 1 of the characteristic ranking (X-axis). It can

be observed in the best tie-breaking strategy (top plot) that, in
median, Random locates the faults in position 4 (position 4.6 in
average), while MRDebug-FL locates them in position 1 (posi-
tion 1.4 as average). In the three tie-breaking strategies,
MRDebug-FL ranks the root cause of the fault in the first top
positions, which corresponds to a low EXAM score. Fig. 10 also
shows on the right the Wilcoxon Sign Rank p-values and Cohen
effect sizes in comparing MRDebug-FL against a random locali-
zation. Regardless of the tie-breaking technique, we can observe
that MRDebug-FL is better than random localization with a
p-value<2e-16 and large effect sizes with r> 0.74.

Fig. 11 compares MRDebug-FL with the random localization
according to the normalized AUC. The X-axis is the position in
which the localization technique locates the root cause of the
fault, and the Y-axis is the cumulative percentage of faults
located at each position for all programs and blocking factors. A
debugging technique is better when the cumulative percentage
of faults (Y-axis) is closer to 100 in the first positions (X-Axis)
because this means that the technique locates more faults in
those positions. It can be observed that Random locates 16.3%
of faults in the first position while MRDebug-FL locates in this
position 87.1% of faults with the best tie strategy and 74.9% in
both average and worst ties. The cumulative number of faults
localized in all positions is measured with the normalized AUC
that is represented in the table on the top of the figure. A debug-
ging technique is more effective when the normalized AUC is
closer to 1. We can observe in the table that MRDebug-FL has a
normalized AUC near to the maximum because it is greater than
0.95. In contrast, the random localization has 0.62 of normalized
AUC. This means that MRDebug-FL not only locates the root
cause of the fault in the top positions of the characteristic rank-
ing, but it is also more effective than random localization.

Based on the above, the null hypothesis is rejected and we
can state that MRDebug-FL is significantly better than ran-
dom localization because it locates the root cause of the fault in
the first positions of the characteristic ranking and with more
normalized AUC.

RQ1.2. In what position of the suspiciousness ranking
obtained by MRDebug-FL is the root cause of the MapRe-
duce design fault? To answer this research question we use the
acc@n metric that measures how many times the root cause of
the fault is localized before the N position. The comparison is
done by the non-parametric statistical test Wilcoxon Sign Rank

Fig. 10. Distribution of the position of the root cause of the fault by random
localization and MRDebug-FL. Fig. 11. Normalized AUC of MRDebug-FL.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 967

with the following one-tail null hypothesis: H02: The position
of the root cause of the fault in the characteristic ranking
obtained by MRDebug-FL is greater than or equal to N (N is the
position 1, 2…).

Fig. 12 has three sub-tables with the Wilcoxon Sign Rank
p-values (top) and another three sub-tables with the Cohen effect
sizes [54] (bottom) of each top N (acc@N) position of the char-
acteristic ranking for all programs in all blocking factors. Each
one of the sub-tables is one of the tie-breaking techniques (best,
average and worst) for random localization and MRDebug-FL
with Ochiai1 ranking metric. The two rows of each table are
MRDebug-FL with the ranking metric Ochiai1 and the random
localization, and the columns are the top N (acc@N) positions.
A debugging technique is better when the first top positions
-lower N in acc@N- have both lower p-value -at least below
0.05- and larger effect sizes r. We can observe that MRDebug-
FL localizes the fault in the first top positions of the ranking
(Top 1) with a p-value < 0.05 (significant) and large effect sizes
with r > 0.5. Therefore, the null hypothesis is rejected for the
top positions of MRDebug-FL and we can state that, in gen-
eral, MRDebug-FL localizes the root causes of the fault in
the first positions of the characteristic ranking.

RQ1.3. How much execution time does MRDebug-FL
employ to locate the MapReduce design fault? To answer this
research question, we analyse the trend of the execution time.
Fig. 13 shows the execution time of MRDebug-FL according to
the number of <key, value> pairs of the test cases of all pro-
grams in all blocking factors. Each point is the execution of fault

localization in one test case, the X-axis is the number of the test
input data, and the Y-axis is the execution time of MRDebug-
FL. The curve depicted in the plot is the trend of the execution
time and it grows according to the number of <key, value>
pairs. As expected, the more test input data to debug, the longer
execution time. Note that MRDebug-FL executes the unit test
cases in one computer and not in the cluster. The test cases with
less than 100 <key, value> pairs employ less than 100 seconds
in the worst cases. However, those test cases with �1000 <key,
value> pairs that employ more execution time take approxi-
mately 2800 seconds (�47 minutes). The execution time also
follows an exponential trend. Therefore, we can state that
MRdebug-FL employs low execution time when the test
cases have few <key, value> pairs, but the execution time
grows exponentially according to the number of the test
input data. Note that this execution time can be decreased by
MRDebug-IR-FL that combines input reduction and fault locali-
zation to localize a fault only with part of the test input data
(Subsection VII-C).

RQ1.4 Can MRDebug-FL achieve a trade-off between the
design faults located and execution time by varying the num-
ber of times that each configuration is executed (parameter
K)? Intuitively, a higher number of configurations executed by
MRDebug-FL (parameter K) yield better results, but also more
execution time. To answer this research question, we analyse the
trend of the normalized AUC in the ranking metrics per each one
of the following values of K: 1, 2, 3, 5, 8 and 13. For the best K,
we also analyse the number of configurations that fail/pass.

Fig. 14 depicts the increased trend of both execution time of
MRDebug-FL and the normalized AUC when more configura-
tions are executed by MRDebug-FL. The figure has two plots,
the top plot is the trend of the normalized AUC of MRDebug-
FL with Ochiai1 ranking metric and the bottom plot is the exe-
cution time varying in both plots the number of times each con-
figuration is executed. The Y-axis of the top plot is the
normalized AUC and the Y-axis of the bottom plot is the execu-
tion time. In both plots, the X-axis is the K parameter, and the
experiments are re-executed in each one of the K aggregating
the data of all programs and all blocking factors. The best K
parameter of MRDebug-FL (X-axis) is the one that achieves the
best trade-off between effectiveness (Y-axis of top plot) and
efficiency (Y-axis of bottom plot). This means that the best K is
the position of X-axis that has both the normalized AUC closer
to 1 (Y-axis of top plot) and lower execution time (Y-axis of
bottom plot). As expected, we can observe that MRDebug-FL is

Fig. 12. Hypothesis testing of faults rightly located in each position of the ranking for all programs according to different ranking methods.

Fig. 13. Execution time trend of MRDebug-FL.

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

more effective when the configurations are executed more times,
but with decreased efficiency. There is no value of K that
achieves the best effectiveness and efficiency at the same time.
From K¼ 1 to K¼ 5 the normalized AUC is improved between
2% and 4%, depending on the tie-breaking technique, whereas
the execution time is slightly increased. In contrast, from K ¼ 5
to K ¼ 13 the execution time increases faster, and the normal-
ized AUC only increases between 0% and 1%. Therefore, we
can state that K5 5 achieves a good trade-off between effec-
tiveness and efficiency.

Fig. 15 depicts the distributions of the number of configura-
tions that fail and succeed during the execution of MRDebug-
FL with K ¼ 5. Per each test case, MRDebug executes several
configurations where some of them succeed, and others fail.
Note that all of these configurations (succeeded or failed) are
useful to locate the root cause of the fault. It can be observed
that, in average, MRDebug-FL executes per each test case 23.4
configurations that fail and 9.4 that succeed. However, this is
not always true for all programs because we have observed in
the supplemental material that in some programs it is just the
opposite. We cannot conclude neither that MRDebug-FL exe-
cutes more configurations that succeed than that fail, nor the
vice versa. Regardless, MRDebug-FL usually executes per each
test case a variety of configurations that both fail and succeed.

B. MRDebug-IR Evaluation

This section addresses the research questions RQ2.1-RQ2.3
by executing MRDebug-IR with the test cases and the program
subjects described at the beginning of this section. In the evalua-
tion of MRDebug-IR, we analyse the test input data after the
reduction, and the execution time. The dependent variables or
response variables are: the number of the <key, value> pairs
after the reduction, and the execution time in seconds. This sec-
tion only shows the aggregated results due to the limitation of
space, but the results of each blocking factor or subject program
are provided as supplemental material.

RQ2.1 Is MRDebug-IR more effective at isolating the test
input data that trigger the MapReduce design faults than a
random reduction (baseline)? To answer this research ques-
tion, we analyse the number of test input data after the reduction
of MRDebug-IR and the random reduction (baseline). This ran-
dom reduction makes random searches in the space as much
time as MRDebug-IR, that is, the technique selects randomly
without substitution several subsets of the test input data
employing the same time as MRDebug-IR. The comparison is
done by the non-parametric statistical test Wilcoxon Sign Rank
with the following one-tail null hypothesis: H03: The number of
test input data after the reduction of MRDebug-IR is greater
than or equal to that after random reduction.

Fig. 16 depicts the distribution of the number of test input
data after the reduction done by both MRDebug-IR and random
reduction (baseline) for all programs in all blocking factors. The
X-axis is the input reduction technique used, and the Y-axis is
the number of the test input data after the reduction. A debug-
ging technique is better when the number of test input data after
the reduction (Y-axis) is closer to 1. The figure also shows the
Wilcoxon Sign Rank p-value and Cohen effect size that com-
pare MRDebug-IR against a random reduction. MRdebug-IR is
more effective than the baseline when both the p-value is lower
-at least below 0.05- and r is larger. In these experiments,
MRDebug-IR always reduces the data below 10 <key, value>
pairs, whereas the random reduction works worse. We can
observe that MRDebug-IR is significantly better than the ran-
dom reduction with a p-value <2e-16 and large effect sizes with
an r ¼ 0.866. Therefore, the null hypothesis is rejected, and we
can state that MRDebug-IR is significantly better at reduc-
ing data than random reduction.

RQ2.2 How effective is MRDebug-IR in reducing the test
input data of the MapReduce design faults? To answer this
research question, we analyse the differences in the number of
test input data before and after MRDebug-IR. We calculate the

Fig. 14. Normalized AUC and execution time according to the K by MRDe-
bug-FL.

Fig. 15. Number of configurations that fail and pass per each execution of
MRDebug-FL.

Fig. 16. Distribution of the test input data after the reduction.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 969

average of the number of the test input data after the reduction,
and conduct a bivariate correlation analysis between the number
of the test input data before and after the reduction.

Fig. 17 shows the relationship between the number of test
input data before and after the reduction. The figure depicts one
point per each test case indicating the number of test input data
before (X-axis) and after (Y-axis) MRDebug-IR for all pro-
grams and blocking factors. The trend depicted in the figure
indicates how many test input data are obtained after the reduc-
tion (Y-axis) according to the test input data before the reduction
(X-axis). The debugging technique is better when the trend is
closer to 1 in the Y-axis because this means that the debugging
technique reduces many more data. In the same way, when the
trend is horizontally flat it means that the debugging technique
always obtains the same number of test input data after the
reduction (Y-axis) regardless of how large the test input data
were before the reduction (X-axis). The figure also indicates the
Spearman’s correlation coefficient, q, which indicates the
strength -if any- in the relationship between the number of input
data before the reduction and after the reduction. The strength of
relation is bigger when q is closer to 1. MRDebug-IR reduces
the data until reaching 2.5 <key, value> pairs as mean, which
is optimal or close to the optimal. We can observe that
MRDebug-IR reduces the data constantly around 2.5 <key, val-
ue> pairs regardless of how much bigger the test input data are
before the reduction. There is no correlation between the num-
ber of test input data before and after MRDebug-IR. The Spear-
man’s correlation is near to 0 (0.017) obtained with two-sided
95% bootstrap confidence interval. The reduction is independent
from how much data are in the test case, and it is also near to the
optimal reduction. Therefore, we can state that MRDebug-IR
is both effective and reliable because it reduces the test input
data near to the optimal.

RQ2.3 How much execution time does MRDebug-IR
employ to reduce the test input data of the MapReduce
design faults? To answer this research question, we analyse the
trend of the execution time. Fig. 18 shows the execution time of
MRDebug-IR according to the number of <key, value> pairs
of the test cases for all programs in all blocking factors. Each
point is the execution of one test case and the curve is the trend

between the number of test input data before the reduction (X-
axis) and the execution time (Y-axis). As expected, when the
more the test input data to debug, the longer the execution time.
MRDebug-IR reduces the test cases with 1000-9999 <key, val-
ue> pairs in 86.7 seconds on average. However, if the test case
has 10000-99999 <key, value> pairs the execution time is
increased until 6975 seconds (�2 hours) on average. Therefore,
we can state that MRDebug-IR employs low execution time
when the test cases have few <key, value> pairs, but the exe-
cution time increases exponentially. Note that MRDebug-IR
executes the unit test cases in one computer and not in the clus-
ter in order to fine-grain control the execution.

C. MRDebug-IR-FL Evaluation

This section addresses the research questions RQ3.1-RQ3.3
by executing both MRDebug-IR-FL and MRDebug-FL with the
test cases and the program subjects described in the beginning of
this section. The baseline of RQ3.1 and RQ3.2 is MRDebug-FL,
and the treatment is MRDebug-IR-FL which is configured to
localize the faults after reducing the test input data down to the
minimum possible. In RQ3.3, we analyse how effective/efficient
MRDebug-IR-FL is at locating faults when it is configured to
reduce more or less data. In all the research questions, the
MRDebug techniques uses K ¼ 5 because, according to RQ1.4,
this achieves a good trade-off between effectiveness and effi-
ciency. As we can observe in Subsection VII-A, MRDebug-FL
does not scale well, and to make a fair comparison between
MRDebug-FL and MRDebug-IR-FL, in RQ3.1 and RQ3.2 we
use the blocking factors 10-99 and 100-999 <key, value> pairs.
In contrast, RQ3.3 only analyses MRDebug-IR-FL and we use
the following blocking factors: between 10 and 99, 100 and 999,
1000 and 9999, and between 10000 and 99999 <key, value>
pairs. This section only shows the aggregated results with the
Ochiai1 ranking metric due to the limitation of space, and the
supplemental material contains the results of each blocking fac-
tor, subject program or ranking metric.

RQ3.1 Is MRDebug-IR-FL more effective at locating the
MapReduce design faults than MRDebug-FL? To answer this
research question, we analyse the position of the fault in the
characteristic ranking provided by both MRDebug-FL and
MRDebug-IR-FL. The comparison is done using the non-

Fig. 17. Trend of test input data before and after MRDebug-IR.
Fig. 18. Execution time trend of MRDebug-IR.

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

parametric statistical test Wilcoxon Sign Rank with the follow-
ing one-tail null hypothesis: H04: The position of the root cause
of the fault in the characteristic ranking obtained by MRDebug-
IR-FL is worse than or equal to that obtained by MRDebug-FL.

Fig. 19 depicts how much better MRDebug-IF-FL is than
MRDebug-FL at locating the root cause of the faults in the first
positions of the characteristic ranking. The figure has three plots,
one per each tie-breaking strategy, and each plot depicts for all
programs and blocking factors the distribution of positions of
root cause of fault in both MRDebug-FL and MRDebug-IR-FL.
The X-axis of each plot is the position of the fault in the charac-
teristic ranking, and the Y-axis of each plot the debugging techni-
ques MRDebug-IR-FL and MRDebug-FL. A debugging
technique is more effective when the root cause of the fault is
closer to position 1 of the characteristic ranking (X-axis). The
figure also shows the Wilcoxon Sign Rank p-values and Cohen
effect sizes that compares MRDebug-IR-FL against MRDebug-
FL. The debugging technique MRdebug-IR-FL is more effective
than MRDebug-FL when regardless of the tie-breaking tech-
nique both the p-value is lower -at least below 0.05- and r is
larger. Note that MRDebug-FL localizes the faults without
reducing the test input data, and MRDebug-IR-FL localizes after
reducing the test input data as much as MRDebug-IR can. It can
be observed in the best tie-breaking strategy (top plot) that, in
average, MRDebug-FL locates the faults in the position 1.4,
while MRDebug-IR-FL locates them in position 1.2. Although
MRDebug-FL is able to locate the root cause of the faults in the
first positions of the characteristic ranking, MRDebug-IR-FL
locates the faults even in higher positions. Regardless of the tie-
breaking technique, we can observe that MRDebug-IR-FL is bet-
ter than MRDebug-FL with a p-value < 0.0001 and small-
medium effect sizes r > 0.122. Therefore, the null hypothesis is
rejected, and we can state that MRDebug-IR-FL is signifi-
cantly better than MRDebug-FL because it locates the root
cause of the fault in better positions of the characteristic ranking.

RQ3.2 Is MRDebug-IR-FL able to decrease the execution
time of MRDebug-FL? To answer this research question, we
analyse the execution time employed by MRDebug-IR-FL and
MRDebug-FL. We compare the execution time using the non-
parametric statistical testWilcoxon Sign Rank with the following
one-tail null hypothesis: H05: The execution time of MRDebug-
IR-FL is greater than or equal to that of MRDebug-FL.

Fig. 20 depicts for all programs and blocking factors the dis-
tribution of the execution time of both MRDebug-FL, and
MRDebug-IR-FL locating the faults after reducing the test input

until the maximum possible. The Y-axis is the execution time,
and the X-axis the debugging techniques MRDebug-IR-FL and
MRDebug-FL. The figure also shows the Wilcoxon Sign Rank
p-values and Cohen effect sizes of the comparison. MRDebug-
IR-FL is more efficient than MRDebug-FL when both the
p-value is lower -at least below 0.05- and r is larger. We can
observe that, in median, MRDebug-FL 3.8 seconds to locate the
fault while MRDebug-IR-FL employs 1.8 seconds to both
reduce the data and locate the fault. In the worst case,
MRDebug-FL locates the fault in �19000 seconds (5.3 hours)
while MRDebug-IR-FL only employs �200 seconds in the
worst case to both reduce the data and locate the fault.
MRDebug-IR-FL is significantly faster than the MRDebug-FL
with a p-value <2e-16 and medium/large effect sizes with an
r ¼ 0.475. Therefore, we can state that MRDebug-IR-FL is
faster than MRDebug-FL at localizing the faults because the
input reduction of MRDebug-IR-FL removes all irrelevant data
and the localization is done with less data.

RQ3.3 How much data should MRDebug-IR-FL reduce
to localize the faults in both a more effective and more effi-
cient way? To answer the research question, we analyse the nor-
malized AUC and the execution time employed by MRDebug-
IR-FL. Depending on how many test input data MRDebug-IR-
FL reduces, the localization can yield different results and exe-
cution time. We execute the test cases forcing MRDebug-IR-FL
to reduce the data down to the following reduction thresholds:
10, 500, 1000 and 1500<key, value> pairs.

Fig. 21 shows the normalized AUC for MRDebug-IR-FL
varying the reduction threshold (i.e., how many test input data
are after the reduction) in all programs and blocking factors.
The X-axis is the reduction threshold, and the Y-axis is the nor-
malized AUC obtained by the fault localization done by
MRDebug-IR-FL. The most effective reduction threshold (X-
axis) for MRDebug-IR-FL is the one that achieves the best nor-
malized AUC (Y-axis) closer to 1. When the data is reduced
down to 1500<key, value> pairs, the normalized AUC is high,
between 0.93 and 0.97, depending on the tie-breaking technique,
but when MRDebug-IR-FL reduces down to 10 <key, value>
pairs, the normalized AUC is increased until it reaches between
0.96 and 0.97, depending also on the tie-breaking technique. In
general, we can observe that MRDebug-IR-FL increases pro-
gressively the normalized AUC when there are less data to

Fig. 19. Distribution of the position of the root cause of the fault by MRDebug-
IR-FL andMRDebug-FL.

Fig. 20. Distribution of execution time in both MRDebug-FL and MRDebug-
IR-FL.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 971

localize. This means that MRDebug-IR-FL is better when the
data is reduced down to the minimum possible.

Fig. 22 depicts the total execution time of MRDebug-IR-FL
varying the reduction threshold. The Y-axis is the total execu-
tion time employed by MRDebug-IR-FL, and the X-axis is the
number of <key, value> pairs of the test input data before
MRDebug-IR-FL, i.e., before the input reduction. In this figure
we use different colours for each different reduction threshold.
Note that MRDebug-IR-FL reduces the test input data down the
threshold and localizes the root cause of the fault with the
reduced data. Depending on the reduction threshold used,
MRDebug could be more efficient. The best reduction threshold
in terms of efficiency is the one that has the curve trend lower
and closer to 0. As expected, we can observe that MRDebug-IR-
FL employs different execution time depending on the reduction
threshold. For example, in a test case with 2000 <key, value>
pairs, if MRDebug-IR-FL reduces the test input data down to
1500 <key value> pairs, it employs in total �650 seconds on
average, but if the reduction is down to 10 <key, value> pairs
the total execution time of MRDebug-IR-FL decreases by
employing �15 seconds on average. In general, regardless of
the test input data, we can observe -as can be expected- that
MRDebug-IR-FL employs less execution time when there is
less data to localize. This means that MRDebug-IR-FL is faster
when the data is reduced down to the minimum possible.

Therefore, we can state that MRDebug-IR-FL localizes the
faults both better and faster when it reduces the data to the
maximum possible degree because the input reduction
removes the irrelevant data.

D. Discussion of Results

The experiments indicate that the MapReduce design faults
can be automatically located and the test input data can be auto-
matically reduced until close to the maximum reduction. In the
remainder of this subsection, the results of each debugging tech-
nique are discussed.

MRDebug-FL: the results of RQ1.1 and RQ1.2 (Subsection
VII-A) indicate that when using the Ochiai1 ranking metric,
MRDebug-FL locates automatically the right root cause of the
faults in the first positions of the characteristic ranking and does
so significantly better than random localization. In the supple-
mental material we also analyse MRDebug-FL using 52 ranking

metrics and the results are similar to when using Ochiai1. All of
the ranking metrics are significantly better than random localiza-
tion in best and average ties. In the worst ties, 51 out of 52 rank-
ing metrics are significantly better than random localization.
The majority of ranking metrics also achieve a normalized AUC
greater than 0.9 in all ties. The best ranking metrics in the
experiments are Kulczynski2, McCon, and M2 that achieve the
following normalized AUC values: 0.98 in best ties, 0.96 in the
average ties, and 0.95 in the worst ties. Almost all ranking met-
rics also locate the fault in the first positions (Top 1) with
p-value < 0.05 in best and average ties. In the worst ties, 40 out
of 52 ranking metrics locate the fault in the top 1 (acc@1) with
p-value < 0.05, and the majority of them (46 out of 52) locate
the fault in top 2 (acc@2) with p-value< 0.05.

The results of RQ1.4 indicate that MRDebug-FL achieves a
trade-off between effectiveness and efficiency when it locates
the fault executing each configuration 5 times (parameter K ¼
5). We also observe that MRDebug-FL obtains better effective-
ness when the number of times that each configuration is exe-
cuted increases. These results have similarities with those
obtained by Abreu et al. [55] for general-purpose programs. In
both cases,MapReduce design faults and general-purpose faults,
increasing the number of runs analysed by the fault localization
improves its effectiveness.

In general terms, MRDebug-FL executes several configura-
tions that fail and other configurations that succeed. The distri-
bution of them depends on the program under debugging, but
they are enough to locate the root cause of the fault. These
results also have similarities with those obtained by Abreu et al.
[55] for general-purpose programs: executing few configura-
tions that fail is enough to obtain a near-optimal effectiveness of
the debugging technique.

MRDebug-IR: isolates automatically the data that trigger the
fault achieving the maximum reduction or near to the maximum
reduction possible. MRDebug-IR employs low execution time
with small test input data, but the execution time increases rap-
idly. Note that MRDebug-IR uses Delta Debugging, and other
authors also consider that the execution time of Delta Debug-
ging can grow exponentially. According to Misherghi et al.
[56], the input reduction of AST (Abstract Syntax Tree) is
NP-Complete, and Kalhauge et al. [57] prove that the input
reduction problem is also NP-Complete in a broader way for
dependency graphs. The search space of input reduction is 2n

Fig. 21. Normalized AUC according to the reduction thresholds by MRDebug-
IR-FL.

Fig. 22. Execution time for different reduction thresholds in MRDebug-IR-FL.

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

and the complexity of Delta Debugging is Oðn2Þ in the worst
cases according to Zeller et al. [20], where n is the size of the
test case setting (number of <key, value> pairs in our domain).
For example, while Delta Debugging can take up to 3 hours to
reduce a test case with n ¼ 14092 in a general purpose pro-
gram [58], MRDebug-IR spends on average less than 7 minutes
in the experiments for the same n but inMapReduce programs.

MRDebug-IR-FL: despite the fact that both techniques,
MRDebug-FL and MRDebug-IR, are effective, the execution
time increases quickly according to the number of the test input
data, especially in MRDebug-FL. The execution time of fault
localization can be decreased if the test input data is reduced
before the localization. This means that instead of localizing the
fault with all the test input data, the input reduction technique
removes the irrelevant data and, after that, the fault localization
technique locates the fault with only the small part of the test
input data that is relevant. This is done by MRDebug-IR-FL,
that executes the localization after the input reduction.
MRDebug-IR-FL improves not only the execution time but also
the effectiveness of fault localization (MRDebug-FL). In the
supplemental material we also analyse MRDebug, using the 52
ranking metrics and in almost all of them MRDebug-IR-FL is
significantly better than MRDebug-FL for best, average and
worst ties. In the best ties, MRDebug-IR-FL is significantly bet-
ter than MRDebug-FL in 50 out of 52 ranking metrics, and in
the case of both average and worst ties, it is better in 48 out of
52 ranking metrics. Note that MRDebug-IR-FL not only local-
izes the faults both better and faster than MRDebug-FL, but in
less execution time it also obtains a minimal data that triggers
the failure.

E. Limitations

MRDebug does not execute the program under test in a clus-
ter, but in a local environment so to guarantee both a fine-grain
control and a reproducibility that is not easy to achieve in Big
Data clusters due to the parallel non-deterministic executions.
However, this local execution inhibits debugging test cases with
large production datasets, as it is also the case with the unit test-
ing tools commonly used in Big Data such as MRUnit or other
XUnit tools that are executed locally. The remainder of this sub-
section discusses the limitations of the experiments through the
threats of validity and their subcategories [48], [59], [60].

The conclusion threats are those issues that could affect the
conclusions drawn from the experiments. The MRDebug techni-
ques of this paper take advantage of MRTest to automatically
check if there is a failure or not. MRTest could erroneously indi-
cate to MRDebug that one execution succeeds when in fact it
should indicate failure (inaccurate data). Although these errors
could decrease the effectiveness of MRDebug, MRTest provides
the right information on average 60% to 100% of the time,
depending on the program and test input data [14]. This is not a
major issue because even with these inaccurate data, MRDebug
is effective enough, as can be seen in the experiments.

The internal threats are those issues regarding the causal rela-
tionship between independent variables and dependent varia-
bles. RQ1.3, RQ2.3 and RQ3.2 analyse the execution time, but

some noise may be introduced into the measurements by other
operative system tasks (confounding effects of variables). To
mitigate this problem, the experiments were executed in the
same computer without any other programs operating in the
background.

The tool that automates MRDebug can contain faults and
other limitations. To mitigate the potential faults of the tool,
thorough manual/automatic testing was performed mainly from
the functional and performance point of view.

The external threats are those issues that can affect the gener-
alization of the results. The experimentation units are test cases
randomly selected from a set of MapReduce programs. These
programs were selected by purposive sampling. Ideally, the pro-
grams should also be selected randomly, but often this is not
always feasible in software engineering [48] (Interaction of
selection and treatment). For Big Data programs, there is no
benchmark of design faults, and industrial programs are not usu-
ally available [61]. This problem was mitigated by using both
faulty real-world programs and injecting a design faults in the
MapReduce benchmarks used in the literature [40], [41]. The
faults injected in the experiments (hand-seeded faults) could
decrease the reproducibility of the experiments because seeded
faults can usually be considered both subjective and not repre-
sentative of real faults in terms of easy detection [62]. However,
in our experiments we have observed that the results are similar
in hand-seeded faults than in real-world faults.

The test cases used to evaluate MRDebug have up to 99999
<key, value> pairs. The results of the experiments could not be
generalizable for larger sizes of the test input data (Applicability
of results across different samples). To reduce the threat, the
experiments analyse the relationships and trends according to
the number of <key, value> pairs. Note that MRDebug is not
executed in a cluster, and it is not able to debug test cases with
large production data. According to other authors, debugging
Big Data applications at scale have some fundamental obstacles
[63], and executing several times the application at scale is also
prohibitive expensive [64]. However, MRDebug does not intend
to debug with production data, but with test data in development
environment.

Other results can be obtained if MRDebug debugs the programs
in smarter ways, that is if MRDebug-FL generates/analyses the
configurations in a different way, or if MRDebug-IR employs a
better search strategy (Applicability of results when technique is
varied). In this regard, it is worth mentioning that MRDebug tech-
niques achieve very good effectiveness, and the results of the
experiments are reliable across different settings. In the case of
MRDebug-FL, similar results are achieved in the majority of 52
different ranking metrics commonly used in the research. In the
case of MRDebug-IR, the results show optimal or near to optimal
effectiveness regardless of the test input data. In the case of
MRDebug-IR-FL, the evaluation analyses different reduction
thresholds, and the trends are consistent.

In the experiments, the techniques MRDebug-FL and
MRDebug-IR are not compared with other state-of-the-art
debugging techniques. None of the state-of-the-art debugging
techniques is able to locate the root cause of the design faults or
reduce the test input data automatically without a user-defined

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 973

oracle. In the case of the fault localization, these techniques are
not able to obtain the characteristic that triggers the fault because
they obtain suspicious lines of code. Another difference is that
MRDebug obtains the root cause of the fault with only one test
case, while the state-of-the-art fault localization techniques usu-
ally need several test cases. MRDebug-FL is a tailoring of the
state-of-the-art fault localization techniques focused on the
design faults. On the other hand, MRDebug-IR is also an adapta-
tion of Delta Debugging to reduce the test input data of MapRe-
duce design faults using MRTest [14] as oracle. The other
state-of-the-art input reduction techniques like data provenance
[40], [65] usually require a user-defined oracle per each record of
the outcome, while instead the oracle MRTest judges the whole
outcome. Therefore, neither MRDebug-FL nor MRDebug-IR
can be compared with the state-of-the-art techniques. To reduce
the threat, MRDebug-FL compares 52 ranking metrics and it is
evaluated against a random localization, and MRDebug-IR
against random reduction. The evaluation of MRDebug-IR-FL is
done using MRDebug-FL as a baseline. The debugging techni-
ques of MRDebug not only are better than the random baselines,
but in absolute terms locate the faults in the best positions and
reduce the data near to the maximum possible.

The construct threats are those issues between the experiment
and its underlying theoretical concepts. MRDebug-FL and
MRDebug-IR are only compared against a random localization/
reduction because the other techniques of the literature are not
suitable forMapReduce design faults. In the case of fault localiza-
tion, the other techniques are usually focused on the analysis of
the statements instead of on configurations. In the case of input
reduction, the other techniques of the literature do not support the
reduction ofMapReduce design faults.

One part of the experiment analyses the efficiency of MRDe-
bug techniques based only on the execution time measure, but
there could be more measures not considered here, such as
memory (Mono-operation bias). To mitigate this problem, the
tool that automates the research was tested to avoid memory
bottlenecks.

VIII. RELATED WORK

Debugging distributed programs is a difficult task, especially
in the Big Data field [66]. Several works propose debugging
techniques focused on performance for Big Data frameworks
[67], [68] and others for the MapReduce programs [69], [70]. In
contrast, the current paper does not focus on performance
debugging, but on functional debugging. From practical point of
view, functional debugging can be done manually or automati-
cally, analyzing the code statically or dynamically, and also
with runtime production data or with test data. There are some
fundamental obstacles to debugging Big Data programs at scale
in production [63]. Several debugging techniques require to
instrument the code or analyze several executions in controlled
way, but this is prohibitively expensive with large production
data. Executing both testing and debugging in the development
environment can be more practical than in production because
the tests do not impact production, the environment is more

controllable, and there is no need for importing the test data into
a distributed filesystem, among other advantages.

Olston et al. [71] interview ten employers of Yahoo! about
debugging dataflow programs like MapReduce. The majority of
them suggest that it can be valuable to obtain the data and opera-
tors that cause the failure. The current paper undertakes both
tasks inMapReduce design faults through the MRDebug frame-
work. MRDebug locates the root cause of the fault and
isolates/reduces the data that trigger the failure. This debugging
framework is executed automatically analyzing the test data and
executing the code dynamically in development environment to
handle accurately the whole execution.

Fault localization: Gecer et al. [72] investigate the debug-
ging techniques used by seven Big Data developers and dis-
cover that these developers find the root cause of the faults by
manual analysis of the logs, among others. Daphne [63] is a
debugger for DryadLINQ (framework that supports and extends
theMapReduce processing model). This debugger diagnoses the
root cause of the faults based on a decision tree at different lev-
els of abstraction considering logs and stack traces of the execu-
tion. The current work, MRDebug, analyses neither logs nor
stack traces because it is focused on the failures that are trig-
gered by some non-deterministic executions. Then MRDebug
analyses with spectrum-based fault localization not only one
execution, but it executes the program several times to locate
the non-deterministic characteristics that trigger the failure.

Gulzar et al. [41] propose OptDebug that is a spectrum-based
fault localization approach to locate the faulty line/operation in
dataflow applications like Spark. OptDebug analyses which lines
and operations (e.g., split of string, or minus operation between
two integers) are covered during the test execution and if the exe-
cutions fail/succeed. As result, OptDebug obtains a ranking of
lines/operations that are more suspicious to contain a fault. MRDe-
bug also uses spectrum-based fault localization for Big Data appli-
cations, but the kind of faults localized in OptDebug and
MRDebug are different. OptDebug locates faults caused by an
operation code, while MRDebug locates faults that are not caused
by the code itself, but by the program design. MRDebug analyses
execution patterns and does not analyse the lines/operations cov-
ered because, in case of design faults, the same coverage in the
same program with the same test input data can sometimes suc-
ceed and other times fail due to the non-deterministic execution.
Another difference is that OptDebug requires a user-defined oracle
per each record of the outcome, whereas in contrast MRDebug
does not require that the tester provides the oracle because it uses
MRTest [14]. OptDebug cannot use MRTest as oracle because
MRTest is an oracle for the whole outcome and not for each
record, and MRTest is also focused on design faults instead of
other faults. Both techniques, OptDebug and MRDebug, are com-
plementary because they obtain different information about the
fault: OptDebug obtains the faulty line of code and MRDebug the
execution pattern that trigger the failure. In the case of general-
purpose faults, it could be more useful to locate the line of code
that trigger the failure. However, in the case of design faults, the
failures are triggered by non-deterministic executions of the frame-
work, and it could be more useful to locate which have in common
the executions that triggers the failure.

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Isolation/reduction of the data: Some Big Data developers
reduce, re-create or ignore data manually to observe the faults
[72], but there are some research works to automatize this task.
BigSift [64] is a runtime debugger for applications executed in
Spark (framework that supports and extends the MapReduce
processing model). This debugger isolates the data through
Delta Debugging combined with data provenance and a user-
defined oracle per each record of the outcome. The current
paper, MRDebug, also isolates the data based on Delta Debug-
ging, but does not require that the tester provides an oracle
because it uses MRTest [14]. Note that BigSift cannot use
MRTest as oracle because MRTest only works as oracle for the
whole outcome and not per each record. MRDebug is not
focused on any type of faults, but it is focused only on design
faults. During the execution of the Delta Debugging algorithm,
MRDebug executes several times the application in a controlled
environment, and it also allows to stop the reduction when a
threshold is reached.

Feng et al. [73] propose to debug the Big Data applications
by means of a binary search aimed to reduce the input data while
at the same time preserving the test coverage. MRDebug is not
focused on general-domain failures as the previous technique,
but on the design faults of the MapReduce applications. Thus,
MRDebug preserves the occurrence of the failure in any config-
uration instead of the test coverage.

Other debugging utilities: Breadcrumb [74] debugs the Big
Data queries that do not produce a result, and the tool provides a
trace of the reasons of the unexpected result. DPLOG [75] also
provides intermediate traces together with state information
about all the executions of the Big Data program. Inspector
Gadget [71] is a debugger that alerts about predicate violations
and also traces the data that produce the failures in Pig programs
(high level language compiled as MapReduce program). Our
previous work also alerts of potential failures in production [76],
but only for those caused byMapReduce design faults. The cur-
rent work, MRDebug, also allows to trace the failures, but only
for those caused by design faults and only at a high level, exe-
cuting the configuration that triggers the failure with breakpoints
and watchpoints.

In the case of runtime debugging, Amber [77] is a Big Data
platform that enables several debugging functionalities such as
pauses during the program execution or conditional breakpoints,
among others. Amber is based on the Actor model instead of the
MapReduce processing model but achieves similar performance
to Spark. According to one study [78] of Stack Overflow, one of
the challenges of Spark is the lack of debugging tools that show
the data processing details without significant runtime overhead.
Another runtime debugger of Spark is BigDebug [79] that
allows to insert simulated breakpoints and watchpoints directly
in a production environment. Similarly, IDRAMR [80] supports
breakpoints in the MapReduce-style cluster during the runtime,
but the debugging is performed in a different machine based on
a copy of the execution state. This type of out-of-place debug-
ging is also done by Snoopy [81] in the Spark applications, sup-
porting programmatic breakpoints and pausing, among others.
In contrast to the previous techniques, the current paper, MRDe-
bug, does not support breakpoints in production but simulates

these production environments to allow the insertion of the
breakpoints and watchpoints in the configurations. Other works
are focused on record and replay failures. Arthur [82] is a
debugger for Hadoop and Spark that traces the relevant data and
allows to replay the failure. Newt [83] is another debugger of
MapReduce applications that captures runtime information
allowing the tracing and reproduction of failures. Bergen et al.
[84] propose a debugger for Spark that records failures from
production and reproduces these failures locally to support
breakpoints. The current work, MRDebug, is focused on non-
deterministic failures, but the previous record-replay techniques
do not handle these kinds of faults properly. Arthur [82] consid-
ers a checksum of the output and can then detect non-
determinism, but is not able to reproduce non-deterministic
results. Newt [83] can also record the non-deterministic data but
is not able to reproduce them deterministically. The current
work, MRDebug, not only captures the non-deterministic execu-
tions that cause failures, but also reproduces them deterministi-
cally through seeds.

Another way to reproduce the non-deterministic faults is forc-
ing the test case execution to trigger the failure every time.
However, this is challenging in Big Data. Despite the fact the
tester can tune the framework parameters, the tester does not
have fine-grain control of how the test case is executed because
“some parameters interact subtly with the rest of the framework
and/or job-configuration and is relatively more complex for the
user to control finely” [34]. Hadoop MapReduce has more than
190 parameters that can affect the execution behaviour [33], and
in each release an average of 4.14 parameters are created, 1.6
renamed and 0.16 removed [85]. The framework Spark also has
a lot of parameters that can affect the execution behaviour, and
almost 10% of Spark commits add/modify/remove parameters
[86]. In addition to the number of parameters, the dependencies
between other parameters are prevalent and diverse, and their
handling is often deficient and ad hoc [87]. If the tester indicates
4 number of Mappers, the framework considers it as a hint and
can execute a different number of Mappers regardless of the
tester’s choice [34]. All of these parameters make it difficult in
practice to debug the Big Data programs directly in production.
In contrast, MRDebug executes the debugging in a controllable
environment using simulation.

IX. CONCLUSION AND FUTURE WORK

This paper presents a debugging framework called MRDebug
that automates both the fault localization and input reduction of
MapReduce design faults. These faults are located using a
spectrum-based fault localization technique, and the test input
data is reduced using Delta Debugging, in both cases adapted to
debug the MapReduce design faults. The experiments in both
real-word and seeded programs show that the faults can be
localized analysing only a few executions, and the test input
data is reduced until the minimal or near to the minimal needed
to trigger the fault.

In conclusion, MRDebug can help testers/developers under-
stand the MapReduce design faults and the potential risk of run-
ning the faulty program in production. Faults such as these are

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 975

difficult to reproduce because they usually manifest themselves
non-deterministically over a distributed framework that cannot
be fine-grained controlled. MRDebug automatically obtains the
root cause of the faults, making it easy to comprehend which
part of the program is faulty and the circumstances that
trigger/mask the fault. The tester/developer can obtain insights
about the fault using MRDebug to reproduce the non-
deterministic fault in a controlled way in many different config-
urations that trigger the failure. During the inspection of the
faults, they could face that large part of the test input data that is
completely irrelevant to understand the fault. MRDebug auto-
matically obtains a minimal part of the test input data that trig-
gers the failure, helping the tester/developer to simplify this
inspection to a minimal part. In practice, MRDebug can both
enhance the debugging of the MapReduce applications and
decrease the time to fix the design faults.

As future work we plan to extend MRDebug implementation
to support other MapReduce frameworks like Spark or Flink.
Another future research line is to repair/fix [88] the programs
automatically during runtime using a self-adapt technique based
on PDCA methodology. Once a program is executed in produc-
tion, the testing technique MRTest will detect the design faults.
Next, MRDebug will locate the root cause of the fault. Finally,
the program should be automatically repaired to pass the tests
and continue the execution.

REFERENCES

[1] Information Technology—Big Data—Overview and Vocabulary, ISO/
IEC 20546:2019, 2019.

[2] “Apache Hadoop: Open-source software for reliable, scalable,
distributed computing.” Accessed: Jan. 23, 2017. [Online]. Available:
https://hadoop.apache.org/

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conf. Hot Topics Cloud Comput., 2010, p. 10.

[4] “Apache Flink: Scalable batch and stream data processing.” Accessed:
Feb. 20, 2017. [Online]. Available: https://flink.apache.org

[5] M. Kim, T. Zimmermann, R. Deline, and A. Begel, “Data scientists in
software teams: State of the art and challenges,” IEEE Trans. Softw.
Eng, vol. 44, no. 11, pp. 1024–1038, Nov. 2018.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. Symp. Oper. Syst. Des. Implement. (OSDI),
2004, pp. 137–149.

[7] M. C. Schatz, “CloudBurst: Highly sensitive read mapping with
MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, Jun. 2009.

[8] H. Kocakulak and T. T. Temizel, “A Hadoop solution for ballistic
image analysis and recognition,” in Proc. Int. Conf. High Perform.
Comput. Simul., 2011, pp. 836–842.

[9] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production MapReduce cluster,” in Proc. 10th IEEE/ACM
Int. Conf. Cluster, Cloud Grid Comput., 2010, pp. 94–103.

[10] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s
adolescence,” in Proc. VLDB Endowment, 2013, vol. 6, no. 10,
pp. 853–864.

[11] T. Xiao et al., “Nondeterminism in MapReduce considered harmful? An
empirical study on non-commutative aggregators in MapReduce
programs,” in Proc. 36th Int. Conf. Softw. Eng. (ICSE Companion),
2014, pp. 44–53.

[12] J. Moran, C. de la Riva, and J. Tuya, “MRTree: Functional testing
based on MapReduce’s execution behaviour,” in Proc. Int. Conf. Future
Internet Things Cloud, 2014, pp. 379–384.

[13] L. C. Camargo and S. R. Vergilio, “Classificaçao de defeitos para
programas MapReduce: Resultados de um estudo Empırico,” in Proc.
7th Brazilian Workshop Syst. Automat. Softw. Test., Brasilia: Congresso
Brasileiro de Software: Teoria e Pr�atica (CBSoft), 2013.

[14] J. Moran, A. Bertolino, C. de la Riva, and J. Tuya, “Automatic testing
of design faults in MapReduce applications,” IEEE Trans. Rel., vol. 67,
no. 3, pp. 717–732, Sep. 2018.

[15] H. Zhou, J. G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An
empirical study on quality issues of production Big Data platform,”
Proc. Int. Conf. Softw. Eng., vol. 2, Aug. 2015, pp. 17–26.

[16] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale
study on what big data developers ask,” in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf./Symp. Found. Softw. Eng. (ESEC/FSE),
Aug. 2019, pp. 432–442.

[17] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proc. Int. Symp. Softw. Testing Anal.
(ISSTA), 2011, pp. 199–209.

[18] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng, vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[19] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
ACM SIGSOFT Softw. Eng. Notes, vol. 24, no. 6, pp. 253–267, 1999.

[20] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng, vol. 28, no. 2, pp. 183–200,
Feb. 2002.

[21] D. Lewis, “Causation,” J. Philos., vol. 70, no. 17, pp. 556–567, 1973.
[22] Z. Xu, M. Hirzel, and G. Rothermel, “Semantic characterization of

MapReduce workloads,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), 2013, pp. 87–97.

[23] J. M. Glenford, The Art of Software Testing, New York, NY, USA:
Wiley, 1979.

[24] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
A survey,” Softw. Test. Verification Reliab., vol. 15, no. 3, pp. 167–
199, 2005.

[25] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 1–29, 2011.

[26] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: A new approach
for generating next test cases,” Dept. Comput. Sci. Hong Kong
Univ. Sci. Technol., Hong Kong, Tech. Rep. HKUST-CS98-01, 1998,
pp. 1–11.

[27] S. Segura, G. Fraser, A. B. Sanchez and A. Ruiz-Cortes, “A survey on
metamorphic testing,” IEEE Trans. Softw. Eng, vol. 42, no. 9,
pp. 805–824, Sep. 2016.

[28] E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25,
no. 4, pp. 465–470, 1982.

[29] T. Reps, T. Ball, M. Das and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
ACM SIGSOFT Softw. Eng. Notes, vol. 22, no. 6, pp. 432–449, 1997.

[30] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “Empirical
investigation of the relationship between spectra differences and
regression faults,” Softw. Test. Verif. Rel., vol. 10, no. 3, pp. 171–
194, 2000.

[31] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “No pot of
gold at the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist,” Research Note, Univ. Coll. London, 2014.

[32] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Spectrum-based fault localization in software product lines,” Inf. Softw.
Technol, vol. 100, pp. 18–31, 2018.

[33] S. Babu, “Towards automatic optimization of MapReduce programs,” in
Proc. 1st ACM Symp. Cloud Comput. (SoCC), 2010, pp. 137–142.

[34] “JobConf.” Apache Hadoop. Accessed: Dec. 2, 2021. [Online].
Available: https://hadoop.apache.org/docs/r3.3.1/api/org/apache/hadoop/
mapred/JobConf.html

[35] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation
with distance metrics,” Int. J. Softw. Tools Technol. Trans., vol. 8,
no. 3, pp. 229–247, 2006.

[36] H. A. De Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
2016, arXiv:1607.04347.

[37] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol, vol. 20,
no. 3, pp. 1–32, 2011.

[38] M. Patton, Qualitative Research & Evaluation Methods: Integrating
Theory and Practice, Newbury Park, CA, USA: Sage, 2014.

[39] S. Baltes and P. Ralph, “Sampling in software engineering research:
A critical review and guidelines,” Empir. Softw. Eng, vol. 27, no. 4,
Jul. 2022, Art. no. 94.

[40] M. Interlandi et al., “Titian: Data provenance support in Spark,” in
Proc. VLDB Endowment, vol. 9, no. 3, pp. 216–227, 2016.

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

https://hadoop.apache.org/
https://flink.apache.org
https://hadoop.apache.org/docs/r3.3.1/api/org/apache/hadoop/mapred/JobConf.html
https://hadoop.apache.org/docs/r3.3.1/api/org/apache/hadoop/mapred/JobConf.html

[41] M. A. Gulzar, V. Tech, and M. Kim, “OptDebug: Fault-inducing
operation isolation for dataflow applications,” in Proc. ACM Symp.
Cloud Comput., 2021, pp. 359–372.

[42] F. Grigorjev, N. Lascano, and J. L. Staude, “A fault seeding experience,”
in Proc. Simposio Argentino de Ingenieria de Softw. (ASSE), pp. 1–14.

[43] “Data mining and machine learning based on MapReduce.” Open
Ankus. Accessed: Feb. 13, 2024. [Online]. Available: http://www.
openankus.org/

[44] B. Rivas, J. Merino, M. Serrano, I. Caballero, and M. Piattini, “I8K|DQ-
BigData: I8K architecture extension for data quality in big data,” in
Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 9382, 2015, pp. 164–172.

[45] “Movies analysis implemented in MapReduce.” GitHub. Accessed:
Feb. 13, 2024. [Online]. Available: https://github.com/adityaundirwadkar/
mapreduce-programming/tree/master/example_1

[46] “Treelogic S.L.” Treelogic. Accessed: Feb. 13, 2024. [Online].
Available: www.treelogic.com

[47] “PageRank implemented in MapReduce.” GitHub. Accessed: Feb. 13,
2024. [Online]. Available: https://github.com/JohandeGraaf/PageRank

[48] C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell, and A.
Wessl�en, Experimentation in Software Engineering, Berlin, Germany:
Springer Science & Business Media, 2012.

[49] J. Mor�an, A. Bertolino, C. de la Riva, and J. Tuya, “Supplemental
material for: automatic debugging of design faults in MapReduce
applications.” Zenodo. [Online]. Available: https://doi.org/10.5281/
zenodo.7778710

[50] X. Xu, V. Debroy, W. Eric Wong, and D. Guo, “Ties within fault
localization rankings: Exposing and addressing the problem,” Int. J.
Softw. Eng. Knowl. Eng., vol. 21, no. 6, pp. 803–827, Apr. 2012.

[51] H. Coolican, Research Methods and Statistics in Psychology. London,
U.K.: Hodder, 2009.

[52] W. E. Wong and Y. Qi, “BP neural network-based effective fault
localization,” Int. J. Softw. Eng. Knowl. Eng, vol. 19, no. 4, pp. 573–
597, 2009.

[53] B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y. Chen, “How well
does test case prioritization integrate with statistical fault localization?”
Inf. Softw. Technol, vol. 54, no. 7, pp. 739–758, 2012.

[54] J. Cohen, Statistical Power for the Behaviour Sciences, Cambridge,
MA, USA: Academic Press, 1977.

[55] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Proc. Testing: Academic Ind.
Conf. Pract. Res. Tech. (TAIC PART-Mutation), 2007, pp. 89–98.

[56] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Proc.
28th Int. Conf. Softw. Eng., 2006.

[57] C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency
graphs,” in Proc. 2019 27th ACM Joint Meeting Eur. Softw. Eng. Conf./
Symp. Found. Softw. Eng. (ESEC/FSE), Aug. 2019, pp. 556–566.

[58] G. Wang, R. Shen, J. Chen, Y. Xiong, and L. Zhang, “Probabilistic
delta debugging,” in Proc. 29th ACM Joint Meeting Eur. Softw.
Eng. Conf./Symp. Found. Softw. Eng. (ESEC/FSE), Aug. 2021,
pp. 881–892.

[59] T. D. Cook, D. T. Donald, and T. Campbell, Quasi-Experimentation:
Design & Analysis Issues for Field Settings. Boston, MA, USA:
Houghton Mifflin, 1979.

[60] R. Malhotra, Empirical Research in Software Engineering: Concepts,
Analysis, and Applications.

[61] J. Mor�an, C. De La Riva, and J. Tuya, “Testing MapReduce programs:
A systematic mapping study,” J. Softw. Evol. Process., vol. 31,
no. 3, 2019, pp. 1–29.

[62] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. 27th Int. Conf. Softw.
Eng. (ICSE), 2005, pp. 402–411.

[63] V. Jagannath, Z. Yin, and M. Budiu, “Monitoring and debugging
DryadLINQ applications with daphne,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process. Workshops PhD Forum, 2011, pp.
1266–1273.

[64] M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim,
“Automated debugging in data-intensive scalable computing,” in Proc.
Symp. Cloud Comput. (SoCC), 2017, pp. 520–534.

[65] A. Chapman, P. Missier, G. Simonelli, and R. Torlone, “Capturing
and querying fine-grained provenance of preprocessing pipelines in
data science,” in Proc. VLDB Endowment, 2020, vol. 14, no. 4,
pp. 507–520.

[66] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions
with big data analytics,” Interactions, vol. 19, no. 3, pp. 50–59, 2012.

[67] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
BlackBox diagnosis of MapReduce systems,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 3, pp. 8–13, 2010.

[68] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi:
Visual log-analysis based tools for debugging hadoop,” in Proc. Conf.
Hot Topics Cloud Comput., 2009, pp. 1–5.

[69] E. Garduno, S. P. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan,
“Theia: visual signatures for problem diagnosis in large hadoop
clusters,” in Proc. Int. Conf. Large Installation Syst. Admin., vol. 2,
2012, pp. 33–42.

[70] N. Khoussainova, M. Balazinska, and D. Suciu, “PerfXplain:
Debugging MapReduce job performance,” in Proc. VLDB Endowment,
Mar. 2012, vol. 5, no. 7, pp. 598–609.

[71] C. Olston and B. Reed, “Inspector gadget: A framework for custom
monitoring and debugging of distributed dataflows,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2011, pp. 1221–1224.

[72] M. Gecer, O. Nierstrasz, and H. Osman, “Debugging spark applications:
A study on debugging techniques of Spark developers,” Master thesis,
Univ. Bern, Bern, 2020.

[73] H. Feng, J. Chandrasekaran, Y. Lei, R. Kacker, and D. R. Kuhn, “A
method-level test generation framework for debugging Big Data
applications,” in Proc. IEEE Int. Conf. Big Data (Big Data),
pp. 221–230, Jan. 2019.

[74] R. Diestelk€amper, S. Lee, B. Glavic, and M. Herschel, “Debugging
missing answers for spark queries over nested data with breadcrumb,”
in Proc. VLDB Endowment, Jul. 2021, vol. 14, no. 12, pp. 2731–2734.

[75] Z. Wang, H. Zhang, T. H. P. Chen, and S. Wang, “Would you like a
quick peek? Providing logging support to monitor data processing in big
data applications,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng.
Conf./Symp. Found. Softw. Eng. (ESEC/FSE), Aug. 2021, pp. 516–526.

[76] J. Moran, A. Bertolino, C. de la Riva, and J. Tuya, “Towards ex vivo
testing of MapReduce applications,” in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur. (QRS), 2017, pp. 73–80.

[77] A. Kumar, Z. Wang, S. Ni, and C. Li, “Amber: A debuggable dataflow
system based on the actor model,” in Proc. VLDB Endowment,
Jan. 2020, vol. 13, no. 5, pp. 740–753.

[78] Z. Wang, “Understanding the challenges and assisting developers with
developing Spark applications,” in Proc. Int. Conf. Softw. Eng.,
May 2021, pp. 132–134.

[79] M. A. Gulzar et al., “BigDebug: Debugging primitives for interactive
big data processing in Spark,” in Proc. 38th Int. Conf. Softw. Eng.
(ICSE), 2016, pp. 784–795.

[80] M. Marra, G. Polito, and E. Gonzalez Boix, “A debugging approach for
live Big Data applications,” Sci. Comput. Program, vol. 194, Aug.
2020, Art. no. 102460.

[81] B. Contreras-Rojas, J. A. Quian�e-Ruiz, Z. Kaoudi, and S.
Thirumuruganathan, “TagSniff: Simplified big data debugging for
dataflow jobs,” in Proc. ACM Symp. Cloud Comput. (SoCC), Nov.
2019, pp. 453–464.

[82] A. Dave, M. Zaharia, S. Shenker, and I. Stoica, “Arthur: Rich post-facto
debugging for production analytics applications,” Citeseer, Tech. Rep.
2013.

[83] D. Logothetis, S. De, and K. Yocum, “Scalable lineage capture for
debugging DISC analytics,” in Proc. 4th Annual Symp. Cloud Comput.
(SOCC), 2013. pp. 1–15.

[84] E. Bergen and S. Edlich, “Post-debugging in large scale big data
analytic systems,” in Datenbanksysteme F€ur Bus., Technologie Und
Web, 2017, pp. 65–74.

[85] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs! Understanding and dealing with
over-designed configuration in system software,” in Proc. 2015 10th
Joint Meeting Found. Softw. Eng., 2015, pp. 307–319.

[86] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An
evolutionary study of configuration design and implementation in cloud
systems,” in Proc. 2021 IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),
May 2021, pp. 188–200.

[87] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding and
discovering software configuration dependencies in cloud and datacenter
systems,” Proc. 28th ACM Jt. Meet. Eur. Softw. Eng. Conf./Symp.
Found. Softw. Eng. (ESEC/FSE), Nov. 2020, pp. 362–374.

[88] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Trans. Softw. Eng, vol. 45, no. 1, pp. 34–67, Jan. 2019.

MOR�AN et al.: AUTOMATIC DEBUGGING OF DESIGN FAULTS IN MAPREDUCE APPLICATIONS 977

https://http://www.openankus.org/
https://http://www.openankus.org/
https://github.com/adityaundirwadkar/mapreduce-programming/tree/master/example_1
https://github.com/adityaundirwadkar/mapreduce-programming/tree/master/example_1
www.treelogic.com
https://github.com/JohandeGraaf/PageRank
https://doi.org/10.5281/zenodo.7778710
https://doi.org/10.5281/zenodo.7778710
http://dx.doi.org/102460

Jes�us Mor�an received the Ph.D. degree in comput-
ing from the University of Oviedo. He is an Assis-
tant Professor with the University of Oviedo. He is a
Member of the Software Engineering Research
Group (GIIS, giis.uniovi.es). His research interests
include software testing, Big Data technologies, and
distributed programming.

Antonia Bertolino received the M.S. degree in elec-
tronic engineering from the University of Pisa. She
is a Research Director with the ISTI-CNR (the Insti-
tute of Information Science and Technologies “A.
Faedo” of the Italian National Research Council),
Pisa, Italy. Her research interests include software
testing. She is an Associate Editor of Wiley Journal
of Software Evolution and Process, and serves as the
Software Testing Area Editor of the Elsevier Journal
of Systems and Software. She has been the General
Chair of the 2015 International Conference on Soft-

ware Engineering held in Florence (Italy).

Claudio de la Riva received the Ph.D. degree in
computing from the University of Oviedo. He is an
Associate Professor with the University of Oviedo.
He is a Member of the Software Engineering
Research Group (GIIS, giis.uniovi.es). His research
interests include software verification and validation
and software testing, mainly focused on testing data-
base applications and services.

Javier Tuya (Member, IEEE) received the Ph.D.
degree in engineering from the University of
Oviedo, Oviedo, Spain, in 1995. He is a Professor
with the University of Oviedo, Spain, where he is
the Research Leader of the Software Engineering
Research Group. He is the Director of the Indra-
Uniovi Chair and worked in the development of the
new ISO/IEC/IEEE 29119 Software Testing Stan-
dard as Member of the ISO WG26 Working Group
and as Convener of the corresponding UNE National
Body Working Group. His research interests include

software engineering software testing for database applications and system test-
ing. He is a member of the IEEE Computer Society and ACM.

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

