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MMP-19 deficiency promotes tenascin-C accumulation and allergen-induced 

airway inflammation.  
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Abstract  

 
Matrix metalloproteinases (MMPs) recently appeared as key regulators of inflammation, 

allowing recruitment and clearance of inflammatory cells and modifying the biological activity 

of many peptidic mediators by cleavage. MMP-19 is a newly described MMP and preferentially 

cleaves matrix proteins such as collagens and tenascin-C. The role of MMP-19 in asthma has not 

been described to date. The purpose of the present study was to assess MMP-19 expression in a 

murine asthma model and to address biological effects of MMP-19 deficiency in mice. Allergen-

exposed wild-type (WT) mice displayed an increased expression of MMP-19 mRNA and an 

increased number of MMP-19-positive cells in the lungs detected by immunohistochemistry. 

After allergen challenge of MMP-19 knockout (MMP-19
-/-

) mice, an exacerbated eosinophilic 

inflammation was detected in bronchoalveolar lavage fluid and bronchial tissue along with an 

increased airway responsiveness to methacholine. A shift towards increased Th2-driven 

inflammation in MMP-19
-/-

 mice was demonstrated by 1) increased numbers of cells expressing 

the IL-33 receptor T1/ST2 in lung parenchyma, 2) increased IgG1 levels in serum and 3) higher 

levels of IL-13 and CCL11 in lung extracts. Tenascin-C was found accumulated in peribronchial 

areas of MMP-19
-/- 

after allergen challenges as assessed by Western blot and 

immunohistochemistry analysis. We conclude that MMP-19 is a new mediator in asthma, 

preventing tenascin-C accumulation and directly or indirectly controlling Th2-driven airway 

eosinophilia and airway hyperreactivity. Our data suggest that MMP-19 might act on Th2 

inflammation homeostasis through preventing tenascin protein accumulation.  

 

Keywords: eosinophils, inflammation, lung, MMP-19, knockout mice. 

Abbreviations: MMPs (Matrix Metalloproteinases); WT (Wild-Type); IL (Interleukin); BALF 

(Bronchoalveolaer Lavage Fluid); OVA (Ovalbumin).  
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Introduction  

Asthma is a complex chronic inflammatory disease characterized by: (a) reversible airway 

obstruction, (b) airway hyperresponsiveness, (c) bronchial wall infiltration by inflammatory cells, 

and (d) bronchial remodeling. Eosinophilic inflammation, an important hallmark of asthma
 
(1), 

correlates with bronchial hyperresponsiveness and disease severity (2,3). Biological events 

leading to eosinophil accumulation in the airway wall and airway lumen are complex and require 

the secretion of various soluble mediators responsible for their recruitment and survival. In 

asthmatic lungs, elevated levels of interleukin (IL)-13 are produced by CD4
+
 T helper-2 

lymphocytes (Th2 cells). Prominent biological effects of IL-13, include increased IgE production, 

release of CCL11 (eotaxin-1), mucus hypersecretion, airway eosinophilia and airway 

hyperreactivity (4).  

Matrix metalloproteinases (MMPs) are able to degrade matrix components (5-7) and to cleave 

peptidic mediators leading either to their activation or inhibition (8-10). During the last decade, 

many studies have identified possible roles for several members of the MMP family in asthma. 

Indeed, several human studies have identified specific MMPs as being overexpressed in the 

bronchial tree from asthmatics (MMP-1, -2, -8, -9) (11-16). Animal models have been useful in 

demonstrating that deficiency of some MMPs can be either beneficial (e.g. MMP-9) (11) or 

deleterious (MMP-2 or MMP-8) in the context of allergen-induced inflammation (7,17-18). 

Interestingly, physiological inhibitors of MMPs (tissue inhibitors of MMPs or TIMPs) or 

synthetic MMP inhibitors have been suggested as potential new therapeutic agents for asthma 

(5,19-20). As new MMPs and MMPs-related enzymes (ADAM (A Disintegrin and 

Metalloprotease) and ADAMTS (ADAM with ThromboSpondin-like motifs) of unknown 

functions have been described recently, the present study focuses on the potential role of the 

recently described MMP-19 in an experimental mouse model of asthma. MMP-19 displays 
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unique structural features and a wide spectrum of proteolytic activities (21-22). Among 

extracellular matrix components, MMP-19 has the ability to cleave tenascin-C, gelatin, collagen 

IV, fibronectin, nidogen, aggrecan and collagen I (23-25). Tenascin-C accumulation has been 

detected in bronchial walls after allergen challenge and in chronic asthmatics (26-28). MMP-19 

also displays the ability to cleave carriers proteins such as insulin-like growth factor binding 

protein-3 (IGFBP-3) that have been implicated in airway inflammation and tissue remodeling in 

asthma (29,30). MMP-19 is expressed in normal adult tissue, including the lung, supporting its 

role in normal tissue homeostasis (21,22). Initially identified as an autoantigen in patients with 

rheumatoid arthritis (31), MMP-19 is a putative new molecular mediator of inflammation. The 

recently generated knock-out (KO) mice for MMP-19 (32,33) provide a suitable tool to decipher 

the potential implication of MMP-19 in allergen-induced asthma.  

In the present study, the role of MMP-19 in lung inflammation is demonstrated by applying a 

mouse model of allergen-induced airway inflammation and hyperresponsiveness to MMP-19 

deficient-mice. We report that allergen exposure in MMP-19 deficient animals causes tenascin-C 

accumulation in airway walls, linked with a Th2 cell-related inflammatory lung response. In a 

translational setting, we also demonstrate that MMP-19 is overexpressed in airway smooth 

muscle obtained from human asthmatics. Our findings support a protective role for MMP-19 in 

asthma which has potential implications in the perspective of designing MMP inhibitors-based 

therapeutic strategies for inflammatory disorders.  
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Material and methods 

Sensitization and allergen exposure protocol 

Care and use of experimental animals were performed following “principles of laboratory animal 

care” formulated by the National Society for Medical Research (USA) and experimental 

protocols approved by the University of Liege Animal Ethics’ Committee. Wild type (WT) and 

MMP-19 knock-out (MMP-19
-/-

) mice were generated as previously described (18,32). Six to 

eight weeks-old males were sensitized by intraperitoneal injection of ovalbumin (OVA) (Sigma 

Aldrich, Schnelldorf, Germany) emulsified in aluminum hydroxyde (AlumInject; Perbio, 

Erembodegem, Belgium) on days 1 and 8. From day 21 to 27, mice were exposed daily to OVA 

by inhalation of an aerosol generated by an ultrasonic nebulizer (Devilbiss 2000). On day 28, 

mice were sacrificed as previously reported (18). Results presented are representative of 3 

independent experiments (5-12 mice per experimental conditions in each assay).  

 

Measurement of bronchial responsiveness  

Mice were anesthetized by intraperitoneal injection (200 µl) of a mixture of ketamine (10 mg/ml, 

Merial, Brussel, Belgium) and xylazine (1 mg/ml, VMD, Arendonk, Belgium). A tracheotomy 

was performed by inserting a 20 gauge polyethylene catheter into the trachea and ligating it 

around the catheter to avoid leaks and disconnections. Mice were ventilated with a flexiVent
®

 

small animal ventilator (SCIREQ, Montreal, Canada) at a frequency of 250 breaths per minute 

and a tidal volume of 10 ml/kg. A positive endexpiratory pressure was set at 2 hPa and lung 

function measures obtained after 2 minutes of mechanical ventilation. A sinusoidal 1-Hz 

oscillation was then applied to the tracheal tube to allow calculation of dynamic airways 

resistance, elasticity,
 
and compliance using a multiple

 
linear regression methods. A second 

manoeuvre consisting in an 8-s
 
forced oscillatory signal ranging frequencies between 0.5

 
and 
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19.6 Hz allowed assessment of impedance to evaluate tissue
 
damping, tissue elastance, and tissue 

hysteresivity
 
(34). Following baseline lung function measurements, mice were exposed to a 

saline aerosol (PBS) followed by aerosols containing increasing doses (3, 6, 9, 12g/l) of 

methacholine (ICN Biomedicals, Asse Relegem, Belgium). Aerosols were generated by 

ultrasonic nebuliser (SYST’AM, LS 2000, Dupont Medical, Rhode-Saint-Genèse, Belgium) and 

delivered to the inspiratory line of the flexiVent
®
 using a bias flow of medical air following the 

manufacturer’s instructions. Each aerosol was delivered for 2 minutes and lung function 

measurements as described above were assessed at one-minute intervals following each aerosol. 

Mean airway resistance after methacholine exposure was the major parameter measured during 

the challenge.  

 

Bronchoalveolar lavage fluid (BALF) 

Immediately after mice sacrifice, a bronchoalveolar lavage using 4x1ml PBS-EDTA 0.05mM 

(Calbiochem, Darmstadt, Germany) was performed as previously described
 
(18). Cells were 

recovered by gentle manual aspiration. The supernatant obtained after centrifugation of 

bronchoalveolar lavage fluid (BALF) (at 1200 rpm for 10 minutes, at 4°C) was frozen at –80°C 

for protein assessment. Cell pellets were used for cytocentrifuged preparations (Cytospin) in 

which cells on slides were stained with Diff-Quick (Dade, Belgium) to obtain differential cell 

counts from BALF (eosinophils, neutrophils, epithelial cells, lymphocytes and macrophages).  

 

Pulmonary histology and tissue processing 

After bronchoalveolar lavage, the thorax was opened and the left lung was excised and frozen 

immediately at –80°C for protein and RNA extractions. The right lung was inflated by gentle 

instillation with 4% paraformaldehyde by a continuous-release pump for 10 minutes under 

Page 7 of 43



 8 

constant pressure, embedded in paraffin and used for histology. Peribronchial inflammation 

scores were obtained as previously described (18) and expressed  as a mean value of 8 randomly 

selected tissue sections per mouse (n=15 mice per group).  

Congo red stains the two lobes of eosinophils nucleus in blue and allows the specific detection of 

cytoplasmic amyloid deposit in orange. Paraffin sections of 5µm were deparaffinized, hydrated 

in water and subsequently stain in Congo Red solution for 1 hour. Slides were rinsed in distilled 

and tap water and subsequently counterstained with hematoxylin eosin. These steps were 

followed by the dehydration through 70%, 95%, 100% alcohol and xylene. At least 5-7 randomly 

selected tissue sections per mouse were assessed by one experimented observer blinded to 

experimental details. Eosinophilic infiltration in airway walls was quantified by manually 

counting eosinophils in bronchi. Main bronchi (trachea and very proximal tree) were not 

considered. To normalize results with epithelial basement membrane length, eosinophils numbers 

were reported to the perimeter of basement membrane measured by using ImageJ software, 

(http:/rsb.info.nih.gov/nih-image/). These results were thus defined as number of cells/mm of 

epithelial basement membrane (n=15 mice per group). 

 

For antigen recovery for immunodetection of MMP-19 and tenascin-C, slides were heated in 

autoclave in citrate buffer (Dako Target Retrival Solution, Dako, Glostrup, Denmark) and 

incubated with primary antibody during 1 hour to detect MMP-19 (rabbit anti-MMP-19, 1/1000) 

(Sigma, Saint-Louis, Missouri, USA) and overnight to detect tenascin-C (goat anti-tenascin-C, 

1/200) (Santa-Cruz Biotechnology, CA, USA). Slides were washed in PBS Tween 0.05% and 

then incubated with corresponding secondary antibodies. A goat anti-rabbit HRP (1/400) (Dako, 

Glostrup, Denmark) was used to detect MMP-19 and number of MMP-19 positive cells by field 

was counted for each slide (5 fields/slide). A biotinylated rabbit anti-goat (1/400) (Dako, 
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Glostrup, Denmark) followed by incubation with a streptavidin/HRP (1/500) (Dako, Glostrup, 

Denmark) was used to detect tenascin-C expression. Apoptosis was studied by terminal 

deoxynucleotidyl transferase (TDT)-mediated deoxyuridine triphosphate (dUTP) nick-end 

labeling (TUNEL) (Roche, Penzberg, Germany). Sections were incubated in Xylol, dehydrated, 

and pretreated with Triton X100 1% and hydrogen peroxide (H2O2). Sections were incubated 1 

hour at 37°C with enzyme solution and nucleotide mixture (UTP-FITC). In order to use standard 

light microscope, slides were incubated with an anti FITC/HRP antibody (converter POD). 

Finally, sections were counterstained with haematoxylin and mounted. For each mouse, 5 

different areas were analyzed in the whole lung. The percentage of eosinophils undergoing 

apoptosis was calculated for each mouse. 

Detection of cells bearing the IL-33 receptor T1/ST2 on their surface was performed by 

immunohistochemistry using a rat monoclonal antibody to mouse T1/ST2 purchased from 

Morwell diagnostics (Zurich, Switzerland) (18,35-36). T1/ST2 positive-cells were counted in the 

peribronchial area of 6 bronchi per mouse.  

The left lung was crushed using a Mikro-Dismembrator (Braun Biotech International, Gmbh 

Melsungen, Germany). Crushed lung tissue was incubated overnight at 4°C in a solution 

containing urea for proteins extraction. The supernatant was stored at –80°C for ELISA tests and 

for Western-blot analysis. Total RNA was extracted with RNeasy Mini Kit (Qiagen, Hilden, 

Germany).  

 

Measurement of MMP-19 and tenascin-C mRNA expression by Real Time PCR  

 

Total RNA was extracted from crushed lung tissue using Qiagen RNeasy Mini Kit (Qiagen, 

Venlo, Netherlands). RNA levels and purity were assessed using a smartspect 3000 
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spectrophotometer (BioRad, Hercules, CA, USA). Complementary DNA synthesis was 

performed using Transcriptor First Strand cDNA Synthesis Kit (Roche Molecular Systems, 

Branchburg, New Jersey, USA) and PCR amplification was performed using the QuantiFast 

SYBR Green RT-PCR Kit (Qiagen, Venlo, Netherlands).  The adapted amplification primers 

used for MMP-19, Tenascin-C and ribosomal RNA 18S are the Mus Musculus QuantiTect 

Primer (Mm_Mmp19_1_SG; Mm_Rn18s_2_SG; Mm_Tnc_1_SG) selected and purchased from 

Qiagen. Each sample was analyzed in duplicate and a calibration curve was run in parallel in 

each analysis. The levels of transcripts of the constitutive housekeeping gene product ribosomal 

RNA 18S were quantitatively measured in each sample to control for sample to sample 

differences in RNA concentration and quality. Three tissue samples were pooled for each 

determination. The results are expressed as the mean ± SEM of the two different experiments and 

were analyzed using the LightCycler
®
 480 Software from Roche. 

 

Measurements of cytokines by ELISA 

Mouse IL-5, IL-13, CCL5 (RANTES) and CCL11 (eotaxin-1) levels were assessed using 

commercial ELISAs following manufacturer’s instructions (R&D systems, Abingdon, UK). 

ELISA assay detection limits were: 15.6 pg/ml (IL-5), 7.8 pg/ml (IL-13), 7.8 pg/ml (CCL-5), 

15.6 pg/ml (CCL-11), respectively. 

 

Measurement of allergen specific serum IgE and IgG 

At sacrifice, measurements of OVA specific serum IgE levels were assessed by ELISA as 

previously described
 
(18). OVA-specific IgG1 and IgG2a were detected using peroxidase-labeled 

goat anti-IgG1 and anti-IgG2a Abs (affinity purified Abs; Southern Biotechnology Associates, 

Birmingham, AL).  
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Isolation and culture of Human Airway Smooth Muscle Cells   

Airway smooth muscle cells from four healthy subjects (methacholine PC20 >16 mg/ml, FEV1 

101±4%, age 29±5yr, 3 male, 1 female) and four glucocorticoid-naïve atopic asthmatics 

(methacholine PC20 0.18±0.04 mg/ml, FEV1 82±7%, age 25±2yr, 2 male, 2 female) were 

obtained in accordance with procedures approved by the Research Ethics Committees of King’s 

College Hospital (study #11-03-209) and Guy's & St. Thomas' Hospitals (study #05/Q0704/72) 

by deep endobronchial biopsy from right middle or lower lobe bronchi. Smooth muscle bundles 

were visualized using a dissecting microscope and dissected free of surrounding tissue using fine 

needles. Cells were grown by explant culture from airway smooth muscle bundle fragments in 

12-cm
2
 flasks using methods described previously

 
(37). Fluorescent immuno-cytochemistry 

routinely confirmed that near-confluent, fetal bovine serum (FBS)-deprived cells (passage 2) 

stained (>95%) for smooth muscle-specific α-actin, desmin and calponin
 
(37). Cell passages 3-7 

were used in all experiments.  

 

Cell Culture and Collection of Cell-conditioned Medium  

Cells (2x10
4
cells/well) were grown in 24-well plates for 4 days in DMEM. Sub-confluent cells 

were incubated in serum-free RPMI 1640 (Gibco, Invitrogen, Paisley, United Kingdom) 

containing 25 mM HEPES, 2 mM L-glutamine,
 
100 U/ml:100 µg/ml penicillin/streptomycin 

(supplemented RPMI)
 
with the addition of 1 µM insulin, 5 µg/ml transferrin, 100 µM

 
ascorbate, 

and 1 mg/ml bovine serum albumin (BSA). After 72 hours,
 

cells were stimulated with 

recombinant human IL-13 for 24 hours (R&D Systems,
 
Abingdon, UK) in supplemented RPMI 

1640 containing 1 mg/ml BSA.
 
Cell-conditioned medium was

 
collected and cell-free supernatants 

were stored at -70° C until
 
measurement of MMP-19 levels by Western Blot analysis.  
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Western blot analysis  

Samples (cell-free supernatant) were electrophoretically separated in SDS-10% polyacrylamide 

gels in the presence of 5% β-mercaptoethanol. Proteins were transferred onto a PVDF membrane 

(NEN Life Science Products) which was then incubated for 1 hour at room temperature in 

Phosphate Buffered Saline (PBS) containing 5% skim milk. Blots were incubated overnight at 

4°C with a rabbit anti-human MMP-19 polyclonal antibody (Affinity BioReagents, Zhandhoven, 

Belgium) or with a polyclonal rabbit anti-human/mouse tenascin-C (Chemicon International, 

Würzburg, Germany) both diluted in PBS (1/1000), washed three times in PBS-tween (0.1%) and 

finally incubated for one hour respectively with peroxidase-conjugated goat anti-rabbit IgG 

diluted 1:1000 for MMP-19 staining or with a peroxidase-conjugated swine anti-rabbit diluted 

1:1000 for tenascin-C detection (Dako, Glostrup, Denmark). Peroxidase activity was assessed 

using an enhanced chemiluminescence kit (NEN life science products). In order to normalize 

Western Blot data, beta-actin or GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) were 

detected in all samples with a rabbit anti-mouse/HRP diluted in PBS at 1:1000 (Sigma, Saint-

Louis, Missouri, USA) or with a swine anti-rabbit/HRP antibody diluted in PBS at 1:10 000 

(Chemicon International, Würzburg, Germany). 

Statistical analysis 

Results are expressed as mean +/- SEM and the comparison between the groups was performed 

using Mann-Whitney test, One-way ANOVA with post test or Unpaired t test. These tests were 

performed using GRAPHPAD INSTAT version 3.00 for WINDOWS 95 (GRAPHPAD 

SOFTWARE, San Diego, CA, USA, WWW.GRAPHPAD.Com). P values < 0.05 were 

considered as significant.  
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Results 

MMP-19 expression is induced in lungs of mice exposed to allergens 

In order to investigate MMP-19 expression after allergen challenge, C57/BL6 mice were 

sensitized and subsequently exposed to aerosolized ovalbumin (OVA) for 7 days. As previously 

described (18), this treatment led to an asthma-like phenotype characterized by an eosinophilic 

and neutrophilic inflammation in the bronchoalveolar lavage (BAL) (Table 1) and peribronchial 

infiltrates of eosinophils (data not shown). Real Time-PCR analysis revealed a significant 

increase of MMP-19 mRNA levels in lungs tissue extracts of animals exposed to allergen as 

compared to PBS-exposed mice (figure 1A). This finding was confirmed at the protein level by 

immunohistochemistry on lung sections showing a two fold increase of MMP-19 positive cells 

after allergen exposure (figure 1B-C).  

 

MMP-19 deficiency is associated with higher allergen-induced airway responsiveness and 

increased eosinophilic inflammation 

We subsequently applied the allergen-induced asthma model to MMP-19 deficient mice and their 

wild-type (WT) counterparts. Airway resistance was recorded by direct measurement following 

exposure to inhaled methacholine (3g/l to 12g/l) by using the Flexivent
®
 system. The dose 

response curve presented in figure 2A shows that allergen-induced airway responsiveness was 

significantly higher in MMP-19
-/-

 as compared to WT mice for each tested dose of methacholine 

(3, 6, 9, 12g/l) (p<0.05) (figure 2A). MMP-19 deficiency in mice was not associated with any 

pulmonary developmental abnormality as assessed by histology (data not shown). After allergen 

challenge, MMP-19
-/-

 mice exposed to allergen showed a huge increase of total cell counts in 

BALF (13.62 ±3,97 for Wild-Type mice vs 53.7 ± 8,65 for MMP-19
-/-

 mice; p<0.001). 

Eosinophils represented more than 85% of total cells and their mean number was 5 times higher 
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in BALF of allergen-exposed MMP-19
-/-

 mice as compared to WT counterparts (p<0.0005) 

(Figure 2B). Neutrophil counts were also increased in challenged MMP-19
-/-

 mice (p<0.001) but 

represented less than 5% of total cells in BALF from challenged MMP-19
-/-

 mice (Figure 2C). 

No significant difference was observed between the experimental groups when considering 

lymphocytes, epithelial cells and macrophages (data not shown).    

Histological observations correlated with results obtained on BALF. Indeed, no inflammation 

was evidenced in bronchial walls of wild-type (WT) or MMP-19
-/-

 OVA-sensitized and exposed 

to PBS (figure 3A). In sharp contrast, an obvious peribronchial and perivascular inflammation 

was observed in both wild-type and MMP-19
-/-

 mice after allergen exposure (figure 3A-B). A 

seven-fold increased eosinophilic infiltration in the peribronchial area was also evidenced by 

Congo Red staining in MMP-19
-/-

 as compared with WT (figure 3A and C). As assessed by 

TUNEL labeling, no difference of apoptosis index for eosinophils was observed between 

experimental groups (figure 3D). This suggests that the eosinophilic inflammation detected in 

sensitized and challenged MMP-19
-/-

 mice involved increased cellular recruitment rather than 

modification of cell survival.  

 

MMP-19 deficiency leads to an increased Th2 inflammation upon allergen challenge 

Levels of OVA specific IgE measured by ELISA were increased in sera of mice sensitized and 

subsequently exposed to OVA aerosolization as compared to sham-exposed mice (p<0.05). OVA 

specific IgE production reflecting sensitization to this experimental allergen was similar in both 

genotypes and was not affected by MMP-19 deficiency (figure 4A). Levels of OVA specific IgG1 

and IgG2A were also assessed in order to determine the Th1/Th2 profile. After allergen challenge, 

levels of IgG1, a marker of Th2-prone milieu, were significantly increased after allergen exposure 

in the sera from MMP-19
-/-

 and corresponding WT
 
mice but were drastically higher in serum 
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from MMP-19
-/-

 mice as compared to WT (p<0.05) (figure 4B). In contrast, levels of IgG2A, a 

putative Th1marker, were not different between all experimental groups (data not shown). 

To further characterize the immunological profile of lung parenchyma, we analyzed airway 

infiltration by Th2 cells through immunohistochemical staining with an antibody raised against 

T1/ST2, the IL-33 receptor expressed on Th2 cell surface. MMP-19
-/-

 mice displayed a 

significantly higher number of T1/ST2 positive lymphocyte-shaped cells in the airways as 

compared to WT mice (p<0.05). These experiments indicate that Th2 cells recruitment in the lung 

was increased in the absence of MMP-19 (figure 4C). 

 

Cytokine measurements in BALF and lung protein extracts 

To elucidate possible mechanisms underlying increased eosinophilic inflammation and airway 

responsiveness to methacholine observed in MMP-19
-/- 

mice, levels of the key Th2 cytokine IL-

13 were quantified in BALF by ELISA. In both genotypes, allergen exposure induced at least a 

five time increase of IL-13 levels. Moreover, in MMP-19
-/-

 mice, IL-13 levels in BALF and lung 

protein extracts were three times higher as compared to WT (p<0.005 and p<0.0001 respectively) 

(figure 5A and data not shown). In addition, CCL11 (eotaxin-1) levels measured in lung protein 

extracts were increased upon allergen exposure in both genotypes but levels were significantly 

higher in MMP-19
-/-

 as compared to WT (p<0.005) (figure 5B). In sharp contrast, levels of CCL5 

(RANTES) were increased in PBS-exposed MMP-19
-/-

 mice (p<0.005) and allergen exposure 

affected CCL5 levels only in WT mice and not in MMP-19
-/- 

mice (p<0.05) (figure 5C). No 

difference in IL-5, IL-10 and IFN-γ levels was observed between the experimental groups (data 

not shown).  
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Expression and deposition in the airways of MMP-19 substrates potentially involved in airway 

inflammation and remodeling 

We next analyzed some key substrates of MMP-19 that might play a role in asthma reaction. 

Tenascin-C mRNA expression quantified by Real Time-PCR analysis in extracts from whole 

lungs was increased after allergen challenge in both MMP-19
-/-

 and wild type mice when 

compared to naïve mice without any significant influence of the MMP-19 depletion (Figure 6A). 

When measuring protein levels of tenascin-C by western-blot analysis, we found that allergen 

exposure induced a significant increase of tenascin-C levels in MMP-19
-/-

 and in wild-type mice 

(p<0.05) with significantly higher levels in MMP-19
-/- 

mice (p<0.05) (Figure 6B).  

Immunohistochemical analysis confirmed tenascin-C deposition in lung tissue induced by 

allergen exposure both in wild-type and MMP-19
-/-

 mice. However, a strong tenascin-C 

immunoreactivity appeared as an intense continuous band located beneath the epithelium 

basement membrane in mutant mice while tenascin-C labeling was less distinct, appearing as a 

thin interrupted line in WT counterparts (Figure 6C). Measurements of IGFBP-3 protein, another 

MMP-19 substrate, were also performed on lung extracts by Western blot analysis. However, no 

obvious difference was evidenced between MMP-19 wild-type and MMP-19
-/-

 mice (data not 

shown). 

 

Regulation of MMP-19 expression in human cultured primary airway smooth muscle cells 

Since non respiratory smooth muscle cells have been reported to produce MMP-19 (38), we 

assessed MMP-19 production by cultured human airway smooth muscle cells derived from 

subjects with asthma and healthy controls (figure 7A). Under non-stimulated conditions, airway 

smooth muscle cells from asthmatics released significantly higher levels of MMP-19 protein than 

cells from healthy subjects (p<0.05). Incubation of these cells with IL-13 (0.1ng/ml to 10ng/ml) 
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led to a concentration-related increase of MMP-19 production in asthmatics (p<0.05) (figure 7B). 

Considering non asthmatic cells, after appropriate statistical analysis using One-way ANOVA 

with post test or Unpaired t test, we determined that there is a significant difference between 

unstimulated cells (0.4965 +/- 0.14) and cells stimulated with 0.1 ng/ml IL-13 (1.474 +/- 0.0559) 

(p<0.01) regarding MMP-19 production. A significant decrease of MMP-19 production by non 

asthmatic cells was found when these cells were stimulated with 0.1 ng/ml IL-13 compared with 

10 ng/ml IL-13 (0.7615 +/- 0.196) (p<0.05). However, when comparing normal cells stimulated 

with 10 ng/ml IL-13 with unstimulated cells, no significant difference was evidenced.  
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Discussion  

Allergic inflammation implies a complex interplay between diverse mediators including 

cytokines/chemokines, extracellular matrix components and proteases. The present study 

provides novel evidences concerning the function of MMP-19, suggesting a protective effect of 

this protease in allergen-driven inflammatory reaction. Our results indicate that MMP-19 could 

prevent tenascin-C deposition and therefore play a role in the driving of inflammatory processes. 

In this work, we identify MMP-19 as a gene overexpressed in allergen-exposed animals 

suggesting its implication in inflammatory cell recruitment. Through a gene deletion strategy, we 

demonstrate for the first time that MMP-19 deletion preeminently exacerbates Th2-associated 

eosinophilic inflammation and airway hyperresponsiveness. The marked eosinophilia found in 

the airway walls of MMP-19 deficient mice was accompanied by a shift towards a Th2 profile as 

assessed in lung tissue by T1/ST2 positive lymphocytes counts, Th2 cytokine (IL-13) and 

chemokines (CCL5, CCL11) but also by serum IgG1 measurements. A link between MMP-19 

and IL-13 regulatory pathway is further evidenced by the demonstration of increased MMP-19 

production in IL-13-stimulated human smooth muscle cells. Moreover, we demonstrate a 

peribronchial accumulation of tenascin-C protein after allergen challenge in MMP-19
-/-

 mice 

only.  

The observation of an exacerbated eosinophilic inflammation in MMP-19
-/- 

mice is in line with 

the finding of increased eosinophilic inflammation in MMP-2
-/- 

mice (17) and neutrophilic 

inflammation in MMP-8
-/- 

mice (18), and broadens the involvement of MMPs in pulmonary 

inflammatory response (6). Our results are the first to associate MMP-19 with a Th2-mediated 

immune response providing evidence that Th2-related cytokines (IL-13, CCL11, and CCL5) are 

increased in lung tissues of MMP-19
-/-

 mice. The differences in CCL11 levels could per se 

explain the increased eosinophilic inflammation in MMP-19
-/-

 mice since CCL11 is a potent 
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eosinophil chemoattractant and activator (39). CCL5, which is a key regulator of eosinophil 

locomotion and activation, is produced by lymphocytes but also by epithelial, endothelial cells 

(40) and airway smooth muscle (41). Interestingly, MMP-19 expression was induced by CCL5 in 

human monocytes (41) and we show that baseline CCL5 levels were increased in MMP-19
-/- 

mice as compared to WT mice, suggesting a crosstalk between CCL5 and MMP-19 with a 

putative negative feedback loop on CCL5 production when MMP-19 is secreted. Alternatively, 

increased baseline levels of CCL5 might reflect some profound alterations of cellular responses 

in MMP-19
-/-

 mice.   

IL-13 is a prototypic Th2 cytokine that induces eosinophilic inflammation in the airways and 

airway hyperresponsiveness (11,42). Thus, the increased levels of IL-13 could be directly 

responsible for the increased airway hyperresponsiveness observed in MMP-19
-/- 

mice. IL-13 

levels after allergen exposure are significantly higher in MMP-19
-/-

 mice while baseline levels 

were not affected by MMP-19 deficiency. Other experimental arguments strongly suggest that 

MMP-19 deletion induces a deregulation towards a Th2 response. Indeed, we describe increased 

numbers of cells bearing the IL-33 receptor T1/ST2, which is specific for Th2 lymphocytes in the 

lung parenchyma, and increased IgG1 serum levels in MMP-19
-/- 

mice (43). The sensitization 

process is assuredly not affected in MMP-19
-/-

 mice since specific IgE levels were increased by 

allergen exposure in both deficient mice and wild type mice without differences. Taken together, 

these data strongly support the assumption that MMP-19 deficiency is directly or indirectly 

responsible for a shift towards Th2-driven inflammation without affecting the sensitization 

process.  

The involvement of MMP-19 in murine asthma model displaying Th2 inflammation and airway 

hyperresponsiveness prompted us to evaluate the production of MMP-19 by cultured human 

airway smooth muscle cells in a translational setting. Although expression of MMP-19 by 
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smooth muscle cells outside the airways has been reported previously (38), this is the first report 

of MMP-19 expression by smooth muscle from the airways. Of great interest is the finding that 

smooth muscle cells derived from human asthmatics produced markedly greater levels of MMP-

19 at baseline and were hyperreactive to IL-13 stimulation. The finding that cells obtained from 

asthmatics overproduced MMP-19 both in baseline conditions and when stimulated by IL-13 was 

unexpected and suggests that MMP-19 could be implicated in a cross-talk between airway 

inflammatory cells, extracellular matrix and smooth muscle cells (44). Moreover, increased 

MMP-19 expression observed in cells from asthmatic patients might reflect a profound 

deregulation of IL-13 pathway and could suggest that it exists a loop of reciprocal interactions 

between IL-13 (which might stimulate MMP-19 production in vivo) and MMP-19 (which seems 

to directly or indirectly restrain IL-13 production). When considering these results, we can 

speculate that a putative molecular cross talk could exist between MMP-19 and IL-13. Such a 

cross talk could be one of the key regulatory mechanisms of airway inflammation in the context 

of Th2 inflammation. In our model, one can speculate that smooth muscle-derived MMP-19 

could protect against allergen-induced inflammation by counteracting IL-13 production and by 

cleaving newly deposited tenascin-C, thereby regulating bronchial responsiveness and 

inflammation. 

Interestingly, MMP-19 deficient animals displayed tenascin-C accumulation in the bronchial 

walls. Tenascin-C is a substrate for MMP-19 (25) and was recently reported to acutely 

accumulate in the bronchial walls from asthmatics after allergen challenges (26,27). In atopic 

asthmatics, thickness of tenascin deposition correlated with T-lymphocyte, eosinophil and 

macrophage cell counts, suggesting that tenascin may have a regulatory role on inflammatory 

cells accumulation in asthma (45). Many studies have investigated the association of genetic 

polymorphisms with asthma. Among those, tenascin-C was identified as a novel asthma 
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susceptibility gene (46). Most importantly, by using a mouse model of allergic asthma applied on 

tenascin-C deficient mice, Nakahara et al (47) described that depletion of this glycoprotein 

significantly decrease the asthmatic phenotype in mice. Tenascin-C deficient animals are 

therefore protected against allergen-induced airway inflammation indicating that tenascin-C 

displays some pro-inflammatory properties. Based on our experimental results, we suggest that 

MMP-19 could prevent tenascin-C accumulation in the airway walls by cleaving this molecule, 

therefore participating in the control of Th2 inflammation. Since it was recently shown that the 

presence of tenascin-C promotes a motile cell phenotype (48), we could also speculate that the 

presence of higher amount of tenascin-C in the lung of MMP-19
-/-

 mice might promote 

inflammatory cell adhesion or accumulation trough its capacity to interact with integrins (49,50). 

This MMP-19 related tenascin-C regulatory process could also be of importance in humans since 

this glycoprotein accumulates at 24h after an allergen challenge and diminishes significantly 

after 7 days (27). Tenascin-C deposition was also decreased by anti-IL-5 monoclonal antibody in 

atopic asthmatics (51). Moreover, we speculate that tenascin-C could play a key role in bronchial 

hyperresponsiveness since we found that exaggerated accumulation correlates with higher 

responsiveness in animals. In line with this finding, Kariyawasam et al (28) have shown recently 

that tenascin-C accumulation display the same time-course as bronchial hyperresponsiveness 

installation. As stated above, tenascin-C appears as of particular importance since the expression 

of this glycoprotein of the extracellular matrix is increased in several lung inflammatory diseases, 

including bronchial asthma (26,27). Moreover, IFN-γ and TNF-α, two pro-inflammatory 

cytokines, are able to induce the production of tenascin-C by cultured human bronchial epithelial 

cells (52). Taken together these data suggest that in our model, higher amounts of tenascin-C in 

MMP-19
-/-

 animals might play a key role in the shift towards exaggerated Th2-related 

inflammation and responsiveness.  
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We conclude that MMP-19 is an allergen-induced gene and that MMP-19 deletion in mice 

induces tenascin-C accumulation in airway walls. This is thought to modify the pulmonary 

inflammatory process towards an excess of Th2 response leading to much more severe 

eosinophilic inflammation and airway responsiveness.  
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Figure legends 

 

Figure 1: MMP-19 expression in lungs. (A) Real Time-PCR measurement of MMP-19 mRNA 

levels in lungs of allergen-challenged (OVA) (n=11) and sham-exposed (PBS) (n=6) mice.  (B) 

Immunohistochemistry with an anti-MMP-19 antibody on lung sections from mice exposed to 

PBS (left panel) or OVA (right panel) (magnification 200x). (C) Quantification of MMP-19 

positive cells in lung tissue of allergen-exposed mice (OVA) (n=7) and sham-exposed mice 

(PBS) (n=6).  

 

Figure 2: Airway responsiveness assessment in wild-type and MMP-19
-/- 

mice. After 

methacholine inhalation, allergen-exposed mice (OVA) displayed increased airway resistances as 

assessed by FlexiVent
®
. This increase was significantly higher in MMP-19

-/-
 (n=8) as compared 

to WT mice (n=8) (A).  Number of eosinophils (B) and neutrophils (C) in bronchoalveolar 

lavage. Allergen exposure induce an increase of eosinophil (p<0.001) and neutrophil number 

(p<0.05) both in wild-type and MMP-19
-/-

 mice. A significant increase of eosinophils (p<0.005) 

and neutrophils (p<0.001) number was observed in MMP-19
-/-

 mice when compared to wild-type 

mice after ovalbumin inhalation.       

 

Figure 3: Histological analysis of lung sections. (A) Lung paraffin sections stained with 

haematoxylin-eosine (HE) (100x) or Congo Red (CR - lower panels) (400x) (n=14 per 

experimental group). No inflammation was evidenced in bronchial walls of sham-exposed WT 

(PBS) or MMP-19
-/- 

mice. After allergen exposure, an obvious peribronchial and perivascular 

inflammation (arrow) was observed in both MMP-19
-/-

 mice and WT. (B) Peribronchial 
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inflammation was scored on HE stained sections as described in Material and Methods. 

Eosinophilic infiltration of peribronchial areas was detected by CR staining in allergen-exposed 

MMP-19
-/-

 and WT (C). Eosinophilic infiltration was quantified on CR stained sections as 

described in Material and Methods (D). Assessment of cell apoptosis by TUNEL method on 

paraffin sections (E).  

 

Figure 4: Measurement of allergen specific antibodies and Th2 inflammation. (A) The amounts of 

OVA specific IgE were increased in sera of allergen-exposed mice (OVA) (p>0.05) without any 

difference between MMP-19
-/-

 and WT (n= 14 per group) (B) IgG1 serum levels were 

significantly increased after allergen exposure in both genotypes. After allergen challenge 

(OVA), the increase in IgG1 levels was higher in serum from MMP-19
-/-

 mice. Results in figure 

4A and 4B were expressed in arbitrary units (A.U.) (n= 14 per group). (C) Allergen exposure 

significantly increased the number of Th2 lymphocytes in both genotypes. Allergen-exposed 

MMP-19
-/-

 mice displayed a significantly higher number of Th2 lymphocytes in the airways as 

compared to WT mice (n= 14 per group).  

 

Figure 5: Cytokine levels in lung protein extracts. Amounts of IL-13 (A), CCL11 (B) and CCL5 

(C) were measured by ELISA in lavage fluid or lung protein extracts (n=14 per experimental 

condition in all these experiments). 

 

Figure 6: Tenascin-C expression in bronchial walls. (A) Real Time-PCR measurements of 

tenascin-C mRNA levels in lungs of MMP-19
-/-

 and wild-type mice after allergen (OVA). 

Tenascin-C mRNA levels were significantly increased in lungs after allergen exposure and 

without any effect of MMP-19 depletion (OVA, n=11). (B) Representative results of Western-
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blot performed with an anti-tenascin-C antibody and quantitation. Results are expressed as a ratio 

between density of tenascin-C bands and density of GAPDH bands, used as internal control. 

Levels of tenascin-C were significantly increased in MMP-19
-/-

 mice when compared to WT 

mice. (C) Tenascin-C accumulation was detected by immunohistochemistry on lung sections 

from mice exposed to OVA (magnification 200x). Deposition of tenascin-C in lung tissue was 

higher in MMP-19
-/-

 mice when compared to WT mice exposed to OVA.  

 

Figure 7: Measurement of MMP-19 expression by Western blot analysis in human airway 

smooth muscle cells. (A) Representative Western blot showing MMP-19 production by IL-13 in 

cultured airway smooth muscle cells from healthy subjects (non asthmatics, NA) or those with 

asthma (A). (B) Western blot results are expressed as a ratio between density of MMP-19 bands 

and density of actin bands, used as internal control. 
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Table 1: Total cell number and cellular composition of  Bronchoalveolar Lavage Fluid 

 

 

Genotype Wild-Type Wild-Type MMP-19
-/-

 MMP-19
-/-

 

Exposure 
PBS 

(n= 13) 

OVA 

(n= 15) 

PBS 

(n= 15) 

OVA 

(n= 14) 

Epithelial cells (x 10
4
/ml) 3,9 +/- 1,46 0,83 +/- 0,23 

(*)
 0,18 +/- 0,06 0,59 +/- 0,2 

Eosinophils (x 10
4
/ml) 0 +/- 0 8,78 +/- 3,21 

(
†

)
 0,43 +/- 0,19 45,71 +/- 6,98 

(
†

,
‡

)
 

Neutrophils (x 10
4
/ml) 0 +/- 0 0,04 +/- 0,01 0,32 +/-0,15 2,65 +/- 0,72 

(*, §)
 

Lymphocytes (x 10
4
/ml) 0,1 +/- 0,06 0,03 +/- 0,01 0,06 +/- 0,03 0,25 +/- 0,09 

Macrophages (x 10
4
/ml) 22,7 +/- 0,74 39,2 +/- 0,72 79,7 +/- 1,54 4,46 +/- 1,4 

Total cells (x 10
4
/ml) 26,7 +/- 1 48,88 +/- 3,97 

(*)
 80,69 +/- 1,74 53,66 +/- 8,65 

(*, 
†

, 
‡

)
 

 

 

Table I: Total cell number and cellular composition of Bronchoalveolar Lavage Fluid    (BALF) 

of WT
 
or MMP-19

-/-
 challenged with ovalbumin (OVA) or PBS. (*): p< 0.05 vs PBS mice, (†): 

p< 0.001 vs PBS mice, (‡): p< 0.0005 vs WT mice, (§): p<0.001 vs OVA-exposed WT mice. 
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Figure 1:  
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Figure 2:  
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Figure 3: 
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Figure 4 :  
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Figure 5 :  
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Figure 6:  
 

A. Real-Time PCR  
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C. Immunostaining  

 
 
 
 
 

Page 42 of 43



Figure 7 : 
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