Additive semisimple multivariable codes over \mathbb{F}_4

E. Martínez-Moro $\,\cdot\,$ A. Piñera-Nicolás $\,\cdot\,$ I.F. Rúa

the date of receipt and acceptance should be inserted later

Abstract The structure of additive multivariable codes over \mathbb{F}_4 (the Galois field with 4 elements) is presented. The semisimple case (i.e., when the defining polynomials of the code have no repeated roots) is specifically addressed. These codes extend in a natural way the abelian codes, of which additive cyclic codes of odd length are a particular case. Duality of these codes is also studied.

Keywords Additive multivariable codes, abelian codes, quantum codes, duality

Mathematics Subject Classification (2000) 11T61, 94B99, 81P70, 13M10

1 Introduction

Quantum codes are designed to detect and correct the errors produced in quantum computations [14, 15]. These codes can be constructed with the help of specific classical codes, called *additive*, over \mathbb{F}_4 (the Galois field with 4 elements) [2]. An additive code of length n is a subgroup of \mathbb{F}_4^n under addition. The particular case of additive cyclic codes has been considered in [5]. An additive code C is called *cyclic* if, whenever $c = (c_1, \ldots, c_n) \in C$, then its cyclic shift (c_2, \ldots, c_n, c_1) is also a codeword in C. These codes are related to properties of the ring $\mathbb{F}_4[X]/\langle X^n - 1\rangle$. In the case n odd, the semisimple structure of this ring can be used to obtain a complete description of the codes [7]. The case n even has been also considered [8].

Many authors have stated that many classical codes are ideals in certain algebras over a finite field, see for example [1,3,12]. In particular, *multivariable* codes have been considered, i.e., codes that can be viewed as ideals of the quotient ring $\mathbb{F}_4[X_1, \ldots, X_r]/\langle t_1(X_1), \ldots, t_r(X_r)\rangle$ (where $t_i(X_i) \in \mathbb{F}_4[X_i]$ are fixed polynomials). Abelian codes, i.e., multivariable codes where $t_i(X_i) = X_i^{n_i} - 1$, for all $1 \le i \le r$, are particular cases, and they extend classical cyclic codes. These types of codes

E. Martínez-Moro · A. Piñera-Nicolás

I.F. Rúa

Institute of Mathematics (IMUVa) and Applied Mathematics Department, Universidad de Valladolid. E-mail: edgar@maf.uva.es, anicolas@maf.uva.es

Departamento de Matemáticas, Universidad de Oviedo. E-mail: rua@uniovi.es

have been also constructed if the underlying ring is not a field, but a finite chain ring [9, 10].

In this paper we describe additive multivariable codes over the finite field \mathbb{F}_4 , when the polynomials $t_i(X_i) \in \mathbb{F}_2[X_i]$ have no repeated-roots. The semisimple structure of the rings $\mathcal{A}_4 = \mathbb{F}_4[X_1, \ldots, X_r]/\langle t_1(X_1), \ldots, t_r(X_r) \rangle$ and $\mathcal{A}_2 = \mathbb{F}_2[X_1, \ldots, X_r]/\langle t_1(X_1), \ldots, t_r(X_r) \rangle$ is fundamental in this description.

The paper is organized as follows. In Section 2 we review the basic terminology and the results concerning the decomposition of the rings \mathcal{A}_4 and \mathcal{A}_2 , and their relation. Section 3 is devoted to the description of the structure of the additive codes. In Section 4 we study the duals of abelian semisimple codes. Finally in Section 5 we characterize those non-trivial abelian semisimple codes that are selfdual.

2 Preliminaries

In this section we will obtain the structure of the ambient space of additive semisimple multivariable codes over the finite field \mathbb{F}_4 . That is, we will describe explicitly the structure of the ring $\mathcal{A}_4 = \mathbb{F}_4[X_1, \ldots, X_r]/\langle t_1(X_1), \ldots, t_r(X_r) \rangle$, where $t_i(X_i) \in \mathbb{F}_2[X_i]$ for all $i = 1, \ldots, r$. In order to obtain this description we will decompose this ring as a direct sum of ideals. See [13] for proofs and details about this decomposition.

2.1 Decomposition of $\mathbb{F}_q[X_1, \ldots, X_r] / \langle t_1(X_1), \ldots, t_r(X_r) \rangle$

Let $q = p^e$ (p prime), and let $I = \langle t_1(X_1), \ldots, t_r(X_r) \rangle \triangleleft \mathbb{F}_q[X_1, \ldots, X_r]$ be the ideal generated by monic polynomials $t_i(X_i) \in \mathbb{F}_p[X_i]$, of degree $n_i, i = 1, \ldots, r$ (in this paper we are concerned with the case $q = 2^2$). Let H_i be the set of roots of $t_i(X_i)$ in an suitable extension field of \mathbb{F}_q for each $i = 1, \ldots, r$. We require that $t_i(X_i)$ has no multiple roots for all $i = 1, \ldots, r$. We are interested in the decomposition of the algebra $\mathcal{A}_q = \mathbb{F}_q[X_1, \ldots, X_r] / \langle t_1(X_1), \ldots, t_r(X_r) \rangle$.

Definition 1 Let $\mu = (\mu_1, \ldots, \mu_r) \in H_1 \times \ldots \times H_r$, then we define the *q*-class of μ as

$$C_q(\mu) = \left\{ (\mu_1^{q^s}, \dots, \mu_r^{q^s}) \mid s \in \mathbb{N} \right\}.$$

Proposition 1 Let $\mu = (\mu_1, \ldots, \mu_r) \in H_1 \times \ldots \times H_r$ and let q_i be the degree of the minimal polynomial of μ_i over \mathbb{F}_q for each $i = 1, \ldots, r$. Then we have that

- 1. $|C_q(\mu)| = \text{l.c.m.}(q_1, q_2, \dots, q_r) = [\mathbb{F}_q(\mu_1, \dots, \mu_r) : \mathbb{F}_q].$
- 2. The set C_q of q-classes $C_q(\mu)$ is a partition of $H_1 \times \ldots \times H_r$.
- 3. For each ideal $\mathcal{I} \triangleleft \mathbb{F}_q[X_1, \ldots, X_r]/I$ the affine variety $V(\mathcal{I})$ of common zeros of the elements in \mathcal{I} is a union of classes.

Definition 2 Let K be an algebraic extension of \mathbb{F}_q and let $\alpha \in K$. Let us denote by $\operatorname{Irr}(\alpha, \mathbb{F}_q)$ the minimal polynomial of α over the field \mathbb{F}_q . If $\mu = (\mu_1, \ldots, \mu_r) \in H_1 \times \ldots \times H_r$, then consider the following polynomials:

- 1. $p_{\mu,i}(X_i) = \operatorname{Irr}(\mu_i, \mathbb{F}_q)$, and $d_{\mu,i} = \deg p_{\mu,i}$ for all $i = 1, \ldots, r$.
- 2. $w_{\mu,i}(\mu_1, \ldots, \mu_{i-1}, X_i) = \operatorname{Irr}(\mu_i, \mathbb{F}_q(\mu_1, \ldots, \mu_{i-1}))$ for all $i = 2, \ldots, r$.

3. $\pi_{\mu,i}(\mu_1, \dots, \mu_{i-1}, X_i) = p_{\mu,i}(X_i)/w_{\mu,i}(\mu_1, \dots, \mu_{i-1}, X_i)$ for all $i = 2, \dots, r$.

Remark 1 All the polynomials in the definition above can be seen as polynomials in $\mathbb{F}_q[X_1, \ldots, X_r]$ (substituting μ_i by X_i) and the following ring isomorphism holds

$$\mathbb{F}_q[X_1,\ldots,X_r]/\langle p_{\mu,1},w_{\mu,2},\ldots,w_{\mu,r}\rangle \cong \mathbb{F}_q(\mu_1,\ldots,\mu_r).$$

Moreover, if $\mu' \in C_q(\mu)$, then $p_{\mu,i} = p_{\mu',i}$ $i = 1, \ldots, r$ and $w_{\mu,i} = w_{\mu',i}, \pi_{\mu,i} = \pi_{\mu',i}$ $i = 2, \ldots, r$. Thus, if $C = C_q(\mu)$ is the q-class of μ , we will write $p_{C,i} = p_{\mu,i}, d_{C,i} = d_{\mu,i}, w_{C,i} = w_{\mu,i}, \pi_{C,i} = \pi_{\mu,i}$. Analogously, the ideal $\langle p_{C,1}, w_{C,2}, \ldots, w_{C,r} \rangle$ will be denoted by I_C .

Definition 3 Let $\mu = (\mu_1, \ldots, \mu_r) \in H_1 \times \ldots \times H_r$. If $C = C_q(\mu)$ is the q-class of μ , we define the following polynomial in $\mathbb{F}_q[X_1, \ldots, X_r]$

$$h_C(X_1, \dots, X_r) = \prod_{i=1}^r \frac{t_i(X_i)}{p_{C,i}(X_i)} \prod_{i=2}^r \pi_{C,i}(X_i, \dots, X_r).$$

Proposition 2 Let $\mu = (\mu_1, \ldots, \mu_r) \in H_1 \times \ldots \times H_r$. If $C = C_q(\mu)$ is the q-class of μ , then

1. The annihilator of $\langle h_C + I \rangle$ (in \mathcal{A}_q) is $I_C + I$,

2. The set of zeros of h_C is $H_1 \times \ldots \times H_r \setminus C$,

3. The set of zeros of I_C is C.

Theorem 1 (Decomposition of the ambient space A_q)

$$\mathcal{A}_q = \mathbb{F}_q[X_1, \dots, X_r]/I \cong \bigoplus_{C \in \mathcal{C}_q} \langle h_C + I \rangle$$

where $\langle h_C + I \rangle \cong \mathbb{F}_q[X_1, \ldots, X_r]/I_C$ is a finite field isomorphic to $\mathbb{F}_q(\mu_1, \ldots, \mu_r) \cong \mathbb{F}_{q|C|}$, and so the algebra \mathcal{A}_q is semisimple. Hence, there exists a unique set of primitive orthogonal idempotents $\{e_C + I\}_{C \in \mathcal{C}_q} \subseteq \mathcal{A}_q$ such that $1 + I = \sum_{C \in \mathcal{C}_q} e_C + I$ and $\mathcal{A}_q(e_C + I) \cong \langle h_C + I \rangle$. Namely, the idempotent $e_C + I$ is exactly the element $g_C h_C + I$, with $g_C h_C + I_C = 1 + I_C$, and its set of zeros is $H_1 \times \ldots \times H_r \setminus C$

Remark 2 Notice that if q = 4, r = 1 and $t_1(X) = X^n - 1$ with n odd, we obtain the ambient space of additive cyclic codes over \mathbb{F}_4 described in [7]. In this case, if α is a primitive *nth*-root of unity and $\mu = \alpha^i$, then the exponents of the elements in the q-class $C = C_4(\mu)$ are the elements of the 4-cyclotomic coset containing i. Also, each direct summand $h_C + I \cong \mathbb{F}_{4^{\lambda_C}}$, where λ_C is the size of the q-class C, that is, the degree of the irreducible polynomial p_C .

Classical multivariable codes over \mathbb{F}_4 are defined as the ideals of the algebra \mathcal{A}_4 . However, since additive codes are no longer closed under multiplication by arbitrary elements of \mathbb{F}_4 , they do not correspond to ideals of this ring. This type of codes are related instead to submodules of \mathcal{A}_4 , when viewed as a module over one of its subrings.

Lemma 1 If $f \in \mathbb{F}_q[X_1, \ldots, X_r]$, then there exists a unique polynomial $NF(f) \in \mathbb{F}_q[X_1, \ldots, X_r]$ such that f + I = NF(f) + I, and $\deg_{X_i}(NF(f)) < n_i$. It is called the normal form of f w.r.t. I. Moreover, two polynomials $f, g \in \mathbb{F}_q[X_1, \ldots, X_r]$ satisfy f + I = g + I if and only if NF(f) = NF(g). In particular, all classes f + I, where $0 \neq f$ and $\deg_{X_i}(NF(f)) < n_i$, for all $1 \leq i \leq r$, are not zero.

Proof Consider the lexicographic monomial order with $X_1 > X_2 > \cdots > X_r$. Then, $\{t_1(X_1), \ldots, t_r(X_r)\}$ is a Groebner basis of I (actually its reduced Groebner basis w.r.t. such an order), and so the result follows from [4, Chapter 2, Section 9, Theorem 3 and Proposition 4].

Definition 4 Let S be the set of elements $f+I \in \mathcal{A}_q$ such that $NF(f) \in \mathbb{F}_p[X_1, \ldots, X_r]$.

¿From now on, let us denote by J the ideal in $\mathbb{F}_p[X_1, \ldots, X_r]$ generated by $t_i(X_i), i = 1, \ldots, r$, and by \mathcal{A}_p the algebra $\mathbb{F}_p[X_1, \ldots, X_r]/J$ (notice that $t_i(X_i) \in \mathbb{F}_p[X_i]$, for all $i = 1, \ldots, r$).

Proposition 3 There exists a ring monomorphism $\varphi : \mathcal{A}_p \to \mathcal{A}_q$ such that $\varphi(f+J) = f + I$, for all $f \in \mathbb{F}_p[X_1, \ldots, X_r]$. The set S is the image of this map, and so it is a subring of \mathcal{A}_q isomorphic to \mathcal{A}_p .

Proof Consider the ring homomorphisms $\pi_q \circ i : \mathbb{F}_p[X_1, \ldots, X_r] \to \mathcal{A}_q$, given by $(\pi_q \circ i)(f) = f + I$, and $\pi_p : \mathbb{F}_p[X_1, \ldots, X_r] \to \mathcal{A}_p$, given by $\pi_p(f) = f + J$. Since ker $\pi_p \subseteq$ ker $\pi_q \circ i$, there exists a ring homomorphism $\varphi : \mathcal{A}_p \to \mathcal{A}_q$ such that $\varphi(f+J) = f + I$, for all $f \in \mathbb{F}_p[X_1, \ldots, X_r]$.

For all $f \notin J$, we have that f + J = NF(f) + J, where $0 \neq NF(f) \in \mathbb{F}_p[X_1, \ldots, X_r] \subseteq \mathbb{F}_q[X_1, \ldots, X_r]$, and $\deg_{X_i}(NF(f)) < n_i$. So, $\varphi(f+J) = \varphi(NF(f)+J) = NF(f) + I \neq I$, and the map is injective. Since $\operatorname{Im}(\varphi) \subseteq S$, a simple counting argument let us conclude the equality $\operatorname{Im}(\varphi) = S$, and so $\mathcal{A}_p \cong S$.

Definition 5 An additive (semisimple) multivariable code over \mathbb{F}_q is a submodule of the module ${}_{S}\mathcal{A}_q$.

Remark 3 These codes are called *semisimple* because the roots of the polynomials $t_i(X_i)$ are required to be simple. If q = 4, r = 1, $t_1(X) = X^n - 1$, with n odd, additive multivariable codes over \mathbb{F}_4 are exactly the additive cyclic codes over \mathbb{F}_4 described in [7].

Remark 4 It is just a straight forward fact that a semisimple code on \mathcal{A}_2 can be seen as a shortened code of an abelian code choosing adequate polynomials $X_i^{n_i} - 1$ such that $t_i(X_i)|X_i^{n_i} - 1$ (thus we must shorten the codes in the positions not in t_i). This follows directly from the fact that the ideals of $\mathbb{F}[X]/\langle t(X) \rangle$ (t having simple roots) are shortened cyclic codes (see for example [11, Section 8.10]).

Example 1 We shall illustrate the contents of the paper with the help of the following running example. Let us consider $t_1(X_1) = X_1^7 + 1, t_2(X_2) = X_2^3 + 1$ polynomials in $\mathbb{F}_q[X_1, X_2]$. The normal form of an element f + I, which has the shape $\sum_{j=0}^6 \sum_{i=0}^2 f_{ij} X_1^j X_2^i$, will be written as the matrix

$$F = (f_{ij}) = \begin{bmatrix} f_{00} \ f_{01} \ \dots \ f_{06} \\ f_{10} \ f_{11} \ \dots \ f_{16} \\ f_{20} \ f_{21} \ \dots \ f_{26} \end{bmatrix}$$

We shall describe the decompositions of the algebras \mathcal{A}_q for q = 2 and 4.

– If q = 2, then the set of 2-classes is the following one:

where $\mu \in \mathbb{F}_{2^3}, \omega \in \mathbb{F}_{2^2}$ such that $\mu^3 + \mu + 1 = \omega^2 + \omega + 1 = 0$. The algebra \mathcal{A}_2 is decomposed as the direct sum of six ideals, which are generated by the following idempotents:

- If q = 4, then the set of 4-classes is the following one:

Observe that each 2-class of even size splits into two 4-classes. The decomposition of A_4 is given by the following direct sum of 9 ideals generated by the idempotents

(where $\overline{\omega} = \omega^2$). Notice that \mathcal{A}_2 is identified with the subalgebra S of \mathcal{A}_4 of elements whose normal form has coefficients 0 or 1.

2.2 Relation between the decompositions of \mathcal{A}_4 and \mathcal{A}_2

From now on, let us fix q = 4. In the following, we will describe the relation between the structures of the algebras \mathcal{A}_4 and \mathcal{A}_2 . This will lead us, in the following section, to the description of the additive multivariable codes over \mathbb{F}_4 . Since these decompositions are based on classes of roots, we first establish the relation between the 2-classes $C_2(\mu)$ and the 4-classes $C_4(\mu)$

Lemma 2 Let μ_i be a root of the polynomial $t_i(X_i)$, $1 \le i \le r$. Let $q_i = \deg(\operatorname{Irr}(\mu_i, \mathbb{F}_4))$ and $k_i = \deg(\operatorname{Irr}(\mu_i, \mathbb{F}_2))$. If $\mu = (\mu_1, \ldots, \mu_r)$, then:

- 1. If k_i is odd for all $1 \leq i \leq r$, then $C_2(\mu) = C_4(\mu)$, and it has size l.c.m. (k_1, \ldots, k_r) .
- 2. If there exists $i \in \{1, ..., r\}$ such that k_i is even, then $C_2(\mu) = C_4(\mu) \cup C_4(\mu^2)$, where $\mu^2 = (\mu_1^2, ..., \mu_r^2)$. The union is disjoint and both classes have equal size $l.c.m(q_1, ..., q_r)$.

The subset of 2-classes in the first case will be denoted C_2^o , where as the 2-classes in the second case will be denoted C_2^e .

Proof If k_i is odd for all $1 \le i \le r$, then the minimal polynomials $\{\operatorname{Irr}(\mu_i, \mathbb{F}_2)\}_{i=1}^r$ are also irreducible in $\mathbb{F}_4[X_i]$, and $q_i = k_i$. So, the result straightforwardly follows from Proposition 1.

In the second case assume w.l.o.g. that k_i is even, for all $1 \leq i \leq k$, and odd for all $k + 1 \leq i \leq r$ (with $k \geq 1$). Then, for all $1 \leq i \leq k$, the minimal polynomial $\operatorname{Irr}(\mu_i, \mathbb{F}_2)$ is the product of two irreducible polynomials of degree q_i in $\mathbb{F}_4[X_i]$. The roots of these polynomials constitute the 4-classes $C_4(\mu_i)$ and $C_4(\mu_i^2)$ respectively. Clearly, these are disjoint classes of equal size q_i and $C_2(\mu_i) = C_4(\mu_i) \cup C_4(\mu_i^2)$. Therefore, μ^2 does not belong to $C_4(\mu)$ and so $C_4(\mu^2)$ is disjoint with it. According to Proposition 1,

$$|C_2(\mu)| = \text{l.c.m}(k_1, \dots, k_r) = \text{l.c.m}(2q_1, \dots, 2q_k, q_{k+1}, \dots, q_r) =$$

= 2 l.c.m(q_1, \dots, q_k, q_{k+1}, \dots, q_r) = 2|C_4(\mu)|

and also

$$|C_2(\mu)| = |C_2(\mu^2)| = 2|C_4(\mu^2)|$$

hence we obtain the result.

Now, we can decompose the rings A_4 and A_2 into minimal ideals using Theorem 1. The decomposition for A_4 is the following one:

$$\mathcal{A}_4 \cong \bigoplus_{C \in \mathcal{C}_4} \mathcal{I}_C$$

where, for all $C = C_4(\mu) \in C_4$, we denote the ideal $\mathcal{I}_C = \langle e_C + I \rangle$, which is isomorphic to the finite field $\mathbb{F}_4(\mu)$ of size $4^{|C|}$, and $e_C + I$ is idempotent. On the other hand, the decomposition of the ring \mathcal{A}_2 into minimal ideals is

$$\mathcal{A}_{2} \cong \bigoplus_{C \in \mathcal{C}_{2}} \mathcal{K}_{C} = \left(\bigoplus_{C \in \mathcal{C}_{2}^{o}} \mathcal{K}_{C}\right) \oplus \left(\bigoplus_{C \in \mathcal{C}_{2}^{o}} \mathcal{K}_{C}\right)$$

where, for all $C = C_2(\mu) \in \mathcal{C}_2^o \cup \mathcal{C}_2^e$, $\mathcal{K}_C = \langle l_C + J \rangle$ is isomorphic to the field $\mathbb{F}_2(\mu)$, and so its size is $2^{|C|}$, and the element $l_C + J$ is idempotent.

Next, let us consider the ring automorphism $\tau : \mathbb{F}_4[X_1, \ldots, X_r] \to \mathbb{F}_4[X_1, \ldots, X_r]$, where

$$\tau\left(\sum_{i_1,\dots,i_r} a_{i_1\dots,i_r} X_1^{i_1} \cdots X_r^{i_r}\right) = \sum_{i_1,\dots,i_r} a_{i_1\dots,i_r}^2 X_1^{i_1} \cdots X_r^{i_r}$$

Since $t_i(X_i) \in \mathbb{F}_2[X_i]$, for all $1 \leq i \leq r$, we have that $\tau(t_i(X_i)) = t_i(X_i)$, and so ker $(\pi_4 \circ \tau) \subseteq$ ker π_4 (where $\pi_4 : \mathbb{F}_4[X_1, \ldots, X_r] \to \mathcal{A}_4$ is the canonical epimorphism). Hence, there exists a ring homomorphism $\tilde{\tau} : \mathcal{A}_4 \to \mathcal{A}_4$ such that $\tilde{\tau}(f+I) = \tau(f) + I$, for all $f+I \in \mathcal{A}_4$. This map is injective, since for all $f \notin I$, we have that f+I = NF(f) + I, where $0 \neq NF(f) \in \mathbb{F}_4[X_1, \ldots, X_r]$, and $\deg_{X_i}(NF(f)) < n_i$, and so $\tilde{\tau}(f+I) = \tau(NF(f)) + I \neq I$. Clearly, this fact implies that $\tilde{\tau}$ is also bijective and so it is a ring automorphism. Its fixed subring is S.

Proposition 4 Let $\mathcal{A}_4 \cong \bigoplus_{C \in \mathcal{C}_4} \mathcal{I}_C$ and $\mathcal{A}_2 \cong \bigoplus_{C \in \mathcal{C}_2^o} \mathcal{K}_C \oplus \bigoplus_{C \in \mathcal{C}_2^e} \mathcal{K}_C$ be the decompositions of \mathcal{A}_4 and \mathcal{A}_2 into minimal ideals, and let S be the subring of \mathcal{A}_4 , isomorphic to \mathcal{A}_2 , fixed by $\tilde{\tau}$. If φ is the embedding of \mathcal{A}_2 in \mathcal{A}_4 (see Proposition 3), then the following hold.

- 1. If $C \in C_2^o$, then:
 - (a) $C \in C_4$, $\tilde{\tau}(\mathcal{I}_C) = \mathcal{I}_C$, and $\tilde{\tau}|_{\mathcal{I}_C}$ is a field automorphism of order 2.
 - (b) $\varphi(\mathcal{K}_C) = \mathcal{I}_C \cap S$, so it is the subfield of \mathcal{I}_C isomorphic to $\mathbb{F}_{2^{|C|}}$.
 - (c) \mathcal{I}_C is 2-dimensional \mathcal{K}_C -vector space.
- 2. If $C \in \mathcal{C}_2^e$, then:
 - (a) $C = C_1 \cup C_2$, where $C_1, C_2 \in \mathcal{C}_4$, $\tilde{\tau}(\mathcal{I}_{C_1}) = \mathcal{I}_{C_2}$, $\tilde{\tau}(\mathcal{I}_{C_2}) = \mathcal{I}_{C_1}$, and $\tilde{\tau}|_{\mathcal{I}_{C_1} \to \mathcal{I}_{C_2}}$ is a field isomorphism.
 - (b) $\varphi(\mathcal{K}_C) = (\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}) \cap S = \{(f + \tau(f)) + I \mid f \in \mathcal{I}_{C_1}\}$ is isomorphic to the field $\mathcal{I}_{C_1} \cong \mathbb{F}_{4^{|C_1|}} = \mathbb{F}_{2^{|C|}}.$
 - (c) $\mathcal{I}_{C_1} \oplus \tilde{\mathcal{I}}_{C_2}$ is 2-dimensional \mathcal{K}_C -vector space.

Proof Notice that, if μ is a root of $f(X_1, \ldots, X_r)$, then μ^2 is a root of the polynomial $\tau(f(X_1, \ldots, X_r))$, and $\tau^2(f(X_1, \ldots, X_r)) = f(X_1, \ldots, X_r)$. So, $\tilde{\tau}$ induces a permutation of order 2 of the idempotents $\{e_C + I\}_{C \in \mathcal{C}_4}$, so that $\tilde{\tau}(e_C + I) = e_C + I$ if $C \in \mathcal{C}_2^o$, and $\tilde{\tau}(e_{C_1} + I) = e_{C_2} + I$, $\tilde{\tau}(e_{C_2} + I) = e_{C_1} + I$, if $C_1 \cup C_2 = C \in \mathcal{C}_2^e$, where $C_1, C_2 \in \mathcal{C}_4$. This permutation is translated into the field isomorphisms of the statements 1.(a) and 2.(a).

For the statement 1.(b), it suffices to notice that $C = C_4(\mu) = C_2(\mu)$, so that $\varphi(l_C + J) = e_C + I$, and $\varphi(\mathcal{K}_C) \subseteq \mathcal{I}_C \cap S$. A counting argument let us conclude the desired equality.

Let us now show the statement 2.(b). The zeros of the idempotent $\varphi(l_C + J)$ are exactly $H_1 \times \ldots \times H_r \setminus C$. The zeros of $e_{C_i} + I$ (i = 1, 2) are $H_1 \times \ldots \times H_r \setminus C_i$, and so the idempotent $e_{C_1} + e_{C_2} + I \in \mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$ has zeros $H_1 \times \ldots \times H_r \setminus (C_1 \cup C_2) =$ $H_1 \times \ldots \times H_r \setminus C$. Hence $\varphi(l_C + J) \subseteq (\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}) \cap S$, and the equality follows from another counting argument.

Finally, the statements (c) follow from the fact that φ is an embedding of the finite field \mathcal{K}_C (of size $2^{|C|}$) into the ring \mathcal{I}_C (if $C \in \mathcal{C}_2^o$), or $\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$ (if $C \in \mathcal{C}_2^e$), and so they can be regarded as \mathcal{K}_C -vector spaces. Since both have size $4^{|C|}$, we conclude that their dimension is 2.

Remark 5 For $C \in \mathcal{C}_2^o$, the idempotent $e_C + I$ is the identity of $\varphi(\mathcal{K}_C)$, and so $e_C + I \in \varphi(\mathcal{K}_C) = \langle X_1^{i_1} \dots X_r^{i_r} e_C + I \mid 0 \leq i_l \leq \deg(t_l(X_l)) \rangle_{\mathbb{F}_2}$. On the other hand, for $C_1 \cup C_2 = C \in \mathcal{C}_2^e$ the idempotent $e_{C_1} + e_{C_2} + I$ is the identity of $\varphi(\mathcal{K}_C)$, and so $\varphi(\mathcal{K}_C) = \langle X_1^{i_1} \dots X_r^{i_r} (e_{C_1} + e_{C_2}) + I \mid 0 \leq i_l \leq \deg(t_l(X_l)) \rangle_{\mathbb{F}_2}$.

Example 2 (Example 1 cont'd) Here is the list of odd and even 2-classes:

The ideal

The ideal $\mathcal{I}_{C_4((\mu,1))}$ is isomorphic to \mathbb{F}_{4^3} , and it is a 2-dimensional vector space over the finite field

The ideals related to the 2 and 4-classes of $(\mu^6, 1)$ behave similarly.

On the other hand, all the even classes follow the pattern of the 2–class $\{(1,\omega),(1,\omega^2)\}$. Namely, the ideal

	[0000000]]	[0000000]	[111111]	[111111]]
$\mathcal{K}_{C_2((1,\omega))} =$	$\{ 0 0 0 0 0 0 0 ,$	11111111,	0000000,	1111111
	$\left[\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right]$			

is isomorphic to \mathbb{F}_4 , and the direct sum of the ideals

	ſ	Γ	0	0	0	0	0	0	0 7		Γ	1	1		1	1	1	1		1]		Γω	ω	ω	ω	u	, u	, u	ך		$\overline{\omega}$	$\overline{\omega}$	$\overline{\omega}$	ū	$\overline{\omega}$	$\overline{\omega}$	$\overline{\omega}$	ר)
$\mathcal{I}_{\{(1,\omega^2)\}} = \cdot$	ł		0	0	0	0	0	0	0	,		ω	ω	1	ω	ω	ω	ω	1 6	υ	,	$\overline{\omega}$	$\overline{\omega}$	ω	$\overline{\omega}$	ū	ū	J ū	<u>,</u>	,	1	1	1	1	1	1	1		Y
	l	L	0	0	0	0	0	0	0		L	$\overline{\omega}$	ω	0	w	$\overline{\omega}$	$\overline{\omega}$	ū	C	υ		[1	1	1	1	1	1	. 1			ω	ω	ω	ω	ω	ω	ω_{\pm}	J .	J

is a vector space over it.

3 Additive multivariable codes

Next we take advantage of the decomposition of the rings $\mathcal{A}_4, \mathcal{A}_2$, and their relation in order to obtain a complete description of an additive semisimple multivariable code $\mathcal{D} \subseteq \mathcal{A}_4$. From now on we assume that $\mathcal{A}_4 \cong \bigoplus_{C \in \mathcal{C}_4} \mathcal{I}_C$ and $\mathcal{A}_2 \cong \bigoplus_{C \in \mathcal{C}_2^o} \mathcal{K}_C \oplus \bigoplus_{C \in \mathcal{C}_2^e} \mathcal{K}_C$ are the decompositions of \mathcal{A}_4 and \mathcal{A}_2 into minimal ideals, that φ is the embedding of \mathcal{A}_2 in \mathcal{A}_4 , and that $S = \varphi(\mathcal{A}_2)$ is the subring of \mathcal{A}_4 fixed by the ring automorphism $\tilde{\tau}$. The main result in this section is the following.

Theorem 2 Let $\mathcal{D} \subseteq \mathcal{A}_4$ be an additive semisimple code, i.e., a *S*-submodule of \mathcal{A}_4 .

- 1. If $C \in C_2^o$, then the set $\mathcal{D}_C = \mathcal{D} \cap \mathcal{I}_C$ is a \mathcal{K}_C -vector subspace of \mathcal{I}_C of dimension $0 \leq s_C \leq 2$.
- 2. If $C \in C_2^e$, with $C = C_1 \cup C_2$, and $C_1, C_2 \in C_4$, then the set $\mathcal{D}_C = \mathcal{D} \cap (\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2})$ is a \mathcal{K}_C -vector subspace of dimension $0 \leq s_C \leq 2$.
- 3. $\mathcal{D} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C, |\mathcal{D}| = \prod_{C \in \mathcal{C}_2} 2^{s_C}$, and the decomposition is unique.
- Proof 1. \mathcal{D}_C is an additive subgroup of the ideal \mathcal{I}_C , since \mathcal{D} is a code. Moreover, because it is an additive code, it is invariant under multiplication by elements in S so, in particular, by elements in $\mathcal{I}_C \cap S = \varphi(\mathcal{K}_C)$. Henceforth, since φ is injective, \mathcal{D}_C can be viewed as a vector space over the finite field \mathcal{K}_C , i.e., as a vector subspace of \mathcal{I}_C . Because $\dim_{\mathcal{K}_C} \mathcal{I}_C = 2$, we conclude the condition on the dimension of \mathcal{D}_C .
- 2. The argument above applies also in this case replacing \mathcal{I}_C by $\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$.
- 3. For all $C \in C_2$ we have that $\mathcal{D}_C \subseteq \mathcal{D}$, and so $\bigoplus_{C \in C_2} \mathcal{D}_C \subseteq \mathcal{D}$. Conversely, if $m + I \in \mathcal{D}$, then

$$\begin{split} m+I &= (1+I)(m+I) = \left(\bigoplus_{C \in \mathcal{C}_4} (e_C + I)\right)(m+I) = \\ &= \left(\bigoplus_{C \in \mathcal{C}_2^o} (e_C + I) \oplus \bigoplus_{\substack{C_1, C_2 \in \mathcal{C}_4 \\ C_1 \cup C_2 \in \mathcal{C}_2^o}} (e_{C_1} + e_{C_2} + I)\right)(m+I) \\ &= \bigoplus_{C \in \mathcal{C}_2^o} (e_C m+I) \oplus \bigoplus_{\substack{C_1, C_2 \in \mathcal{C}_4 \\ C_1 \cup C_2 \in \mathcal{C}_2^o}} ((e_{C_1} + e_{C_2})m+I) \in \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C \end{split}$$

since $e_C m + I \in \mathcal{D}_C$ (for all $C \in \mathcal{C}_2^o$), and $(e_{C_1} + e_{C_2})m + I \in \mathcal{D}_C$ (for all $C_1 \cup C_2 = C \in \mathcal{C}_2^e$). Clearly, $|D| = \prod_{C \in \mathcal{C}_2} 2^{s_C}$.

Finally, let us show that this decomposition is unique. Let $\mathcal{D} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{E}_C$ where $\mathcal{E}_C \subseteq \mathcal{I}_C$, if $C \in \mathcal{C}_2^o$, and $\mathcal{E}_C \subseteq \mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$, if $C_1 \cup C_2 = C \in \mathcal{C}_2^e$. Then, $\mathcal{E}_C \subseteq \mathcal{I}_C \cap \mathcal{D} = \mathcal{D}_C$, in the first case, and $\mathcal{E}_C \subseteq (\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}) \cap \mathcal{D} = \mathcal{D}_C$, in the second one. A counting argument on the sizes of these sets proves the result.

Corollary 1 The number of different additive semisimple codes in \mathcal{A}_4 is

$$\prod_{C \in \mathcal{C}_2} (2^{|C|} + 3)$$

Of these, only $\prod_{C \in C_2} (2^{|C|} + 2)$ codes can be generated by a single codeword.

Proof The number of subspaces in a 2–dimensional vector space over a finite field \mathbb{F}_q is $1 + \frac{q^2 - 1}{q - 1} + 1 = q + 3$. Hence, the result follows directly from the decomposition of the previous theorem.

A code \mathcal{D}_C can be generated by a single codeword if and only if it is a cyclic *S*-submodule of \mathcal{A}_4 . So, all the submodules \mathcal{D}_C have to be also cyclic *S*-submodules, and the dimension of the vector subspace \mathcal{D}_C over \mathcal{K}_C has to be either 0 or 1. The number of possible codes obtained from these subspaces is exactly $\prod_{C \in \mathcal{C}_2} (1 + (2^{|C|} + 1))$.

3.1 Hamming distance

Next, we study the minimum distance of our codes. Let us first introduce the standard definitions.

Definition 6 If $f \in \mathbb{F}_q[X_1, \ldots, X_r]$, and $NF(f) = \sum_{i=1}^r f_{\alpha_1 \ldots \alpha_r} X_1^{\alpha_1} \cdots X_r^{\alpha_r}$ is its normal form w.r.t. *I*, then we define the Hamming weight of f + I (denoted by wt(f + I)), as the cardinality of supp $(NF(f)) = \{(\alpha_1, \ldots, \alpha_r) \mid f_{\alpha_1 \ldots \alpha_r} \neq 0\}$, the support of NF(f).

The minimum distance of an additive (semisimple) multivariable code $\mathcal{D} \subseteq \mathcal{A}_4$ is defined as the minimum Hamming weight of the nonzero elements in \mathcal{D} , and it is denoted by $d(\mathcal{D})$.

The study of the codes with the best Hamming distance for given parameters is one of the central problems in Coding Theory. A good source of bounds and examples of the best known codes (block linear, and quantum error correcting codes) can be found in *Code Tables* [6]. There exist several bounds on distances for classical multivariable semisimple codes over fields (BCH, Hartmann-Tzeng, Roos, ...) [13]. These bounds can be stated in the additive case due to the following fact:

Proposition 5 Let $\mathcal{D} \subseteq \mathcal{A}_4$ be an additive abelian code, and let $T = \bigcup_{i=1}^{l} C_i$ be a union of C_4 -classes $C_i = C_4(\mu_i)$ such that: $C_i \in T$ if and only if

 $-C_i \in C_2^o \text{ and } \mathcal{D}_C \neq 0$

or

$$-C_i \subseteq C' \in C_2^e \text{ and } \mathcal{D}_{C'} \neq 0$$

Then $d(\mathcal{D}) \geq d(\mathcal{D}^*)$, where \mathcal{D}^* is the classical multivariable code in \mathcal{A}_4 with set of defining roots equal to T [13].

Proof It is enough to notice that, since T is the set of defining roots of \mathcal{D}^* , then $\mathcal{D}_{C_i} = \mathcal{I}_{C_i}$, for all i = 1, ..., l. Therefore $\mathcal{D} \subseteq D^*$ and the conclusion follows.

- Remark 6 1. In view of this result, if we used the classical approach for multivariable codes, the computation of the minimum distance of a multivariable additive abelian code in r variables would be reduced to computations of minimum distances of classical multivariable semisimple codes over a finite field in less number of variables ([13][Proposition 8, Chapter 6])
- 2. There might exist additive codes with a greater Hamming distance that the one stated by the former bound, as the following example shows. Generally, these codes are not multivariable codes in the classical sense.

Example 3 (Example 1 cont'd) We apply Theorem 2 to construct an additive code by choosing suitable chunks (i.e., subcodes) in the components of the decomposition of A_4 , in the following way:

- In the component $\mathcal{I}_{\{(1,1)\}}$, we choose

which is a 1-dimensional vector space over $\mathcal{K}_{\{(1,1)\}}$.

- In the ideals $\mathcal{I}_{C_4((\mu,1))}$ and $\mathcal{I}_{C_4((\mu^6,1))}$, we choose 1-dimensional vector spaces over $\mathcal{K}_{C_2((\mu,1))}$ and $\mathcal{K}_{C_2((\mu,1))}$, respectively. According to the proof of Corollary 1, we have $9\left(=\frac{8^2-1}{8-1}\right)$ choices for each of them. Let us take

$$\mathcal{D}_{C_2((\mu,1))} =_S \begin{bmatrix} 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \end{bmatrix} \text{ and } \mathcal{D}_{C_2((\mu^6,1))} =_S \begin{bmatrix} 0 \ \overline{\omega} \ 1 \ \overline{\omega} \ \omega \ \omega \ 1 \\ 0 \ \overline{\omega} \ 1 \ \overline{\omega} \ \omega \ \omega \ 1 \\ 0 \ \overline{\omega} \ 1 \ \overline{\omega} \ \omega \ \omega \ 1 \end{bmatrix},$$

respectively.

Let us have a more detailed look at the subcode $D_{C_2((\mu,1))}$. Since it is only contained in the component $\mathcal{I}_{C_4((\mu,1))}$, which is generated by the polynomial $(1 + X_1 + X_1^2 + X_1^4)(1 + X_2 + X_2^2)$, Proposition 5 ensures a minimum distance of 12, according to the BCH bound. But Sage computations [16] show that the actual distance is $d(\mathcal{D}_{C_2((\mu,1))}) = 18$.

- Finally, in the sums $\mathcal{I}_{C_4((\mu,\omega))} \oplus \mathcal{I}_{C_4((\mu,\omega^2))}$ and $\mathcal{I}_{C_4((\mu^6,\omega))} \oplus \mathcal{I}_{C_4((\mu^6,\omega^2))}$, we also consider 1-dimensional vector spaces over $\mathcal{K}_{C_2((\mu,\omega))}$ and $\mathcal{K}_{C_2((\mu^6,\omega))}$, respectively. Corollary 1 shows that a total amount of 65 possibilities are allowed for each component. Let us choose

$$\mathcal{D}_{C_2((\mu,\omega))} =_S \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & \omega & \overline{\omega} & \omega & 0 & \overline{\omega} & 1 \\ 0 & \overline{\omega} & \overline{\omega} & \overline{\omega} & 0 & \overline{\omega} & 0 \end{bmatrix} \text{ and } \mathcal{D}_{C_2((\mu^6,\omega))} =_S \begin{bmatrix} 1 & 1 & \omega & 0 & \overline{\omega} & \omega & \overline{\omega} \\ \omega & 1 & \overline{\omega} & \overline{\omega} & 0 & 1 \\ \overline{\omega} & 0 & 1 & \overline{\omega} & 1 & \omega & \omega \end{bmatrix},$$

respectively.

The additive code

$$\mathcal{D} = \mathcal{D}_{\{(1,1)\}} \oplus \mathcal{D}_{C_2((\mu,1))} \oplus \mathcal{D}_{C_2((\mu^6,1))} \oplus \mathcal{D}_{C_2((1,\omega))} \oplus \mathcal{D}_{C_2((\mu^6,\omega))} \oplus \mathcal{D}_{C_2((\mu^6,\omega))}$$

of length 21 has $2^{19} = 2^{1+3+3+0+6+6}$ codewords. Sage computations show that this code has distance $d(\mathcal{D}) = 7$.

4 Duality for abelian codes

In this section we describe the dual code of an additive abelian code \mathcal{D} . Following Lemma 1, the elements of \mathcal{A}_4 can be uniquely represented as f + I, where $f = NF(f) = \sum_{\alpha} f_{\alpha} X^{\alpha}$, $\alpha = (\alpha_1, \ldots, \alpha_r)$, and $X^{\alpha} = X_1^{\alpha_1} \ldots X_r^{\alpha_r}$ (notice that $0 \le \alpha_i < n_i$, for all $1 \le i \le r$). Let us introduce the function $\overline{\cdot} : \mathcal{A}_4 \to \mathcal{A}_4$ that maps an element f + I to $\overline{f + I} = \sum_{\alpha} f_{\alpha} X^{n-\alpha} + I$, where $n = (n_1, \ldots, n_r)$. It is a ring automorphism or order

2. With this notation, the symmetric function used to define orthogonality is the trace inner product $\langle \cdot, \cdot \rangle : \mathcal{A}_4 \times \mathcal{A}_4 \to \mathbb{F}_2$ given by

$$\langle f+I, g+I \rangle = \sum_{\alpha} Tr(f_{\alpha}g_{\alpha}^2) = \sum_{\alpha} (f_{\alpha}g_{\alpha}^2 + f_{\alpha}^2g_{\alpha})$$

where $Tr : \mathbb{F}_4 \to \mathbb{F}_2$ is the trace function. So, given an additive abelian code \mathcal{D} , its dual code is defined as $\mathcal{D}^{\perp} = \{f + I \in \mathcal{A}_4 | \langle f + I, g + I \rangle = 0 \text{ for all } g + I \in \mathcal{D}\}$. A code \mathcal{D} is self-orthogonal if $\mathcal{D} \subseteq \mathcal{D}^{\perp}$ and self-dual if $\mathcal{D} = \mathcal{D}^{\perp}$. In the next section we will characterize this kind of codes.

For the study of duality it is useful to introduce the map $(\cdot, \cdot) : \mathcal{A}_4 \times \mathcal{A}_4 \to S$ given by

$$(f+I,g+I) = (f+I)\overline{\tilde{\tau}(g+I)} + \tilde{\tau}(f+I)\overline{g+I},$$
(1)

Notice that (\cdot, \cdot) is well-defined, since $\tilde{\tau}(f+I)\overline{g+I} = \tilde{\tau}((f+I)\overline{\tilde{\tau}(g+I)})$, and so (f+I,g+I) is contained in the subring of \mathcal{A}_4 fixed by $\tilde{\tau}$, i.e., in S. Moreover, I = 0 + I = (f+I,g+I) if and only if $(f+I)\overline{\tilde{\tau}(g+I)} = \tilde{\tau}(f+I)\overline{g+I}$ if and only if $(f+I)\overline{\tilde{\tau}(g+I)}$ is in S.

Notice that (1) resembles an Hermitian form, in the sense that it is S-linear in the first argument and $(g+I, f+I) = \overline{(f+I, g+I)}$, for all $f+I, g+I \in A_4$. This map is related to the trace inner product by the following way:

Lemma 3 $(f+I,g+I) = (\sum_{\alpha} \langle f+I, X^{\alpha}g+I \rangle X^{\alpha}) + I$, for all $f+I, g+I \in \mathcal{A}_4$.

Proof

$$(f+I,g+I) = (f+I)\overline{\tilde{\tau}(g+I)} + \tilde{\tau}(f+I)\overline{g+I}$$
$$\left(\sum_{\beta} f_{\beta}X^{\beta} + I\right) \left(\sum_{\gamma} g_{\gamma}^{2}X^{n-\gamma} + I\right) + \left(\sum_{\beta} f_{\beta}^{2}X^{\beta} + I\right) \left(\sum_{\gamma} g_{\gamma}X^{n-\gamma} + I\right)$$
$$= \sum_{\beta} \sum_{\gamma} (f_{\beta}g_{\gamma}^{2} + f_{\beta}^{2}g_{\gamma})X^{\beta+n-\gamma} + I = \sum_{\alpha} \left(\sum_{\gamma} (f_{\alpha+\gamma}g_{\gamma}^{2} + f_{\alpha+\gamma}^{2}g_{\gamma})\right)X^{\alpha} + I$$
$$= \sum_{\alpha} \left(\sum_{\delta} (f_{\delta}g_{\delta-\alpha}^{2} + f_{\delta}^{2}g_{\delta-\alpha})\right)X^{\alpha} + I = \left(\sum_{\alpha} \langle f+I, X^{\alpha}g+I \rangle X^{\alpha}\right) + I$$

(we have applied the changes of index $\{\beta + n - \gamma = \alpha, \delta = \alpha + \gamma\}$, and we have taken the subscripts modulo n)

So, (f + I, g + I) = I if and only if $\langle r + I, g + I \rangle = 0$ for all r + I in S(f + I), the S-submodule of A_4 generated by f + I, i.e., if and only if g + I is an element in the dual code of S(f + I), the code spanned by f + I.

Notice that the composition of the ring automorphisms $\tilde{\tau}$ and $\bar{\cdot}$ induces a permutation on the set C_4 , because if $\mu = (\mu_1, \ldots, \mu_r)$ is a root of f + I, then $\mu' = (\mu_1^{-2}, \ldots, \mu_r^{-2})$ is a root of $\tilde{\tau}(f+I)$. If $C = C_4(\mu)$ is the 4-class of the root μ , then let us denote by $C' = C_4(\mu')$ the 4-class of μ' . Observe that, if we choose $C_1, C_2 \in C_4$ such that $C_1 \cup C_2 \in C_2^e$, then $C_1' \cup C_2' \in C_2^e$ too. So, if $C = C_1 \cup C_2 \in C_2$, we also write $C' = C_1' \cup C_2'$, and the permutation can be extended to 2-classes. It is clear that $C_2((1^{-2}, \ldots, 1^{-2})) = C_2((1, \ldots, 1))$, and so $C_2((1, \ldots, 1))$ is a fixed point of this permutation. On the other hand, no other 2-class in C_2^o is fixed. Namely, if $C_2((1,...,1)) \neq C_2(\mu) = C_2(\mu') \in C_2^o$ then, since $C_2(\mu^{-1}) = C_2(\mu')$, we have $\mu^{-1} \in C_2(\mu)$. For all $\delta \neq (1, \ldots, 1)$, we have $\delta \neq \delta^{-1}$, and so $C_2(\mu)$ can be partitioned in pairs (δ, δ^{-1}) . Hence $C_2(\mu)$ must have even size, which is not possible.

Given $C \in \mathcal{C}_2^o$, and an element $f + I \in \mathcal{I}_C$ (or $C \in \mathcal{C}_2^e$, and an element $f + I \in \mathcal{I}_C$ $\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$), we define

$$\mathcal{O}(f+I) = \left\{ g + I \in \mathcal{I}_{C'}(alt. \ g + I \in \mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2}) \mid (f+I)\overline{\tilde{\tau}(g+I)} \in S \right\}$$
(2)

We have the following result that completely describes the dual code \mathcal{D}^{\perp} of a given abelian code \mathcal{D} .

Theorem 3 Let \mathcal{D} be an abelian additive code. If $\mathcal{D} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C$ is the unique decomposition of Theorem 2, and $\mathcal{D}^{\perp} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C^{\perp}$ is the unique decomposition of its dual code, then:

1. if $\mathcal{D}_C = 0$, then $\mathcal{D}_{C'}^{\perp} = \mathcal{I}_{C'}$ (if $C \in \mathcal{C}_2^o$), or $\mathcal{D}_{C'}^{\perp} = \mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2}$ (if $C = C_1 \cup C_2 \in \mathcal{C}_2^e$);

2. $\mathcal{D}_{C'}^{\perp} = 0$ if $\mathcal{D}_C = \mathcal{I}_C$ (when $C \in \mathcal{C}_2^o$), or if $\mathcal{D}_C = \mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$ (when $C = C_1 \cup C_2 \in \mathcal{I}_C$)

- 3. if $\mathcal{D}_C =_S (f+I)$ with $I \neq f+I$, then $\mathcal{D}_{C'}^{\perp} = \mathcal{O}(f+I)$. In such a case: (a) If $C \in \mathcal{C}_2^o$, then $\mathcal{O}(f+I) =_S (\overline{\tilde{\tau}(g+I)})$, where $g+I \in \mathcal{I}_C$ is the multiplicative inverse of f + I in the field \mathcal{I}_C .
 - (b) If $C = C_1 \cup C_2 \in C_2^e$, with $C_1, C_2 \in C_4$, then let us write $f + I = f_1 + f_2 + I$, where $f_i + I \in \mathcal{I}_{C_i}$ (i = 1, 2). If $f_i + I \neq I$ (i = 1, 2), then $\mathcal{O}(f + I) =_S$ $(\tilde{\tau}(g_1 + g_2 + I))$, where $g_i + I \in \mathcal{I}_{C_i}$ is the multiplicative inverse of $f_i + I$ in the field \mathcal{I}_{C_i} (i = 1, 2). Otherwise, if $f_i + I \neq I$ (and $f_{3-i} + I = I$), then $\mathcal{O}(f+I) =_{S} (e_{C'_{3-i}} + I), \text{ if } C \neq C' \text{ or } \overline{\mathcal{I}_{C_1}} \neq \mathcal{I}_{C_1}, \text{ or } \mathcal{O}(f+I) =_{S} (e_{C'_i} + I),$ if C = C' and $\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_1}$.

Summarizing, the possibilities given in Table 1 hold.

	\mathcal{D}_C	$\mathcal{D}_{C'}^{\perp}$
	$\{0\}$	$\mathcal{I}_{C'}$
$C\in \mathcal{C}_2^o$	S(f+I)	$S(\overline{ ilde{ au}(g+I))}$
	\mathcal{I}_C	$\{0\}$
	$\{0\}$	${\mathcal I}_{C'_1} \oplus {\mathcal I}_{C'_2}$
$C \in \mathcal{C}_2^e$	$S(f_i + I)$	$_{S}(e_{C_{3-i}'}+I),$ if $C \neq C'$ or if $\overline{\mathcal{I}_{C_{1}}} \neq \mathcal{I}_{C_{1}}$
- 2	2.02	$_{S}(e_{C_{i}^{\prime}}+I),$ if $C=C^{\prime}$ and $\overline{\mathcal{I}_{C_{1}}}=\mathcal{I}_{C_{1}}$
	$_S(f_1 + f_2 + I)$	$_{S}(\overline{ ilde{ au}(g_{1}+g_{2}+I)})$
	$\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$	{0}

Table 1 Relation between the summands of orthogonal codes

 $\textit{Proof Observe that if } f + I \in \mathcal{I}_C \textit{ (alt. } f + I \in \mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2} \textit{) and } h + I \notin \mathcal{I}_{C'} \textit{ (alt. } h + I \notin \mathcal{I}_{C'} \textit{ (alt. } h + I \notin \mathcal{I}_{C'} \textit{) (alt. } h + I \notin \mathcal{I}_{C'} \textit))$ $\mathcal{I}_{C_{1}'} \oplus \mathcal{I}_{C_{2}'}), \text{ then } \overline{\tilde{\tau}(h+I)} \in \mathcal{I}_{C^{*}} \neq \mathcal{I}_{C} \text{ (alt. } \overline{\tilde{\tau}(h+I)} \in \mathcal{I}_{C_{1}*} \oplus \mathcal{I}_{C_{2}*} \neq \mathcal{I}_{C_{1}} \oplus \mathcal{I}_{C_{2}}), \text{ and }$ so $(f+I)\overline{\tilde{\tau}(h+I)} \in \mathcal{I}_C \cap \mathcal{I}_{C^*} = I$ (alt. $(f+I)\overline{\tilde{\tau}(h+I)} \in (\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}) \cap (\mathcal{I}_{C_1^*} \oplus \mathcal{I}_{C_2^*}) = I$), i.e., (f+I,h+I) = I. Therefore

$$(\mathcal{D}_C)^{\perp} = \left((\mathcal{D}_C)^{\perp} \cap \mathcal{I}_{C'} \right) \oplus \bigoplus_{C' \neq D \in \mathcal{C}_2^o} \mathcal{I}_D \oplus \bigoplus_{D \in \mathcal{C}_2^e} (\mathcal{I}_{D_1} \oplus \mathcal{I}_{D_2})$$

 $(alt. (\mathcal{D}_C)^{\perp} = \left((\mathcal{D}_C)^{\perp} \cap (\mathcal{I}_{C_1'} \oplus \mathcal{I}_{C_2'}) \right) \oplus \bigoplus_{D \in \mathcal{C}_2^{\circ}} \mathcal{I}_D \oplus \bigoplus_{C' \neq D \in \mathcal{C}_2^{\circ}} (\mathcal{I}_{C_1'} \oplus \mathcal{I}_{C_2'})), and$

$$\bigoplus_{C'\in\mathcal{C}_2} \mathcal{D}_{C'}^{\perp} = \bigoplus_{C\in\mathcal{C}_2} \mathcal{D}_{C}^{\perp} = \mathcal{D}^{\perp} = \left(\bigoplus_{C\in\mathcal{C}_2} \mathcal{D}_{C}\right)$$
$$= \bigoplus_{C\in\mathcal{C}_2^o} \left((\mathcal{D}_C)^{\perp} \cap \mathcal{I}_{C'} \right) \oplus \bigoplus_{C\in\mathcal{C}_2^o} \left((\mathcal{D}_C)^{\perp} \cap (\mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2}) \right)$$

so that $\mathcal{D}_{C'}^{\perp} = (\mathcal{D}_C)^{\perp} \cap \mathcal{I}_{C'}$ (alt. $\mathcal{D}_{C'}^{\perp} = (\mathcal{D}_C)^{\perp} \cap (\mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2})$). The first two items of the proposition now easily follow, since (\cdot, \cdot) is nondegenerate when restricted to $\mathcal{I}_C \times \mathcal{I}_{C'}$ (alt. $\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2} \times \mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2}$), where as the first part of the third item is a consequence of equation (2).

In the case (a) it is straightforward to check that

$$(f+I, \overline{\tilde{\tau}(g+I)}) = (f+I)(g+I) + \tilde{\tau}((f+I)(g+I)) = (e_C+I) + \tilde{\tau}((e_C+I)) = I$$

so that $_{S}(\tilde{\tau}(g+I)) \subseteq \mathcal{O}(f+I)$. The fact that (\cdot, \cdot) is nondegnerate implies the claimed equality, because both sets are 1-dimensional \mathcal{K}_{C} -vector subspaces.

In the case (b), if $f_i + I \neq I$ (i = 1, 2), then

$$(f+I)\tilde{\tau}(\tilde{\tau}(g_1+g_2+I)) = (f_1+f_2+I)(g_1+g_2+I) = e_{C_1} + e_{C_2} + I \in S$$

and so $(f + I, \overline{\tilde{\tau}(g_1 + g_2 + I)}) = I$, i.e., $S(\overline{\tilde{\tau}(g_1 + g_2 + I)}) \subseteq \mathcal{O}(f + I)$. Again, the fact that (\cdot, \cdot) is nondegenerate implies the claimed equality. Finally, if $f_i + I \neq I$ (and $f_{3-i} + I = I$), then

$$(f+I)(\overline{\tilde{\tau}(e_{C'_{3-i}}+I)}) = (f_i+I)(e_{C_{3-i}}+I) = I \in S$$

and so $_{S}(e_{C'_{3-i}} + I) \subseteq \mathcal{O}(f+I)$, if $C \neq C'$ or $\overline{\mathcal{I}_{C_{1}}} \neq \mathcal{I}_{C_{1}}$. The other content follows from the same argument as above. The case when C = C' and $\overline{\mathcal{I}_{C_{1}}} = \mathcal{I}_{C_{1}}$ is similar.

Remark 7 Notice that, in the case 3b of the previous lemma, if $f_1 + I \neq I$, we can take $g_1 + I \in \mathcal{I}_{C_1}$ the multiplicative inverse of $f_1 + I$ in the field \mathcal{I}_{C_1} , and multiply $(f_1 + f_2 + I)(g_1 + \tau(g_1) + I) = e_{C_1} + h_2 + I$, and so $_S(f_1 + f_2 + I) =_S (e_{C_1} + h_2 + I)$. The same argument applies if $f_2 + I \neq I$.

Example 4 (Example 1 cont'd) Let us construct the orthogonal code of the \mathcal{D} presented in the example above. We first list the correspondence between 2-classes: {(1,1)} and $C_2((1,\omega))$ are fixed points in the permutation $C \leftrightarrow C'$. On the other hand, $C_2((\mu, 1)) \leftrightarrow$ $C_2((\mu^6, 1))$ and $C_2((\mu, \omega)) \leftrightarrow C_2((\mu^6, \omega))$ Now, let us describe for each component \mathcal{D}_C , the corresponding component $\mathcal{D}_{C'}^{\perp}$, according to Table 1.

- - $X_2 + X_2^2 + I$ is the identity of $\mathcal{I}_{\{(1,1)\}}$, which happens to be invariant under $\overline{\tilde{\tau}}$, we get that $\mathcal{D}_{\{(1,1)\}}^{\perp} = \mathcal{D}_{\{(1,1)\}}$.

 $\begin{array}{l} - \ \ We \ have \ that \ \mathcal{D}_{C_2((\mu,1))} =_S \begin{bmatrix} 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ 0 \ 1 \ \omega \ \omega \ \overline{\omega} \ 1 \ \overline{\omega} \\ \end{array} \right], \ and \ that \ the \ inverse \ of \ the \ element \ (X_1 + \omega X_1^2 + \omega X_1^3 + \omega^2 X_1^4 + X_1^5 + \omega^2 X_1^6)(1 + X_2 + X_2^2) + I \ in \ the \ field \ \mathcal{I}_{C_2((\mu,1))} \ is \ equal \ to \ (X_1 + \omega^2 X_1 + \omega^2 X_1^2 + \omega^2 X_1^3 + \omega X_1^4 + X_1^5 + \omega X_1^6)(1 + X_2 + X_2^2) + I. \ Therefore, \ \mathcal{D}_{C_2((\mu,1))'}^{\perp} \ is \ generated \ by \ (\omega^2 X_1 + X_1^2 + \omega^2 X_1^3 + \omega X_1^4 + \omega X_1^5 + X_1^6)(1 + X_2 + X_2^2), \ and \ so \ \mathcal{D}_{C_2((\mu,1))'}^{\perp} = \mathcal{D}_{C_2((\mu^6,1))}. \ As \ a \ consequence \end{array}$

$$\mathcal{D}_{C_2((\mu^6,1))'}^{\perp} = \mathcal{D}_{C_2((\mu,1))}.$$

$$\mathcal{D}_{C_2((1,\omega))'}^{\perp} = \mathcal{I}_{C_4((1,\omega)} \oplus \mathcal{I}_{C_4((1,\omega^2))}.$$

- $\begin{array}{l} \ Finally, \ we \ consider \ \mathcal{D}_{C_{2}((\mu^{6},\omega))} \ =_{S} \ \begin{bmatrix} 1 \ 1 \ \omega \ 0 \ \overline{\omega} \ \omega \ \overline{\omega} \\ \omega \ 1 \ \overline{\omega} \ \overline{\omega} \ \omega \ 0 \ 1 \\ \overline{\omega} \ 0 \ 1 \ \overline{\omega} \ \omega \ 0 \ 1 \\ \overline{\omega} \ 0 \ 1 \ \overline{\omega} \ 1 \ \omega \ 0 \ \overline{\omega} \\ \end{array} \end{bmatrix}. \ The \ element \ 1 + X_{1} + \\ & \omega X_{1}^{2} + \omega^{2} X_{1}^{4} + \omega X_{1}^{5} + \omega^{2} X_{1}^{6} + (\omega + X_{1} + \omega^{2} X_{1}^{2} + \omega^{2} X_{1}^{3} + \omega X_{1}^{4} + X_{1}^{6}) X_{2} + \\ & (\omega^{2} + X_{1}^{2} + \omega^{2} X_{1}^{3} + X_{1}^{4} + \omega X_{1}^{5} + \omega X_{1}^{6}) X_{2}^{2} + I \ decomposes \ as \ f_{1} + f_{2} + I, \ where \\ & f_{1} + I = (X_{1} + X_{1}^{3} + X_{1}^{4} + X_{1}^{5}) (\omega^{2} + \omega X_{2} + X_{2}^{2}) \in \mathcal{I}_{C_{4}((\mu^{6},\omega))}, \ and \ f_{2} + I = \\ & (1 + \omega X_{1} + \omega X_{1}^{2} + \omega^{2} X_{1}^{3} + X_{1}^{5} + \omega^{2} X_{1}^{6}) (1 + \omega X_{2} + \omega^{2} X_{2}^{2}) \in \mathcal{I}_{C_{4}((\mu^{6},\omega))}. \ The \end{aligned}$
 - $\begin{array}{c} 1 + \omega X_1 + \omega X_1^2 + \omega^2 X_1^3 + X_1^5 + \omega^2 X_1^6)(1 + \omega X_2 + \omega^2 X_2^2) \in \mathcal{I}_{C_4}((\mu^6, \omega)), \text{ and } f_2 = I = (1 + \omega X_1 + \omega X_1^2 + \omega^2 X_1^3 + X_1^5 + \omega^2 X_1^6)(1 + \omega X_2 + \omega^2 X_2^2) \in \mathcal{I}_{C_4}((\mu^6, \omega)). \text{ The image of the sum of the inverses of } f_1 + I \text{ and } f_2 + I \text{ under the map } \tilde{\tau} \text{ gives us} \\ \end{array}$
 - $\mathcal{D}_{C_{2}((\mu^{6},\omega))'}^{\perp} =_{S} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & \omega & \overline{\omega} & \omega & 0 & \overline{\omega} & 1 \\ 0 & \overline{\omega} & \overline{\omega} & \overline{\omega} & 0 & \overline{\omega} & 0 \end{bmatrix} = \mathcal{D}_{C_{2}((\mu,\omega))}. As a consequence$

$$\mathcal{D}_{C_2((\mu^6,\omega))'}^{\perp} = \mathcal{D}_{C_2((\mu,\omega^2))}.$$

Therefore, the orthogonal of \mathcal{D} is the additive code

$$\mathcal{D}^{\perp} = \mathcal{D}_{\{(1,1)\}} \oplus \mathcal{D}_{C_2((\mu,1))} \oplus \mathcal{D}_{C_2((\mu^6,1))} \oplus \mathcal{I}_{C_4((1,\omega)} \oplus \mathcal{I}_{C_4((1,\omega^2))} \oplus \mathcal{D}_{C_2((\mu^6,\omega))} \oplus \mathcal{D}_{C_2((\mu^6,\omega))} = \mathcal{D} \oplus \mathcal{I}_{C_4((1,\omega)} \oplus \mathcal{I}_{C_4((1,\omega^2)} \supseteq \mathcal{D},$$

and so the code is self-orthogonal.

5 Self-orthogonal and self-dual abelian codes

Lemma 4 Let $\mathcal{D} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C$ be an additive abelian code in \mathcal{A}_4 and let $\mathcal{D}^{\perp} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C^{\perp}$ be its dual code. Then:

- 1. \mathcal{D} is self-orthogonal if and only if for each $C \in \mathcal{C}_2$, if $\mathcal{D}_C \neq 0$ and $\mathcal{D}_{C'} \neq 0$, then $\mathcal{D}_C =_S (f + I)$ and $\mathcal{D}_{C'} = \mathcal{O}(f + I)$, with $I \neq f + I$.
- 2. \mathcal{D} is self-dual if and only if it is self-orthogonal and for each $C \in \mathcal{C}_2$ such that $\mathcal{D}_C = 0$, then $\mathcal{D}_{C'} = \mathcal{I}_{C'}$, when $C \in \mathcal{C}_2^o$ (or $\mathcal{D}_{C'} = \mathcal{I}_{C'_1} \oplus \mathcal{I}_{C'_2}$, when $C = C_1 \cup C_2 \in \mathcal{C}_2^e$).
- Proof 1. First of all notice that, for a code \mathcal{D} the condition of self-orthogonality, $\mathcal{D} \subseteq \mathcal{D}^{\perp}$ is equivalent to $\mathcal{D}_C \subseteq \mathcal{D}^{\perp}_C$ for all $C \in \mathcal{C}_2$. This condition clearly holds for all $C \in \mathcal{C}_2$ such that $\mathcal{D}_C = 0$. If $\mathcal{D}_C \neq 0$ but $\mathcal{D}_{C'} = 0$, then $\mathcal{D}^{\perp}_C = \mathcal{I}_C$, when $C \in \mathcal{C}^o_2$, according to Theorem 3, and so the condition also holds. Finally, if $\mathcal{D}_C \neq 0$ and $\mathcal{D}_{C'} \neq 0$, then $\mathcal{D}_C \neq \mathcal{I}_C$ for the code to be self-orthogonal (since otherwise,

from Theorem 3, $\mathcal{D}_{C'}^{\perp} = 0 \not\supseteq \mathcal{D}_{C'}$) and $\mathcal{D}_{C'} \neq \mathcal{I}_{C'}$ by the same argument. Hence $\mathcal{D}_{C} =_{S} (f + I)$ with $I \neq f + I$. Because $\mathcal{D}_{C'} \subseteq \mathcal{O}(f + I)$ and both sets are 1-dimensional \mathcal{K}_{C} subspaces, we obtain the desired equality.

2. The code \mathcal{D} is self-dual if and only if $\mathcal{D}_C = \mathcal{D}_C^{\perp}$ for all $C \in \mathcal{C}_2$. In particular it has to be self-orthogonal. For the classes $C \in \mathcal{C}_2$ such that $\mathcal{D}_C =_S (f + I)$ and $\mathcal{D}_{C'} = \mathcal{O}(f + I)$ (with $I \neq f + I$) the equality is true, whereas if $0 = \mathcal{D}_C = \mathcal{D}_C^{\perp}$, from Theorem 3, we must have $\mathcal{D}_{C'} = I_{C'}$, for the code to be self-dual. The case $C \in \mathcal{C}_2^e$ is similar.

Now, we are able to describe the self-orthogonal and self-dual additive abelian codes in \mathcal{A}_4 .

Theorem 4 Let $\mathcal{D} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C$ be an additive abelian code in \mathcal{A}_4 and let $\mathcal{D}^{\perp} = \bigoplus_{C \in \mathcal{C}_2} \mathcal{D}_C^{\perp}$ be its dual code. Then, \mathcal{D} is self-orthogonal (alt. \mathcal{D} is self-dual) if and only if for each $C \in \mathcal{C}_2$ the following condition hold (alt. except those marked with an asterisk):

1. If $C \in \mathcal{C}_2^o$:

(a) If $C = C_2((1, ..., 1))$, then either $- \mathcal{D}_C = \{0\}$ (*) $- \text{ or } \mathcal{D}_C \text{ is any } \mathcal{K}_C \text{-vector space of dimension } 1.$

- (b) In other case, either
 - *i.* $\mathcal{D}_C = \{0\}$ and

 $- \mathcal{D}_{C'} = \mathcal{I}_{C'}$

- or $\mathcal{D}_{C'}$ is any other $\mathcal{K}_{C'}$ -vector subspace of $\mathcal{I}_{C'}$ (*)
- ii. or $\mathcal{D}_C =_S (f+I)$ with $f+I \neq I$, and $\mathcal{D}_{C'} =_S (\tilde{\tau}(g+I))$, where $g+I \in \mathcal{I}_C$ is the multiplicative inverse of f+I in the field \mathcal{I}_C .
- 2. If $C = C_1 \cup C_2 \in C_2^e$:
 - (a) If C = C', then either
 - *i.* $\mathcal{D}_C = \{0\}$ (*),
 - ii. or if $\overline{\mathcal{I}_{C_i}} = \mathcal{I}_{C_i}$ (i = 1, 2), then
 - $\mathcal{D}_C =_S (e_{C_i} + I) \text{ with } i = 1, 2$
 - or $\mathcal{D}_C =_S (f_1 + \tilde{\tau}(f_1)z + I)$ where z + I is a non-zero element of the subfield of \mathcal{I}_{C_2} isomorphic to $\mathbb{F}_{2|C_1|}$
 - iii. or if $\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_2}$, then $\mathcal{D}_C =_S (f_1 + \tilde{\tau}(f_1)z + I)$ where z + I is a non-zero element of \mathcal{I}_{C_2} of order $2^{|C_1|} + 1$.
 - (b) If $C \neq C'$, then either
 - i. $\mathcal{D}_C = \{0\}$ and
 - $-\mathcal{D}_{C'}=\mathcal{I}_{C'}$
 - or $\mathcal{D}_{C'}$ is any $\mathcal{K}_{C'}$ -vector subspace of $\mathcal{I}_{C'}$ (*),
 - ii. or $\mathcal{D}_C =_S (e_{C_i} + I)$ (i = 1, 2) and $\mathcal{D}_{C'} =_S (e_{C'_i} + I)$,
 - iii. or $\mathcal{D}_C =_S (f_1 + f_2 + I)$ with $f_i + I \neq I$ for i = 1, 2, and $\mathcal{D}_{C'} =_S (\tilde{\tau}(g_1 + g_2 + I))$, where $g_i + I \in \mathcal{I}_{C_i}$ is the multiplicative inverse of $f_i + I$ in the field \mathcal{I}_{C_i} (i = 1, 2).

These possibilities for self-orthogonal (alt. self-dual) additive abelian codes are summarized in Table 2.

Proof 1. (a) If $C = C_2((1,...,1))$, then C = C' and so, for the code to be selforthogonal $\mathcal{D}_C = \mathcal{D}_{C'}$ must be a proper \mathcal{K}_C -vector subspace of \mathcal{I}_C (according

			\mathcal{D}_C	$\mathcal{D}_{C'}$]				
	C_{ℓ}	1,,1)	{0}						
	0(1	1,,1)	S(j)	(f + I)					
				{0}	*				
$C \in \mathcal{C}_2^o$			{0}	S(f+I)	*				
	C	$\neq C'$		$\mathcal{I}_{C'}$					
		,	S(f+I)	{0}	*				
				$S(\tilde{\tau}(g+I))$					
			\mathcal{I}_C	{0}					
		$\frac{1}{\sigma}$ σ		{0}	*				
	C = C'	$\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_1}$	$\frac{S(e_{C_i}+I)}{S(f_1+\tilde{\tau}(f_1)z+I)}$						
	C = C		$S(J_1 + \tau)$	$f(J_1)z + I$	*				
		$\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_2}$	$c(f_1 + f_2)$	$\tilde{f}(f_1)z + I)$	1 ^				
			5(117	$(j_1)^{\sim} + 1)$ {0}	*				
$C \in \mathcal{C}_2^e$			{0}	S(f+I)	*				
2				$\frac{\mathcal{I}_{C_1'} \oplus \mathcal{I}_{C_2'}}{\mathcal{I}_{C_1'} \oplus \mathcal{I}_{C_2'}}$					
	C	$\neq C'$		{0}	*				
	0	70	$S(e_{C_i} + I)$	$\frac{C}{S(e_{C_{3-i}}+I)}$					
			$S(f_1 + f_2 + I)$	$\{0\}$					
			S(J1 + J2 + 1)	$S(\overline{\tilde{\tau}(g_1+g_2+I)})$					
			$\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$	{0}]				

Table 2 Different possibilities on the summands for a code to be self-orthogonal or self-dual

to Lemma 4.1). The case $\mathcal{D}_C = \mathcal{D}_{C'} = \{0\}$ is allowed for self-orthogonality, but it is not acceptable for self-duality (according to Lemma 4.2). Finally, if $\mathcal{D}_C =_S (f + I)$, from Theorem 3 we know that $\mathcal{D}_C^{\perp} = \mathcal{O}(f + I) =_S (\overline{\tau}(g + I))$, where g + I is the multiplicative inverse of f + I in the field \mathcal{I}_C . Thus, $S(f + I) =_S (\overline{\tau}(g + I))$ if and only if there exists $c + I \in S$ such that $(c+I)(f+I) = \overline{\tau}(g+I)$, if and only if $c + I = \overline{\tau}(g+I)(g+I) \in S$. The restriction of the ring automorphism $\overline{\cdot}$ to the ideal \mathcal{I}_C is the identity, and so $c + I = \overline{\tau}(g+I)(g+I) = \overline{\tau}(c+I)$, i.e., $c + I \in S$ always.

- (b) In this case C ≠ C', and so self-orthogonality in the subcase i. (i.e., D_C = {0}) is obvious (but self-duality is not possible unless D_{C'} = I_{C'}), according to Lemma 3. In the subcase ii. (D_C =_S (f + I)) self-orthogonality is only true when D_{C'} =_S (τ̃(g + I)), because of Theorem 3. Since τ̃ and τ̃ are commuting ring automorphisms of order at most 2, it follows that D_C =_S (f + I) =_S (τ̃(τ̃(f + I))) = O(τ̃(g + I)) and thus the condition is also sufficient. Self-duality is always true in such a case.
- 2. (a) If $C = C' = C_1 \cup C_2$, the case $\mathcal{D}_C = \{0\}$ is possible if \mathcal{D} is self-orthogonal, but not if it is self-dual (Lemma 4).

If $C \in C_2$, and $\overline{\mathcal{I}_C} = \mathcal{I}_C$, then the restriction of $\overline{\cdot}$ to \mathcal{I}_C is the identity if and only if $C = C_2((1, \ldots, 1))$. In fact, in these conditions, if $f + I = \sum_{\alpha} f_{\alpha} X^{\alpha} + I \in \mathcal{I}_C$, then $\overline{X^{\beta}(f+I)} = X^{\beta}(f+I)$ for any index $\beta = (\beta_1, \ldots, \beta_r)$. So, this implies that $f_{n-\alpha-\beta} = f_{\alpha-\beta}$ for all α and β . Taking $\alpha = \beta$ we have that $f_{n-2\beta} = f_0$ for all β . Since n_i is odd for $i = 1, \ldots, r$, $f + I = f_0(\sum_{\alpha} X^{\alpha} + I)$ which is an element of \mathcal{I}_C with $C = C_2((1, \ldots, 1))$.

Let us suppose that $\overline{\mathcal{I}_{C_i}} = \mathcal{I}_{C_i}$ for i = 1, 2. Hence, $\overline{\mathcal{I}_C} = \mathcal{I}_C$ and the restriction $\overline{\mathcal{I}_{C_i}}$ is a non trivial field automorphism or order 2, i.e., $\overline{f_i + I} = f_i^{2^d} + I$,

where $d = |C_i|$, since $\mathcal{I}_{C_i} \cong \mathbb{F}_{4|C_i|}$. If $\mathcal{D}_C =_S (f_i + I)$ (i = 1 or 2), then $\mathcal{O}(f_i+I) =_S (e_{C_i}+I)$, and so self-orthogonality implies $_S(f_i+I) =_S (e_{C_i}+I)$. In such a case $\mathcal{D}_C = \mathcal{D}_{C'}$, and the condition for self-duality if also satisfied. Otherwise, $\mathcal{D}_C =_S (f_1+f_2+I)$ with $f_i+I \neq I$ (i = 1, 2), and $\mathcal{O}(f_1+f_2+I) =_S (\tilde{\tau}(g_1+g_2+I))$, where $g_i + I$ is the multiplicative inverse of $f_i + I$ in the field \mathcal{I}_{C_i} . Therefore, the condition for self-orthogonality (and self-duality) holds if and only if there exists an element $c + I \in S$ such that

$$f_1 + f_2 + I = (c+I)(\overline{\tilde{\tau}(g_1)} + \overline{\tilde{\tau}(g_2)} + I) = (c+I)(\tilde{\tau}(g_1)^{2^d} + \tilde{\tau}(g_2)^{2^d} + I)$$

Then, the element $c + I \in S$ must verify the following condition

$$c + I = (f_1 + f_2 + I)(\tilde{\tau}(f_1)^{2^d} + \tilde{\tau}(f_2)^{2^d} + I) = f_1\tilde{\tau}(f_2)^{2^d} + f_2\tilde{\tau}(f_1)^{2^f} + I$$

Now, since $\tilde{\tau}(c+I) = c+I$, we arrive to these equations

$$\begin{cases} f_1 \tilde{\tau} (f_2)^{2^d} + \tilde{\tau} (f_2) f_1^{2^d} + I = I \\ f_2 \tilde{\tau} (f_1)^{2^d} + \tilde{\tau} (f_1) f_2^{2^d} + I = I \end{cases}$$

From the second equation, we obtain that $(\tilde{\tau}(f_1)g_2)^{2^d-1} + I) = e_{C_2} + I$, that is, $\tilde{\tau}(f_1)g_2 + I$ is a non-zero element of the subfield of \mathcal{I}_{C_2} isomorphic to \mathbb{F}_{2^d} . So, we obtain $f_2 + I = \tilde{\tau}(f_1)z + I$. This solution also verifies the first equation, so the result follows.

Let us suppose that $\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_2}$. If $\mathcal{D}_C =_S (f_i + I)$ with i = 1, 2, $\mathcal{O}(f_i + I) =_S (e_{C_{3-i}} + I) \neq \mathcal{D}_C$, and so the code can not be self-orthogonal. Finally, we will consider $\mathcal{D}_C =_S (f_1 + f_2 + I)$. Since the restriction $\overline{\tilde{\tau}}|_{\mathcal{I}_{C_1}}$ (alt. $\overline{\tilde{\tau}}|_{\mathcal{I}_{C_2}}$) is a field automorphism of order 2, i.e., $\overline{\tilde{\tau}(f_i + I)} = f_i^{2^d} + I$, using the same argument of the case 2(a)ii, we arrive to the equations

$$\begin{cases} f_1^{2^d+1} + \tilde{\tau}(f_2)^{2^d+1} + I = I, \\ f_2^{2^d+1} + \tilde{\tau}(f_1)^{2^d+1} + I = I. \end{cases}$$

Solving the second equation we obtain $f_2 + I = \tilde{\tau}(f_1)z + I$, where z + I is a non-zero element of \mathcal{I}_{C_2} of order $2^d + 1$. This solution also satisfies the first equation, and the result follows.

(b) Let us now suppose that $C \neq C'$. The first case is similar to 1(b)i, where as the second one is similar to the first subcase of 2(a)ii. Finally, if $\mathcal{D}_C =_S (f_1+f_2+I)$ with $f_i+I \neq I$ for i = 1, 2, then $\mathcal{O}(f_1+f_2+I) =_S (\tilde{\tau}(g_1+g_2+I))$, where g_i+I is the multiplicative inverse of f_i+I (i = 1, 2). Hence, $\mathcal{D}_{C'} =_S (\tilde{\tau}(g_1+g_2+I))$ for the code to be self-orthogonal and self-dual.

Example 5 (Example 1 cont'd) The components of the self-orthogonal code D presented in the examples above fall in the following cases of Theorem 4:

- $\mathcal{D}_{\{(1,1)\}}$ is case 1(a),
- $\mathcal{D}_{C_2((\mu,1))}$ and $\mathcal{D}_{C_2((\mu^6,1))}$ are case 1(b)ii,
- $-\mathcal{D}_{C_2((1,\omega))}$ is case 2(a)i,
- and $\mathcal{D}_{C_2((\mu,\omega^2))}$ and $\mathcal{D}_{C_2((\mu^6,\omega))}$ are case 2(b)iii.

Let us observe that this self-orthogonal code \mathcal{D} allow us to construct, via [2][Theorem 2], a quantum-error-correcting code with parameters [[21, 2, d]], where d is the smallest weight of codewords in $\mathcal{D}^{\perp} \setminus \mathcal{D}$. Sage computations [16] show that the actual distance of the quantum-error-correcting code is d = 6, i.e., it has the same distance as the best known code with the same parameters listed in [6].

The ring automorphism $\overline{\tilde{\tau}}$ defines an equivalence relation over the set of 2-classes C_2 . Let us denote \mathcal{B} the quotient set of C_2 by this relation. Using this notation, the number of self-orthogonal and self-dual codes are given by the following result.

Corollary 2 The number of additive abelian self-orthogonal (alt. self-dual) codes is given by Table 3.

	Any	Generated by a single word					
Self-orthogonal	4 $\prod (3 \cdot 2^{ C } + 6) \prod (2^{\frac{ C }{2}} + 2)$	4 $\prod (3 \cdot 2^{ C } + 4) \prod (2^{\frac{ C }{2}} + 2)$					
	$\begin{array}{ccc} C \in \mathcal{B} & C \in \mathcal{B} \\ C \neq C' & C = C' \end{array}$	$\begin{array}{ccc} C \in \mathcal{B} & C \in \mathcal{B} \\ C \neq C' & C = C' \end{array}$					
Self-dual	$3 \prod_{n=1}^{\infty} (2^{ C } + 3) \prod_{n=1}^{\infty} (2^{\frac{ C }{2}} + 1)$	$3 \prod_{n=1}^{\infty} (2^{ C } + 1) \prod_{n=1}^{\infty} (2^{\frac{ C }{2}} + 1)$					
	$\begin{array}{ccc} C \in \mathcal{B} & C \in \mathcal{B} \\ C \neq C' & C = C' \end{array}$	$\begin{array}{ccc} C \in \mathcal{B} & C \in \mathcal{B} \\ C \neq C' & C = C' \end{array}$					

Table 3 Number of self-orthogonal and self-dual codes

Proof In Table 4 we count the number of codes from the possible choices in the entries of the table of Theorem 4 (see also Remark 7).

In order to know the number of self-dual codes, we do no count rows marked with an asterisk. Finally, the code \mathcal{D} is generated by a single word if and only if \mathcal{D}_C is a \mathcal{K}_C -vector space of dimension 0 or 1 for all $C \in \mathcal{C}_2$, i.e., we do not count any row containing \mathcal{I}_C or $\mathcal{I}_{C_1} \oplus \mathcal{I}_{C_2}$.

Acknowledgements Edgar Martínez-Moro was partially funded by Spanish MCINN under projects MTM2007-64704 and MTM2010-21580-C02-02. A. Piñera-Nicolás and I. F. Rua were supported by MTM2010-18370-C04-01.

			\mathcal{D}_C	$\mathcal{D}_{C'}$	Total number	
	$C_{(1)}$	1,,1)	$\frac{1}{\frac{2^2}{2}}$	<u>-1</u> -1	4	
$C\in \mathcal{C}_2^o$	C	$\neq C'$	1	$ \frac{1}{\frac{2^{ C } - 1}{2 - 1}} \\ 1 $	$2^{ C } + 3$	$\bigg \bigg _{3 \cdot 2^{ C } + 6}$
			$\frac{\frac{2^{ C }-1}{2-1}}{1}$	1 1 1	$(2^{ C }+1)\cdot 2$ 1	J
	C = C'	$\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_1}$ $\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_2}$	$\frac{1}{2}$	$\frac{1}{2} - 1$	$2^{ C /2} + 2$	$\bigg\}_{2^{ C /2}+2}$
		$\overline{\mathcal{I}_{C_1}} = \mathcal{I}_{C_2}$	$\frac{1}{2^{ C /2}}$	$\frac{1}{2} + 1$	$2^{ C /2} + 2$	J
$C\in \mathcal{C}_2^e$			1	$\frac{\frac{1}{2^{ C }-1}}{\frac{2^{-1}}{1}}$	$2^{ C } + 3$	
	C	$\neq C'$	2	1	4	$\left\{3\cdot 2^{ C }+6\right.$
			$2^{ C } - 1$	1 1	$(2^{ C } - 1) \cdot 2$	
			1	1	1	

Table 4 Total number of self-orthogonal and self-dual codes

References

- 1. S. D. Berman. On the theory of group codes. Cybernetics, 3(1):25-31 (1969), 1969.
- A. Calderbank, E. Rains, P. Shor, and N. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory, 44:1369–1387, 1998.
- P. Charpin. Une généralisation de la construction de Berman des codes de Reed et Muller p-aires. Comm. Algebra, 16(11):2231-2246, 1988.
- D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer, New York, 2007.
- 5. B. Dey and B. Rajan. \mathbb{F}_q -linear cyclic codes over \mathbb{F}_q^m . Des. Codes Cryptogr., 34:89–116, 2005.
- 6. M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de
- 7. W. C. Huffman. Additive cyclic codes over \mathbb{F}_4 . Adv. Math. Commun., 1(4):427-459, 2007.
- 8. W. C. Huffman. Additive cyclic codes over \mathbb{F}_4 . Adv. Math. Commun., 2(3):309-343, 2008.
- E. Martínez-Moro and I. F. Rúa. Multivariable codes over finite chain rings: serial codes. SIAM J. Discrete Math., 20(4):947–959, 2006.
- E. Martínez-Moro and I. F. Rúa. On repeated-root multivariable codes over a finite chain ring. Des. Codes Cryptogr., 45:219–227, 2007.
- 11. W. W. Peterson and J. E. J. Weldon. Error-correcting codes. The M.I.T. Press, Cambridge, Mass.-London, second edition, 1972.
- A. Poli. Important algebraic calculations for n-variables polynomial codes. Discrete Math., 56(2-3):255-263, 1985.
- 13. A. Poli and L. Huguet. Error correcting codes. Prentice Hall International, Hemel Hempstead, 1992.
- 14. P. Shor. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 52, 1995.
- 15. A. Steane. Simple quantum error correcting codes. Phys. Rev. Lett., 77:793-797, 1996.
- 16. W.A. Stein et al. Sage Mathematics Software (Version 3.0.1). The Sage Development Team, 2008. http://www.sagemath.org