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JORDAN BIMODULES OVER THE SUPERALGEBRAS

P (n) AND Q(n)

CONSUELO MARTÍNEZ, IVAN SHESTAKOV, AND EFIM ZELMANOV

Abstract. We extend the Jacobson’s Coordinatization theorem to Jordan su-
peralgebras. Using it we classify Jordan bimodules over superalgebras of types

Q(n) and JP (n), n ≥ 3. Then we use the Tits-Kantor-Koecher construction
and representation theory of Lie superalgebras to treat the remaining case
Q(2).

Introduction

Throughout the paper all algebras are considered over a ground field F of char-
acteristic �= 2.

Let G = 〈1, ei, i ≥ 1|eiej+ejei = 0〉 denote the Grassmann (or exterior) algebra.
Then G = G0̄ +G1̄ is a Z/2Z-graded algebra, where G0̄, G1̄ are linear spans of all
tensors of even and odd length, respectively.

Let V be a variety of algebras defined by homogeneous identities (see [1], [20]). A
superalgebra A = A0̄+A1̄ is said to be a V- superalgebra if its Grassmann envelope
G(A) = A0̄ ⊗G0̄ +A1̄ ⊗G1̄ lies in V .

C.T.C. Wall [19] proved that every associative simple finite-dimensional superal-
gebra over an algebraically closed field F is isomorphic to one of the superalgebras:

I) A = Mm+n(F ), A0̄ =

{(
� 0
0 �

)
, A1̄ =

(
0 �
� 0

)}
and

II) A = Q(n) =

{(
a b
b a

)
| a, b ∈ Mn(F )

}
are associative superalgebras.

Given a homogeneous element a ∈ A0̄ ∪ A1̄, let |a| denote its parity (0 or 1).
From the definition above it follows that a Jordan superalgebra is a Z/2Z-graded

algebra J = J0̄ + J1̄ satisfying the graded identities

xy = (−1)|x||y|yx

Received by the editors February 27, 2008.
2000 Mathematics Subject Classification. Primary 17C70; Secondary 17C55, 17B10, 17B60.
Key words and phrases. Jordan superalgebra, Jordan bimodule.
The first author was partially supported by MTM 2007-067884-C04-01 and FICYT IB-08-147.

The author also thanks KIAS for their hospitality.
The second author was partially supported by the CNPq grant 304991/2006-6 and the FAPESP

grants 05/60337-2, 05/60142-7. The author also thanks Oviedo University for their hospitality.
The third author was partially supported by the NSF.

c©2009 American Mathematical Society

2037

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:31:49 EST 2012 for download from IP 156.35.62.18/156.35.192.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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and

((xy)z)t+ (−1)|y||z|+|y||t|+|z||t|((xt)z)y + (−1)|x||y|+|x||z|+|x||t|+|z||t|((yt)z)x

= (xy)(zt) + (−1)|y||z|(xz)(yt) + (−1)|t|(|y|+|z|)(xt)(yz).

If A is an associative (super)algebra, then the new operation a · b =
1
2 (ab + (−1)|a||b|ba) defines a structure of a Jordan (super)algebra on A. We will

denote this Jordan (super)algebra as A(+).
Similarly, the operation [a, b] = ab− (−1)|a||b|ba defines a Lie superalgebra A(−).
A graded linear map � : A → A of an associative superalgebra is called a super-

involution if (a�)� = a, (ab)� = (−1)|a||b|b�a�. Then the set of symmetric elements
H(A, �) is a (Jordan) subsuperalgebra of A(+). Similarly the set of skewsymmetric
elements Skew(A, �) is a Lie subsuperalgebra of A(−).

Let In, Im be the identity matrices, t the transposition and U = −U t = −U−1 =(
0 −Im
Im 0

)
. Then the mapping � : Mn+2m(F ) → Mn+2m(F ) defined as

(
a b
c d

)�

=

(
In 0
0 U

)(
at −ct

bt dt

)(
In 0
0 U−1

)

is a superinvolution.
The Jordan (resp. Lie) superalgebra of symmetric (resp. skewsymmetric) ele-

ments is called the Jordan (resp. Lie) orthosymplectic superalgebra and denoted
Jospn,2m(F ) = H(Mn+2m(F ), �) (resp. OSPn,2m(F ) = Skew(Mn+2m(F ), �)).

The associative superalgebra Mn+n(F ) has another superinvolution:(
a b
c d

)σ

=

(
dt −bt

ct at

)
.

The Jordan (resp. Lie) superalgebra of symmetric (resp. skewsymmetric) ele-
ments is denoted by JPn(F ) (resp. Pn(F )).

V. Kac [3] (see also I. Kantor [4]) classified simple finite dimensional Jordan
superalgebras over an algebraically closed field F of zero characteristic. Simple
finite dimensional Jordan superalgebras over fields of positive characteristics �= 2
were classified in [15] and [9].

If J is a Jordan (super)algebra, a Jordan bimodule V over J is a Z/2Z-graded
vector space with operations V × J → V , J × V → V such that the split null
extension V + J is a Jordan (super)algebra (see [1]). Recall that the split null
extension is the direct sum of vector spaces V + J with the operation that extends
the multiplication of J and the action of J on V while the product of two arbitrary
elements in V is zero.

Given an arbitrary set X, there is a unique free J-bimodule V (X) over the set of
free generators X. If V ′ is a J-bimodule, then an arbitrary map X → V ′ uniquely
extends to a homomorphism of bimodules V (X) → V ′.

Let X be a set consisting of one element. For an element a ∈ J let RV (X)(a)
denote the multiplication operator RV (X)(a) : V (X) → V (X), v → va.

The subalgebra U(J) of the algebra of all linear transformations of V (X) gen-
erated by the operators RV (X)(a), a ∈ J , is called the multiplicative enveloping
algebra of J .

Every Jordan bimodule over J is a right module over U(J) and vice versa.
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JORDAN BIMODULES OVER THE SUPERALGEBRAS P (n) AND Q(n) 2039

In [1], N. Jacobson developed the representation theory of semisimple finite di-
mensional Jordan algebras. He proved that:

i) if J is a finite dimensional Jordan algebra, then dimF U(J) < ∞,
ii) if J is a finite dimensional semisimple Jordan algebra, then U(J) is semisimple

as well. In particular, all bimodules over J are completely reducible.
iii) Moreover, he determined all irreducible bimodules over simple finite dimen-

sional Jordan algebras.
The representation theory for various types of simple Jordan superalgebras was

developed in [8], [17], [18], [10], [11], [12] and [13]. For the current status of the
project, see the survey [13].

In this paper we classify unital bimodules over Jordan superalgebras of the re-
maining type Q(n)(+), n ≥ 2 and extend the results of [12] for JP (n), n ≥ 3 to
arbitrary characteristics �= 2.

First, we adapt the arguments from [1] to obtain a Coordinatization theorem
for Jordan superalgebras of capacity ≥ 3. The latter condition is satisfied for the
superalgebras JP (n), Q(n)(+), n ≥ 3. Then we determine irreducible involutive
alternative bimodules over the coordinate superalgebras of JP (n), Q(n)(+), n ≥ 3.
This yields the classification of unital irreducible bimodules over JP (n), Q(n)(+),
n ≥ 3. Recall that in [12] it was shown that the multiplicative enveloping algebra
U = U(J), J = JP (n), Q(n)(+), n ≥ 3, is a finite dimensional semisimple algebra;
hence all Jordan bimodules over J are completely reducible. The classification of
irreducible finite dimensional Jordan bimodules over JP (n) (including the case n =
2) is obtained in [12] by different methods, though only over fields of characteristic
zero.

In order to tackle the case J = Q(2)(+) we had to change the point of view and to
resort to the study of root-graded modules over Lie superalgebras (as in [12]). This
imposes stronger assumptions on the characteristic of the ground field: charF > 3
or = 0.

We prove that U(Q(n)(+)) is finite dimensional for all n ≥ 2. If charF > 3
or = 0, then the only unital irreducible Jordan bimodules over Q(2)(+) are the 4
nonisomorphic matrix bimodules over the same involutive alternative bimodules as
in the case n ≥ 3. The algebra U(Q(2)(+)) is semisimple; that is, all unital Jordan
bimodules over Q(2)(+) are completely reducible.

1. The Coordinatization theorem

Let J be a Jordan (super)algebra with an identity element 1. Let e1, . . . , en ∈ J0̄
be pairwise orthogonal idempotents such that

∑n
i=1 ei = 1. Then

J =
∑
i≤j

Jij ,

where Jii = {x ∈ J |xei = x}, Jij = {x ∈ J |xei = xej =
1
2x}.

It is easy to see [1] that J2
ii ⊆ Jii, JijJii ⊆ Jij , J

2
ij ⊆ Jii + Jjj , JijJjk ⊆ Jik,

JiiJjj = JijJkk = (0) for distinct i, j, k.
The idempotents ei, ej , i �= j are said to be strongly connected if there ex-

ists an element aij ∈ Jij such that a2ij = ei + ej . In this case denote U(ij) =
U(aij +

∑
k �=i,j ek).

The following theorem is one of the cornerstones in the structure theory of Jordan
algebras.
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2040 CONSUELO MARTÍNEZ, IVAN SHESTAKOV, AND EFIM ZELMANOV

Theorem 1.1 ([1]). Let J be a Jordan algebra with 1, which is a sum of n ≥ 3
strongly connected orthogonal idempotents, 1 =

∑n
i=1 ei, aij ∈ Jij, a

2
ij = ei + ej,

1 ≤ i �= j ≤ n.
(1) Consider the Peirce space D = J12 with the multiplication x � y =

2xU(23).yU(13). Then D is an alternative algebra with the identity element a12
and the involution x → x̄ = xU(12). If n ≥ 4, then D is associative. The symmetric
elements {x ∈ D|x = x̄} lie in the associative center of D.

(2) J is isomorphic to the Jordan matrix algebra Hn(D).

Our aim is to extend this theorem to Jordan superalgebras. Let J = J0̄ + J1̄
be a unital Jordan superalgebra, 1 =

∑n
i=1 ei, n ≥ 3, the idempotents e1, . . . , en

are pairwise orthogonal and strongly connected in J0̄; aij ∈ (J0̄)ij , a
2
ij = ei + ej ,

1 ≤ i �= j ≤ n. As above, consider the automorphisms U(ij) = U(aij +
∑

k �=i,j ek)
of the superalgebra J . On the Peirce space J12 define the multiplication

x � y = 2xU(23).yU(13).

It is easy to see that the Grassmann envelope of the superalgebra D = (J12, �)
is isomorphic to the Peirce subspace G(J)12 with the operation �. Part (1) of
Jacobson’s theorem above implies that D is an alternative superalgebra, where
x → x̄ = xU(12), x ∈ D is a superinvolution. The symmetric elements lie in the
associative center of D; if n ≥ 4, then D is associative.

In order to prove that J � Hn(D), let’s recall the isomorphism from part (2)
of the Coordinatization theorem. Suppose that J is a Jordan algebra. Following
[1] we will define 1-1 linear maps ϕij from the alternative algebra D to all Peirce
spaces Jij , 1 ≤ i ≤ j ≤ n. Let 1 ≤ i < j ≤ n. If i = 1, j = 2, then ϕ12 = IdD. If
i = 1, j > 2, then ϕ1j = U(2j). If i = 2, then ϕ2j = U(1j). Let ϕ11 = 2R(a12)R(e1),
ϕii = ϕ11U(1i) for i > 1.

Define the linear mapping ϕ : Hn(D) → J via (xij)n×m →
∑n

i=1 ϕii(xii) +∑
i<j ϕij(xij). In [1] it is proved that ϕ is an algebra isomorphism.
Now let’s come back to the Jordan superalgebra J and define the linear map-

ping ϕ : Hn(D) → J as above. Applying Jacobson’s theorem to the Grassmann
envelopes we see that ϕ⊗ Id : Hn(G(D)) → G(J) is an algebra isomorphism. This
implies that ϕ is an isomorphism as well.

A superinvolution σ : A → A in an alternative superalgebra is said to be nuclear
if all symmetric elements lie in the associative center of A.

Let V be a bimodule over A. A linear mapping τ : V → V is a superinvolution
of the bimodule V if σ + τ is a superinvolution of the split extension A+ V .

Let A be an alternative superalgebra with a nuclear superinvolution (if n =
3) or an associative superalgebra with a superinvolution (if n ≥ 4). Then the
superalgebra of Hermitian matrices Hn(A) is a Jordan superalgebra with n strongly
connected orthogonal idempotents.

Just as was done in [1], the Coordinatization theorem implies that the category
of unital Jordan bimodules over Hn(A) is equivalent to the category of alternative
A-bimodules with a nuclear involution (if n = 3) or to the category of involutive
associative bimodules (if n ≥ 4).

2. Alternative bimodules

Let A = (Fe + Fu) ⊕ (Ff + Fv); e2 = e, eu = ue = u, u2 = e; f2 = f , fv =
vf = v, v2 = −f . The algebra A is Z/2Z-graded: A0̄ = Fe+ Ff , A1̄ = Fu+ Fv,
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and thus is an associative superalgebra. The graded mapping σ(e) = f , σ(f) = e,
σ(u) = v, σ(v) = u is a superinvolution. It is easy to see that Hn(A) � Q(n)(+).

Let B = M1+1(F ) with the superinvolution(
α β
γ ξ

)
→

(
ξ −β
γ α

)
.

Then Hn(B) � JP (n).
If V is a supermodule over a superalgebra A with a superinvolution �, a bijective

linear map (that we will denote also �), � : V → V is a superinvolution of V if the
natural extension � to A+V is a superinvolution of the split null extension A+V .

Notice that if � is a superinvolution of the supermodule V , then −� is a super-
involution as well.

Let V be an alternative bimodule over an alternative superalgebra C with a
superinvolution � : C → C. Consider another copy of the vector space V , the 1-1
linear map ex : V → V ex and define the multiplication avex = (−1)|a||v|(va�)ex,
vexa = (−1)|a||v|(a�v)ex; a ∈ C, v ∈ V .

Then V ex is an alternative bimodule over C, and V ⊕V ex → V ⊕V ex, v+wex →
w + vex is a superinvolution in the bimodule V ⊕ V ex.

Lemma 2.1. (1) An irreducible involutive bimodule over an alternative super-
algebra with a superinvolution is either an irreducible bimodule or isomorphic to
V ⊕ V ex, where V is an irreducible bimodule.

(2) V ⊕V ex is an irreducible involutive bimodule if and only if V is an irreducible
bimodule, which does not have a superinvolution that is, V �� V ex.

Proof. Part (1) is standard. Let us prove (2).
Suppose that σ : V → V is a superinvolution in the bimodule V . Then τ : V →

V ex, v → (vσ)ex is an isomorphism of bimodules. In this case, {v + vτ , v ∈ V } is a
proper involutive subbimodule of V ⊕ V ex.

On the other hand, let V be an irreducible bimodule and let W be a proper
involutive subbimodule of V ⊕ V ex. Then W ∩ V = W ∩ V ex = (0).

Let 0 �= v1 + vex2 ∈ W ; v1, v2 ∈ V . For an arbitrary multiplication operator
P (by elements from the superalgebra), v1P = 0 implies vex2 P = 0; otherwise
0 �= (v1+vex2 )P ∈ W ∩V ex. Hence v1P → v2P is an isomorphism of the bimodules
V → V ex. The lemma is proved. �

Let V = V0̄ + V1̄ be a bimodule over a superalgebra A. Consider the bimodule
V op = V op

1̄
+ V op

0̄
, where the parity of the subspace V op

ī
is different from ī and the

action of A is defined via

avop = (−1)|a|(av)op, vopa = (va)op

for arbitrary a ∈ A, v ∈ V . The bimodule V op is called the opposite of the bimodule
V .

Let us proceed with the classification of alternative involutive unital bimodules
with nuclear superinvolution over M1+1(F ) with(

α β
γ ξ

)�

=

(
ξ −β
γ α

)
.

N. A. Pisarenko [14] proved that every alternative unital bimodule over M1+1(F )
is associative and completely reducible and the only irreducible M1+1(F )-bimodules
are the regular bimodule Reg(M1+1(F )) and its opposite.
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It is not difficult to check that the regular bimodule Reg(M1+1(F )) has two
(up to isomorphism) superinvolutions, � and −�. By Lemma 2.1 the only irre-
ducible involutive bimodules over M1+1(F ) are Reg(M1+1(F )) with the involution
�, Reg(M1+1(F )) with the involution −� and their opposites. This implies the
following.

Theorem 2.2. (1) Unital Jordan bimodules over JP (n), n ≥ 3 are completely
reducible.

(2) The only unital irreducible Jordan bimodules over JP (n), n ≥ 3 are:
(i) the regular bimodule,
(ii) the matrix bimodule over Reg(M1+1(F )) with the superinvolution −�, which

is isomorphic to the bimodule of skewsymmetric matrices in Mn+n(F ) with respect
to the superinvolution σ (see page 2),

(iii) the opposites of (i) and (ii).

In [12] this theorem was proved over fields of zero characteristic.
Now let us consider alternative bimodules over the involutive algebra A =

(Fe+ Fu)⊕ (Ff + Fv).

Lemma 2.3. If V is an alternative unital A-bimodule with a nuclear involution,
then V is an associative bimodule.

Proof. Let V �= (0) be an alternative unital A-bimodule. Let us show that the
identity map cannot be a superinvolution in V .

Suppose that IdV is a superinvolution; that is, ax = (−1)|a||x|xaσ for arbitrary
elements x ∈ V , a ∈ A. Then eV e = (0). Indeed, for x ∈ eV e we have x = ex =
xf = 0. Similarly, fV f = (0).

Consider the operator P : eV f → eV f , x → uxv. Recall that, since the
symmetric element u + v lies in the associative center of A + V it follows that
(ux)v = u(xv). We have xP 2 = u(uxv)v = −exf = −x. On the other hand
(ux)v = (−1)|x|(xv)v = −(−1)|x|x and therefore xP 2 = x. Hence eV f = (0) and
similarly fV e = (0).

Now let � : V → V be a nuclear superinvolution in V . Consider the subbimodule
V ′ of V generated by all symmetric elements x + x�, x ∈ V . Then -IdV/V ′ is a
superinvolution; hence V/V ′ = (0).

Hence the bimodule V is generated by symmetric elements x+x�, x ∈ V , which
lie in the associative center of A+V . This implies that V is an associative bimodule.
The lemma is proved. �

It is well known that associative bimodules over a separable finite dimensional
associative superalgebra are completely reducible.

Let us first determine irreducible unital associative bimodules V over the super-
algebra Fe + Fu. Consider the operator P : V → V , x → uxu; P 2 = IdV . Hence
V = V (1)⊕ V (−1), V (i) = {x ∈ V |P (x) = ix}. Since the decomposition above is
again a direct sum of subbimodules it follows that V = V (i), i = ±1. If 0 �= x ∈ V0̄,
then x, ux is a base of V with a clearly defined action of A. We will denote these
two nonisomorphic 2-dimensional bimodules as V (i), i = ±1. Clearly V (−1) is
isomorphic to V (1)op.

Now we will proceed with the classification of irreducible involutive unital asso-
ciative A-bimodules.
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Let V = V0̄ + V1̄ be such a bimodule. Since V = eV e + eV f + fV e + fV f is a
direct sum of A-subbimodules and (eV e)� = fV f , (fV f)� = eV e, (eV f)� = eV f ,
(fV e)� = fV e it follows that V = eV e+ fV f or V = eV f or V = fV e.

Case 1. V = eV e+ fV f .

It is easy to see that in this case eV e is an irreducible unital bimodule over
Fe + Fu. Hence eV e � V (1) or eV e � V (−1) and V � V (1) ⊕ V (1)ex or V �
V (−1)⊕ V (−1)ex. These two bimodules are the opposites.

Case 2. V = eV f .

Let us show that V0̄ has a nonzero symmetric element. Indeed, otherwise x� =
−x for an arbitrary x ∈ V0̄. Then (uxv)� = −v�x�u� = uxv = 0. Since u2 = e,
v2 = −f , this implies that x = 0, a contradiction. So, choose 0 �= x ∈ V0̄, x = x�.
As we have seen above, (uxv)� = −uxv in this case; hence the elements x, uxv
are linearly independent. Multiplying both elements by the invertible element u on
the left, we conclude that the odd elements ux, xv are also linearly independent.
We have (ux)� = xv. Hence x, uxv, ux, xv span an involutive A-bimodule. Hence
V = Fx+ Fuxv + Fux+ Fxv.

Case 3. V = fV e.

As in the previous case we can choose 0 �= x ∈ V0̄, x = x�. Hence V =
Fx+ Fvxu+ Fxu+ Fvx.

Theorem 2.4. (1) Unital Jordan bimodules over Q(n)(+), n ≥ 3 are completely
reducible.

(2) The only unital irreducible Jordan bimodules over Q(n)(+), n ≥ 3 are the bi-
modules of Hermitian n×n matrices over the four irreducible involutive A-bimodules
above. The bimodules of the cases 2, 3 are isomorphic to their opposite bimodules.

Remark. The four irreducible unital Jordan Q(n)(+)-bimodules above have a differ-
ent presentation. The first two of them come from the associative Q(n)-bimodules
Mn(V (±1)). If

√
−1 ∈ F , then the second two Jordan bimodules are the same

matrix modules Mn(V (±1)) but with a “twisted” action. The mapping � : A → A,
(αe + βu)� = αe +

√
−1βu is a pseudoinvolution (see [12]). It extends to a pseu-

doinvolution � : Q(n) → Q(n), (aij) → (a�ji). Define the action of Q(n)(+) on

Mn(V (±1)) via a · x = 1
2 (ax+ (−1)|a||x|xa�), a ∈ Q(n), x ∈ Mn(V (±1)).

3. Multiplicative enveloping algebra of Q(2)(+)

In [12] it was shown that the multiplicative enveloping algebra U(J) of a finite
dimensional simple Jordan superalgebra, containing 3 orthogonal idempotents in
its even part, is finite dimensional. The latter assumption is essential as U(Dt)
and U(JP (2)), for example, are infinite dimensional (see [10]). In this chapter we
prove, however, that U(Q(2)(+)) is finite dimensional.

Theorem 3.1. dimU(Q(2)(+)) < ∞.

Proof. As in the introduction, we consider the one-generator free unital module
V over J = Q(2)(+) and denote R(a) = RV (a), the right multiplication operator.
The multiplicative enveloping algebra U is generated by the subspace R(J). The
algebra U acts on any bimodule over J , including J itself.
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Denote D(x, y) = R(x)R(y)− (−1)|x||y|R(y)R(x).
We will need the following well-known identities (see [1], [20]).
(1) R(x)R(y)R(z) + (−1)|y||z|+|x||y|+|x||z|R(z)R(y)R(x) + (−1)|y||z|R((xz)y) =

R(xy)R(z) + (−1)|y||z|R(xz)R(y) + (−1)|x||y|+|x||z|R(yz)R(x),
(2) D(x, y) acts on J as a superderivation,
(3)D(xy, z) = D(x, yz) + (−1)|x||y|D(y, xz),
(4) R(x)R(y)R(z) = 1

2 (−(−1)|y||z|R((xz)y) +R(xy)R(z)

+(−1)|z||y|R(xz)R(y) + (−1)|x|(|y|+|z|)R(yz)R(x) +R(x)D(y, z)
+(−1)|z||y|D(x, z)R(y) + (−1)|z|(|x|+y|)R(z)D(x, y)).

We say that an operator R(a1) · · ·R(ak), ai ∈ J0̄ ∪J1̄ is irreducible if it does not

lie in
∑k−1

i=1 R(J) · · ·R(J)︸ ︷︷ ︸
i

.

Step 1 (N. Jacobson, [1]). If ai ∈ J0̄, 1 ≤ i ≤ k and R(a1) · · ·R(ak) is irreducible,
then k ≤ 8. Indeed, by the identity (1), the element

R(a1) · · ·R(ak) +
k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

∈
k∑

i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

/
k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

is skew-symmetric in a1, a3, a5, . . .. This implies the claim.

Step 2. Suppose that ai ∈ J0̄ ∪ J1̄, and the operator R(a1) · · ·R(ak) is irreducible.
Then |{i |1 ≤ i ≤ k, ai ∈ J0̄}| ≤ 12.

If ai, ai+1 ∈ J0̄, then “push” them to the left via the Jordan identity (4). If
ai, ai+1 ∈ J1̄ then “push” them to the right via the Jordan identity.

We will get

R(a1) · · ·R(ak)

∈
∑

R(b1) · · ·R(br)(

t∏
i=1

R(xi)R(ci))R(z1) · · ·R(zs) +

k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

and for each summand r + 2t + s = k; b1, . . . , br, c1, . . . , ct ∈ J0̄; x1, . . . , xt, z1, . . . ,
zs ∈ J1̄ and b1, . . . , br, x1, . . . , xt, c1, . . . , ct, z1, . . . , zs is a permutation of a1, . . . , ak.

The expression
∏t

i=1 R(xi)R(ci) is skew-symmetric in c1, . . . , ct modulo∑2t−1
j=1 R(J) · · ·R(J)︸ ︷︷ ︸

j

. Hence t ≤ 4. By Step 1, r ≤ 8. This implies the asser-

tion.

We will denote an even element

(
a 0
0 a

)
∈ J0̄ as a and an odd element

(
0 b
b 0

)
∈

J1̄ as b̄, where a, b ∈ M2(F ).

Step 3. D(ē12, ē12) = 2D(ē11 · e12, ē12) = 2D(ē11, e12 · ē12) + 2D(e12, ē11 · ē12) = 0.

Similarly, D(ē21, ē21) = 0.
Furthermore, D(ē11, ē12) = 2D(ē11, ē12 · e22) = D(e12, e22) ∈ D(J0̄, J0̄).
Similarly, D(ēii, ējk) ∈ D(J0̄, J0̄), where 1 ≤ j �= k ≤ 2, 1 ≤ i ≤ 2.
Finally, D(ē12, ē21) = 2D(ē11 · e12, ē21) = 2D(ē11, e12 · ē21) + 2D(e12, ē11 · ē21) =

D(ē11, ē11 + ē22)−D(e12, e21) = D(ē11, ē11)−D(e12, e21).
Similarly, D(ē12, ē21) = D(ē22, ē22) +D(e12, e21).
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We have proved that

D(J1̄, J1̄) ⊆ FD(ē11, ē11) +D(J0̄, J0̄)

= FD(ē22, ē22) +D(J0̄, J0̄) = FD(ē12, ē21) +D(J0̄, J0̄).

Step 4. In view of the identities (1), (2) and (3) it is sufficient to bound the length
of irreducible operators of the type

U = R(a1) · · ·R(ar)(
t∏

i=1

R(xi)R(bi))R(y1) · · ·R(yν)(

µ∏
i=1

D(zi, ui)),

where a1, . . . , ar, b1, . . . , bt ∈ J0̄; x1, . . . , xt, y1, . . . , yν , z1, . . . , zµ, u1, . . . , uµ ∈ J1̄,
r ≤ 8, t ≤ 4 and ν ≤ 2.

Step 5. For even elements a, b of J0̄ we denote U(a) = 2R(a)2 − R(a2), U(a, b) =
R(a)R(b) + R(b)R(a) − R(ab). Since V is a unital module it follows that IdV =
U(e11 + e22) = U(e11) + U(e22) + U(e11, e22).

We claim that U(e11)U(J) ⊆ U(e11)
∑18

i=0 R(J) · · ·R(J)︸ ︷︷ ︸
i

.

Indeed, in the multiplication operator above D(z1, u1) can be moved to the left
modulo shorter operators. By step 3, U(e11)D(z1, u1) ∈ U(e11)(FD(ē22, ē22) +
D(J0̄, J0̄)) ⊆ U(e11)D(J0̄, J0̄).

In this way we can get rid of all the derivations D(zi, ui), 1 ≤ i ≤ µ.

Similarly, U(e22)U(J) ⊆ U(e22)
∑18

i=0 R(J) · · ·R(J)︸ ︷︷ ︸
i

.

Finally, U(e11, e22)D(z1, u1) ∈ U(e11, e22)(FD(ē12, ē21)+D(J0̄, J0̄)), U(e11, e22),
D(ē12, ē21) = U(e11, e22)D(ē12, ē21)(U(e11) + U(e22)).

Hence
U(e11, e22)U(J) ⊆ U(e11, e22)

∑18
i=0 R(J) · · ·R(J)︸ ︷︷ ︸

i

+U(e11, e22)D(ē12, ē21)U(e11)
∑18

i=0 R(J) · · ·R(J)︸ ︷︷ ︸
i

+U(e11, e22)D(ē12, ē21)U(e22)
∑18

i=0 R(J) · · ·R(J)︸ ︷︷ ︸
i

.

We have that dim
∑18

i=0 R(J) · · ·R(J)︸ ︷︷ ︸
i

< 1+8+· · ·+818 < 819. Hence dimU(J) <

5.819. The theorem is proved. �

4. General facts

Let us recall some constructions relating Lie and Jordan algebras.

Definition 4.1 ([7]). A Jordan (super)pair P = (P−, P+) is a pair of vector
(super)spaces with a pair of trilinear operations

{ , , } : P− × P+ × P− → P−, { , , } : P+ × P− × P+ → P+

that satisfies the following identities:
(P.1) {xσ, y−σ, {xσ, z−σ, xσ}} = {xσ, {y−σ, xσ, z−σ}, xσ},
(P.2) {{xσ, y−σ, xσ}, y−σ, uσ} = {xσ, {y−σ, xσ, y−σ}, uσ},
(P.3) {{xσ, y−σ, xσ}, z−σ, {xσ, y−σ, xσ}} = {xσ, {y−σ, {xσ, z−σ, xσ}, y−σ}, xσ},

for every xσ, uσ ∈ P σ, y−σ, z−σ ∈ P−σ, σ = ±.
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Let L = L−1 + L0 + L1 be a Z-graded Lie (super)algebra. Then (L−1, L1) is a
Jordan (super)pair.

For an arbitrary Jordan (super)pair P = (P−, P+), there exists a unique Z-
graded Lie (super)algebra K = K−1 + K0 + K1 such that (K−1,K1) � P , K0 =
[K−1,K1] and for every 3-graded Lie (super)algebra L = L−1 + L0 + L1, an ar-
bitrary homomorphism of the Jordan pairs P → (L−1, L1) uniquely extends to a
homomorphism of Lie (super)algebras K → L.

We will refer to K = K(P ) as the Tits-Kantor-Koecher (in short TKK) con-
struction of the pair P .

If J is a Jordan superalgebra, then (J−, J+) is a Jordan superpair. The Lie
superalgebra K = K(J−, J+) is called the TKK-construction of J .

Let J = J0̄ + J1̄ be a simple finite dimensional Jordan superalgebra. Let us
consider L = K(J) its TKK-construction.

If V is a Jordan bimodule over J , then the null extension V + J is a Jordan
superalgebra, so we can consider its TKK Lie superalgebra K(V + J) = (V − +
J−) + [V − + J−, V + + J+] + (V + + J+).

Denote K(V ) = V − + [V −, J+] + [J−, V +] + V + ≤ K(V + J). Then K(V ) is a
Lie module over the subalgebra J− + [J−, J+] + J+ which is isomorphic to K(J).

LetW be the maximalK(J)-submodule, which is contained inK(V )0=[V −, J+]
+ [J−, V +]. Let K̄(V ) = K(V )/W .

The following two lemmas were proved in [12].

Lemma 4.2 ([12]). Let J be a unital Jordan (super)algebra and let V1, V2 be two
unital Jordan J-bimodules. The following assertions are equivalent:

(1) V1 � V2,
(2) K(V1) � K(V2),
(3) K̄(V1) � K̄(V2).

Lemma 4.3 ([12]). For a unital Jordan bimodule V over a unital Jordan (su-
per)algebra J , the following assertions are equivalent:

(1) V is an irreducible J-bimodule,
(2) K̄(V ) is an irreducible K(J)-module.

The Tits-Kantor-Koecher Lie superalgebra of J = Q(2)(+) is the Lie superalgebra

L = {
(
a b
b a

)
|a, b ∈ M4(F ), tr(b) = 0} = [Q(4)−, Q(4)−].

We will denote the element

(
a 0
0 a

)
as a and the element

(
0 b
b 0

)
as b̄.

Let H = {diag(α1, α2, α3, α4)|
∑4

i=1 αi = 0} be a Cartan subalgebra of [L0̄, L0̄].

Let Λ =
⊕4

i=1 Zwi/Z(w1 + · · · + w4) be the free abelian group of rank 3. The
associative algebra M4(F ) is Λ-graded with deg(eij) = wj −wi+ Z(w1 + · · ·+w4),
1 ≤ i, j ≤ 4. This gradation induces a Λ-gradation of the Lie superalgebra L.

Clearly, L0 = {a+ b̄, where both a and b are diagonal and tr(b) = 0}.
An arbitrary element λ =

∑4
i=1 λiwi + Z(w1 + · · · + w4) induces a functional

on H. If h = diag(α1, . . . , α4),
∑4

i=1 αi = 0, we let 〈λ, h〉 =
∑4

i=1 λiαi. Thus,
[a, h] = 〈λ, h〉a for elements a ∈ Lλ, h ∈ H.

Let {Vi} be the family of the four finite dimensional irreducible unital bimodules
over J0̄ = M2(F )+. Consider the modules {K(Vi)}i over K(J0̄) = sl(3). From the
description of the modules K(Vi) (see [1], [12]) it follows that the Λ-gradation can
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be extended to those modules, K(Vi) =
∑

λ∈Λ K(Vi)λ and for arbitrary elements
a ∈ K(Vi)λ, h ∈ H we have ah = 〈a, h〉a.

Let ∆ = {0 �= ±wi ± wj + Z(w1 + · · ·+ w4), 1 ≤ i, j ≤ 4}.
In [12] it was shown that K(Vi) =

∑
λ∈∆∪{0} K(Vi)λ.

Lemma 4.4. Let α, β ∈ {0 �= ±wi ± wj}.
(1) If 〈α, h〉 = 〈β, h〉 for all h ∈ H, then α− β ∈ Z(w1 + · · ·+ w4).
(2) If 〈wi − wj + α + β, h〉 = 0 for all h ∈ H, then wi − wj + α + β +

Z(w1 + · · ·+ w4) = 0 in Λ.

Proof. The assertion (1) is obvious. Let’s prove (2). We have wi − wj + α + β =∑4
µ=1 kµwµ,

∑4
µ=1 kµ is even,

∑4
µ=1 |kµ| ≤ 6.

Suppose at first that at least one kµ is equal to zero. Let k4 = 0. Then∑3
µ=1 kµαµ = 0 for all α1, α2, α3 ∈ F . Hence k1, k2, k3 are divisible by p = charF .

If p ≥ 7, then k1 = k2 = k3 = 0 since
∑3

µ=1 |kµ| ≤ 6.
If p = 5, then at most one kµ, 1 ≤ µ ≤ 3 is not equal to zero and equal to ±5.

This contradicts the fact that
∑4

µ=1 kµ is even.
From now on we will assume that all kµ are different from zero. Suppose that

at least one of them is equal to ±1. Without loss of generality we can assume that
k4 = −1. Then 〈

∑3
µ=1(kµ+1)wµ, h〉 = (0). Hence k1+1, k2+1, k3+1 are divisible

by p. If p ≥ 7, then at most one of kµ + 1 is not equal to zero. In this case p = 7,
kµ = 6, kν = −1 for ν �= µ, 1 ≤ ν ≤ 3.

Then,
∑4

µ=1 kµ = 3, an odd number.

Hence k1=k2=k3=k4 = −1, which means that
∑4

µ=1 kµwµ+Z(w1 + · · ·+ w4)
= 0 in Λ.

Let p = 5. If k1 + 1 = ±5, k2 + 1 = ±5, then |k1|+ |k2| > 6.

If k1 + 1 = ±5, k2 = k3 = k4 = −1, then again
∑4

µ=1 |kµ| ≥ 7.

Hence k1 = k2 = k3 = k4 = −1 and again
∑4

µ=1 kµwµ +Z(w1 + · · ·+w4) = 0 in
Λ.

Finally if |kµ| ≥ 2 for all µ, then
∑4

µ=1 |kµ| ≥ 8, a contradiction. The lemma is
proved. �
Remark. If p = 3, then α = β = wi − wj and α = wi − wk, β = 2wl, where i, j, k, l
are distinct, are counterexamples to the assertion (2).

Let V be a unital Jordan bimodule over J = Q(2)+. Then V is a direct sum of
irreducible bimodules over J0̄ = M2(F )+. This defines the decomposition K(V ) =∑

λ∈{0}∪∆ K(V )λ. By Lemma 4.4(1), each nonzero K(V )λ is an eigenspace with

respect to the action of H.
From Lemma 4.4(2) it follows that K(V )λLα ⊆ K(V )λ+α for any α ∈ {wi −

wj , 1 ≤ i, j ≤ 4}. Indeed, each nonzero vector from K(V )λLα is an eigenvector
with respect to the action of h, which belongs to the eigenfunctional h → 〈λ+α, h〉.
Hence there exists β ∈ {0} ∪∆ such that K(V )β �= (0) and 〈λ+ α, h〉 = 〈β, h〉 for
all h ∈ H. By Lemma 4.3(1), λ+ α = β.

We have proved 4.4.

Lemma 4.5. The decomposition K(V ) =
∑

λ∈{0}∪∆ K(V )λ makes K(V ) a Λ-

graded L-module.

Consider a functional f :
⊕4

i=1 Zwi → Z such that f(w1 + · · ·+w4) = 0 and all
±f(wi) are distinct. For example, f(w1) = 4, f(w2) = −3, f(w3) = 1, f(w4) = −2.
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Let ∆+ = {γ ∈ ∆|f(γ) > 0}, ∆− = {γ ∈ ∆|f(γ) < 0}, L+ =
∑

γ∈∆+
Lγ ,

L− =
∑

γ∈∆−
Lγ , L = L− + L0 + L+.

Let M be an irreducible module over L0. From [(L0)1̄, (L0)1̄] = (L0)0̄ it follows
that M0̄ �= (0).

Lemma 4.6. For an arbitrary λ ∈ ∆ there exists at most one irreducible Λ-graded
module V over the Lie superalgebra L, such that V = V0 +

∑
α∈∆ Vα, Vλ �= (0),

VλL+ = (0) and the L0-module Vλ is isomorphic to M .

Proof. Choose a nonzero element x ∈ M0̄ and consider the right ideal I = {a ∈
U(L0)|xa = 0} of U(L0), M � U(L0)/I.

The Λ-gradation on L extends to the Λ-gradation on U(L).
Consider the free one-generated U(L)-moduleW = wU(L). Assigning the degree

λ to w we make W a Λ-graded module. Let W ′ be the submodule of W generated
by wI, wL+ and

∑
α/∈{0}∪∆ Wα. Let W̄ = W/W ′. Since the L0-module W̄λ is a

homomorphic image of M it follows that either W̄λ = (0), in which case the module
of the lemma does not exist, or W̄λ � M . In the latter case, W̄ has a unique proper
submodule, which implies the lemma. �

We say that a Λ-graded L-module V is ∆-graded if V =
∑

α∈{0}∪∆ Vα and V is

generated by V =
∑

α∈∆ Vα.
If λ ∈ ∆, Vλ �= (0), VλL+ = (0) and Vλ generates V , then we say that λ is the

highest weight of the ∆-graded module V .

Lemma 4.7. Only 2w1, w1 − w2,−2w2 can be highest weights of a ∆-graded L-
module.

Proof. Let V be a ∆-graded L-module. Suppose that V2w1
= Vw1−w2

= V−2w2
=

(0). Since V L3
wi−wj

= (0), 1 ≤ i �= j ≤ 4 and charF ≥ 5, it follows that the Weyl
group acts on V permuting weight spaces. This implies that V2wi

= Vwi−wj
=

V−2wi
= 0 for all 1 ≤ i �= j ≤ 4.

We have Vw1+w2
ē12 ⊆ V2w2

= (0), Vw1+w2
ē21 ⊆ V2w1

= (0).
Hence Vw1+w2

[ē12, ē21] = Vw1+w2
(e11 + e22) = (0).

On the other hand Vw1+w2
(e11− e22) = 〈w1+w2, e11− e22〉Vw1+w2

= (0). Hence
Vw1+w2

e11 = Vw1+w2
e22 = (0).

We also have Vw1+w2
ē34 ⊆ Vw1+w2+w4−w3

= V−2w3
= (0), Vw1+w2

ē43 ⊆ V−2w4
=

(0); hence Vw1+w2
(e33 + e44) = (0).

On the other hand, Vw1+w2
(e33 − e44) = (0), which implies Vw1+w2

eii = 0,
1 ≤ i ≤ 4. However, for an arbitrary element v ∈ Vw1+w2

we have v(e11 − e33) = v.
Hence Vw1+w2

= Vwi+wj
= (0), 1 ≤ i �= j ≤ 4.

Similarly, V−wi−wj
= (0), 1 ≤ i �= j ≤ 4. This contradicts the assumption that

V is generated by
∑

α∈∆ Vα. The lemma is proved. �

Denote

z =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ L0̄

a central element. Clearly, L0 = H + Fz + H̄.
Let V be a ∆-graded L-module of the highest weight 2w1. Let 2 ≤ i �= j ≤ 4.

Then V2w1
(eii − ejj) = (0), V2w1

ēij = V2w1
ēji = (0); hence V2w1

(eii + ejj) = (0).
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This implies V2w1
eii = (0). On the other hand, for an arbitrary element v ∈ V2w1

we have v(e11 − e22) = 2v. Hence veii = 2δi1v , 1 ≤ i ≤ 4.
The element z acts on V as the multiplication by 2. Again, if 2 ≤ i �= j ≤ 4,

then v2w1
eij = V2w1

ēji = (0); hence V2w1
(eii − ejj) = (0).

Denote x = e11 − e22. Then x2 = 1
2 (e11 + e22), vx

2 = v for v ∈ L2w1
. Thus, the

even and the odd parts of V2w1
can be identified, V2w1

= (V2w1
)0̄ + (V2w1

)0̄x.

If diag(α1, α2, α3, α4) ∈ (L0)1̄,
∑4

i=1 αi = 0, then diag(α1, α2, α3, α4) = α1x +
α3e33 − e22 + α4e44 − e22.

If v1, . . . , vr is a base of (V2w1
)0̄, then the L0-module V2w1

is a direct sum of r
isomorphic irreducible 2-dimensional L0-modules, V2w1

=
⊕r

i=1(Fvi + Fvix).
Now suppose that V is a ∆-graded L-module such that V2wi

= (0), 1 ≤ i ≤ 4,
but Vw1−w2

�= (0).
Then for an arbitrary element v ∈ Vw1−w2

we have v(e11 − e22) = 2v. Arguing
as above we get v ¯e12 = v ¯e21 = 0, which implies v(e11 + e22) = 0. Hence ve11 = v,
ve22 = −v.

For 3 ≤ i �= j ≤ 4 we have v(eii − ejj) = v(eii + ejj) = 0; hence veii = 0.
In this case V z = (0).
From Vw1−w2

[e34, ē43] = (0) we deduce that Vw1−w2
e33 − e44 = (0).

Denote x = e11 − e33, y = e22 − e44. Then, for an arbitrary element v ∈ Vw1−w2

we have vx2 = 1
2v, vy

2 = − 1
2v, v(xy + yx) = 0.

Consider the operator ϕ : Vw1−w2
→ Vw1−w2

, ϕ(v) = (vx)y. Then ϕ2(v) = 1
4v.

The decomposition Vw1−w2
= Vw1−w2

( 12 ) ⊕ Vw1−w2
(− 1

2 ), where Vw1−w2
(i) = {v ∈

Vw1−w2
|ϕ(v) = iv} is a direct sum of L0-modules.

Each summand Vw1−w2
(i) is a direct sum of isomorphic copies of the irreducible

2-dimensional L0-modules Fv + Fvx, the element v is even, vy = ivx, (vx)y = iv,
i = ± 1

2 .
If V2wi

= Vwi−wj
= (0), 1 ≤ i �= j ≤ 4, then arguing as above we can show that

z acts on V as multiplication by −2 and V−2w2
is a direct sum of isomorphic copies

of a uniquely determined irreducible 2-dimensional module over L0.
Recall that for all highest weights γ the irreducible components of the bimodule

Vγ are isomorphic to their opposites.
Now we are ready to classify irreducible unital Jordan bimodules over J = Q(2)+.

Let V be such a bimodule. Then K(V ) is an irreducible ∆-graded module over

the Lie superalgebra L. Let λ ∈ ∆ be the highest weight of K(V ).

The L0-module K(V )λ is irreducible. If λ = 2w1 or −2w2, then the L0-module

K(V )λ is uniquely determined. If λ = w1 − w2, then there are two possibilities

for the L0-module K(V )λ. By Lemma 4.7 there are at most 4 possibilities for

the module K(V ); hence, by Lemma 4.2, there are at most four nonisomorphic
bimodules over J , all of them isomorphic to their opposites. The 4 Hermitian 2× 2
matrices over the 4 nonisomorphic irreducible involutive associative bimodules over
the algebra A = (Fe+ Fu)⊕ (Ff + Fv) provide these bimodules. We proved the
following theorem:

Theorem 4.8. Let charF > 3. Then an arbitrary irreducible unital bimodule over
Q(2)(+) is isomorphic to the bimodule of Hermitian 2× 2 matrices over one of the
4 irreducible involutive associative bimodules over the algebra A.

Now our aim is to establish that all unital Jordan bimodules over Q(2)(+) are
completely reducible.
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Lemma 4.9. (1) Every homomorphism of unital Jordan J-bimodules V1 → V2

gives rise to a homomorphism of L-modules K̄(V1) → K̄(V2).
(2) If V1 → V2 is an embedding, then K̄(V1) → K̄(V2) is an embedding.

Proof. By the universal property of K(V1) a homomorphism V1 → V2 gives rise to
a homomorphism ϕ : K(V1) → K̄(V2). Let W be the largest submodule of K(V1)
lying in [V −

1 , J+] + [V +
1 , J−]. The image of W lies in [V −

2 , J+] + [V +
2 , J−] and

therefore is zero. This proves (1).
If V1 → V2 is an embedding, then the kernel of K̄(V1) → K̄(V2) has zero inter-

section with V −
1 and with V +

1 ; hence it is zero. The lemma is proved. �

Theorem 4.10. Every unital Jordan J-bimodule is completely reducible.

Proof. Let V1, V2 be irreducible unital Jordan J-bimodules and let (0) → V1 →
V → V2 → (0) be a short exact sequence. It gives rise to (0) → K̄(V1) → K̄(V ) →
K̄(V2) → (0).

We do not claim that this sequence is exact, but its restrictions (0) → V ±
1 →

V ± → V ±
2 → (0) are exact.

Suppose at first that the irreducible modules K̄(V1), K̄(V2) have different highest
weights. Then K̄(V1)(z−α) = K̄(V2)(z−β) = 0, α �= β. Hence V ±(z−α)(z−β) =
(0). Now V = Ker(z − α)⊕Ker(z − β) is a direct sum of Jordan bimodules.

Now let K̄(V1), K̄(V2) have the same highest weight γ (which does not imply
that they are isomorphic if γ = w1−w2). We have shown above that for each of the
highest weights γ = 2w1, w1 − w2,−2w2, the action of L0 on K̄(V )γ is completely
reducible.

Hence K̄(V )γ = K̄(V1)γ ⊕M . Let W be the submodule of K̄(V ) generated by
M . It is easy to see that W ∩ K̄(V )γ = M . Hence W ∩ K̄(V1) = (0).

Since every nonzero submodule of K̄(V ) has a nonzero intersection with V − it
follows that W ∩ V − �= (0). Now {v ∈ V | v− ∈ W} is a nonzero J-subbimodule of
V which has zero intersection with V1. This proves that V � V1⊕V2. The theorem
is proved. �
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Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007

Oviedo, Spain

E-mail address: cmartinez@uniovi.es
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