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Abstract A procedure to test hypotheses about the population variance of a fuzzy

random variable is analyzed. The procedure is based on the theory of UH-statistics.

The variance is defined in terms of a general metric to quantify the variability of the

fuzzy values about its (fuzzy) mean. An asymptotic one-sample test in a wide setting is

developed and a bootstrap test, which is more suitable for small and moderate sample

sizes, is also studied. Moreover, the power function of the asymptotic procedure through

local alternatives is analyzed. Some simulations showing the empirical behavior and

consistency of both tests are carried out. Finally, some illustrative examples of the

practical application of the proposed tests are presented.

Keywords fuzzy random variable · support function · hypothesis testing · Fréchet

variance · bootstrap techniques · UH-statistics

1 Introduction

Fuzzy random variables (FRVs for short) were introduced to model random mechanisms

whose outcomes are associated with fuzzy sets (see [21]). As in the case of classical

random variables, it is interesting to describe the distribution of an FRV by means of

certain measures which summarize some of its characteristics, as the central tendency,

the dispersion, etc.
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In this way, the fuzzy mean of an FRV has been introduced by Puri and Ralescu in

[21] as a fuzzy-valued measure summarizing the distribtuion of the variable by means

of its ‘central’ position. Regarding the one-sample test for the fuzzy mean, Körner [14]

and Montenegro et al. [17] have developed the first asymptotic procedures.

Another important summary characteristic in Statistics is the ‘variability’ (varia-

tion or dispersion). The concept of variance considered in this paper is a Fréchet’s one,

that is, it is defined in terms of a squared-distance between variable values and the

expected value (see, for instance, [16,18,19]). In other words, the variance corresponds

to a ‘squared error’ associated with the summarization of the distribution through the

fuzzy mean.

In some situations one can be interested in testing whether or not the variance of

an FRV is equal to, greater than or lower than a given value. Lubiano et al. [16] have

analyzed the problem of testing hypothesis for the variance of simple FRVs (i.e., those

taking on a finite number of different values) in a particular class. The techniques used

in [16] are based on large samples theory and an operational metric on the space of

fuzzy numbers with compact support introduced by Bertoluzza et al. [2]. In this paper,

the studies developed in [16] are extended to a wider class of non-necessarily simple

FRVs and by using a generalized metric.

The convergence of the statistics are analyzed by employing some techniques based

on the theory of UH-statistics [13]. Furthermore, taking inspiration on the bootstrap

tests for the fuzzy mean of an FRV [10,12] some bootstrap techniques useful for small

and moderated samples are studied.

The theoretical results developed in this context were mainly focussed on the sig-

nificance level or type I error. The importance of the power function to establish the

capability of a test is well-known, although often difficult to establish. In this respect,

a way to analyze the power function by means of sequences of local alternatives con-

verging to the null hypothesis as the sample size increases is presented here.

The rest of the paper is organized as follows. In Section 2 some preliminary concepts

are introduced. The asymptotic and bootstrap tests are developed in Sections 3 and 4

respectively. The behavior under local alternatives of the asymptotic case is analyzed

in Section 5. In addition, some simulations and some real examples are presented in

Sections 6 and 7 in order to illustrate the empirical behavior of the tests. Finally, some

concluding remarks and open problems are gathered in Section 8.

2 Preliminary concepts

Consider the p-dimensional Euclidean space Rp with the usual norm ‖ · ‖p. Denote

by Kc(Rp) the class of nonempty compact convex subsets of Rp and by Fc(Rp) the

following class of upper semicontinuous functions of Rp (often referred to as the class

of the compact convex fuzzy sets of Rp)

Fc(Rp) = {U : Rp → [0, 1] | Uα ∈ Kc(Rp) for all α ∈ [0, 1]}

where Uα denotes the α-level of the fuzzy set U (i.e. Uα = {x ∈ Rp|U(x) ≥ α}) for all

α ∈ (0, 1], and U0 is the closure of the support of U .
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The space Fc(Rp) can be naturally endowed with an inner composition law and a

external one extending levelwise the Minkowski addition and the product by a scalar,

that is,

(U + V )α = Uα + Vα = {u + v : u ∈ Uα, v ∈ Vα} ,

(λU)α = λUα = {λu : u ∈ Uα}
for all U, V ∈ Fc(Rp), λ ∈ R and α ∈ [0, 1]. These arithmetics agree with Zadeh’s

extension principle [22].

On the other hand, the lack of opposite element w.r.t. the Minkowski addition

makes it sometimes interesting to consider the Hukuhara difference U −H V of two

fuzzy sets U, V ∈ Fc(Rp), which is defined (if it exists) as the element W ∈ Fc(Rp)

such that U = V + W .

In order to take advantage of the properties of the classical statistical analysis in

Hilbert spaces, the concept of the support function of a fuzzy set becomes a very useful

tool. Given a fuzzy set U ∈ Fc(Rp) [20], the support function of U is defined as the

function sU : Sp−1 × [0, 1] → R such that

sU (u, α) = sup
w∈Uα

〈u, w〉

for all u ∈ Sp−1 and α ∈ [0, 1], where Sp−1 is the unit sphere in Rp (i.e. Sp−1 = {u ∈
Rp| ‖u‖p = 1}) and 〈·, ·〉 denotes the inner product in Rp.

A relevant feature of the support function is that it allows us to embed the space of

fuzzy sets onto a cone of the Hilbert space of the square integrable functions L(Sp−1×
[0, 1]) by means of the mapping s : Fc(Rp) −→ L(Sp−1 × [0, 1]) where s(U) = sU .

Furthermore, the support function preserves the semi-linear structure of Fc(Rp), that

is, if U, V ∈ Fc(Rp), λ > 0, sU+V = sU + sV , sλU = λsU , and if the Hukuhara

difference U −H V exists, it can be shown that sU−HV = sU − sV .

By using this last concept and being inspired by [18] we can consider a generalized

metric D in Fc(Rp) defined so that

D(U, V ) = 〈sU − sV , sU − sV 〉 = ‖sU − sV ‖2

for all U, V ∈ Fc(Rp), where 〈·, ·〉 represent a generic separate inner product on the

Hilbert space L(Sp−1× [0, 1]) and ‖ ·‖ is the corresponding norm. Thus each D induces

an isometry between Fc(Rp) and the convex cone s(Fc(Rp)) ⊂ L(Sp−1× [0, 1]). Special

families of metrics of this type can be found, for instance, in [2,8,18].

Given a probability space (Ω,A, P ), a fuzzy random variable (FRV for short) in

Puri & Ralescu’s sense [21] is a mapping X : Ω → Fc(Rp) fulfilling that the α-level

mappings Xα : Ω → Kc(Rp) (defined so that Xα(w) = (X (w))α for all w ∈ Ω)

are random sets (i.e., Borel-measurable mappings with the Borel σ-field generated by

the topology associated with the well-known Hausdorff metric dH on Kc(Rp)). This

definition is equivalent to say that an FRV is a Borel measurable mapping w.r.t. the

most used D-type metrics (see [6] and [15]). The Borel measurability allows us to

properly refer to the ‘induced’ distribution of an FRV, the independence of several

FRVs, and so on.

In case that the FRV X satisfies that supx∈X0
‖x‖p ∈ L1(Ω,A, P ), the fuzzy ex-

pected value (or fuzzy mean) of X , E(X ), is defined as the unique fuzzy set such that,

for all α ∈ [0, 1], (E(X ))α = Aumman’s integral of the random set Xα (see [1,21]).
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Moreover, if E
“`

supx∈X0
‖x‖p

´2”
< ∞, the dispersion of X can be quantified by

means of the D−variance (or simply variance, inspired on [18]), which is defined in

the Fréchet’s sense (see [9]) as the real value σ2
X = E (D(X , E(X ))), or, equivalently,

in terms of the support function, σ2
X = E(〈sX − sE(X ), sX − sE(X )〉). It should be

pointed out that the expected value in the Aumman’s sense is a Frèchet expectation

w.r.t. D, since

E
`
D(X , E(X ))

´
= inf

U∈Fc(Rp)
E
`
D(X , U)

´
.

For the hypothesis testing problems, it is useful to define some sample moments

of the fuzzy sets. Consider a simple random sample of n independent observations,

X1, . . . ,Xn, from an FRV X . The fuzzy sample mean of {Xi}n
i=1 is given by Xn =

(1/n)
Pn

i=1 Xi. The semilinearity properties of the support function imply that sXn
=

sX .

In the same way, it is possible to define the sample variance of {Xi}n
i=1 as bσ2

X =

(1/n)
Pn

i=1 D(Xi,Xn) although considering bS2
X = (1/(n− 1))

Pn
i=1 D(Xi,Xn) would

be even more usual because it is an unbiased and consistent estimator of the population

variance (see [18]).

3 Asymptotic tests

The theory of UH-statistics (or statistics in a Hilbert space) was developed in [13].

Given X1, . . . , Xn independent and identically distributed RVs taking on values in

a measurable space, and an arbitrary separable real Hilbert space H with the inner

product 〈·, ·〉H and associated norm ‖ · ‖H , a UH − statistic Un is defined by

Un =

 
n

m

!−1 X

1≤i1<...<im≤n

Φ(Xi1 , . . . , Xim
) (1)

where Φ : Xm −→ H is a symmetric kernel.

Consider now an FRV X so that E
“`

supx∈X0
‖x‖p

´2”
< ∞ and a simple ran-

dom sample X1, . . . ,Xn from X . Then, sX1 , . . . , sXn
are independent and identically

distributed RVs taking on values in the measurable space (L(Sp−1 × [0, 1]), β) (where

β is the Borel σ-field associated with the metric D). On the other hand, consider as

H the Hilbert space R with the associated norm ‖ · ‖R and define the UH-statistic

Un =
`n
2

´−1P
1≤i<j≤n Φ(sXi

, sXj
) where the kernel Φ : L(Sp−1 × [0, 1]) × L(Sp−1 ×

[0, 1]) −→ R is such that Φ(sXi
, sXj

) =
1

2
‖sXi

− sXj
‖2.

Proposition 1 Under the previous conditions Un = bS2
X .

Proof. Un can be written as

Un =

 
n

2

!−1 X

1≤i<j≤n

1

2
‖sXi

− sXj
‖2 =

1

n(n− 1)

X

1≤i<j≤n

‖sXi
− sXj

‖2

=
1

2(n− 1)

X

i

‖sXi
− sXn

‖2 +
1

2(n− 1)

X

j

‖sXj
− sXn

‖2

− 2

2n(n− 1)

X

i

X

j

〈sXi
− sXn

, sXn
− sXj

〉
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Since the last term vanishes, we have that Un = bS2
X . ¤

Furthermore, one can compute the variance of bS2
X by using the following result:

Lemma 1 [13] If Un =

 
n

m

!−1 X

1≤i1<...<im≤n

Φ(Xi1 , . . . , Xim
) is an UH-statistic

verifying the condition E
“
Φ2(Xi1 , . . . , Xim

)
”

< ∞, then

σ2
Un

=

 
n

m

!−1 mX

k=1

 
m

k

! 
n−m

m− k

!
ζk,

where ζk = σ2
Φk(X1,...,Xk) and Φk is such that

Φk(x1, . . . , xk) = E(Φ(X1, . . . Xn)|X1 = x1, . . . , Xk = xk).

Proposition 2 Under the previous conditions

σ2
bS 2
X

=
σ2

D(X ,E(X ))

n
+

2σ4
X

n(n− 1)
.

Proof. Using the Lemma 1 with Φ(sXi
, sXj

) = 1
2 ‖sXi

− sXj
‖2 we have that,

σ2
bS 2
X

=

 
n

2

!−1 " 
2

1

! 
n− 2

2− 1

!
ζ1 +

 
2

2

! 
n− 2

2− 2

!
ζ2

#

Subtracting and adding sE(X ) results that

Φi(sXi
) =

1

2
‖sXi

− sE(X )‖2 +
1

2
σ2
X ,

Φ(i,j)(sXi
, sXj

) =
1

2
‖sXi

− sE(X )‖2 +
1

2
‖sE(X ) − sXj

‖2 + 〈sXi
− sE(X ), sE(X ) − sXj

〉.
Simplifying terms by using properties of the inner product and the support function it

is verified that ζ1 = σ2
Φi(sXi

) =
σ2

D(X ,E(X ))

4
and ζ2 =

1

4
(2 E(D2(X , E(X ))) + 6 σ4

X .

Therefore σ2
bS 2
X

=

 
n

2

!−1

(2(n− 2)ζ1 + ζ2) =
σ2

D(X ,E(X ))

n
+

σ2
X

n(n− 1)
. ¤

On the other hand, the studies in [5] and [13] show that the UH-statistics sat-

isfy the CLT. Suppose that X1, . . . , Xn are independent and identically distributed

RVs taking on values in a measurable space, and that Un is defined as in (1). If

E
“
Φ2(Xi1 , . . . , Xim

)
”

< ∞, then Un converges in law to a normal distribution with

the same mean and variance than Un as n tends to ∞.

The condition E
“

1
4 ‖sXi

− sXj
‖4
”

< ∞ is equivalent to E
“
‖sX ‖4

”
< ∞. Then,

consider the statistic

eZn =
bS 2
X − σ2

Xs
σ2

D(X ,E(X ))

n
+

2σ4
X

n(n− 1)

.

Thus, by applying the CLT for UH-statistics, the next theorem is easy to be derived:
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Theorem 1 Let X be an FRV and X1, . . . ,Xn be a simple random sample from X . If

E
“
‖sX ‖4

”
< ∞, then eZn converges in law to a standard normal distribution.

The aim of this work is to test the null hypothesis H0 : σ2
X = σ2

0 versus H1 : σ2
X 6=

σ2
0 or, equivalently, testing H0 : E (D(X , E(X ))) = σ2

0 versus H1 : E (D(X , E(X ))) 6=
σ2
0 for a given σ0 ∈ R+. In the same way, the one-sided tests for the variance of an

FRV are considered, that is, the null hypotheses H0 : σ2
X ≤ σ2

0 and H0 : σ2
X ≥ σ2

0 are

also to be tested.

In order to face this problem we are now going to analyze the asymptotic behavior

of the following basic statistic:

Zn =

√
n (bS 2

X − σ2
X )q

σ2
D(X ,E(X ))

Theorem 2 If E
“
‖sX ‖4

”
< ∞, Zn converges in law to a distribution N (0, 1).

Proof. From Theorem 1 we have that eZn converges in law to a variable N (0, 1). Since

Zn can be written as Zn = eZn ·An, and

An =

s
σ2

D(X ,E(X ))

n
+

2σ4
X

n(n− 1)s
σ2

D(X ,E(X ))

n

n→∞−→ 1

the result is obtained. ¤
The denominator of Zn is a population value, so it is convenient to estimate it in

order to define later the test statistic. The proposed estimator is

bσ2
D(X ,Xn)

=
1

n

nX

i=1

“
D(Xi,Xn)− 1

n

nX

i=1

D(Xi,Xn)
”2

.

This estimator is examined in the following proposition:

Proposition 3 Let X be an FRV and X1, . . . ,Xn a simple random sample obtained

from X . If E
“
‖sX ‖4

”
< ∞, then

n
bσ2

D(X ,Xn)

o
n

is a strongly consistent sequence of

estimators of σ2
D(X ,E(X )).

Proof. In a first step, it will be proved that the sequence of estimators defined for all

n ∈ N as

An =
1

n

nX

i=1

“
D (Xi , E(X ))− 1

n

nX

i=1

D (Xi , E(X ))
”2

is strongly consistent with σ2
D(X ,E(X )). Indeed, An can be expressed as

An =
1

n

nX

i=1

“
D (Xi , E(X ))− E (D(X , E(X )))

”2

−
“

E (D(X , E(X )))− 1

n

nX

i=1

D (Xi , E(X ))
”2

.

Note that the first term of that expansion is the sample variance of the real-valued RVs

{D (Xi, E(X ))}n
i=1 which converges almost surely to σ2

D(X ,E(X )). The strong law of
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large numbers guarantees that the second term converges almost surely to 0. Therefore

{An}n
a.s.−→ σ2

D(X ,E(X )). In a second step, it will be proved that
“
bσ2

D(X ,Xn)
−An

”
a.s.−→

0. Note first that by operating in the expression of bσ2
X , it results that

bσ2
D(X ,Xn)

= An − 4

n

nX

i=1

“D
sXi
− sXn

, sXi
− sE(X )

ED
sXi
− sXn

, sXn
− sE(X )

E”
.

Thus, it is enough to prove that the second term of the last expression (denoted by

Bn) converges to 0 as n →∞. Bn can be decomposed as follows:

Bn = − 4

n

nX

i=1

“
〈sXi

, sXi
〉〈sXi

, sXn
〉 − 〈sXi

, sXi
〉〈sXi

, sE(X )〉
”

− 4

n

nX

i=1

“
〈sXi

, sXi
〉〈sXn

, sE(X )〉 − 〈sXi
, sXi

〉〈sXn
, sXn

〉
”

− 4

n

nX

i=1

“
〈sXi

, sE(X )〉〈sXi
, sE(X )〉 − 〈sXi

, sE(X )〉〈sXi
, sXn

〉
”

− 4

n

nX

i=1

“
〈sXn

, sXi
〉〈sXn

, sXn
〉 − 〈sXn

, sXi
〉〈sXn

, sE(X )〉
”

− 4

n

nX

i=1

“
〈sXn

, sXi
〉〈sXi

, sE(X )〉 − 〈sXn
, sXi

〉〈sXi
, sXn

〉
”

− 4

n

nX

i=1

“
〈sXi

, sE(X )〉〈sXn
, sXn

〉 − 〈sXi
, sE(X )〉〈sXn

, sE(X )〉
”

− 4

n

nX

i=1

“
〈sXn

, sE(X )〉〈sXi
, sXn

〉 − 〈sXn
, sE(X )〉〈sXi

, sE(X )〉
”

− 4

n

nX

i=1

“
〈sXn

, sE(X )〉K 〈sXn
, sE(X )〉 − 〈sXn

, sE(X )〉〈sXn
, sXn

〉
”

From the triangle and Cauchy-Schwarz inequalities we have that

˛̨
˛− 4

n

nX

i=1

“
〈sXi

, sXi
〉〈sXi

, sXn
〉 − 〈sXi

, sXi
〉〈sXi

, sE(X )〉
” ˛̨
˛

≤ 4

n

nX

i=1

‖sXi
‖3 ‖sXn

− sE(X )‖.

The second and the fifth terms can be also upper bounded in a similar way. The

condition E(‖sX ‖4) < ∞ implies that ‖sE(X )‖4 < ∞ and, therefore, the moments of

lower order are also finite. In addition, sXn

a.s.−→ sE(X ), so all the terms converges to 0

as n →∞ and bσ2
D(X ,Xn)

−An
a.s.−→ 0. ¤

Hereafter, in order to carry out the proposed tests the statistic Tn =

√
n (bS 2

X − σ2
0)q

bσ2
D(X ,Xn)

is considered. On this basis, the following asymptotic procedure is presented:
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Theorem 3 Under the conditions in the previous theorems. Let α ∈ [0, 1]:

a) Two-sided test. The significance level of the test that rejects H0 : σ2
X = σ2

0 against

H1 : σ2
X 6= σ2

0 whenever |Tn| > z1−α/2, where z1−α/2 is the [1 − α/2]-quantile of

the distribution N(0, 1) converges to α. The p-value of this test is approximately

given by p = 2
ˆ
1 − Φ(|Tn|)

˜
, where Φ is the cumulative distribution function of a

N (0, 1) RV.

b) One-sided tests

(i) The significance level of the test that rejects H0 : σ2
X ≥ σ2

0 against H1 : σ2
X <

σ2
0 whenever Tn < zα, where zα is the α-quantile of the distribution N(0, 1)

converges to α. The p-value of this test is approximately given by p = Φ(Tn).

(ii) The significance level of the test that rejects H0 : σ2
X ≤ σ2

0 against H1 : σ2
X > σ2

0

whenever Tn > z1−α, where z1−α is the (1 − α)-quantile of the distribution

N(0, 1) converges to α. The p-value of this test is approximately given by p =

1− Φ(Tn).

Remark 1 The classical statistic used to test the variance of a real-valued RV is based

on the quotient bS2
X /σ2

X . By the convergence of types (see [4]), there can be only one

possible limit type and essentially one possible sequence of norming constants. Apply-

ing this result to the estimator bS2
X , we have that the classical statistic (conveniently

normalized) and Tn are essentially the same.

Specifically, the classical statistic used to test the variance of a real normal variable

has a χ2
n−1 distribution. It is known that eTn =

√
n (bS2

X − σ2
X)

σ2
X

√
2

, converges to a N (0, 1).

The denominator of the previous statistic is equal to the Tn one when a real variable

N (µ, σ) is considered. Therefore eTn = Tn in the real-valued normal case.

4 Bootstrap tests

In Montenegro et al. [17], Gil et al. [10] and González-Rodŕıguez et al. [12], the ap-

plication of bootstrap techniques to test the fuzzy mean of an FRV provides better

results than the asymptotic ones. In this section analogous results about the test for

the variance of an FRV are proved.

Suppose that X is an FRV defined on the probability space (Ω,A, P ), and that

n independent FRVs {X1, . . . ,Xn} distributed as X are considered. In addition, let

{X ∗i }n
i=1 be a bootstrap sample from {Xi}n

i=1. Let

T 1∗
n =

σ2
X
bS2
X

√
n
` bS2

X∗ − bS2
X
´

q
bσ2

D(X ,Xn)

.

where bS2
X∗ =

1

n − 1

nX

i=1

D (X ∗i ,X ∗
n ). Therefore, the following theorem can be stated:

Theorem 4 Under the previous conditions, if E(‖sX ‖4) < ∞, then

T 1∗
n

L−→ N `0, 1
´
.
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Proof. By applying the result in Bickel and Freedman [3] for U-statistics, it can be

verified that
√

n(bS2
X∗ − bS2

X ) converges to the same distribution than
√

n(bS2
X − σ2

X ).

From Theorem 2 we have that the last expression converges to a random variable

N
“
0, σ2

D(X ,E(X ))

”
. Moreover, the convergence of the denominator of T 1∗

n is given in

the Proposition 3. Thus, taking into account that σ2
X /bS2

X
a.s.−→1, we conclude that

T 1∗
n

L−→ N `0, 1
´
.

¤
Consider now the statistic T 1

n =
√

n
`
S2
X − σ2

0

´
. As a consequence of the previous

result, the following theorem is concluded:

Theorem 5 Under the conditions in Theorem 4. Let α ∈ [0, 1]:

a) Two-sided test. The significance level of the test that rejects H0 : σ2
X = σ2

0 against

H1 : σ2
X 6= σ2

0 whenever
˛̨
T 1

n

˛̨
> z(1−α/2), where z(1−α)/2 is the (1−α/2)-quantile

of the distribución of T 1∗
n , converges to α.

b) One-sided tests

(i) The significance level of the test that rejects H0 : σ2
X ≥ σ2

0 against H1 : σ2
X < σ2

0

whenever T 1
n < zα, where zα is the α-quantile of the distribution of T 1∗

n ,

converges to α.

(ii) The significance level of the test that rejects H0 : σ2
X ≤ σ2

0 against H1 : σ2
X >

σ2
0 whenever T 1

n > z(1−α), where z1−α is the (1−α)-quantile of the distribution

of T 1∗
n , converges to α.

Remark 2 In practice the distribution of T 1∗
n is unknown. In order to overcome this

problem, the Montecarlo’s approximation is employed as usual.

Moreover, it is possible to employ an alternative bootstrap procedure which consist

on reestimate bσ2
D(X ,Xn)

by means of

σ4
0

bS4
X

 
1

n

nX

i=1

“
D
`X ∗i ,X ∗

n

´− bσ2
X∗
”2
!

.

Thus, consider the following bootstrap statistic

T 2∗
n =

√
n
` bS2

X∗ − bS2
X
´

vuut 1

n

nX

i=1

“
D
`X ∗i ,X ∗

n
´− bσ2

X∗
”2

as an approximation of the distribution of Tn under the worse situation under H0.

Finally, use the Montecarlo method to approximate the unknown distribution of T 2∗
n .

The following bootstrap testing algorithm is then proposed:

Step 1. Choose a simple random sample {X1, . . .Xn} of n independent FRVs and

identically distributed as the FRV X .

Step 2. Compute for this sample the value of the statistic T = T 1
n .

Step 3. Obtain a sample {X ∗i }n
i=1 of n independent and identically distributed FRVs

from the bootstrap population {Xi}n
i=1 and compute the value of the bootstrap

statistic T 1∗
n .
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Step 4. Repeat Step 3 a large number B of times to get a set of B values of the

bootstrap estimator, denoted by {T ∗1 , . . . , T ∗B}.
Step 5. Compute the bootstrap p-value:

1. In the two-sided case, the approximate p-value is given by the proportion of

values in {T ∗1 , . . . , T ∗B} whose modulus is greater that the modulus of T.

2. To test H0 : σ2
X ≥ σ2

0 against H1 : σ2
X < σ2

0 (or H0 : σ2
X ≤ σ2

0 against

H1 : σ2
X > σ2

0 , respectively) the approximate p-value is given by the proportion

of values in {T ∗1 , . . . , T ∗B} whose value is smaller than (or greater than) T.

In the second bootstrap approximation, Steps 2 and 3 are modified:

Step 2.∗ By using the initial sample, compute the value of the statistic T = Tn.

Step 3.∗ Obtain a sample of n independent and identically distributed FRVs from

the bootstrap population {Xi}n
i=1 and compute the value of the bootstrap statistic

T 2∗
n .

5 Power analysis (local alternatives)

The analysis of the power function in order to establish the capability of a given test is

a very difficult task in most of cases. A suitable way to carry out this analysis is through

the study of the power function under a sequence of alternatives which converges to the

null one as the sample size increases, that is, by using the so-called local alternatives.

These kinds of alternatives has been widely used in the literature to measure how

sensitive is a test under small deviations from the null hypothesis.

Suppose that X is an FRV and that σ2
X = σ2

0 ∈ R+ and E(‖sX ‖4) < ∞. Let

{X1, . . . ,Xn} be a simple random sample obtained from the FRV X , and consider a

‘correction’
n
X [n]

1 , . . . ,X [n]
n

o
of {X1, . . . ,Xn} defined as

X [n]
i =

r
1 +

an√
n
Xi, i = 1, . . . , n,

in order to obtain FRVs whose variance are

σ2

X [n]
i

= σ2
n =

„
1 +

an√
n

«
σ2
0

where an ∈ (−1, 0)
S

(0,∞). Thus, if |an| ↗ ∞ and an/
√

n → 0 as n → ∞, then the

sequence of the variances
n

σ2
n

o
n

converges to σ2
0 as the sample size n tends to ∞.

Then, the null hypothesis is not verified, but it is approached as n tends to infinity. In

Theorem 6 it will be proved that the power under these local alternatives converges to

1.

Theorem 6 Let X be an FRV such that σ2
X = σ2

0 ∈ R+ and suppose that the previous

conditions are satisfied. If the asymptotic testing procedure in Section 3 is applied to

the sequence of the corrected samples
n
X [n]

1 , . . . ,X [n]
n

o
n
, then

lim
n→∞P ( |T [n]

n | > t(1−α)/2 ) = 1.
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Proof. Since

X [n]
n =

r
1 +

an√
n
Xn, bS2

X [n] =
1

n− 1

nX

i=1

D(X [n]
i ,X [n]

n ),

and

bσ2
X [n] =

1

n

nX

i=1

D(X [n]
i ,X [n]

n ), bσ2

D
“
X [n],X [n]

n

” =
1

n

nX

i=1

“
D (X [n]

i ,X [n]
n )− bσ2

X [n]

”2
,

the test statistic can be written as

T
[n]
n =

√
n
` bS2

X [n] − σ2
0

´
r
bσ2

D
“
X [n],X [n]

n

”
=

√
n

»“
1 +

an√
n

”
bS2
X − σ2

0

–

„
1 +

an√
n

«q
bσ2

D(X ,Xn)

.

The term σ2
n can be introduced in this expression, obtaining

T
[n]
n =

√
n

»“
1 +

an√
n

”
bS2
X − σ2

n

–

„
1 +

an√
n

«q
bσ2

D(X ,Xn)

+

√
n
h
σ2

n − σ2
0

i
„

1 +
an√

n

«q
bσ2

D(X ,Xn)

.

The first term converges to a N (0, 1) distribution by using the CLT for UH-statistics.

In addition, the conditions |an| ↗ ∞ and an/
√

n → 0 as n →∞ imply the convergence

to ∞ of the absolute value of second term. Therefore |T [n]
n | → ∞, and lim

n→∞P ( |T [n]
n | >

t(1−α)/2 ) = 1. ¤
The consistency of the one-side tests can be proved by using analogous arguments

that of Theorem 6. The result is established as follows:

Theorem 7 Let X be an FRV such that σ2
X = σ2

0 ∈ R+ and E(‖sX ‖4) < ∞. For

all n ∈ N, let {X1, . . . ,Xn} be a simple random sample of FRVs from X . In addition,

consider a sequence so that an ∈ (−1,∞), an →∞ and an/
√

n → 0 as n →∞.

i) To test H0 : σ2
X ≤ σ2

0 against H1 : σ2
X > σ2

0, consider a corrected samplen
X [n]

1 , . . . ,X [n]
n

o
of {X1, . . . ,Xn} such that

X [n]
i =

r
1 +

an√
n
Xi, i = 1, . . . , n,

(with σ2

X [n]
i

= σ2
n =

`
1 + an/

√
n
´

σ2
0). Then, if the asymptotic testing procedure in

Section 3 is applied to
n
X [n]

1 , . . . ,X [n]
n

o
n
, we have that

lim
n→∞P ( T

[n]
n > t(1−α) ) = 1.
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ii) To test H0 : σ2
X ≥ σ2

0 against H1 : σ2
X < σ2

0, consider a corrected samplen
X [n]

1 , . . . ,X [n]
n

o
of {X1, . . . ,Xn}, such that

X [n]
i =

r
1− an√

n
Xi, i = 1, . . . , n,

(with σ2

X [n]
i

= σ2
n =

`
1− an/

√
n
´

σ2
0). Then, if the asymptotic testing procedure in

Section 3 is applied to
n
X [n]

1 , . . . ,X [n]
n

o
n
, we have that

lim
n→∞P ( T

[n]
n < tα ) = 1.

Remark 3 Theorem 6 indicates that for any sequence {an}n, s.t. an ∈ (−1, 0)
S

(0,∞),

|an| ↗ ∞ and an/
√

n → 0 as n → ∞, then σ2
n → σ2

0 pointwise, and the asymptotic

procedure in Section 3 detects the difference from the null hypothesis a.s.− [P ]. Theo-

rem 7 indicates the same result for the one-sided tests considering any sequence {an}n,

such that an ∈ (−1,∞), an →∞ and an/
√

n → 0 as n →∞.

6 Simulation studies

In order to empirically justify the use of the tests proposed in this work, some simulation

studies have been carried out by following the sample generation procedure developed

in [11]. An FRV X with mean E(X ) = Π(−3,−1, 1, 1.5) and variance σ2
X = 22.6947

is simulated. Π(a, b, c, d) stands for the well-known Π-curve, which is defined as the

fuzzy set on R such that for each α ∈ [0, 1] and a ≤ b ≤ c ≤ d: Π(a, b, c, d)α =

[inf S(a, b, c)α, sup Z(b, c, d)α] with

S(a, b, c)α =


[a + (b− a)

p
α/2, c] if α ≤ .5

[b + (a− b)
p

(1− α)/2, c] if α > .5

Z(a, b, c)α =

(
[a, c + (b− c)

p
α/2 ] si α ≤ .5

[a, b + (c− b)
p

(1− α)/2 ] if α > .5

In this case, 101 α-levels are considered, by choosing a uniformly distributed RV

in [−8, 8] for the ‘centers’ and two RVs which distributed as a χ2
1 for the ‘shape’. A

random sample from X is obtained by applying the procedure in [11] n times. To

measure the distance between two fuzzy sets the Bertoluzza’s metric (a particular D

metric) with the Lebesgue measures in [0, 1] (see [2]) is employed.

The null hypotheses to be tested are H0 : σ2
X = 22.6947, H0 : σ2

X ≥ 22.6947 and

H0 : σ2
X ≤ 22.6947.

Firstly, the results for the asymptotic case are presented. 10,000 simulations of

the asymptotic testing procedures have been carried out (which implies a sample er-

ror of .00427 with a confidence of 95%). The results for different sample sizes n and

significance levels β are gathered in Table 1.

On the other hand, 10,000 simulations of the bootstrap tests have been performed

at different significance levels β and different sample sizes n, and with 1,000 bootstrap

replications. The results are showed in Tables 2 and 3.



13

Table 1 Empirical percentage of rejections under H0 (asymptotic tests)

H0 : σ2
X = 6.4437 H0 : σ2

X ≥ 6.4437 H0 : σ2
X ≤ 6.4437

n \ 100 β 1 5 10 1 5 10 1 5 10

50 2.02 7.04 12.32 2.94 7.86 13.28 .46 3.74 8.82
100 1.60 5.86 10.70 2.02 7.16 11.76 .52 4.32 9.24
500 1.18 5.56 10.60 1.38 5.54 10.46 .86 4.75 9.74

1,000 1.12 5.16 10.21 1.32 5.28 9.96 .89 4.86 10.06
5,000 .96 5.08 10.04 1.12 5.01 9.99 .94 5.02 9.98

Table 2 Empirical percentage of rejections under H0 (bootstrap 1)

H0 : σ2
X = 6.4437 H0 : σ2

X ≥ 6.4437 H0 : σ2
X ≤ 6.4437

n \ 100 β 1 5 10 1 5 10 1 5 10

10 2.62 8.08 13.10 .42 2.34 5.18 8.68 15.84 21.92
30 2.08 5.44 11.44 .56 2.68 5.92 4.42 10.70 16.16
50 1.50 5.36 10.54 .69 3.05 6.34 3.06 8.98 14.92
100 1.25 5.28 9.90 .78 4.12 8.19 1.83 6.27 11.84
200 1.09 5.06 9.95 .89 4.68 9.39 1.23 5.61 10.34

Table 3 Empirical percentage of rejections under H0 (bootstrap 2)

H0 : σ2
X = 6.4437 H0 : σ2

X ≥ 6.4437 H0 : σ2
X ≤ 6.4437

n \ 100 β 1 5 10 1 5 10 1 5 10

10 .73 3.62 7.82 .44 2.84 5.72 1.49 8.62 16.22
30 .80 4.07 9.12 .64 3.62 6.84 1.32 6.78 13.92
50 .88 4.38 9.46 .70 3.95 8.26 1.26 6.14 12.52
100 .92 4.88 9.61 .84 4.36 8.71 1.17 5.52 10.16
200 .98 4.95 9.82 .93 4.89 10.87 1.08 5.23 10.09

Table 1 shows that only when n ≥ 1, 000, the empirical percentage of rejections

is quite close to the nominal significance level, which implies that the asymptotic test

requires large samples. However, the results of both bootstrap tests are quite good

from n ≥ 50 as show Tables 2 and 3, especially those of the second bootstrap.

On the other hand, some simulations of a triangular-valued FRV X are carried out

to show the consistency of the proposed tests. Specifically, the ‘center’ (or vertex) of

the fuzzy numbers is given by a N (1, 2) variable and the left and right spreads have

χ2
3 and χ2

8 distributions, respectively. In this setting, the variance of X is assumed to

be σ2
X = 6.4437.

Firstly, the power of the tests H0 : σ2
X ≤ 6.4437 and H0 : σ2

X ≥ 6.4437 is analyzed.

For this purpose, the alternative hypotheses σ2 = (1 − 1
m ) σ2

0 and σ2 = (1 + 1
m ) σ2

0

(with m a positive real number) are considered respectively, where σ2
0 = 6.4437. The

power function of both tests at the level α = .05 is shown in Figure 1. Ten thousand

simulations of the test have been carried out, using a sample size of one hundred and

for different values of m. As a result, Figure 1 shows that the power is close to 1 as far

as the alternative hypothesis is from the null one in both cases

In the same way, to analyze the power of the test H0 : σ2
X = 6.4437, the alternative

hypotheses σ2 = (1 + 1
m ) σ2

0 are considered. Figure 2 shows that the power function

of the two-sided test at the level α = .05, constructed under the same conditions as

in the one-sided case, is close to 1 as far as the alternative hypothesis is from the null

one.
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Fig. 1 Power of the tests H0 : σ2
X ≤ 6.4437 and H0 : σ2

X ≥ 6.4437

Fig. 2 Power of the test H0 : σ2
X = 6.4437

7 Illustrative examples

The results obtained in this paper are applied in this section to a real-life example

inspired by [7]. The decision problem of investing in the stock exchange is analyzed.

Suppose that an investor is willing to invest in the stock exchange and that the investor

knows the prediction of 20 experts about the index at the end of 2007. The experts

opinions are not given by a single value, but by three values: two of them represent the

limits of the interval where they think the index value will be included for sure, and

the third one represents the maximum presumption they have about the value of the

index. These opinions could be represented by means of triangular fuzzy numbers and

they are gathered in Table 4.

Example 1. Suppose that the investor is not too risky and that he/she will only invest

if the expert opinions have a variability of 500 points at most. In order to advise the

investor, the random sample from X ≡ index at the end of 2007 given by the data in

Table 4 is considered, and the test H0 : σX ≤ 500 against H1 : σX > 500 is proposed

(or, equivalently, H0 : σ2
X ≤ 250, 000 against H1 : σ2

X > 250, 000).

The asymptotic and bootstrap techniques developed in this paper are applied. Using

the sample data, bS2
X = 551, 953.2164 and the statistic value is Tn = 2.5185. Therefore,
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Table 4 Evolution perspectives of the index

Expert Min Max Max Expert Min Max Max
presump. presump.

1 6500 8200 9000 11 6500 8000 9500
2 6800 7200 8000 12 6800 8500 10500
3 6600 7000 7800 13 7500 9000 10200
4 5000 7400 8000 14 5500 7800 9200
5 6300 6700 7900 15 7100 8200 8500
6 5800 8000 8200 16 7300 8000 9800
7 6800 9000 10000 17 7800 8200 9000
8 7000 8200 9500 18 8000 9300 10300
9 5000 6500 8200 19 7200 8500 9400
10 6800 7900 8500 20 6900 7000 8800

the asymptotic test leads to a p-value of .0059.The first bootstrap tests with 10, 000

bootstrap replications leads a p-value approximately 0 and the second one to a p-value

of .0006. So, in any case the conclusion is that the investor should not invest his capital

in the stock exchange at the usual significance levels.

Example 2. Under the same conditions than the previous example, suppose now

that the investor decides to be riskier and he/she will invest if the expert opinions

have a variability of 700 points at most. Then, the aim is to test H0 : σX ≤ 700 (or

H0 : σ2
X ≤ 490000). The statistic value in this case is Tn = .5161. The p-value of

the asymptotic test is .3029, and the corresponding to the bootstrap tests with 10000

replications are .21498 and .22263 respectively, so the investor could invest his capital

at the usual significance levels.

8 Conclusions and open problems

In this paper a test for the variance of an FRV has been developed. The concept of

variance considered here is based on a generalized metric and it is employed to quantify

the variability of the fuzzy values of an FRV about its expected value. The developments

were based on some classical results for Hilbertian random variables. This has been

possible thanks to the employment of the support function, which is a very useful tool

for theoretical developments.

Asymptotic and bootstrap procedures have been analyzed. All the test are asymp-

totically correct and the analysis of local alternatives leads to similar conclusions than

the corresponding ones in the real-valued case. The simulations showed that the boot-

strap techniques are suitable for small and moderate sample sizes.

The main advantage of the results in this work w.r.t. the existing procedures in

the literature (see [16]) is that the techniques employed here are valid for any type

of FRVs with values in Fc(Rp), and not only for FRV taking on a finite number of

different values in Fc(R). In addition, some power studies supporting the suitability of

the tests have been established.

In the future, the problem of testing the equality of variances of two or more FRVs

can be carried out in order to analyze the homoscedasticity condition.
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