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Abstract. Information on the anisotropy of the atomic magnetic moment density can be
obtained from neutron scattering. Within the dipole approximation the effect of the anisotropy
is usually neglected. We show how the anisotropy of the charge-, spin-, orbital moment and
current densities of an unfilled shell can be calculated. The theoretical formulae have been
implemented in the McPhase software suite. We illustrate the theory for some representative
examples of different magnetic ions in an idealized crystal field. Moreover, we also evaluate the
various densities for some real systems.

1. Introduction
Neutron scattering techniques are mainstays of many aspects of the science of materials. In
contrast to the information provided by bulk measurements such as specific heat, magnetisation,
magnetic susceptibility,..., neutron scattering is able to probe directly both the electronic wave
functions and energy levels of the systems. In this way, the interplay of long-range interactions
and anisotropy has been at the focal point of research in magnetism for decades. Complex
magnetic properties are frequently observed and studied in experiment and theory. Numerical
computations have become an important tool in order to interpret data and evaluate models. In
the past decade joint efforts led to the development of a new modelling software suite: McPhase
[1] is a program package designed to calculate properties of a magnetic system with localized
magnetic moments given the crystal field and/or the two-ion interaction constants. In particular,
calculations can be efficiently performed within the standard model of rare earth magnetism [2].
Alternatively, a more complex Hamiltonian can be used which includes all terms in intermediate
coupling - this is important for transition metal and actinide ions. Anisotropic and high-order
(such as biquadratic or orbital) two–ion interactions may be included in the mean field analysis.
Excitations can be calculated by evaluating the dynamical susceptibility within the random
phase approximation, a special DMD (dynamical matrix diagonalisation) technique [3] has been
developed to do such calculations with high speed. McPhase is designed to output various
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physical observables, such as magnetisation, magnetic contribution to the specific heat, thermal
expansion and magnetostriction, among other. Apart from that, magnetic phase diagrams may
also be generated and magnetic structures can be visualized; resonant magnetic X-ray scattering
intensities may be computed. Moreover, the package allows the user to evaluate quantitatively
the elastic and the inelastic magnetic neutron scattering cross section that may then be compared
to experimental diffraction patterns and spectra. Model parameters can be fitted simultaneously
to the different types of experimental data.

The magnetic neutron scattering cross section depends in a fundamental way on the
magnetisation density. In this article we will describe in detail the calculation of the charge- and
spin density of the unfilled shell. Moreover, the gauge problem of the orbital moment density
will be discussed and an expression for the orbital current density is given. The calculation of
these quantities is illustrated for some rare earth and transition metal ions.

2. Formalism
The contribution to the charge density of the electrons in an unfilled shell may be calculated as
a multipole expansion of the wavefunction1, giving,

⟨ρ̂(rrr)⟩ = −|e||R(r)|2
∑
k,q

Zkq(Ω)⟨
n∑

i=1

Zkq(Ωi)⟩ (1)

Here e is the elementary charge and R(r) is the radial wavefunction of the l-electrons (l =
s, p, d, f) in the ln configuration. The radial wavefunction may be determined for example
by Dirac-Fock calculations. The Zkq are the tesseral harmonic functions which are Hermitian
combinations of spherical harmonics Ykq.

Zk0 = Yk0, Zk,±|q| =
±1√
±2

[
Yk,−|q| ± (−1)|q|Yk,|q|

]
(2)

One can use the tensor operator methods of Racah [4] (and references therein) to determine
the matrix elements of operators which act in the same way as the spherical harmonic (or tesseral

harmonic) functions. Defining the operator T̂kq to be equivalent to the tesseral harmonics Zkq,
we have,

⟨ρ̂(rrr)⟩ = −|e||R(r)|2
∑
k,q

Zkq(Ω)

√
2k + 1

4π
⟨T̂kq⟩ (3)

where the normalisation factor
√

2k+1
4π is needed because of the definitions of T̂kq,

T̂k0 = Ĉk0, T̂k,±|q| =
±1√
±2

[
Ĉk,−|q| ± (−1)|q|Ĉk,|q|

]
(4)

where Ĉkq are operators which transform in the same way as the functions
√

4π
2k+1Ykq(θ, ϕ).

Using 3j and 6j symbols and fractional parentage coefficients the matrix elements of Ĉkq can
be written as [5].

⟨ΘJmJ |Ĉkq|Θ′J ′m′
J⟩ = (−1)J−mJ

(
J ′ k J

−mJ q m′
J

)
⟨l|ĉk|l⟩ n

∑
Θ̄(Θ{|Θ̄)(Θ′{|Θ̄)

× (−1)L̄+L+k+l([L][L′])
1
2

{
L′ k L
l L̄ l

}
(−1)S+L+k+J([J ][J ′])

1
2

{
J ′ k J
L S L′

} (5)

1 see also www.mcphase.de, manual
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The single electron matrix element is,

⟨l|ĉk|l⟩ = (−1)l(2l + 1)

(
l k l
0 0 0

)
(6)

Using the equations above the thermal expectation values of the physical quantities (scalar,
vectors or, more general tensor operators) can be evaluated for any eigenstate of the Hamiltonian
and for example the charge density can be computed using equation (3).

A similar procedure can be adopted for the spin and orbital magnetisation densities, which
we write as [6]

M̂MMS(rrr) =
∑
kq

ŝsskq|R(r)|2Zkq(Ω) (7)

M̂MML(rrr) =
∑
kq

âaakqF (r)Zkq(Ω) with F (r) =
1

r

∫ ∞

r
|R(ξ)|2dξ (8)

The vectors ŝsskq and âaakq are given by

ŝssk0 = σ̂σσk0, ŝssk,±|q| =
1√
±2

[
σ̂σσk,−|q| ± (−1)|q|σ̂σσk,|q|

]
(9)

âaak0 = α̂ααk0, âaak,±|q| =
1√
±2

[
α̂ααk,−|q| ± (−1)|q|α̂ααk,|q|

]
(10)

The matrix elements of the spherical components σ̂Q
kq and α̂Q

kq (Q = −1, 0,+1) 2 of the vector

operators σ̂σσkq and α̂ααkq are given by [6]

⟨ΘJmJ |σ̂Q
kq|Θ′J ′m′

J⟩ = − 2µB√
4π

∑
k′q′(−1)

1
2
+mJ+Q−J ′+L′+S′

√
3
2 [l][k

′]([k][S][S′][L][L′][J ][J ′])
1
2

×
(

l k l
0 0 0

)
1 k k′

S′ L′ J ′

S L J

n
∑

Θ̄(Θ{|Θ̄)(Θ′{|Θ̄)(−1)S̄+L̄

×
{

S 1 S′
1
2 S̄ 1

2

}{
L k L′

l L̄ l

}(
J k′ J ′

−mJ q′ m′
J

)(
k k′ 1
q q′ −Q

)
(11)

and

⟨ΘJmJ |α̂Q
kq|Θ′J ′m′

J⟩ = − 2µB√
4π

∑
k′q′(−1)Q+mJ+L+L′+SδSS′ [l]

3
2 ([J ][J ′][L][L′][k])

1
2 [k′][l(l + 1)]

1
2

×
(

l k l
0 0 0

){
l k′ l
k l 1

}{
k′ L′ L
S J J ′

}
n
∑

Θ̄(Θ{|Θ̄)(Θ′{|Θ̄)(−1)L̄

×
{

k′ l l
L̄ L L′

}(
J k′ J ′

−mJ q′ m′
J

)(
k k′ 1
q q′ −Q

)
(12)

2 cartesian components can be calculated e.g. σx,y = ±1√
±2

(σ−1 ∓ σ+1),σz = σ0.
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Note that the orbital magnetisation density MMML(rrr) is not unique, expression (8) corresponds
to the Trammel gauge [6, 7]. This gauge has the advantage of leading to a very localised
magnetisation density. However, the singularity at r = 0 is inconvenient and misleading. A
unique quantity describing the orbital magnetism is the orbital current density. Using the
expression (8) and applying ĵjj(rrr) = ∇××× M̂MML(rrr) we find the following expression for the orbital

current density operator ĵjj(rrr):

ĵjj(rrr) =
1

r

∑
kq

[b̂bbkq(Ω)R
2(r) + d̂ddkq(Ω)F (r)]Zkq(Ω) (13)

b̂bbkq(Ω) = âaakq ××× JJJr (14)

d̂ddkq(Ω) = b̂bbkq(Ω)− q âaak,−q ××× (rJJJϕ)− |q| cot θâaakq ××× (rJJJθ) + f̂ffkq(Ω) (15)

(16)

Here JJJr,JJJθ,JJJϕ are the three vectors of the Jacobi Matrix for spherical coordinates

(JJJr,JJJθ,JJJϕ) =

 sin θ cosφ cos θ cosφ/r − sinφ/r sin θ
sin θ sinφ cos θ sinφ/r cosφ/r sin θ

cos θ − sin θ/r 0

 (17)

The vectors f̂ffkq(Ω) are

f̂ffkq(Ω) = (18)

q < −1 : =
√
l(l + 1)−m(m+ 1)[cosφ âaak,q+1 + sinφ âaak,−q−1]××× (rJJJθ)

q = −1 : =

√
l(l + 1)

2
sinφ âaak,0 ××× (rJJJθ)

q = 0 : = 0

q = +1 : =

√
l(l + 1)

2
cosφ âaak,0 ××× (rJJJθ)

q > +1 : =
√
l(l + 1)−m(m− 1)[cosφ âaak,q−1 − sinφ âaak,−q+1]××× (rJJJθ)

In figure 1 we show the Charge-, Spin-, Orbital Moment- and Current densities for some
tripositive Rare Earth ions. All ions are subjected to the same octahedral crystal field. Most
anisotropy in the charge density is seen for the light rare earth, filling the shell makes the
charge density more spherical. The spin density is most spherical for a half filled shell and gets
more anisotropic for nearly empty and filled 4f shell. This effect can be understood by noting
that the orbital moment is zero for a half filled shell and that for more than half filled shell
the spin density can be interpreted as the spin density of holes in the 4f shell. Therefore the
form of the spin density surface shown in figure 1 for the heavy rare earths resembles that of a
positive charge being attracted by the negative point charges, which generate the crystal field.
Similar properties are also exhibited by the the orbital magnetic moment density calculated in
the Trammel gauge. In the following we show calculations for real systems.

3. PrNi2Si2
For many materials, amplitude-modulated (AM) structures are stable only just below the
corresponding magnetic transition temperature, TN , with the low-T phase having equal-moment
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Figure 1. (from left to right) Surfaces of constant Charge-, Spin-, Orbital Moment- and Current
densities for some tripositive Rare Earth ions in the same octahedral crystal field produced by
point charges of −2|e| in a distance of 0.2 nm. Spin-, Orbital Moment- and Current densities
are calculated for a magnetic field of 10 Tesla along the z axis.

amplitudes. In contrast, the body-centered tetragonal rare-earth intermetallic compound
PrNi2Si2 has attracted interest in this context, as it represents one of the few examples in
nature where the AM magnetic structure is stable down to zero temperature, as was recently
shown by single-crystal neutron diffraction [8]. The existence of a singlet crystal-field ground
state in PrNi2Si2 that is coupled to the excited levels is responsible for the AM ordered magnetic
moment, which is confined to be along the c-axis due to single-ion anisotropy. For these reasons,
the amplitude modulated spin structure and dynamics in PrNi2Si2 has been subject of intensive
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investigations [8]. Fig. 2 shows the spin-, orbital moment- and total magnetic moment densities.
Both the spin density (spin moment=-1.3 µB) and the orbital moment density (orbital moment=
4.0 µB) alone do not show a large deviation from spherical symmetry. There is a partial
compensation of orbital and spin density leading to a more anisotropic total moment density.
The Fourier TransformMMMd(Q) of this total moment density enters the magnetic structure factor
FM, which is used to model neutron diffraction pattern [9]:

FM =
∑
d

QQQ××× {MMMd(QQQ)×××QQQ}/Q2 exp (iQQQ ·RRRd) exp(−Wd) (19)

The summation is over the ions indexed by d in the magnetic unit cell, with displacements
RRRd from the origin. The scattering vector is denoted by QQQ, with Q = |QQQ| and exp(−Wd) is the
Debye–Waller factor.

In the dipole approximation, MMMd(Q) may be separated into a product of a magnetic form
factor fdip(Q), which is a scalar function of Q, and the thermal expectation value of the magnetic
moment mmmd of the ion:

MMMd(Q → 0) ∼ fdip(Q)mmmd (20)

In fig. 3 the neutron intensity calculated in dipole approximation is compared to the full
calculation. Corrections are significant for larger Q.

4. The high Tc superconductor NdBa2Cu3O7

In this material neglecting the anisotropy of the moment density has led to a misinterpretation
of the neutron diffraction intensity [9]. Fig. 2 shows the spin-, orbital moment- and total
magnetic moment densities. Both the spin density (spin moment=-0.46 µB) and the orbital
moment density (orbital moment=1.17 µB) alone do not show a large deviation from spherical
symmetry. However, also in this material there is a partial compensation of orbital and spin
density leading to a more anisotropic total moment density. This anisotropy is huge and has to
be considered in the calculation of the elastic neutron scattering cross section in order to obtain
a reliable fit of the magnetic structure [9] (compare fig. 3).

5. Crystal Field effects in multiferroic LuMnO3

In this hexagonal system the Mn3+ occupy the 6c positions in the space group P63cm (Nr.
185). The local point group symmetry is m(CS): this implies that all crystal field parameters
Lq
k with odd q are zero (provided that the local z-axis is chosen normal to the mirror plane). The

crystal field parameters have been calculated by applying the point charge model (with −2|e|
at every oxygen neighbour). Fig. 4 shows the oxygen neighbours and the charge density of the
Mn3+ (3d4) and, furthermore, the spin-, orbital moment-, current- and total magnetic moment
densities. As expected for a nearly half filled shell, these quantities are not very anisotropic.
The orbital moment (-0.2 µB) is nearly quenched by the crystal field and thus much smaller
than the spin moment (4.0 µB).

6. Final remarks
All this information can be easily checked using neutron scattering with polarization analysis,
because this technique is a versatile tool for identifying spin-dependent scattering processes in
magnetic materials. In fact, polarized neutron scattering is a useful application for the separation
of the nuclear (phonons) and magnetic Bragg (magnons) scattering. The spin density as well as
the composition of the electronic wave functions can be obtained from the analysis of the elastic
and inelastic neutron cross–section.
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Figure 2. (from left to right) Surfaces of
constant Spin-, Orbital Moment- and Total
Magnetic Moment densities for PrNi2Si2 (top)
NdBa2Cu3O7 (bottom) at T=2 K.
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Figure 3. Magnetic Bragg peak inten-
sities for PrNi2Si2 and NdBa2Cu3O6.97

calculated (i) using the Fourier trans-
form of the magnetisation density (19)
in comparison to (ii) the dipole approx-
imation (20). The figure shows devia-
tions between the exact calculation and
dipole approximation expressed as R =

100(|F exact
M |2 − |F dip

M |2)/|F dip
M |2

               
                           

               
                           

               
                           

               
                           

               
                           

Figure 4. (from left to right) Surfaces of constant 3d Charge-, Spin-, Orbital Moment-, Current-
and Total Magnetic Moment densities for LuMnO3 at T = 2 K.
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