Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pyridine-4-carbaldehyde 4-phenylsemicarbazone

Rafael Mendoza-Meroño, Laura Menéndez-Taboada, Eva Fernández-Zapico and Santiago García-Granda*

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo - CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain Correspondence e-mail: sgg@uniovi.es

Received 29 March 2011; accepted 7 April 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.143; data-to-parameter ratio = 13.1.

In the title compound, $C_{13}H_{12}N_4O$, the semicarbazone fragment links a benzene and a pyridine ring in the structure. The crystal packing is stabilized by strong intermolecular N- $H \cdots O$ hydrogen bonds, which connect two molecules to form a *synthon* unit, and by N- $H \cdots N$ hydrogen bonds and weak $C-H \cdots \pi$ interactions. The molecular conformation is stabilized by intramolecular N- $H \cdots N$ and $C-H \cdots O$ interactions.

Related literature

For related compounds and their biological activity, see: Pavan et al. (2010); Yogeeswari et al. (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{12}N_4O\\ M_r = 240.27\\ Monoclinic, P2_1/c\\ a = 9.2794 \ (6) \ \text{\AA}\\ b = 10.3384 \ (8) \ \text{\AA}\\ c = 12.8244 \ (8) \ \text{\AA}\\ \beta = 100.744 \ (6)^\circ \end{array}$

Data collection

Oxford Diffraction Xcalibur Gemini R diffractometer Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Oxford Diffraction, 2010) $T_{min} = 0.888, T_{max} = 1.000$ $V = 1208.73 (15) Å^{3}$ Z = 4 Cu K\alpha radiation $\mu = 0.72 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.11 \times 0.06 \text{ mm}$

7257 measured reflections 2310 independent reflections 1702 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$ wR(F ²) = 0.143	H atoms treated by a mixture of independent and constrained
S = 1.06	refinement
2310 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C8-C13 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3N\cdotsO1^{i}$	0.93 (2)	1.91 (2)	2.833 (2)	172 (2)
$N4 - H4N \cdot \cdot \cdot N1^{ii}$	0.91(2)	2.24 (2)	3.122 (3)	161.8 (19)
$N4 - H4N \cdot \cdot \cdot N2$	0.91(2)	2.29 (2)	2.685 (2)	105.4 (16)
C13-H13···O1	0.93	2.31	2.854 (2)	117
$C1 - H1 \cdots Cg2^{iii}$	0.93	2.88	3.644 (2)	140

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2010); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2010); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999), *PLATON* (Spek, 2009) and *PARST95* (Nardelli, 1995).

Financial support by the Agencia Española de Cooperación Internacional y Desarrollo (AECID), FEDER funding, the Spanish MICINN (MAT2006–01997, MAT2010-15094 and the Factoría de Cristalización Consolider Ingenio 2010), the Gobierno del Principado de Asturias (PCTI), the University of Oviedo and Banco Santander is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2007).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2010). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Pavan, R. F., Maia, P. S., Leite, S., Deflon, V. M. & Batista, A. (2010). Eur. J. Med. Chem. 45,1898–1905.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yogeeswari, P., Sriram, D., Veena, V., Kavya, R., Rakhra, K., Ragavendran, J., Mehta, S., Thirumurugan, R. & Stables, J. P. (2005). *Biomed. Pharmacother*. 59, 51–55.

supplementary materials

Acta Cryst. (2011). E67, o1135 [doi:10.1107/S1600536811013134]

Pyridine-4-carbaldehyde 4-phenylsemicarbazone

R. Mendoza-Meroño, L. Menéndez-Taboada, E. Fernández-Zapico and S. García-Granda

Comment

Semicarbazones and their metal complexes are important classes of compounds which have long attracted attention owing to their remarkable biological and pharmacological properties, such as antibacterial, antiviral, antineoplastic and anti *Mycobacterium tuberculosis* activity (Pavan *et al.*, 2010). Using the semicarbazone template (Yogeeswari *et al.*, 2005), significant anticonvulsant potential was demonstrated in epilepsy models for *aryl* semicarbazones. In view of the importance of these compounds, a new semicarbazone (I) has been synthesized, and its crystal structure is reported here (Fig. 1).

The configuration of (I) is E with respect to the C6=N2 bond. The pyridine and benzene rings are conected by a semicarbazone fragment (C6/N2/N3/C7/O1/N4). The values of the dihedral angles between the aromatic rings and the semicarbazone fragment are 23.99 (7)° and 42.15 (7)° for the benzene and pyridine rings, respectively. This indicates the lack of planarity.

The crystal packing is stabilized by a pair of strong intermolecular N—H···O hydrogen bonds conecting two molecules to form a centrosymmtric unit (*synthon*), and by an N—H···N hydrogen bond (Fig. 2), which extends the packing along the *c* axis (Fig 3). The crystal is also stabilized by intermolecular C—H··· π interactions (Fig. 4). This type of interaction affects the conformation of the molecule, specifically the torsion angle between the benzene ring and the semicarbazone moeity. The molecular conformation is stabilized by intramolecular N4—H4N···N2 and C13—H13···O1 interactions (Table 1).

From the centroid–centroid distance between two pyridine rings [4.0085 (2)Å] and the angle between the normal of the aromatic plane and the centroid–centroid vector [35.13 (5)°], we conclude that there is no significant π - π stacking interaction between the pyridine rings.

Experimental

A solution of 4-pyridine carboxaldehyde (1.0711 g, 0.01 mol) and 4-phenylsemicarbazide (1.5117 g, 0.01 mol) in absolute methanol (50 ml) was refluxed for 4 h in the presence of *p*-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air (m.p. 493.15 K). White single crystals of compound (I) were obtained after recrystallization from a solution in methanol.

Refinement

The NH and Schiff base CH H-atoms were found in difference Fourier maps and were freely refined: N3—H = 0.93 (2) Å, N4—H = 0.91 (2) Å and C6—H=0.99 (2) Å. All other C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for aromatic CH with $U_{iso}(H) = 1.2 \times U_{eq}(C)$. At the end of the refinement the highest peak in the electron density was 0.20 eÅ ⁻³, while the deepest hole was -0.17 eÅ ⁻³.

Figures

Fig. 1. A view of the molecular structure of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Part of the crystal packing showing the principal intermolecular and intramolecular hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in hydrogen bonding have been omitted for clarity.

Fig. 3. Packing diagram viewed along the c axis. Hydrogen bonds are indicated by dashed lines.

Fig. 4. Intermolecular C—H··· π interactions along *ac* plane. H atoms not involved in hydrogen bonding have been omitted for clarity.

Pyridine-4-carbaldehyde 4-phenylsemicarbazone

Crystal data	
$C_{13}H_{12}N_4O$	F(000) = 504
$M_r = 240.27$	$D_{\rm x} = 1.320 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 493.15 K
Hall symbol: -P 2ybc	Cu K α radiation, $\lambda = 1.54180$ Å
<i>a</i> = 9.2794 (6) Å	Cell parameters from 2114 reflections
b = 10.3384 (8) Å	$\theta = 3.5 - 70.7^{\circ}$
c = 12.8244 (8) Å	$\mu = 0.72 \text{ mm}^{-1}$
$\beta = 100.744 \ (6)^{\circ}$	T = 295 K
$V = 1208.73 (15) \text{ Å}^3$	Rod, white
Z = 4	$0.30 \times 0.11 \times 0.06 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Gemini R diffractometer	2310 independent reflections
Radiation source: Enhance (Cu) X-ray Source	1702 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.066$
Detector resolution: 10.2673 pixels mm ⁻¹	$\theta_{\text{max}} = 70.8^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$
ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan	$k = -12 \rightarrow 11$

(ABSPACK in *CrysAlis PRO*; Oxford Diffraction, 2010) $T_{min} = 0.888, T_{max} = 1.000$ $l = -15 \rightarrow 15$ 7257 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.0647P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2310 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Entirection $a = 2^{\alpha}$ signate 0.0051 (2)

methods Extinction coefficient: 0.0051 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.31018 (14)	0.04113 (16)	0.96710 (10)	0.0562 (4)
N2	0.47959 (17)	-0.03751 (17)	0.75432 (12)	0.0474 (4)
N3	0.45910 (18)	-0.01377 (19)	0.85540 (13)	0.0524 (5)
N4	0.23363 (17)	0.07764 (18)	0.78923 (13)	0.0478 (4)
N1	0.7010 (2)	-0.1407 (2)	0.43544 (14)	0.0619 (5)
C7	0.3301 (2)	0.0358 (2)	0.87508 (14)	0.0443 (5)
C4	0.5324 (2)	-0.1475 (2)	0.55575 (16)	0.0505 (5)
H4	0.4383	-0.1666	0.5665	0.061*
C3	0.5689 (2)	-0.1643 (2)	0.45723 (16)	0.0557 (5)
Н3	0.4964	-0.1940	0.4024	0.067*
C8	0.0926 (2)	0.1288 (2)	0.79070 (15)	0.0467 (5)

supplementary materials

C5	0.6378 (2)	-0.1016 (2)	0.63847 (15)	0.0466 (5)
C9	0.0279 (2)	0.2034 (2)	0.70528 (16)	0.0551 (5)
Н9	0.0782	0.2193	0.6502	0.066*
C6	0.6074 (2)	-0.0739 (2)	0.74389 (16)	0.0489 (5)
C13	0.0161 (2)	0.1054 (2)	0.87145 (16)	0.0575 (6)
H13	0.0572	0.0541	0.9289	0.069*
C10	-0.1102 (3)	0.2545 (3)	0.70086 (19)	0.0672 (7)
H10	-0.1528	0.3038	0.6425	0.081*
C2	0.8014 (2)	-0.0989 (3)	0.51620 (18)	0.0657 (6)
H2	0.8949	-0.0817	0.5034	0.079*
C1	0.7765 (2)	-0.0794 (2)	0.61736 (17)	0.0571 (6)
H1	0.8519	-0.0516	0.6709	0.069*
C12	-0.1218 (2)	0.1586 (3)	0.86654 (19)	0.0687 (7)
H12	-0.1722	0.1434	0.9216	0.082*
C11	-0.1858 (3)	0.2335 (3)	0.7820(2)	0.0712 (7)
H11	-0.2783	0.2692	0.7796	0.085*
Н6	0.686 (2)	-0.083 (2)	0.8069 (17)	0.058 (6)*
H3N	0.533 (3)	-0.031 (2)	0.9132 (19)	0.065 (7)*
H4N	0.266 (2)	0.080 (2)	0.7265 (18)	0.053 (6)*

Atomic displacement parameters (\AA^2)

O1 0.0482 (8) 0.0824 (11) 0.0385 (7) 0.0050 (7) 0.0096 (6) -0.0017 (7) N2 0.0489 (9) 0.0571 (10) 0.0367 (8) 0.0029 (7) 0.0089 (7) -0.0020 (7) N3 0.0444 (9) 0.0765 (13) 0.0358 (8) 0.0107 (8) 0.0066 (7) -0.0017 (8)	り り り
N2 0.0489 (9) 0.0571 (10) 0.0367 (8) 0.0029 (7) 0.0089 (7) -0.0020 (7) N3 0.0444 (9) 0.0765 (13) 0.0358 (8) 0.0107 (8) 0.0066 (7) -0.0017 (8)	() ()
N3 $0.0444(0)$ $0.0765(13)$ $0.0358(0)$ $0.0107(0)$ $0.0066(7)$ $-0.0017(0)$	3)
113 0.0444 (3) 0.0703 (13) 0.0338 (8) 0.0107 (8) 0.0000 (7) -0.0017 (8)	
N4 0.0439 (9) 0.0619 (11) 0.0388 (8) 0.0066 (7) 0.0110 (7) 0.0011 (7)	
N1 0.0681 (12) 0.0707 (13) 0.0507 (10) 0.0103 (9) 0.0212 (9) 0.0032 (9)	
C7 0.0430 (10) 0.0525 (12) 0.0373 (10) -0.0012 (8) 0.0076 (7) -0.0035 (8	5)
C4 0.0517 (11) 0.0529 (12) 0.0482 (11) 0.0021 (9) 0.0124 (9) -0.0005 (9)	9
C3 0.0614 (13) 0.0577 (14) 0.0473 (12) 0.0047 (10) 0.0081 (9) -0.0026 (9)	9
C8 0.0447 (10) 0.0521 (12) 0.0437 (10) 0.0019 (8) 0.0092 (8) -0.0038 (8	5)
C5 0.0484 (10) 0.0497 (12) 0.0423 (10) 0.0084 (8) 0.0103 (8) 0.0044 (8)	
C9 0.0580 (12) 0.0613 (14) 0.0472 (11) 0.0101 (10) 0.0127 (9) 0.0036 (10)
C6 0.0430 (10) 0.0603 (13) 0.0428 (10) 0.0061 (9) 0.0065 (8) 0.0024 (9)	
C13 0.0521 (11) 0.0751 (16) 0.0479 (11) 0.0077 (10) 0.0159 (9) 0.0106 (10)
C10 0.0679 (14) 0.0759 (17) 0.0579 (14) 0.0233 (11) 0.0116 (11) 0.0102 (11)
C2 0.0568 (13) 0.0857 (18) 0.0597 (13) 0.0021 (11) 0.0239 (11) 0.0007 (12)
C1 0.0464 (11) 0.0726 (15) 0.0530 (12) 0.0040 (10) 0.0105 (9) -0.0012 (1	0)
C12 0.0568 (13) 0.0924 (19) 0.0611 (14) 0.0139 (12) 0.0219 (10) 0.0058 (13)
C11 0.0586 (14) 0.0851 (19) 0.0725 (16) 0.0239 (12) 0.0193 (12) 0.0045 (13)

Geometric parameters (Å, °)

O1—C7	1.229 (2)	C8—C9	1.382 (3)
N2—C6	1.275 (2)	C5—C1	1.383 (3)
N2—N3	1.367 (2)	C5—C6	1.460 (3)
N3—N2	1.367 (2)	C9—C10	1.378 (3)
N3—C7	1.368 (2)	С9—Н9	0.9300

N2 U2N	0.02 (2)	C6 H6	0.00(2)
NA C7	0.93(2) 1.254(2)	C_{0}	0.99(2)
N4 C2	1.334(2)	C13—C12	1.364 (3)
	1.413(2)		0.9300
N4—H4N	0.91(2)		1.570(5)
NIC3	1.329 (3)	C10—H10	0.9300
NI = C2	1.329 (3)	$C_2 = C_1$	1.374(3)
C4—C3	1.379 (3)	C2—H2	0.9300
	1.386 (3)		0.9300
C4—H4	0.9300		1.3/3 (3)
C3—H3	0.9300	C12—H12	0.9300
08-013	1.381 (3)	СП—НП	0.9300
C6—N2—N3	116.68 (16)	С10—С9—Н9	119.7
N2—N3—C7	121.56 (16)	С8—С9—Н9	119.7
N2—N3—H3N	120.5 (14)	N2—C6—C5	119.94 (17)
C7—N3—H3N	117.9 (14)	N2—C6—H6	120.3 (12)
C7—N4—C8	125.56 (16)	С5—С6—Н6	119.8 (12)
C7—N4—H4N	116.7 (13)	C8—C13—C12	119.8 (2)
C8—N4—H4N	117.4 (13)	C8—C13—H13	120.1
C3—N1—C2	115.80 (18)	C12-C13-H13	120.1
O1—C7—N4	124.85 (17)	C11—C10—C9	120.6 (2)
O1—C7—N3	119.15 (17)	C11-C10-H10	119.7
N4—C7—N3	115.99 (16)	С9—С10—Н10	119.7
C3—C4—C5	119.03 (19)	N1—C2—C1	124.5 (2)
C3—C4—H4	120.5	N1—C2—H2	117.7
N1—C3—C4	124.3 (2)	C1—C2—H2	117.7
N1—C3—H3	117.9	C2—C1—C5	119.1 (2)
С4—С3—Н3	117.9	C2—C1—H1	120.4
C13—C8—C9	118.96 (18)	C5—C1—H1	120.4
C13—C8—N4	123.37 (18)	C11—C12—C13	121.3 (2)
C9—C8—N4	117.65 (18)	C11—C12—H12	119.3
C1—C5—C4	117.19 (18)	C13—C12—H12	119.3
C1—C5—C6	119.74 (18)	C12—C11—C10	118.7 (2)
C4—C5—C6	123.05 (18)	C12—C11—H11	120.7
C10—C9—C8	120.6 (2)	C10-C11-H11	120.7
C6—N2—N3—C7	174.5 (2)	N3—N2—C6—C5	179.75 (18)
C8—N4—C7—O1	-2.8(3)	C1 - C5 - C6 - N2	148.6 (2)
C8—N4—C7—N3	178 13 (19)	C4-C5-C6-N2	-30.0(3)
$N_{2} N_{3} C_{7} O_{1}$	171 39 (19)	C9 - C8 - C13 - C12	-1.2(3)
$N_{2} N_{3} C_{7} N_{4}$	-95(3)	N4-C8-C13-C12	-179.6(2)
$C_2 = N_1 = C_3 = C_4$	0.3(3)	C8 - C9 - C10 - C11	07(4)
C_{5} C_{4} C_{3} N_{1}	0.8(3)	C_{3} N1 - C2 - C1	-0.1(4)
$C7_N4_C8_C13$	-21.7(3)	N1-C2-C1-C5	-1.3(4)
C7 - N4 - C8 - C9	159.8 (2)	C4 - C5 - C1 - C2	23(3)
C_{3} C_{4} C_{5} C_{1}	-21(3)	$C_{6} = C_{5} = C_{1} = C_{2}^{2}$	-1763(2)
C_{3} C_{4} C_{5} C_{6}	176 49 (19)	C8 - C13 - C12 - C11	0.8(4)
C_{13} C_{8} C_{9} C_{10}	0.4(3)	C_{13} C_{12} C_{11} C_{10}	0.3(4)
$N_{1} = C_{2} = C_{1} = C_{1$	(3)	$C_{12} - C_{12} - C_{11} - C_{10}$	-11(4)
INT -CO-C/-CIU	1/7.0 (4)	C) -CIU-CII-CI2	1.1 (4)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N3—H3N····O1 ⁱ	0.93 (2)	1.91 (2)	2.833 (2)	172 (2)	
N4—H4N…N1 ⁱⁱ	0.91 (2)	2.24 (2)	3.122 (3)	161.8 (19)	
N4—H4N…N2	0.91 (2)	2.29 (2)	2.685 (2)	105.4 (16)	
С13—Н13…О1	0.93	2.31	2.854 (2)	117	
C1—H1···Cg2 ⁱⁱⁱ	0.93	2.88	3.644 (2)	140	
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$; (ii) $-x+1$, $-y$, $-z+1$; (iii) $x+1$, y , z .					

Fig. 1

Fig. 3

