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Abstract The structure of additive multivariable codes over F4 (the Galois field
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1 Introduction

Quantum codes are designed to detect and correct the errors produced in quantum
computations [14,15]. These codes can be constructed with the help of specific
classical codes, called additive, over F4 (the Galois field with 4 elements) [2]. An
additive code of length n is a subgroup of Fn4 under addition. The particular case
of additive cyclic codes has been considered in [5]. An additive code C is called
cyclic if, whenever c = (c1, . . . , cn) ∈ C, then its cyclic shift (c2, . . . , cn, c1) is also a
codeword in C. These codes are related to properties of the ring F4[X]/ 〈Xn − 1〉.
In the case n odd, the semisimple structure of this ring can be used to obtain a
complete description of the codes [7]. The case n even has been also considered [8].

Many authors have stated that many classical codes are ideals in certain alge-
bras over a finite field, see for example [1,3,12]. In particular, multivariable codes
have been considered, i.e., codes that can be viewed as ideals of the quotient ring
F4[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 (where ti(Xi) ∈ F4[Xi] are fixed polynomials).
Abelian codes, i.e., multivariable codes where ti(Xi) = Xni

i − 1, for all 1 ≤ i ≤ r,
are particular cases, and they extend classical cyclic codes. These types of codes
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have been also constructed if the underlying ring is not a field, but a finite chain
ring [9,10].

In this paper we describe additive multivariable codes over the finite field
F4, when the polynomials ti(Xi) ∈ F2[Xi] have no repeated-roots. The semisim-
ple structure of the rings A4 = F4[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 and A2 =
F2[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 is fundamental in this description.

The paper is organized as follows. In Section 2 we review the basic terminology
and the results concerning the decomposition of the rings A4 and A2, and their
relation. Section 3 is devoted to the description of the structure of the additive
codes. In Section 4 we study the duals of abelian semisimple codes. Finally in
Section 5 we characterize those non-trivial abelian semisimple codes that are self-
dual.

2 Preliminaries

In this section we will obtain the structure of the ambient space of additive
semisimple multivariable codes over the finite field F4. That is, we will describe ex-
plicitly the structure of the ring A4 = F4[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉, where
ti(Xi) ∈ F2[Xi] for all i = 1, . . . , r. In order to obtain this description we will de-
compose this ring as a direct sum of ideals. See [13] for proofs and details about
this decomposition.

2.1 Decomposition of Fq[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉

Let q = pe (p prime), and let I = 〈t1(X1), . . . , tr(Xr)〉C Fq[X1, . . . , Xr] be the ideal
generated by monic polynomials ti(Xi) ∈ Fp[Xi], of degree ni, i = 1, . . . , r (in this
paper we are concerned with the case q = 22). Let Hi be the set of roots of ti(Xi)
in an suitable extension field of Fq for each i = 1, . . . , r. We require that ti(Xi) has
no multiple roots for all i = 1, . . . , r. We are interested in the decomposition of the
algebra Aq = Fq[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉.

Definition 1 Let µ = (µ1, . . . , µr) ∈ H1 × . . . ×Hr, then we define the q−class of
µ as

Cq(µ) =
n

(µq
s

1 , . . . , µq
s

r ) | s ∈ N
o
.

Proposition 1 Let µ = (µ1, . . . , µr) ∈ H1 × . . . ×Hr and let qi be the degree of the

minimal polynomial of µi over Fq for each i = 1, . . . , r. Then we have that

1. |Cq(µ)| = l.c.m.(q1, q2, . . . , qr) = [Fq(µ1, . . . , µr) : Fq].
2. The set Cq of q−classes Cq(µ) is a partition of H1 × . . .×Hr.

3. For each ideal I C Fq[X1, . . . , Xr]/I the affine variety V (I) of common zeros of

the elements in I is a union of classes.

Definition 2 Let K be an algebraic extension of Fq and let α ∈ K. Let us denote
by Irr(α,Fq) the minimal polynomial of α over the field Fq. If µ = (µ1, . . . , µr) ∈
H1 × . . .×Hr, then consider the following polynomials:

1. pµ,i(Xi) = Irr(µi,Fq), and dµ,i = deg pµ,i for all i = 1, . . . , r.
2. wµ,i(µ1, . . . , µi−1, Xi) = Irr(µi,Fq(µ1, . . . , µi−1)) for all i = 2, . . . , r.
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3. πµ,i(µ1, . . . , µi−1, Xi) = pµ,i(Xi)/wµ,i(µ1, . . . , µi−1, Xi) for all i = 2, . . . , r.

Remark 1 All the polynomials in the definition above can be seen as polynomials
in Fq[X1, . . . , Xr] (substituting µi by Xi) and the following ring isomorphism holds

Fq[X1, . . . , Xr]/〈pµ,1, wµ,2, . . . , wµ,r〉 ∼= Fq(µ1, . . . , µr).

Moreover, if µ′ ∈ Cq(µ), then pµ,i = pµ′,i i = 1, . . . , r and wµ,i = wµ′,i, πµ,i =
πµ′,i i = 2, . . . , r. Thus, if C = Cq(µ) is the q−class of µ, we will write pC,i =
pµ,i, dC,i = dµ,i, wC,i = wµ,i, πC,i = πµ,i. Analogously, the ideal

˙
pC,1, wC,2, . . . , wC,r

¸
will be denoted by IC .

Definition 3 Let µ = (µ1, . . . , µr) ∈ H1 × . . .×Hr. If C = Cq(µ) is the q−class of
µ, we define the following polynomial in Fq[X1, . . . , Xr]

hC(X1, . . . , Xr) =
rY
i=1

ti(Xi)

pC,i(Xi)

rY
i=2

πC,i(Xi, . . . , Xr).

Proposition 2 Let µ = (µ1, . . . , µr) ∈ H1 × . . .×Hr. If C = Cq(µ) is the q−class of

µ, then

1. The annihilator of 〈hC + I〉 (in Aq) is IC + I,

2. The set of zeros of hC is H1 × . . .×Hr \ C,

3. The set of zeros of IC is C.

Theorem 1 (Decomposition of the ambient space Aq)

Aq = Fq[X1, . . . , Xr]/I ∼=
M
C∈Cq

〈hC + I〉

where 〈hC + I〉 ∼= Fq[X1, . . . , Xr]/IC is a finite field isomorphic to Fq(µ1, . . . , µr) ∼=
Fq|C| , and so the algebra Aq is semisimple. Hence, there exists a unique set of primitive

orthogonal idempotents {eC + I}C∈Cq ⊆ Aq such that 1 + I =
P
C∈Cq eC + I and

Aq(eC+I) ∼= 〈hC + I〉. Namely, the idempotent eC+I is exactly the element gChC+I,

with gChC + IC = 1 + IC , and its set of zeros is H1 × . . .×Hr \ C

Remark 2 Notice that if q = 4, r = 1 and t1(X) = Xn − 1 with n odd, we obtain
the ambient space of additive cyclic codes over F4 described in [7]. In this case, if
α is a primitive nth-root of unity and µ = αi, then the exponents of the elements
in the q−class C = C4(µ) are the elements of the 4-cyclotomic coset containing i.
Also, each direct summand hC + I ∼= F4λC , where λC is the size of the q−class C,
that is, the degree of the irreducible polynomial pC .

Classical multivariable codes over F4 are defined as the ideals of the algebra
A4. However, since additive codes are no longer closed under multiplication by
arbitrary elements of F4, they do not correspond to ideals of this ring. This type
of codes are related instead to submodules of A4, when viewed as a module over
one of its subrings.

Lemma 1 If f ∈ Fq[X1, . . . , Xr], then there exists a unique polynomial NF (f) ∈
Fq[X1, . . . , Xr] such that f + I = NF (f)+ I, and degXi(NF (f)) < ni. It is called the

normal form of f w.r.t. I. Moreover, two polynomials f, g ∈ Fq[X1, . . . , Xr] satisfy

f + I = g + I if and only if NF (f) = NF (g). In particular, all classes f + I, where

0 6= f and degXi(NF (f)) < ni, for all 1 ≤ i ≤ r, are not zero.
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Proof Consider the lexicographic monomial order with X1 > X2 > · · · > Xr. Then,
{t1(X1), . . . , tr(Xr)} is a Groebner basis of I (actually its reduced Groebner basis
w.r.t. such an order), and so the result follows from [4, Chapter 2, Section 9,
Theorem 3 and Proposition 4].

Definition 4 Let S be the set of elements f+I ∈ Aq such thatNF (f) ∈ Fp[X1, . . . , Xr].

¿From now on, let us denote by J the ideal in Fp[X1, . . . , Xr] generated by
ti(Xi), i = 1, . . . , r, and by Ap the algebra Fp[X1, . . . , Xr]/J (notice that ti(Xi) ∈
Fp[Xi], for all i = 1, . . . , r).

Proposition 3 There exists a ring monomorphism ϕ : Ap → Aq such that ϕ(f+J) =
f + I, for all f ∈ Fp[X1, . . . , Xr]. The set S is the image of this map, and so it is a

subring of Aq isomorphic to Ap.

Proof Consider the ring homomorphisms πq ◦ i : Fp[X1, . . . , Xr] → Aq, given by
(πq ◦ i)(f) = f + I, and πp : Fp[X1, . . . , Xr] → Ap, given by πp(f) = f + J . Since
kerπp ⊆ kerπq ◦ i, there exists a ring homomorphism ϕ : Ap → Aq such that
ϕ(f + J) = f + I, for all f ∈ Fp[X1, . . . , Xr].

For all f 6∈ J , we have that f + J = NF (f) + J , where 0 6= NF (f) ∈
Fp[X1, . . . , Xr] ⊆ Fq[X1, . . . , Xr], and degXi(NF (f)) < ni. So, ϕ(f+J) = ϕ(NF (f)+
J) = NF (f) + I 6= I, and the map is injective. Since Im(ϕ) ⊆ S, a simple counting
argument let us conclude the equality Im(ϕ) = S, and so Ap ∼= S.

Definition 5 An additive (semisimple) multivariable code over Fq is a submodule of
the module SAq.

Remark 3 These codes are called semisimple because the roots of the polynomials
ti(Xi) are required to be simple. If q = 4, r = 1, t1(X) = Xn − 1, with n odd,
additive multivariable codes over F4 are exactly the additive cyclic codes over F4

described in [7].

Remark 4 It is just a straight forward fact that a semisimple code on A2 can be
seen as a shortened code of an abelian code choosing adequate polynomials Xni

i −1
such that ti(Xi)|Xni

i − 1 (thus we must shorten the codes in the positions not in
ti). This follows directly from the fact that the ideals of F[X]/ 〈t(X)〉 (t having
simple roots) are shortened cyclic codes (see for example [11, Section 8.10]).

Example 1 We shall illustrate the contents of the paper with the help of the fol-
lowing running example. Let us consider t1(X1) = X7

1 + 1, t2(X2) = X3
2 + 1 poly-

nomials in Fq[X1, X2]. The normal form of an element f + I, which has the shapeP6
j=0

P2
i=0 fijX

j
1X

i
2, will be written as the matrix

F = (fij) =

24 f00 f01 . . . f06f10 f11 . . . f16
f20 f21 . . . f26

35
.

We shall describe the decompositions of the algebras Aq for q = 2 and 4.
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– If q = 2, then the set of 2−classes is the following one:

C2 = { {(1, 1)} , {(µ, 1), (µ2, 1), (µ4, 1)} , {(µ6, 1), (µ5, 1), (µ3, 1)} ,
{(1, ω), (1, ω2)} , {(µ, ω), (µ2, ω), (µ4, ω), (µ, ω2), (µ2, ω2), (µ4, ω2)} ,
{(µ6, ω), (µ5, ω), (µ3, ω), (µ6, ω2), (µ5, ω2), (µ3, ω2)}}

where µ ∈ F23 , ω ∈ F22 such that µ3 + µ + 1 = ω2 + ω + 1 = 0. The algebra
A2 is decomposed as the direct sum of six ideals, which are generated by the
following idempotents:

K{(1,1)} =

*24 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

35+
, KC2((µ,1)) =

*24 1 1 1 0 1 0 0
1 1 1 0 1 0 0
1 1 1 0 1 0 0

35+
,

KC2((µ6,1)) =

*24 1 0 0 1 0 1 1
1 0 0 1 0 1 1
1 0 0 1 0 1 1

35+
, KC2((1,ω)) =

*24 0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

35+
,

KC2((µ,ω)) =

*24 0 0 0 0 0 0 0
1 1 1 0 1 0 0
1 1 1 0 1 0 0

35+
, KC2((µ6,ω)) =

*24 0 0 0 0 0 0 0
1 0 0 1 0 1 1
1 0 0 1 0 1 1

35+
.

– If q = 4, then the set of 4−classes is the following one:

C4 = { {(1, 1)} , {(µ, 1), (µ2, 1), (µ4, 1)} , {(µ6, 1), (µ5, 1), (µ3, 1)} ,
{(1, ω)} , {(1, ω2)} , {(µ, ω), (µ2, ω), (µ4, ω)} ,
{(µ, ω2), (µ2, ω2), (µ4, ω2)} , {(µ6, ω), (µ5, ω), (µ3, ω)} ,
{(µ6, ω2), (µ5, ω2), (µ3, ω2)}}

Observe that each 2−class of even size splits into two 4−classes. The decom-
position of A4 is given by the following direct sum of 9 ideals generated by the
idempotents

I{(1,1)} =

*24 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

35+
, IC4((µ,1)) =

*24 1 1 1 0 1 0 0
1 1 1 0 1 0 0
1 1 1 0 1 0 0

35+
,

IC4((µ6,1)) =

*24 1 0 0 1 0 1 1
1 0 0 1 0 1 1
1 0 0 1 0 1 1

35+
, I{(1,ω)} =

*24 1 1 1 1 1 1 1
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

35+
,

IC4((1,ω2)) =

*24 1 1 1 1 1 1 1
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

35+
, IC4((µ,ω)) =

*24 1 1 1 0 1 0 0
ω ω ω 0 ω 0 0
ω ω ω 0 ω 0 0

35+

IC4((µ,ω2)) =

*24 1 1 1 0 1 0 0
ω ω ω 0 ω 0 0
ω ω ω 0 ω 0 0

35+
, IC4((µ6,ω)) =

*24 1 0 0 1 0 1 1
ω 0 0 ω 0 ω ω
ω 0 0 ω 0 ω ω

35+
,

IC4((µ6,ω2)) =

*24 1 0 0 1 0 1 1
ω 0 0 ω 0 ω ω
ω 0 0 ω 0 ω ω

35+
.

(where ω = ω2). Notice that A2 is identified with the subalgebra S of A4 of
elements whose normal form has coefficients 0 or 1.
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2.2 Relation between the decompositions of A4 and A2

From now on, let us fix q = 4. In the following, we will describe the relation
between the structures of the algebras A4 and A2. This will lead us, in the following
section, to the description of the additive multivariable codes over F4. Since these
decompositions are based on classes of roots, we first establish the relation between
the 2−classes C2(µ) and the 4−classes C4(µ)

Lemma 2 Let µi be a root of the polynomial ti(Xi), 1 ≤ i ≤ r. Let qi = deg(Irr(µi,F4))
and ki = deg(Irr(µi,F2)). If µ = (µ1, . . . , µr), then:

1. If ki is odd for all 1 ≤ i ≤ r, then C2(µ) = C4(µ), and it has size l.c.m.(k1, . . . , kr).

2. If there exists i ∈ {1, . . . , r} such that ki is even, then C2(µ) = C4(µ) ∪ C4(µ2),

where µ2 = (µ2
1, . . . , µ

2
r). The union is disjoint and both classes have equal size

l.c.m(q1, . . . , qr).

The subset of 2−classes in the first case will be denoted Co2 , where as the 2−classes in

the second case will be denoted Ce2.

Proof If ki is odd for all 1 ≤ i ≤ r, then the minimal polynomials {Irr(µi,F2)}ri=1

are also irreducible in F4[Xi], and qi = ki. So, the result straightforwardly follows
from Proposition 1.
In the second case assume w.l.o.g. that ki is even, for all 1 ≤ i ≤ k, and odd for
all k + 1 ≤ i ≤ r (with k ≥ 1). Then, for all 1 ≤ i ≤ k, the minimal polynomial
Irr(µi,F2) is the product of two irreducible polynomials of degree qi in F4[Xi]. The
roots of these polynomials constitute the 4−classes C4(µi) and C4(µ2

i ) respectively.
Clearly, these are disjoint classes of equal size qi and C2(µi) = C4(µi) ∪ C4(µ2

i ).
Therefore, µ2 does not belong to C4(µ) and so C4(µ2) is disjoint with it. According
to Proposition 1,

|C2(µ)| = l.c.m(k1, . . . , kr) = l.c.m(2q1, . . . , 2qk, qk+1, . . . , qr) =

= 2 l.c.m(q1, . . . , qk, qk+1, . . . , qr) = 2|C4(µ)|

and also
|C2(µ)| = |C2(µ2)| = 2|C4(µ2)|

hence we obtain the result.

Now, we can decompose the rings A4 and A2 into minimal ideals using Theorem
1. The decomposition for A4 is the following one:

A4
∼=
M
C∈C4

IC

where, for all C = C4(µ) ∈ C4, we denote the ideal IC = 〈eC + I〉, which is
isomorphic to the finite field F4(µ) of size 4|C|, and eC + I is idempotent.
On the other hand, the decomposition of the ring A2 into minimal ideals is

A2
∼=
M
C∈C2

KC =

0@M
C∈Co2

KC

1A⊕
0@M
C∈Ce2

KC

1A
where, for all C = C2(µ) ∈ Co2 ∪ Ce2, KC = 〈lC + J〉 is isomorphic to the field F2(µ),
and so its size is 2|C|, and the element lC + J is idempotent.
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Next, let us consider the ring automorphism τ : F4[X1, . . . , Xr] → F4[X1, . . . , Xr],
where

τ

0@ X
i1,...,ir

ai1...,irX
i1
1 · · ·X

ir
r

1A =
X

i1,...,ir

a2i1...,irX
i1
1 · · ·X

ir
r

Since ti(Xi) ∈ F2[Xi], for all 1 ≤ i ≤ r, we have that τ(ti(Xi)) = ti(Xi), and
so ker (π4 ◦ τ) ⊆ kerπ4 (where π4 : F4[X1, . . . , Xr] → A4 is the canonical epi-
morphism). Hence, there exists a ring homomorphism τ̃ : A4 → A4 such that
τ̃(f + I) = τ(f) + I, for all f + I ∈ A4. This map is injective, since for all
f 6∈ I, we have that f + I = NF (f) + I, where 0 6= NF (f) ∈ F4[X1, . . . , Xr],
and degXi(NF (f)) < ni, and so τ̃(f + I) = τ(NF (f)) + I 6= I. Clearly, this fact
implies that τ̃ is also bijective and so it is a ring automorphism. Its fixed subring
is S.

Proposition 4 Let A4
∼=
L
C∈C4 IC and A2

∼=
L
C∈Co2 KC ⊕

L
C∈Ce2 KC be the

decompositions of A4 and A2 into minimal ideals, and let S be the subring of A4,

isomorphic to A2, fixed by τ̃ . If ϕ is the embedding of A2 in A4 (see Proposition 3),

then the following hold.

1. If C ∈ Co2 , then:

(a) C ∈ C4, τ̃(IC) = IC , and τ̃ |IC is a field automorphism of order 2.

(b) ϕ(KC) = IC ∩ S, so it is the subfield of IC isomorphic to F2|C| .

(c) IC is 2−dimensional KC-vector space.

2. If C ∈ Ce2, then:

(a) C = C1∪C2, where C1, C2 ∈ C4, τ̃(IC1) = IC2 , τ̃(IC2) = IC1 , and τ̃ |IC1→IC2

is a field isomorphism.

(b) ϕ(KC) = (IC1 ⊕ IC2) ∩ S = {(f + τ(f)) + I | f ∈ IC1} is isomorphic to the

field IC1
∼= F4|C1| = F2|C| .

(c) IC1 ⊕ IC2 is 2−dimensional KC-vector space.

Proof Notice that, if µ is a root of f(X1, . . . , Xr), then µ2 is a root of the poly-
nomial τ(f(X1, . . . , Xr)), and τ2(f(X1, . . . , Xr)) = f(X1, . . . , Xr). So, τ̃ induces a
permutation of order 2 of the idempotents {eC+I}C∈C4 , so that τ̃(eC+I) = eC+I

if C ∈ Co2 , and τ̃(eC1 + I) = eC2 + I, τ̃(eC2 + I) = eC1 + I, if C1 ∪ C2 = C ∈ Ce2,
where C1, C2 ∈ C4. This permutation is translated into the field isomorphisms of
the statements 1.(a) and 2.(a).

For the statement 1.(b), it suffices to notice that C = C4(µ) = C2(µ), so that
ϕ(lC + J) = eC + I, and ϕ(KC) ⊆ IC ∩ S. A counting argument let us conclude
the desired equality.

Let us now show the statement 2.(b). The zeros of the idempotent ϕ(lC+J) are
exactly H1× . . .×Hr \C. The zeros of eCi + I (i = 1, 2) are H1× . . .×Hr \Ci, and
so the idempotent eC1 + eC2 + I ∈ IC1 ⊕IC2 has zeros H1 × . . .×Hr \ (C1 ∪C2) =
H1× . . .×Hr \C. Hence ϕ(lC +J) ⊆ (IC1 ⊕IC2)∩S, and the equality follows from
another counting argument.

Finally, the statements (c) follow from the fact that ϕ is an embedding of the
finite field KC (of size 2|C|) into the ring IC (if C ∈ Co2), or IC1 ⊕ IC2 (if C ∈ Ce2),

and so they can be regarded as KC−vector spaces. Since both have size 4|C|, we
conclude that their dimension is 2.
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Remark 5 For C ∈ Co2 , the idempotent eC + I is the identity of ϕ(KC), and so
eC + I ∈ ϕ(KC) = 〈Xi1

1 . . . Xir
r eC + I | 0 ≤ il ≤ deg (tl(Xl))〉F2 . On the other hand,

for C1 ∪ C2 = C ∈ Ce2 the idempotent eC1 + eC2 + I is the identity of ϕ(KC), and
so ϕ(KC) = 〈Xi1

1 . . . Xir
r (eC1 + eC2) + I | 0 ≤ il ≤ deg (tl(Xl))〉F2 .

Example 2 (Example 1 cont’d) Here is the list of odd and even 2−classes:

Co2 = {{(1, 1)} , {(µ, 1), (µ2, 1), (µ4, 1)} , {(µ6, 1), (µ5, 1), (µ3, 1)}}}

Ce2 = {(1, ω), (1, ω2)} , {(µ, ω), (µ2, ω), (µ4, ω), (µ, ω2), (µ2, ω2), (µ4, ω2)} ,
{(µ6, ω), (µ5, ω), (µ3, ω), (µ6, ω2), (µ5, ω2), (µ3, ω2)}}

The ideal

I{(1,1)} =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#
,

"
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

#
,

"
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

#)

(where w = w2) is isomorphic to F4, and it is a 2−dimensional vector space over

the finite field F2 ∼= K{(1,1)} =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#)
Moreover, the

elements in I{(1,1)} with coefficients equal to 0 or 1 (i.e, in S) are exactly those of
K{(1,1)}.

The ideal IC4((µ,1)) is isomorphic to F43 , and it is a 2−dimensional vector space
over the finite field

F23 ∼= KC2((1,1)) =

8<:
24 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

35 ,
24 1 1 1 0 1 0 0

1 1 1 0 1 0 0
1 1 1 0 1 0 0

35 ,
24 0 1 1 1 0 1 0

0 1 1 1 0 1 0
0 1 1 1 0 1 0

35 ,
24 0 0 1 1 1 0 1

0 0 1 1 1 0 1
0 0 1 1 1 0 1

35 ,
24 1 0 0 1 1 1 0

1 0 0 1 1 1 0
1 0 0 1 1 1 0

35 ,
24 0 1 0 0 1 1 1

0 1 0 0 1 1 1
0 1 0 0 1 1 1

35 ,
24 1 0 1 0 0 1 1

1 0 1 0 0 1 1
1 0 1 0 0 1 1

35 ,
24 1 1 0 1 0 0 1

1 1 0 1 0 0 1
1 1 0 1 0 0 1

359=;
The ideals related to the 2 and 4−classes of (µ6, 1) behave similarly.

On the other hand, all the even classes follow the pattern of the 2−class
{(1, ω), (1, ω2)}. Namely, the ideal

KC2((1,ω)) =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#
,

"
1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1

#
,

"
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 0 0 0 0

#)

is isomorphic to F4, and the direct sum of the ideals

I{(1,ω)} =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
1 1 1 1 1 1 1
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

#
,

"
ω ω ω ω ω ω ω
1 1 1 1 1 1 1
ω ω ω ω ω ω ω

#
,

"
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω
1 1 1 1 1 1 1

#)

I{(1,ω2)} =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
1 1 1 1 1 1 1
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

#
,

"
ω ω ω ω ω ω ω
ω ω ω ω ω ω ω
1 1 1 1 1 1 1

#
,

"
ω ω ω ω ω ω ω
1 1 1 1 1 1 1
ω ω ω ω ω ω ω

#)

is a vector space over it.
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3 Additive multivariable codes

Next we take advantage of the decomposition of the rings A4,A2, and their re-
lation in order to obtain a complete description of an additive semisimple mul-
tivariable code D ⊆ A4. From now on we assume that A4

∼=
L
C∈C4 IC and

A2
∼=
L
C∈Co2 KC ⊕

L
C∈Ce2 KC are the decompositions of A4 and A2 into min-

imal ideals, that ϕ is the embedding of A2 in A4, and that S = ϕ(A2) is the
subring of A4 fixed by the ring automorphism τ̃ . The main result in this section
is the following.

Theorem 2 Let D ⊆ A4 be an additive semisimple code, i.e., a S−submodule of A4.

1. If C ∈ Co2 , then the set DC = D∩IC is a KC−vector subspace of IC of dimension

0 ≤ sC ≤ 2.

2. If C ∈ Ce2 , with C = C1∪C2, and C1, C2 ∈ C4, then the set DC = D∩ (IC1 ⊕IC2)
is a KC−vector subspace of dimension 0 ≤ sC ≤ 2.

3. D =
L
C∈C2 DC , |D| =

Q
C∈C2 2sC , and the decomposition is unique.

Proof 1. DC is an additive subgroup of the ideal IC , since D is a code. Moreover,
because it is an additive code, it is invariant under multiplication by elements
in S so, in particular, by elements in IC ∩ S = ϕ(KC). Henceforth, since ϕ is
injective, DC can be viewed as a vector space over the finite field KC , i.e., as
a vector subspace of IC . Because dimKC IC = 2, we conclude the condition on
the dimension of DC .

2. The argument above applies also in this case replacing IC by IC1 ⊕ IC2 .
3. For all C ∈ C2 we have that DC ⊆ D, and so

L
C∈C2 DC ⊆ D. Conversely, if

m+ I ∈ D, then

m+ I = (1 + I)(m+ I) =

0@M
C∈C4

(eC + I)

1A (m+ I) =

=

0BB@M
C∈Co2

(eC + I)⊕
M

C1,C2∈C4
C1∪C2∈Ce2

(eC1 + eC2 + I)

1CCA (m+ I)

=
M
C∈Co2

(eCm+ I)⊕
M

C1,C2∈C4
C1∪C2∈Ce2

((eC1 + eC2)m+ I) ∈
M
C∈C2

DC

since eCm + I ∈ DC (for all C ∈ Co2), and (eC1 + eC2)m + I ∈ DC (for all
C1 ∪ C2 = C ∈ Ce2). Clearly, |D| =

Q
C∈C2 2sC .

Finally, let us show that this decomposition is unique. Let D =
L
C∈C2 EC

where EC ⊆ IC , if C ∈ Co2 , and EC ⊆ IC1 ⊕ IC2 , if C1 ∪ C2 = C ∈ Ce2. Then,
EC ⊆ IC ∩ D = DC , in the first case, and EC ⊆ (IC1 ⊕ IC2) ∩ D = DC , in the
second one. A counting argument on the sizes of these sets proves the result.

Corollary 1 The number of different additive semisimple codes in A4 isY
C∈C2

(2|C| + 3)

Of these, only
Q
C∈C2(2|C| + 2) codes can be generated by a single codeword.
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Proof The number of subspaces in a 2−dimensional vector space over a finite field

Fq is 1+ q2−1
q−1 +1 = q+3. Hence, the result follows directly from the decomposition

of the previous theorem.
A code DC can be generated by a single codeword if and only if it is a

cyclic S−submodule of A4. So, all the submodules DC have to be also cyclic
S−submodules, and the dimension of the vector subspace DC over KC has to
be either 0 or 1. The number of possible codes obtained from these subspaces is
exactly

Q
C∈C2(1 + (2|C| + 1)).

3.1 Hamming distance

Next, we study the minimum distance of our codes. Let us first introduce the
standard definitions.

Definition 6 If f ∈ Fq[X1, . . . , Xr], and NF (f) =
Pr
i=1 fα1...αrX

α1
1 · · · · · Xαr

r is
its normal form w.r.t. I, then we define the Hamming weight of f + I (denoted by

wt(f + I)), as the cardinality of supp(NF (f)) = {(α1, . . . , αr) | fα1...αr 6= 0}, the

support of NF (f).

The minimum distance of an additive (semisimple) multivariable code D ⊆ A4

is defined as the minimum Hamming weight of the nonzero elements in D, and it is

denoted by d(D).

The study of the codes with the best Hamming distance for given parameters
is one of the central problems in Coding Theory. A good source of bounds and
examples of the best known codes (block linear, and quantum error correcting
codes) can be found in Code Tables [6]. There exist several bounds on distances
for classical multivariable semisimple codes over fields (BCH, Hartmann-Tzeng, Roos,

. . . ) [13]. These bounds can be stated in the additive case due to the following fact:

Proposition 5 Let D ⊆ A4 be an additive abelian code, and let T = ∪li=1Ci be a

union of C4−classes Ci = C4(µi) such that: Ci ∈ T if and only if

– Ci ∈ Co2 and DC 6= 0

or

– Ci ⊆ C′ ∈ Ce2 and DC′ 6= 0

Then d(D) ≥ d(D∗), where D∗ is the classical multivariable code in A4 with set of

defining roots equal to T [13].

Proof It is enough to notice that, since T is the set of defining roots of D∗, then

DCi = ICi , for all i = 1, . . . , l. Therefore D ⊆ D∗ and the conclusion follows.

Remark 6 1. In view of this result, if we used the classical approach for multi-
variable codes, the computation of the minimum distance of a multivariable
additive abelian code in r variables would be reduced to computations of min-
imum distances of classical multivariable semisimple codes over a finite field in
less number of variables ([13][Proposition 8, Chapter 6] )

2. There might exist additive codes with a greater Hamming distance that the
one stated by the former bound, as the following example shows. Generally,
these codes are not multivariable codes in the classical sense.
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Example 3 (Example 1 cont’d) We apply Theorem 2 to construct an additive code by

choosing suitable chunks (i.e., subcodes) in the components of the decomposition of A4,

in the following way:

– In the component I{(1,1)}, we choose

D{(1,1)} =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#
,

"
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#)
,

which is a 1−dimensional vector space over K{(1,1)}.
– In the ideals IC4((µ,1)) and IC4((µ6,1)), we choose 1−dimensional vector spaces

over KC2((µ,1)) and KC2((µ,1)), respectively. According to the proof of Corollary 1,

we have 9
“

= 82−1
8−1

”
choices for each of them. Let us take

DC2((µ,1)) =S

"
0 1 ω ω ω 1 ω
0 1 ω ω ω 1 ω
0 1 ω ω ω 1 ω

#
and DC2((µ6,1)) =S

"
0 ω 1 ω ω ω 1
0 ω 1 ω ω ω 1
0 ω 1 ω ω ω 1

#
,

respectively.

Let us have a more detailed look at the subcode DC2((µ,1)). Since it is only contained

in the component IC4((µ,1)), which is generated by the polynomial (1 +X1 +X2
1 +

X4
1 )(1 + X2 + X2

2 ), Proposition 5 ensures a minimum distance of 12, according

to the BCH bound. But Sage computations [16] show that the actual distance is

d(DC2((µ,1))) = 18.

– We simply choose DC2((1,ω)) =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#)
.

– Finally, in the sums IC4((µ,ω)) ⊕ IC4((µ,ω2)) and IC4((µ6,ω)) ⊕ IC4((µ6,ω2)), we

also consider 1−dimensional vector spaces over KC2((µ,ω)) and KC2((µ6,ω)), re-

spectively. Corollary 1 shows that a total amount of 65 possibilities are allowed for

each component. Let us choose

DC2((µ,ω)) =S

"
1 1 0 1 0 0 1
1 ω ω ω 0 ω 1
0 ω ω ω 0 ω 0

#
and DC2((µ6,ω)) =S

"
1 1 ω 0 ω ω ω
ω 1 ω ω ω 0 1
ω 0 1 ω 1 ω ω

#
,

respectively.

The additive code

D = D{(1,1)} ⊕DC2((µ,1)) ⊕DC2((µ6,1)) ⊕DC2((1,ω)) ⊕DC2((µ6,ω)) ⊕DC2((µ6,ω))

of length 21 has 219 = 21+3+3+0+6+6 codewords. Sage computations show that this

code has distance d(D) = 7.

4 Duality for abelian codes

In this section we describe the dual code of an additive abelian code D. Following Lemma

1, the elements of A4 can be uniquely represented as f + I, where f = NF (f) =P
α fαX

α, α = (α1, . . . , αr), and Xα = Xα1
1 . . . Xαr

r (notice that 0 ≤ αi < ni, for all

1 ≤ i ≤ r). Let us introduce the function · : A4 → A4 that maps an element f + I to

f + I =
P
α fαX

n−α + I, where n = (n1, . . . , nr). It is a ring automorphism or order
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2. With this notation, the symmetric function used to define orthogonality is the trace

inner product 〈·, ·〉 : A4 ×A4 → F2 given by

〈f + I, g + I〉 =
X
α

Tr(fαg
2
α) =

X
α

(fαg
2
α + f2

αgα)

where Tr : F4 → F2 is the trace function. So, given an additive abelian code D, its dual

code is defined as D⊥ = {f + I ∈ A4 | 〈f + I, g + I〉 = 0 for all g + I ∈ D}. A code D
is self-orthogonal if D ⊆ D⊥ and self-dual if D = D⊥. In the next section we will

characterize this kind of codes.

For the study of duality it is useful to introduce the map (·, ·) : A4 ×A4 → S given

by

(f + I, g + I) = (f + I) τ̃(g + I) + τ̃(f + I) g + I, (1)

Notice that (·, ·) is well-defined, since τ̃(f + I) g + I = τ̃((f + I) τ̃(g + I)), and so

(f + I, g + I) is contained in the subring of A4 fixed by τ̃ , i.e., in S. Moreover, I =
0 + I = (f + I, g + I) if and only if (f + I)τ̃(g + I) = τ̃(f + I) g + I if and only if

(f + I)τ̃(g + I) is in S.

Notice that (1) resembles an Hermitian form, in the sense that it is S−linear in

the first argument and (g + I, f + I) = (f + I, g + I), for all f + I, g + I ∈ A4. This

map is related to the trace inner product by the following way:

Lemma 3 (f + I, g + I) = (
P
α〈f + I,Xαg + I〉Xα) + I, for all f + I, g + I ∈ A4.

Proof

(f + I, g + I) = (f + I)τ̃(g + I) + τ̃(f + I)g + I0@X
β

fβX
β + I

1A0@X
γ

g2γX
n−γ + I

1A+

0@X
β

f2
βX

β + I

1A0@X
γ

gγX
n−γ + I

1A
=
X
β

X
γ

(fβg
2
γ + f2

βgγ)Xβ+n−γ + I =
X
α

0@X
γ

(fα+γg
2
γ + f2

α+γgγ)

1AXα + I

=
X
α

 X
δ

(fδg
2
δ−α + f2

δ gδ−α)

!
Xα + I =

 X
α

〈f + I,Xαg + I〉Xα

!
+ I

(we have applied the changes of index {β + n− γ = α, δ = α+ γ}, and we have taken

the subscripts modulo n)

So, (f + I, g+ I) = I if and only if 〈r+ I, g+ I〉 = 0 for all r+ I in S(f + I), the

S−submodule of A4 generated by f + I, i.e., if and only if g + I is an element in the

dual code of S(f + I), the code spanned by f + I.

Notice that the composition of the ring automorphisms τ̃ and · induces a per-

mutation on the set C4, because if µ = (µ1, . . . , µr) is a root of f + I, then µ′ =
(µ−2

1 , . . . , µ−2
r ) is a root of τ̃(f + I). If C = C4(µ) is the 4-class of the root µ, then

let us denote by C′ = C4(µ′) the 4−class of µ′. Observe that, if we choose C1, C2 ∈ C4
such that C1 ∪ C2 ∈ Ce2, then C′1 ∪ C′2 ∈ Ce2 too. So, if C = C1 ∪ C2 ∈ C2, we

also write C′ = C′1 ∪ C′2, and the permutation can be extended to 2−classes. It is

clear that C2((1−2, . . . , 1−2)) = C2((1, . . . , 1)), and so C2((1, . . . , 1)) is a fixed point

of this permutation. On the other hand, no other 2−class in Co2 is fixed. Namely,
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if C2((1, . . . , 1)) 6= C2(µ) = C2(µ′) ∈ Co2 then, since C2(µ−1) = C2(µ′), we have

µ−1 ∈ C2(µ). For all δ 6= (1, . . . , 1), we have δ 6= δ−1, and so C2(µ) can be partitioned

in pairs (δ, δ−1). Hence C2(µ) must have even size, which is not possible.

Given C ∈ Co2 , and an element f + I ∈ IC (or C ∈ Ce2, and an element f + I ∈
IC1 ⊕ IC2), we define

O(f + I) =
n
g + I ∈ IC′(alt. g + I ∈ IC′1 ⊕ IC′2) | (f + I)τ̃(g + I) ∈ S

o
(2)

We have the following result that completely describes the dual code D⊥ of a given

abelian code D.

Theorem 3 Let D be an abelian additive code. If D =
L
C∈C2 DC is the unique

decomposition of Theorem 2, and D⊥ =
L
C∈C2 D

⊥
C is the unique decomposition of its

dual code, then:

1. if DC = 0, then D⊥C′ = IC′ (if C ∈ Co2), or D⊥C′ = IC′1⊕IC′2 (if C = C1∪C2 ∈ Ce2);

2. D⊥C′ = 0 if DC = IC (when C ∈ Co2), or if DC = IC1 ⊕IC2 (when C = C1 ∪C2 ∈
Ce2);

3. if DC =S (f + I) with I 6= f + I, then D⊥C′ = O(f + I). In such a case:

(a) If C ∈ Co2 , then O(f + I) =S (τ̃(g + I)), where g+ I ∈ IC is the multiplicative

inverse of f + I in the field IC .

(b) If C = C1 ∪ C2 ∈ Ce2, with C1, C2 ∈ C4, then let us write f + I = f1 + f2 + I,

where fi + I ∈ ICi (i = 1, 2). If fi + I 6= I (i = 1, 2), then O(f + I) =S

(τ̃(g1 + g2 + I)), where gi + I ∈ ICi is the multiplicative inverse of fi + I in

the field ICi (i = 1, 2). Otherwise, if fi + I 6= I (and f3−i + I = I), then

O(f + I) =S (eC′3−i + I), if C 6= C′ or IC1 6= IC1 , or O(f + I) = S(eC′i + I),

if C = C′ and IC1 = IC1 .

Summarizing, the possibilities given in Table 1 hold.

DC D⊥
C′

C ∈ Co2
{0} IC′

S(f + I) S(τ̃(g + I))
IC {0}

C ∈ Ce2

{0} IC′1 ⊕ IC′2

S(fi + I) S(eC′3−i
+ I), if C 6= C′ or if IC1 6= IC1

S(eC′i
+ I), if C = C′ and IC1 = IC1

S(f1 + f2 + I) S(τ̃(g1 + g2 + I)
IC1 ⊕ IC2 {0}

Table 1 Relation between the summands of orthogonal codes

Proof Observe that if f + I ∈ IC (alt. f + I ∈ IC1 ⊕IC2) and h+ I 6∈ IC′ (alt. h+ I 6∈
IC′1⊕IC′2), then τ̃(h+ I) ∈ IC∗ 6= IC (alt. τ̃(h+ I) ∈ IC1∗⊕IC2∗ 6= IC1⊕IC2), and
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so (f+I)τ̃(h+ I) ∈ IC ∩IC∗ = I (alt. (f+I)τ̃(h+ I) ∈ (IC1⊕IC2)∩(IC∗1 ⊕IC∗2 ) =
I), i.e., (f + I, h+ I) = I. Therefore

(DC)⊥ =
“

(DC)⊥ ∩ IC′
”
⊕

M
C′ 6=D∈Co2

ID ⊕
M
D∈Ce2

(ID1 ⊕ ID2)

(alt. (DC)⊥ =
“

(DC)⊥ ∩ (IC′1 ⊕ IC′2)
”
⊕
L
D∈Co2 ID ⊕

L
C′ 6=D∈Ce2 (IC′1 ⊕ IC′2)), and

so M
C′∈C2

D⊥C′ =
M
C∈C2

D⊥C = D⊥ =

0@M
C∈C2

DC

1A⊥

=
M
C∈Co2

“
(DC)⊥ ∩ IC′

”
⊕
M
C∈Ce2

“
(DC)⊥ ∩ (IC′1 ⊕ IC′2)

”
so that D⊥C′ = (DC)⊥ ∩ IC′ (alt. D⊥C′ = (DC)⊥ ∩ (IC′1 ⊕ IC′2)). The first two items

of the proposition now easily follow, since (·, ·) is nondegenerate when restricted to

IC × IC′ (alt. IC1 ⊕ IC2 × IC′1 ⊕ IC′2), where as the first part of the third item is a

consequence of equation (2).

In the case (a) it is straightforward to check that

(f + I, τ̃(g + I)) = (f + I)(g + I) + τ̃((f + I)(g + I)) = (eC + I) + τ̃((eC + I)) = I

so that S(τ̃(g + I)) ⊆ O(f + I). The fact that (·, ·) is nondegnerate implies the claimed

equality, because both sets are 1−dimensional KC-vector subspaces.

In the case (b), if fi + I 6= I (i = 1, 2), then

(f + I)τ̃(τ̃(g1 + g2 + I)) = (f1 + f2 + I)(g1 + g2 + I) = eC1 + eC2 + I ∈ S

and so (f + I, τ̃(g1 + g2 + I)) = I, i.e., S(τ̃(g1 + g2 + I)) ⊆ O(f + I). Again, the

fact that (·, ·) is nondegenerate implies the claimed equality. Finally, if fi+ I 6= I (and

f3−i + I = I), then

(f + I)(τ̃(eC′3−i + I)) = (fi + I)(eC3−i + I) = I ∈ S

and so S(eC′3−i + I) ⊆ O(f + I), if C 6= C′ or IC1 6= IC1 . The other content follows

from the same argument as above. The case when C = C′ and IC1 = IC1 is similar.

Remark 7 Notice that, in the case 3b of the previous lemma, if f1 + I 6= I, we can
take g1 + I ∈ IC1 the multiplicative inverse of f1 + I in the field IC1 , and multiply
(f1 +f2 + I)(g1 + τ(g1)+ I) = eC1 +h2 + I, and so S(f1 +f2 + I) =S (eC1 +h2 + I).
The same argument applies if f2 + I 6= I.

Example 4 (Example 1 cont’d) Let us construct the orthogonal code of the D presented

in the example above. We first list the correspondence between 2−classes: {(1, 1)} and

C2((1, ω)) are fixed points in the permutation C ↔ C′. On the other hand, C2((µ, 1))↔
C2((µ6, 1)) and C2((µ, ω))↔ C2((µ6, ω)) Now, let us describe for each component DC ,

the corresponding component D⊥C′ , according to Table 1.

– Since D{(1,1)} =S

"
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#
and (1 +X1 +X2

1 +X3
1 +X4

1 +X5
1 +X6

1 )(1 +

X2 +X2
2 ) + I is the identity of I{(1,1)}, which happens to be invariant under τ̃ , we

get that D⊥{(1,1)} = D{(1,1)}.
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– We have that DC2((µ,1)) =S

"
0 1 ω ω ω 1 ω
0 1 ω ω ω 1 ω
0 1 ω ω ω 1 ω

#
, and that the inverse of the element

(X1 +ωX2
1 +ωX3

1 +ω2X4
1 +X5

1 +ω2X6
1 )(1+X2 +X2

2 )+I in the field IC2((µ,1)) is

equal to (X1+ω2X1+ω2X2
1+ω2X3

1+ωX4
1+X5

1+ωX6
1 )(1+X2+X2

2 )+I. Therefore,

D⊥C2((µ,1))′
is generated by (ω2X1 +X2

1 +ω2X3
1 +ωX4

1 +ωX5
1 +X6

1 )(1+X2 +X2
2 ),

and so D⊥C2((µ,1))′
= DC2((µ6,1)). As a consequence

D⊥C2((µ6,1))′ = DC2((µ,1)).

– From the trivial component DC2((1,ω)) =

("
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

#)
we get that

D⊥C2((1,ω))′ = IC4((1,ω) ⊕ IC4((1,ω2).

– Finally, we consider DC2((µ6,ω)) =S

"
1 1 ω 0 ω ω ω
ω 1 ω ω ω 0 1
ω 0 1 ω 1 ω ω

#
. The element 1 + X1 +

ωX2
1 + ω2X4

1 + ωX5
1 + ω2X6

1 + (ω + X1 + ω2X2
1 + ω2X3

1 + ωX4
1 + X6

1 )X2 +
(ω2 +X2

1 + ω2X3
1 +X4

1 + ωX5
1 + ωX6

1 )X2
2 + I decomposes as f1 + f2 + I, where

f1 + I = (X1 + X3
1 + X4

1 + X5
1 )(ω2 + ωX2 + X2

2 ) ∈ IC4((µ6,ω)), and f2 + I =

(1 + ωX1 + ωX2
1 + ω2X3

1 + X5
1 + ω2X6

1 )(1 + ωX2 + ω2X2
2 ) ∈ IC4((µ6,ω)). The

image of the sum of the inverses of f1 + I and f2 + I under the map τ̃ gives us

D⊥C2((µ6,ω))′ =S

"
1 1 0 1 0 0 1
1 ω ω ω 0 ω 1
0 ω ω ω 0 ω 0

#
= DC2((µ,ω)). As a consequence

D⊥C2((µ6,ω))′ = DC2((µ,ω2)).

Therefore, the orthogonal of D is the additive code

D⊥ = D{(1,1)} ⊕DC2((µ,1)) ⊕DC2((µ6,1)) ⊕ IC4((1,ω) ⊕ IC4((1,ω2)

⊕DC2((µ6,ω)) ⊕DC2((µ6,ω)) = D ⊕ IC4((1,ω) ⊕ IC4((1,ω2) ⊇ D,

and so the code is self-orthogonal.

5 Self-orthogonal and self-dual abelian codes

Lemma 4 Let D =
L
C∈C2 DC be an additive abelian code in A4 and let D⊥ =L

C∈C2 D
⊥
C be its dual code. Then:

1. D is self-orthogonal if and only if for each C ∈ C2, if DC 6= 0 and DC′ 6= 0, then

DC =S (f + I) and DC′ = O(f + I), with I 6= f + I.

2. D is self-dual if and only if it is self-orthogonal and for each C ∈ C2 such that DC =
0, then DC′ = IC′ , when C ∈ Co2 (or DC′ = IC′1 ⊕ IC′2 , when C = C1 ∪C2 ∈ Ce2).

Proof 1. First of all notice that, for a code D the condition of self-orthogonality, D ⊆
D⊥ is equivalent to DC ⊆ D⊥C for all C ∈ C2. This condition clearly holds for

all C ∈ C2 such that DC = 0. If DC 6= 0 but DC′ = 0, then D⊥C = IC , when

C ∈ Co2 , according to Theorem 3, and so the condition also holds. Finally, if DC 6= 0
and DC′ 6= 0, then DC 6= IC for the code to be self-orthogonal (since otherwise,
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from Theorem 3, D⊥C′ = 0 6⊇ DC′) and DC′ 6= IC′ by the same argument. Hence

DC =S (f + I) with I 6= f + I. Because DC′ ⊆ O(f + I) and both sets are

1-dimensional KC subspaces, we obtain the desired equality.

2. The code D is self-dual if and only if DC = D⊥C for all C ∈ C2. In particular it

has to be self-orthogonal. For the classes C ∈ C2 such that DC =S (f + I) and

DC′ = O(f + I) (with I 6= f + I) the equality is true, whereas if 0 = DC = D⊥C ,

from Theorem 3, we must have DC′ = IC′ , for the code to be self-dual. The case

C ∈ Ce2 is similar.

Now, we are able to describe the self-orthogonal and self-dual additive abelian codes

in A4.

Theorem 4 Let D =
L
C∈C2 DC be an additive abelian code in A4 and let D⊥ =L

C∈C2 D
⊥
C be its dual code. Then, D is self-orthogonal (alt. D is self-dual) if and

only if for each C ∈ C2 the following condition hold (alt. except those marked with an

asterisk):

1. If C ∈ Co2 :

(a) If C = C2((1, . . . , 1)), then either

– DC = {0} (∗)
– or DC is any KC-vector space of dimension 1.

(b) In other case, either

i. DC = {0} and

– DC′ = IC′
– or DC′ is any other KC′ -vector subspace of IC′ (∗)

ii. or DC =S (f+I) with f+I 6= I, and DC′ =S (τ̃(g + I)), where g+I ∈ IC
is the multiplicative inverse of f + I in the field IC .

2. If C = C1 ∪ C2 ∈ Ce2:

(a) If C = C′, then either

i. DC = {0} (∗),

ii. or if ICi = ICi (i = 1, 2), then

– DC =S (eCi + I) with i = 1, 2
– or DC =S (f1 + τ̃(f1)z + I) where z + I is a non-zero element of the

subfield of IC2 isomorphic to F2|C1|

iii. or if IC1 = IC2 , then DC =S (f1 + τ̃(f1)z + I) where z + I is a non-zero

element of IC2 of order 2|C1| + 1.

(b) If C 6= C′, then either

i. DC = {0} and

– DC′ = IC′
– or DC′ is any KC′ -vector subspace of IC′ (∗),

ii. or DC =S (eCi + I) (i = 1, 2) and DC′ =S (eC′i + I),

iii. or DC =S (f1 + f2 + I) with fi + I 6= I for i = 1, 2, and DC′ =S

(τ̃(g1 + g2 + I)), where gi + I ∈ ICi is the multiplicative inverse of fi + I

in the field ICi (i = 1, 2).

These possibilities for self-orthogonal (alt. self-dual) additive abelian codes are sum-

marized in Table 2.

Proof 1. (a) If C = C2((1, . . . , 1)), then C = C′ and so, for the code to be self-

orthogonal DC = DC′ must be a proper KC-vector subspace of IC (according



Additive semisimple multivariable codes over F4 17

DC DC′

C ∈ Co2

C(1,...,1)
{0} ∗

S(f + I)

C 6= C′

{0}
{0} ∗

S(f + I) ∗
IC′

S(f + I)
{0} ∗

S(τ̃(g + I))
IC {0}

C ∈ Ce2

C = C′
IC1 = IC1

{0} ∗
S(eCi + I)

S(f1 + τ̃(f1)z + I)

IC1 = IC2
{0} ∗

S(f1 + τ̃(f1)z + I)

C 6= C′

{0}
{0} ∗

S(f + I) ∗
IC′1 ⊕ IC′2

S(eCi + I)
{0} ∗

S(eC3−i + I)

S(f1 + f2 + I)
{0} ∗

S(τ̃(g1 + g2 + I)
IC1 ⊕ IC2 {0}

Table 2 Different possibilities on the summands for a code to be self-orthogonal or self-dual

to Lemma 4.1). The case DC = DC′ = {0} is allowed for self-orthogonality,

but it is not acceptable for self-duality (according to Lemma 4.2). Finally, if

DC =S (f + I), from Theorem 3 we know that D⊥C = O(f + I) =S (τ̃(g + I)),

where g + I is the multiplicative inverse of f + I in the field IC . Thus, S(f +
I) =S (τ̃(g + I)) if and only if there exists c+ I ∈ S such that (c+ I)(f + I) =
τ̃(g + I), if and only if c+ I = τ̃(g + I)(g+ I) ∈ S. The restriction of the ring

automorphism · to the ideal IC is the identity, and so c+I = τ̃(g+I)(g+I) =
τ̃(c+ I), i.e., c+ I ∈ S always.

(b) In this case C 6= C′, and so self-orthogonality in the subcase i. (i.e., DC = {0})
is obvious (but self-duality is not possible unless DC′ = IC′), according to

Lemma 3. In the subcase ii. (DC =S (f + I)) self-orthogonality is only true

when DC′ =S (τ̃(g + I)), because of Theorem 3. Since τ̃ and · are commuting

ring automorphisms of order at most 2, it follows that DC =S (f + I) =S

(τ̃(τ̃(f + I))) = O(τ̃(g + I)) and thus the condition is also sufficient. Self-

duality is always true in such a case.

2. (a) If C = C′ = C1 ∪C2, the case DC = {0} is possible if D is self-orthogonal, but

not if it is self-dual (Lemma 4).

If C ∈ C2, and IC = IC , then the restriction of · to IC is the identity if and only

if C = C2((1, . . . , 1)). In fact, in these conditions, if f + I =
P
α fαX

α + I ∈
IC , then Xβ(f + I) = Xβ(f + I) for any index β = (β1, . . . , βr). So, this

implies that fn−α−β = fα−β for all α and β. Taking α = β we have that

fn−2β = f0 for all β. Since ni is odd for i = 1, . . . , r, f + I = f0(
P
αX

α + I)
which is an element of IC with C = C2((1, . . . , 1)).

Let us suppose that ICi = ICi for i = 1, 2. Hence, IC = IC and the restriction

·|ICi is a non trivial field automorphism or order 2, i.e., fi + I = f2d

i + I,
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where d = |Ci|, since ICi ∼= F4|Ci| . If DC =S (fi + I) (i = 1 or 2), then

O(fi+I) =S (eCi+I), and so self-orthogonality implies S(fi+I) =S (eCi+I).

In such a case DC = DC′ , and the condition for self-duality if also satisfied.

Otherwise, DC =S (f1+f2+I) with fi+I 6= I (i = 1, 2), and O(f1+f2+I) =S

(τ̃(g1 + g2 + I), where gi + I is the multiplicative inverse of fi + I in the field

ICi . Therefore, the condition for self-orthogonality (and self-duality) holds if

and only if there exists an element c+ I ∈ S such that

f1 + f2 + I = (c+ I)(τ̃(g1) + τ̃(g2) + I) = (c+ I)(τ̃(g1)2
d

+ τ̃(g2)2
d

+ I)

Then, the element c+ I ∈ S must verify the following condition

c+ I = (f1 + f2 + I)(τ̃(f1)2
d

+ τ̃(f2)2
d

+ I) = f1τ̃(f2)2
d

+ f2τ̃(f1)2
f

+ I

Now, since τ̃(c+ I) = c+ I, we arrive to these equations(
f1τ̃(f2)2

d

+ τ̃(f2)f2d

1 + I = I

f2τ̃(f1)2
d

+ τ̃(f1)f2d

2 + I = I

From the second equation, we obtain that (τ̃(f1)g2)2
d−1 + I) = eC2 + I, that

is, τ̃(f1)g2 + I is a non-zero element of the subfield of IC2 isomorphic to F2d .

So, we obtain f2 + I = τ̃(f1)z+ I. This solution also verifies the first equation,

so the result follows.

Let us suppose that IC1 = IC2 . If DC =S (fi + I) with i = 1, 2, O(fi + I) =S

(eC3−i + I) 6= DC , and so the code can not be self-orthogonal. Finally, we will

consider DC =S (f1 + f2 + I). Since the restriction τ̃ |IC1
(alt. τ̃ |IC2

) is a field

automorphism of order 2, i.e., τ̃(fi + I) = f2d

i + I, using the same argument

of the case 2(a)ii, we arrive to the equations(
f2d+1
1 + τ̃(f2)2

d+1 + I = I,

f2d+1
2 + τ̃(f1)2

d+1 + I = I.

Solving the second equation we obtain f2 + I = τ̃(f1)z + I, where z + I is a

non-zero element of IC2 of order 2d + 1. This solution also satisfies the first

equation, and the result follows.

(b) Let us now suppose that C 6= C′. The first case is similar to 1(b)i, where as the

second one is similar to the first subcase of 2(a)ii. Finally, if DC =S (f1+f2+I)
with fi+I 6= I for i = 1, 2, then O(f1+f2+I) =S (τ̃(g1 + g2 + I)), where gi+I
is the multiplicative inverse of fi+I (i = 1, 2). Hence, DC′ =S (τ̃(g1 + g2 + I))
for the code to be self-orthogonal and self-dual.

Example 5 (Example 1 cont’d) The components of the self-orthogonal code D presented

in the examples above fall in the following cases of Theorem 4:

– D{(1,1)} is case 1(a),

– DC2((µ,1)) and DC2((µ6,1)) are case 1(b)ii,
– DC2((1,ω)) is case 2(a)i,
– and DC2((µ,ω2)) and DC2((µ6,ω)) are case 2(b)iii.
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Let us observe that this self-orthogonal code D allow us to construct, via [2][Theorem

2], a quantum-error-correcting code with parameters [[21, 2, d]], where d is the smallest

weight of codewords in D⊥ \ D. Sage computations [16] show that the actual distance

of the quantum-error-correcting code is d = 6, i.e., it has the same distance as the best

known code with the same parameters listed in [6].

The ring automorphism τ̃ defines an equivalence relation over the set of 2-classes

C2. Let us denote B the quotient set of C2 by this relation. Using this notation, the

number of self-orthogonal and self-dual codes are given by the following result.

Corollary 2 The number of additive abelian self-orthogonal (alt. self-dual) codes is

given by Table 3.

Any Generated by a single word

Self-orthogonal 4
Y
C∈B
C 6=C′

(3 · 2|C| + 6)
Y
C∈B
C=C′

(2
|C|
2 + 2) 4

Y
C∈B
C 6=C′

(3 · 2|C| + 4)
Y
C∈B
C=C′

(2
|C|
2 + 2)

Self-dual 3
Y
C∈B
C 6=C′

(2|C| + 3)
Y
C∈B
C=C′

(2
|C|
2 + 1) 3

Y
C∈B
C 6=C′

(2|C| + 1)
Y
C∈B
C=C′

(2
|C|
2 + 1)

Table 3 Number of self-orthogonal and self-dual codes

Proof In Table 4 we count the number of codes from the possible choices in the entries

of the table of Theorem 4 (see also Remark 7).

In order to know the number of self-dual codes, we do no count rows marked with

an asterisk. Finally, the code D is generated by a single word if and only if DC is a

KC-vector space of dimension 0 or 1 for all C ∈ C2, i.e., we do not count any row

containing IC or IC1 ⊕ IC2 .
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DC DC′ Total number

C ∈ Co2

C(1,...,1)
1

4
22−1
2−1

C 6= C′

1
1

2|C| + 3

9>>>>>=>>>>>;
3 · 2|C| + 6

2|C|−1
2−1
1

2|C|−1
2−1

1
(2|C| + 1) · 2

1
1 1 1

C ∈ Ce2

C = C′
IC1 = IC1

1
2|C|/2 + 2

9>>>=>>>;2|C|/2 + 2
2 1

2|C|/2 − 1

IC1 = IC2
1

2|C|/2 + 2
2|C|/2 + 1

C 6= C′

1
1

2|C| + 3

9>>>>>>>>>=>>>>>>>>>;
3 · 2|C| + 6

2|C|−1
2−1
1

2
1

4
1

2|C| − 1
1

(2|C| − 1) · 2
1

1 1 1

Table 4 Total number of self-orthogonal and self-dual codes
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