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Abstract
This paper carries out a mathematical analysis of the limits and data reduction techniques of
three-hole pressure (THP) probes operating in a ‘non-nulling’ mode for incompressible flow.
As a result of this analysis, a direct procedure is advanced, based on the distinction of several
zones within the angular range, where different relations can be applied to obtain the flow
variables. This proposal provides a considerable increment of the operative angular range of
THP probes: about ±70◦ instead of the typical ±35◦ for a cylindrical probe. This may extend
the application of these probes in highly unsteady flows, or reduce the acquisition and data
reduction effort minimizing the necessity of probe reorientation. The influence of the data
reduction technique on the uncertainty transmission is also presented in the paper. From
detailed considerations, it is demonstrated that the results uncertainty depends on the specific
probe, but it is unaffected by the mathematical procedure employed to calculate the flow
variables. Validation measurements with pneumatic probes have been made for Reynolds
numbers from 4 × 103 to 3.5 × 104. In addition, a highly unsteady measurement in a
low-speed axial flow fan is succinctly analysed. Taking into account both attainable angular
range and uncertainty, it is determined that the optimal construction angle for the holes of a
low frequency response THP probe lies between 30◦ and 60◦, while for fast response probes,
in order to avoid the separated flow region, the optimal construction angle is around 30◦.
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Nomenclature

BPF Blade passing frequency
DHW Dual hot wire
LHS Left-hand side
THP Three-hole probe
αi Generic coefficient, numerator
bi Generic coefficient, denominator
Cα Angular coefficient
Cp Pressure coefficient
CPo Total pressure coefficient
CPs Static pressure coefficient
fi Pressure coefficient
F Function of the angle α

Iα Angle uncertainty (◦)
IP Pressure uncertainty (Pa)

IPd Dynamic pressure uncertainty (Pa)
IPs Static pressure uncertainty (Pa)
Pi Pressure measurement (Pa)
Pd Dynamic pressure (Pa)
P0 Total pressure (Pa)
Ps Static pressure (Pa)
Re Reynolds number
t Time (s)
TR Rotor blade passing period (s)
v Flow velocity (m s−1)

Greek letters

α Flow angle (yaw angle) (◦)
αm Flow angle error (◦)
δ Construction angle of the probe (◦)
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λ Generic parameter
σ Standard deviation

Subscripts

i i = 1, 2, 3

Superscripts

‘ Derivative
∗ Particular measurement
∗∗ Particular measurement

1. Introduction

The derivation of the flow velocity from pressure
measurements requires special probes (Pitot-static probes,
multi-hole probes, NACA pressure probes . . . ) and data
reduction techniques based on nonlinear mathematical
relations. The capacities and limits of the measuring system
(in terms of operative ranges and accuracy) depend not only on
the sensors performance, but also on the probe characteristics,
including associated fluid dynamic phenomena (desirable or
not). For instance, in the case of a typical Pitot-static probe, it
is possible to measure accurately the velocity magnitude only
if the probe is aligned with the flow [1].

On the other hand, important limitations of the measuring
system usually come from the mathematical relations
employed to link measured and transformed variables, and
also from the procedure used to calculate such relations. A
classical example of this problem is observed when using THP
probes to measure both direction and velocity magnitude of
two-dimensional flows. The mathematical indetermination
that arises in the calculation of the flow angle—at +37◦ and
−37◦ for cylindrical THP probes—leads to consider that the
maximum angular range of the probe is about ±35◦ [2]. It
would be useful to increase these span because particular
flows, mainly in turbomachinery, have instantaneous velocities
with angular variations beyond that range [3]. Furthermore,
although the angular span is usually enough to cover the
angular oscillations, changes in the direction of the mean flow
between different measuring positions require to modify the
probe orientation. This procedure is time consuming because
several tries are necessary in each position to centre the angular
range (together with the data reduction) for the adequacy of
the results.

This paper analyses the physical phenomena susceptible
to condition the performance of THP probes, explaining the
reasons that produce indeterminations in the mathematical
calculation of the flow angle. As a consequence, it will be
possible to determine the real physical range of the probes, as
well as the mathematical procedures that can be employed to
exploit the whole angular range.

Pressure probes with multiple holes are typically used
to measure the pressure and the velocity in the case of
incompressible flow. Three-hole probes obtain the direction
and the velocity magnitude in a plane, whereas other probes
with four, five and seven holes are able to describe three-
dimensional flows. References [4, 5] provide a complete

Figure 1. Three-hole pressure probes: cylindrical, trapezoidal and
cobra-type geometries.

review of the different geometries used in multi-hole pressure
probes, including its characteristics and basic performance.
Applications of this type of probes are described in [6–9].

Pressure probes provide both the pressure and the velocity
of the flow field. This is a major advantage when compared
to anemometric techniques or laser-doppler velocimetry. In
addition, pressure probes are more robust than hot-wire
probes and easier to operate than optical anemometers.
Furthermore, it is possible to build miniature pressure probes
with high-frequency response [10], enabling us to measure
unsteady flows [11] and even turbulence [12]. Reference [13]
summarizes the basic characteristics of these three measuring
techniques.

Figure 1 shows a sketch of a cylindrical, a trapezoidal and
a cobra-type three-hole probe, detailing the reference angles
in the measurement plane. The flow angle, denoted as α, is the
angle between the incidence of the flow and the front axis of
the probe, whereas the construction angle, denoted as δ, is the
angle between the central and the lateral holes. In the case
of cylindrical probes, the pressure variations in the holes with
the flow angle are smooth, and very similar to the pressure
distribution around a two-dimensional cylinder. In contrast,
trapezoidal and cobra-type probes present abrupt edges where
the flow can be easily detached.

Multi-hole pressure probes can be operated in two
different ways, usually known as ‘nulling’ and ‘non-nulling’
modes. In 2D incompressible flow, both modes require
pressure measurements in three different holes. When
operating in the ‘nulling’ mode, the probe is rotated to balance
the pressure in the lateral holes. The probe is thus aligned
with the flow direction and the central hole measures the
stagnation pressure [14]. In terms of data processing, it is the
simplest operating mode of the probe, but it takes a long time
to align the probe in each measurement point. In practice,
this means that only steady flows can be measured using
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Figure 2. Angular distribution of traditional calibration coefficients.

this mode. In the ‘non-nulling’ mode, the probe position
is fixed and the flow angle is determined from the pressure
differences between the lateral holes. These pressure values
are correlated with the velocity magnitude and direction of
the flow through a previous calibration [15]. The ‘traditional’
normalized calibration coefficients used with three-hole probes
are [16]

Cα = P2 − P3

P1 − 0.5(P2 + P3)

CP0 = P0 − P1

P1 − 0.5(P2 + P3)

CPs
= P0 − Ps

P1 − 0.5(P2 + P3)

(1)

where Cα represents the angular coefficient, and CPo and CPs

are the total and static pressure coefficients. Po and Ps are
the total and static pressure, whereas P1, P2 and P3 represent
the pressures measured in the central, left and right holes,
respectively.

In a typical calibration procedure, the probe is placed
inside a uniform flow of known characteristics. Its angular
position is progressively changed over the desired range. For
each position, the pressure in the probe holes, the angle and the
velocity and static pressure of the flow are stored. Afterwards,
the calibration coefficients defined in (1) are obtained.
Figure 2 shows a typical angular distribution of those
coefficients, i.e., the variation of Cα, CPo and CPs with the
flow angle α. Later on, the data reduction procedure employs
those curves to calculate the direction and velocity magnitude
of the measured flows. When the probe is used to measure an
unknown flow, the pressures in the three holes are recorded,
and the value of Cα for each measurement is obtained using
the first expression in (1). From the Cα calibration curve, the
flow angle α is determined. Once α is known, the values of
CPo and CPs for that particular angle are obtained from their
own calibration curves. Then, Po and Ps are calculated with
the second and third expressions in (1). Finally, the difference
between them, i.e. the dynamic pressure, provides the velocity
magnitude of the flow.

Some authors have attempted to derive mathematical
fittings for the curves of the calibration coefficients, so discrete
numerical methods should not be necessary to obtain the
flow variables [17, 18]. However, it is more accurate to
employ the calibration coefficients directly determined from
the measurements in the calibration sequence, and then obtain

the flow variables with a numerical interpolation of the
coefficients. The errors magnitude with this methodology is
significantly lower than in the case of any mathematical fitting.
Typically, this methodology when applied to the experimental
calibration coefficients is known as ‘direct calibration’ of a
pressure probe [19].

The operative angular range of a pressure probe depends
on its own characteristics (number of holes, angle between
them, head geometry . . . ) and also of the data reduction
procedure used to obtain the flow variables. When a traditional
calibration is employed, typical attainable ranges are ±35◦ for
three-hole probes [2], ±25◦ for five-hole probes [20] and ±70◦

and even ±80◦ for seven-hole probes [21, 22]. In this case, the
factors limiting the angular range are related to the presence
of singular and double points in the calibration coefficients.
It will be shown that this constraint is more restrictive than
the physical limit associated to fully-detached conditions in
several holes of the probe. The most typical construction
angles are 30◦ and 45◦, but probes with other angles are not
unusual. This angle affects the sensitivity (uncertainty) of
the results but also the maximum range and the angle where
singularities arise.

In this paper, a theoretical analysis of the direct calibration
and data reduction procedure of a three-hole pressure probe is
developed. The objective is the definition of a methodology
to increase the attainable angular range of THP probes,
maintaining the uncertainty of the results in acceptable levels.
Following sections contain a deep mathematical analysis of
the pressure distribution equations in the holes of a THP
probe. In particular, the conditions leading to the existence
of singular points in the data reduction equations are analysed
in detail. Moreover, a new methodology for data reduction
is proposed to prevent its influence on the operative angular
range. In addition, the conditions inducing the appearance of
double points are also studied extensively. The influence of
the angular distance between the holes is also included in the
discussion, in order to establish the adequate interval for the
construction angle in a THP probe.

2. Mathematical analysis

From a mathematical perspective, in the equation relating the
flow angle with the pressure values measured in the probe
holes, two different factors may impose severe limitations.
First of all, the function must be defined over the whole range,
i.e., there cannot be singular points through the equation.
Secondly, the flow angle must be determined univocally, that
is, the equation should not present double solutions (double
points). In fact, the singular points are not a real problem
because they can be avoided defining different zones inside
the angular range and applying different equations for every
segment. In contrast, double points could be a serious problem
because of their characteristic physical nature. However,
the maximum physical angular range is broader than usually
assumed. This section demonstrates that with an adequate
election of the number of zones and its associated equations,
the angular range for a typical cylindrical probe can be
improved to ±70◦.
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2.1. Determination of the flow angle

The traditional angular coefficient is only a particular method
to solve a set of equations. Such a coefficient is just a relation
between the pressures measured in the probe holes, depending
exclusively on the flow angle. Hence, it is neither influenced
by the velocity magnitude nor by the static pressure.

The pressure distribution in a probe hole can be expressed
as a relation between the static pressure Ps, the dynamic
pressure Pd and a particular function of the flow angle f (α).
Therefore, the pressure distributions in the holes of a THP
probe constitute a three-equation system:⎧⎪⎨

⎪⎩
P1 = Ps + Pdf1(α)

P2 = Ps + Pdf2(α)

P3 = Ps + Pdf3(α)

(2)

where P1, P2 and P3 are the pressures measured in the
holes (known variables), and Ps, Pd and α are the unknown
variables corresponding to the flow to be determined. The
functions f1(α), f2(α) and f3(α) are the pressure coefficients
in each probe hole. They are usually obtained from the
calibration of the probe, as a discrete function of the flow
angle. Theoretically, in the case of a cylindrical probe with
an angular distance δ between the holes, the function f1(α)
is the pressure coefficient over a 2D cylinder Cp(α), whereas
functions f2(α) and f3(α) are the same pressure coefficient
shifted δ◦—Cp(α + δ) and Cp(α − δ), respectively. However,
it was preferred to consider them as different functions, so the
analysis is not restricted to cylindrical probes. Moreover, it
is thus possible to implicitly include particular manufacturing
imperfections of the probes (misalignments, slight differences
of the construction angle, . . . ).

The flow angle cannot be explicitly derived from the
three-equation system (2) because the pressure coefficients
fi(α) are not a direct analytical expression. They are only
known in a discrete form from the calibration of the probe. In
contrast, both static and dynamic pressures can be expressed
in an explicit form from the equation system. The simplest
mathematical solution for (2) consists in reducing the three
equations into a single expression depending exclusively on
the flow angle α. For instance, subtracting the first equation
from the second one, the second from the third one, and then
dividing both subtractions, it yields

P1 − P2

P2 − P3
= f1(α) − f2(α)

f2(α) − f3(α)
≡ F(α) (3)

which is a function only of the flow angle. The angle cannot be
obtained analytically from expression (3), but as the function
F(α) is known from the calibration of the probe, it is possible
to employ a discrete numerical method to determine α.

2.2. Singular points

Equation (3) degenerates in a singular point when the
denominator is zero. For example, assuming that P2 and P3

are the pressure in the left and right holes respectively, the
function F(α) is undefined at α = 0◦ when both pressures are
equal. The traditional calibration solves the equation system
using an alternative relation—first equation in (1)—where the

Figure 3. Possible zones dividing the angular range for a cylindrical
probe with δ = 45◦.

denominator is P1 − 0.5(P2 + P3). This way, the singularity
is symmetrically displaced from the central point. The angles
where the coefficient is now undefined depend on the probe
characteristics; for a typical cylindrical probe they appear at
−37◦ and +37◦ approximately. As a consequence, this has
led to consider that the angular range is ±35◦. Some authors
have proposed to avoid this singularity using the real dynamic
pressure Pd as the denominator. The velocity is not known
a priori, but a simple iterative procedure is employed to found
the correct value [23]. Apparently this solves the singularity
in the angular coefficient, but in fact the same mathematical
problem arises now in the correction equation.

However, the singularities can be avoided discriminating
several zones in the whole angular range, and defining an
adequate relation F(α) in each one of them. Actually, any
relation between the pressures is valid if it is independent of
both static and dynamic pressures, and the denominator is not
zero in that zone.

Perhaps the simplest solution to the problem of
the singularities might consist in applying the traditional
calibration for the angular range between ±30◦ and then
defining a different one for the remaining angles. However, as
the flow angle is precisely the variable to be obtained, the
problem is that it cannot be employed to discriminate the
different zones. Formally, the criterion must be established
through relations among the measured pressures in the holes:
P1, P2 and P3. Under this condition, a maximum number of six
angular zones can be distinguished through the whole angular
range.

Figure 3 shows the pressure distribution in the three
holes of a cylindrical probe versus the flow angle. They are
adimensionalized as pressure coefficients. The values in the
central hole, f1, have been adopted from the experimental
measurements around a cylinder for a Reynolds number of
2.3 × 104 (taken from [24]). The distributions in the lateral
holes, f2 and f3, have been obtained with a 45◦ shift of f1. This
is equivalent to an ideal cylindrical probe with real pressure
coefficients. In the figure, the six main zones are highlighted:
a first one when P1 > P2 > P3 (A); a second one when P1 >

P3 > P2 (B); a third when P2 > P1 > P3 (C); and so on. Outside
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the range of ±100◦, no different regions to those defined within
the six previous zones can be identified. Moreover, two (or
even three) of the pressure sensors are measuring similar fully-
detached conditions there, so this implies a physical limit of
the angle determination.

In each of the six main zones, a different mathematical
relation between the equations of the system (2) can be
developed. Maybe, the simplest and more elegant expression
is the following:

F(α) ≡ Pj − Pk

Pi − Pk

, Pi > Pj > Pk. (4)

However, its application requires a previous sorting of the
pressures, so its numerical implementation could be quite
complex.

From a practical point of view, the best solution would be
to find a unique relation covering the whole angular range, but
as shown later, this is unfeasible. Therefore, it is interesting to
know the minimum number zones and their associated pressure
relations that could be used. To do so, a general relation with
all the possible pressure combinations is introduced below.

Since any relation between the pressure values could be
valid if it shows no dependence on both static and dynamic
pressures, the most general relation satisfying these conditions
is

a1P1 + a2P2 + a3P3

b1P1 + b2P2 + b3P3
= a1f1 + a2f2 + a3f3

b1f1 + b2f2 + b3f3
≡ F(α) (5)

with
a1 + a2 + a3 = 0

b1 + b2 + b3 = 0
(6)

which are the necessary restrictions to make F(α) independent
of the static pressure. In addition, the linear combinations
of coefficients ai and bi cannot be proportional to each
other. The restrictions defined in (6) imply a reduction in
the number of independent coefficients in (5) from six to
four. Since the relation is conserved when multiplied or
divided by any product of coefficients aibj, this means that
only two independent coefficients (one in the numerator and
the other in the denominator) are really representative in F(α).
Anyway, (5) is maintained in its more general expression, so
the possibility for the coefficients ai or bi to be zero is not
restricted.

To cover the whole angular range of possibilities—of the
denominator, for example—the study could be done in three
steps: first, maintaining b1 = 1 and varying b2 from 0 to −1
and b3 from −1 to 0; second, maintaining b2 = 1 and varying
b3 from 0 to −1 and b1 from −1 to 0; and third, maintaining
b3 = 1 and varying b1 from 0 to −1 and b2 from −1 to 0. To
facilitate this analysis a parameter λ has been found including
the three steps. If the coefficients in the denominator (for
example, again) are replaced by

b1 = cos

(
π

2
λ

)

b2 = cos

(
π

2
λ − 120◦

)

b3 = cos

(
π

2
λ + 120◦

)
,

(7)

Figure 4. Coefficients bi as a function of the λ parameter.

the variation of the λ parameter between −1 and +1 covers all
the possible linear combinations in the denominator in (5). The
previous parameter has not been mathematically deduced, it is
only one of the possibilities to represent the three coefficients
as a continuous function of a single variable without adding any
restrictions. Figure 4 shows the coefficients (7) as a function
of the λ parameter.

For example, a value of λ = 0 gives b1 = 1, b2 = −0.5
and b3 = −0.5, i.e., the linear combination P1 − 0.5(P2 + P3),
which is the denominator of the angular coefficient of the
traditional calibration. Or applying the same equations (7) to
the αi coefficients, a value of λ = 1 gives P2 − P3, which is
the numerator of the same angular coefficient.

We are going to use the λ parameter to analyse the
appearance of singular points in the relation (5) (angular
coefficient). Singular points arise when the denominator is
zero, so

b1f1 + b2f2 + b3f3 = 0. (8)

Introducing the restriction in (6), this can be written as follows:

b2

b1
= f3 − f1

f2 − f3
. (9)

Considering the bi coefficients according to the form defined in
(7), a final expression is given as a function of the λ parameter:

tan

(
π

2
λ

)
=

√
3

3

2f1 − f2 − f3

f2 − f3
. (10)

For each value of λ from −1 to +1 (thus covering all
the possible linear combinations) one or more α values
(the pressure distributions fi are functions of α) satisfying
equation (10) could be found. They correspond to the flow
angles where equation (5) becomes undefined for that specific
linear combination. These flow angles are plotted in figure 5
for a cylindrical probe with a construction angle of 45◦. The
horizontal gray lines separates the zones defined in figure 3.
Note that any vertical line that could be considered in the plot
intersects at least in one point with the distribution of singular
points. In other words, whatever the λ parameter is, the whole
angular range cannot be covered with a unique relation of the
pressure values. However, if we would like to keep just one
pressure relation with symmetrical features with respect to a
zero-incidence angle for the attainable angular range, the only
possible election for the denominator of (5) corresponds to
setting λ = 0 (the denominator of the angular coefficient of
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Figure 5. Distribution of singular points as a function of the λ
parameter for a cylindrical probe with δ = 45◦.

the traditional calibration), with two singular points in ±37◦.
Now, if we want to increase the angular range, we have to
take into account more than just one zone. Thus, in order
to discriminate the whole angular range with two zones, it is
possible to chose any λ parameter ranging from −1 to −0.45
in the zone where P3 > P2 (B + D + F, second quadrant in
figure 5) and ranging from 0.45 to 1 in the zone where P2 >

P3 (A + C + E, forth quadrant in figure 5). With this double
election, the whole angular range is covered with no singular
points arising in the equations. For instance, adopting λ =
±2/3, expression (5) in the P3 > P2 zone takes the value

P2 − P3

−P2 + 1
2 (P1 + P3)

(11)

whereas in the P2 > P3 zone is

P2 − P3

−P3 + 1
2 (P1 + P2)

. (12)

For the numerator of all these expressions, any value of the λ

parameter is valid, as long as it differs from the one chosen
for the denominator. Particularly, the value λ = 1 has been
fixed for the numerator in this case (in fact, ai coefficients are
defined factoring them by 2/

√
3, which is equivalent to take

α2 = 1 and α3 = −1).

2.3. Double points

Even if the problem of singularities is solved, it might be that
the flow angle could not be determined univocally due to the
existence of double points in the equations. This occurs when
(5) becomes in a non-monotonous curve. The transition from
a monotonous to a non-monotonous zone of the F(α) function
can be identified through zeros of the flow angle derivative.
Deriving F(α) from the general form (5)

dF(α)

dα
= 0

⇒ (a1b2 − a2b1)[(f2 − f3)f
′
1 + (f3 − f1)f

′
2 + (f1 − f2)f

′
3]

[a2(f1 − f3) + b2(f2 − f3)]2

= 0 (13)

where f ′
i represents the derivative of the pressure coefficient

with respect to the flow angle, it is then deduced that the
derivative turns to zero if one (or both) of the following

Figure 6. Double points as function of flow angle α for a cylindrical
probe with δ = 45◦.

conditions is satisfied:

a1b2 − b1a2 = 0 (14)

(f2 − f3)f
′
1 + (f3 − f1)f

′
2 + (f1 − f2)f

′
3 = 0. (15)

Note that (14) is only fulfilled if both αi and bi coefficients
are proportional. However, this possibility was already denied
when discussing the expression (5). Therefore, the only real
condition that determines the presence of double points in the
equations is (15). Figure 6 represents the LHS of this condition
as a function of the flow angle for a cylindrical probe with
an angle of 45◦ between the holes. The derivative presents
two zeros at −75◦ and 75◦ (it is symmetrical with respect
to the zero-incidence flow angle). This means that F(α) is
monotonous for the angular interval ranging from −75◦ to
75◦. It is important to notice that (15) is not including either αi

or bi coefficients. As a result, any adopted expressions for F(α)
presents double points in exactly the same angular positions.
Then, the range of ±75◦ constitutes the maximum attainable
angular range for this THP probe.

2.4. Influence of the probe construction angle

Previous analysis was conducted for a particular probe with a
construction angle of 45◦. Nonetheless, the angular distance
between the holes might be an important parameter modifying
the attainable angular range. Following, the mathematical
analysis is extended to include its influence on the distribution
of singularities and double points.

Figure 7 reproduces the same results shown in figure 6,
but now in the case of cylindrical probes with different
construction angles. Analogous considerations to those
introduced in figure 3 have been assumed to set the pressure
distributions for each probe. It is observed that the maximum
angular range, in terms of double points restrictions, decreases
with the construction angle. Note that in the case of a 65◦

probe, this angular range is nearly ±70◦, whereas for a 25◦

probe it could be extended even further than ±90◦.
To complete the analysis, the influence of the construction

angle on the zones limits must also be carried out. The border
limits of the six discriminating zones have been found for
the construction angles from nearly 0◦ to 90◦ and plotted in
figure 8 (black lines). Only positive α are represented in the
figure, the negative values have a symmetrical behaviour. This
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Figure 7. Location of double points for different construction
angles of a cylindrical THP probe (the plot is symmetrical respect to
the vertical axis).

Figure 8. Limits of validity (zones and double points) as a function
of δ and α for a cylindrical THP probe.

has been done for each δ using an equivalent analysis to that
shown in figure 3 for δ = 45◦. The order in the zones changes
with the construction angle; up to δ = 50◦ the outermost
zone corresponds to P2 > P1 > P3, while from 50◦ to 70◦

corresponds to P1 > P2 > P3. For construction angles greater
than 70◦ some of the zones duplicates near α = 0 deg (line
marked P3 > P1 > P2), making this value the highest practical
construction angle. Also, the flow angles where double points
arise have been determined for each δ. They are also plotted
in figure 8 with grey lines (cf figures 6 and 7). The shadow
region in the figure shows the validity limits including both
constraints. From δ = 7◦ to δ = 40◦, the maximum angular
range is restricted by the discriminating zones, while from 40◦

to 70◦ the boundary is imposed by the double points. From
70◦ on there are also double points near α = 0◦. From the
results shown in figure 8, it is possible to obtain operative
ranges about ±70◦ for any valid construction angle. Even,
theoretically, it could be possible to achieve near ±90◦ with a
δ = 35◦, though no further investigations have been realized
to contrast this feature.

Now, considering the methodology employed for data
reduction, figure 9 shows the angular distribution of
singular points, as a function of the λ parameter chosen
for the denominator of the angular relation, for different
construction angles of the cylindrical probe. Some differences
are noticeable, especially when comparing probes with
construction angles lower and higher than 45◦. In particular,

Figure 9. Singular points for different construction angles in the
case of a cylindrical THP probe.

angular distances below 45◦ exhibit two different singular
points for any relation of linear combinations (i.e., for every
value of the λ parameter), so it could be necessary to introduce
more than two zones to obtain the maximum angular range
of the probe. Note that the traditional calibration coefficient
(λ = 0) maintains the singular points in ±37◦, independently
of the construction angle δ. This is the reason because no
angular range extension had been achieved with construction
angles greater than 45◦.

2.5. Dynamic and static pressure determination

In previous sections, the determination of the flow angle from
the equation system (2) was discussed in detail. Once the
flow angle is known, both dynamic and static pressures are
obtained immediately. For instance, in the case of a particular
measurement in the holes, P1

∗, P2
∗, P3

∗, that calculates the
flow angle as α∗, the dynamic pressure can be obtained directly
substituting these values in (5), yielding

P ∗
d = b1P

∗
1 + b2P

∗
2 + b3P

∗
3

b1f1(α∗) + b2f2(α∗) + b3f3(α∗)
. (16)

Finally, the static pressure is determined using any of the three
equations of the system introduced in (2), for example

P ∗
s = P ∗

1 − P ∗
d f1(α

∗). (17)

3. Uncertainty analysis

The influence of the calibration and data reduction procedure
in the uncertainty of the results is analysed in this section.
For convenience, the analysis is carried out for a cylindrical
probe, though it can be easily extended to include probes with
other geometries. It will be shown that the uncertainty of the
results is independent of the mathematical procedure that is
employed for the data reduction. In addition, the influence
of the construction angle of the probe in the uncertainty
levels is examined carefully, in order to state which is the
optimal angular distance between the holes ensuring minimal
uncertainties.

7
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3.1. Uncertainty of the flow angle and the dynamic
and static pressures

The transmission of the uncertainty of the sensed pressures
towards the flow angle is calculated for the generic relation
of pressures combinations (5), following the method proposed
by Kline [25]. Since the flow angle is determined from the
pressure values P1, P2 and P3, the uncertainty of the flow angle
is estimated from the uncertainty of the pressure measurements
according to

I 2
α =

(
∂α

∂P1

)2

I 2
P1

+

(
∂α

∂P2

)2

I 2
P2

+

(
∂α

∂P3

)2

I 2
P3

. (18)

Usually it is assumed that the uncertainty of the pressure
measured by the transducers is the same for the three holes:
IP1 = IP2 = IP3 = IP. In (5), it was established that F is a
function of the flow angle that must be determined from the
calibration of the probe. Unfortunately, the flow angle is
thus expressed implicitly in a discrete form, so it cannot be
resolved directly through an explicit analytical solution. As
a consequence, the partial derivatives of the flow angle with
respect to the pressure values should be obtained using the
chain rule as follows:

∂α

∂Pi

= dα

dF
· ∂F

∂Pi

i = 1, 2, 3. (19)

However, these considerations can be reformulated in a more
rigorous, mathematical form, in order to derive an expression
for the uncertainty of the flow angle from the original equation
system (2) without including any specific resolution method.
To calculate the partial derivatives of the flow angle with
respect to the pressure values measured by the probe, we
differentiate the equation system (2), expressing the result in
a matrix form,⎛
⎝dP1

dP2

dP3

⎞
⎠ =

⎛
⎝∂P1/∂Ps ∂P1/∂Pd ∂P1/∂α

∂P2/∂Ps ∂P2/∂Pd ∂P2/∂α

∂P3/∂Ps ∂P3/∂Pd ∂P3/∂α

⎞
⎠ ·

⎛
⎝dPs

dPd

dα

⎞
⎠, (20)

and the derivatives are obtained inverting the Jacobian matrix
in (20):

∂α

∂P1
= f3 − f2

Pd [f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)]

(21)

∂α

∂P2
= f3 − f1

Pd [f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)]

(22)

∂α

∂P3
= f2 − f1

Pd [f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)]

. (23)

Substituting (21)–(23) into equation (18), the uncertainty of
the flow angle is given by

Iα = Ip

Pd

·
√

(f3 − f2)2 + (f1 − f3)2 + (f2 − f1)2

f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)

. (24)

The same procedure is applied for the uncertainty levels of
both dynamic and static pressures, resulting in

IPd
= Ip ·

√
(f ′

3 − f ′
2)

2 + (f ′
1 − f ′

3)
2 + (f ′

2 − f ′
1)

2

f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)

(25)

Figure 10. Distribution of the uncertainty of the flow angle and the
dynamic and static pressures, over the whole angular range. A
cylindrical probe with δ = 45◦.

IPs
= Ip ·

√
(f2f

′
3 − f3f

′
2)

2 + (f3f
′
1 − f1f

′
3)

2 + (f1f
′
2 − f2f

′
1)

2

f ′
1(f3 − f2) + f ′

2(f1 − f3) + f ′
3(f2 − f1)

.

(26)

The uncertainties are different for every specific probe, but
they are independent of any data reduction procedure, if the
procedure is an exact mathematical method. Let consider a
particular measurement with real pressure values denoted as
P1

∗, P2
∗, P3

∗, corresponding to a real flow angle α∗. Suppose
that an error is introduced when measuring one of these
pressure values, for instance, obtaining P1

∗∗ instead of P1
∗.

If the data reduction technique is an exact solution of the
equation system (2), the resulting flow angle will be always
the same, α∗∗, whatever procedure is employed. In other
words, an uncertainty of the measurements, IP1 = |P ∗

1 − P ∗∗
1 |,

leads to an uncertainty in the flow angle, Iα = |α∗ − α∗∗|,
which is independent of the resolution method. Moreover,
this has also been proved using the general form of F(α) in
equation (5) to obtain the partial derivatives in equation (19).
Although the mathematical development is not detailed here
for brevity, both αi and bi coefficients cancel out and the
same expressions, previously formulated in (21)–(23), are
obtained.

Figure 10 shows the uncertainties over the whole range
of a cylindrical probe with a construction angle of 45◦. The
uncertainty of the flow angle is expressed as a percentage of
the uncertainty in the pressure measurement, IP, relative to the
dynamic pressure Pd, while both dynamic and static pressures
uncertainties are only referred to IP, as befit the equations.
When α = 0◦, the uncertainty in the flow angle is about 0.15◦

for every 1% of IP/Pd. This uncertainty level is maintained
for all the angles ranged between ±30◦. Outside this range,
the levels increase progressively, reaching up to 0.5 when α =
±60◦. The uncertainty rises severely when operating in the
limits of the attainable angular range of these probes (α =
±70◦). The uncertainty of the dynamic and static pressures
follow, basically, the same behaviour than the flow angle.
They are practically constant for a wide region of the angular
range (close to ±60◦), with characteristic values lower than
unity.
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Figure 11. Influence of the probe construction angle in the uncertainty levels of the flow angle and both dynamic and static pressures for a
cylindrical probe.

3.2. Effects of the construction angle

Construction angles going from 10◦ to 70◦ have been
considered to analyse the effects of the angular distance
between the holes on the uncertainty levels. Such an interval
has been selected according to the limits of δ angles shown
in figure 8. Figure 11 shows the uncertainty results for the
flow angle and both dynamic and static pressure with five of
the different construction angles studied. In general, the
angle uncertainty presents reasonable low levels for all the
construction angles, without exceeding 0.35◦ for every 1%
of IP/Pd. For intermediate values of the construction angle,
the angle uncertainty is quite uniform for central values of α.
This uniformity is lost for extreme angular distances of the
holes (δ � 25 or δ � 65◦). In particular, in the case of δ �
25◦, a sudden increase of Iα appears for flow angles around
±30◦, whereas maximum uncertainties are concentrated close
to zero-incidence flows when δ � 65◦.

Distributions for the uncertainty of the dynamic pressure
are more uniform if the construction angle lies between 40◦ and
60◦. When the angular distance of the holes is 25◦ (or lower),
a significant increase of IPd appears around α = 0◦, whereas
in the case of δ � 65◦, lowest values of IPd are encountered for
zero-incidence flows.

Complementarily, the uncertainty of the static pressure is
quite uniform for all the construction angles. Nevertheless, a
considerable increment of IPs is observed all over the angular
range of the probe when δ � 25◦.

As a conclusion, bearing in mind the results shown in
figures 8 and 11, the more desirable design of cylindrical
probes is achieved when the angular distance between the holes
ranges from 30◦ to 60◦. Within this interval, the uncertainty
is reasonable low and very similar for all the situations. Even
cylindrical THP probes with construction angles between 60◦

and 70◦ can be employed; uncertainty values are larger but
still acceptable. In contrast, construction angles lower than
30◦ are not recommended, due to the notable increase of the
uncertainty levels for both dynamic and static pressures.

4. Measurement test

In this section, the methodology developed above is illustrated
with calibrations and measurements using real probes. They
have been mostly conducted with pneumatic probes in uniform
steady flow, but also an example of a dynamic measurement
in a turbomachine is included.

4.1. Calibration

The test rig is a small wind tunnel, composed of a centrifugal
fan at the inlet, a settling chamber and a 4:1 contraction
nozzle that ensures uniform flow. It has an opened working
area of 0.15 × 0.30 m2 where the probe is operated (the
static pressure is thus atmospheric). The maximum attainable
velocity is 65 m s−1, with a turbulence level around 0.5%.
The velocity magnitude is determined with a Pitot-static probe
at the measurement section (and with the pressure in the
settling chamber). These pressures are measured with U-
manometers and pressure transducers. The uncertainty for the
mean velocity is estimated to be lower than 0.2%. The probes
are held in a rotating support, driven by a step motor, so they
can be axially rotated 360◦ with a precision higher than 0.1◦.

The probes tested are cylindrical three-hole probes with
construction angles of 30◦, 45◦ and 60◦. Here, most of the
results given here correspond to the 45◦ probe. The diameter
of the probes is 8 mm, with variable shaft lengths. The head is
about 24 mm and the three-holes arrangement is placed 16 mm
from the semi-spherical tip, with a 0.8 mm hole diameter. In
addition, the internal tubing of the probe has a 1 mm inner
diameter, and 0.5 m length. Two meters of pneumatic tube,
4 mm internal diameter, are used to connect the internal tubes
with each transducer. The transducers are Validyne DP15, with
a 350 mm H2O range and accuracy of ±0.25%. Its amplified
output was acquired with a PCI 12bits A/D card.

Measurements were taken adjusting the velocity in the
test section and positioning the probe at the desired angles.
A sampling frequency of 1 kHz per channel was found to
be accurate enough due to the low frequency response of the
instrumentation assembly. The samples, stored as raw data, are
numerically post-processed to obtain the mean values. Several
filters can be used in the electronic hardware and also in the
digital processing of the signals, to avoid aliasing and to filter
the desired frequencies out.

From the different possibilities that can be used in the data
reduction procedure, a two-zone method has been chosen, with
the following relations:

P2 − P3

P1 + P2 − 2P3
= f2 − f3

f1 + f2 − 2f3
= F(α) when P2 > P3

(27)

and
P2 − P3

P1 + P3 − 2P2
= f2 − f3

f1 + f3 − 2f2
= F(α) when P3 > P2.

(28)
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Figure 12. Angular coefficients, F(α), of three cylindrical probes
with 30◦, 45◦ and 60◦ construction angles (Re = 2 × 104).

This definition is equivalent to a parameter λ = ±2/3 in the
denominator of equation (5) and λ = −1 in the numerator.

The three pneumatic probes mentioned above have been
calibrated with a velocity of 36.4 m s−1 (Re = 2 × 104),
covering the flow angles (angular positions of the probe, really)
between −90◦ and +90◦ with a 5◦ interval. With the pressures
acquired during calibration, both traditional and zone-based
angular coefficients are obtained.

Coefficients defined though (27)–(28) are plotted in
figure 12 for the three construction angles. The 30◦

configuration presents two singular points near the ±70◦ flow
angle. Both 45◦ and 60◦ probes have two double point
limits about ±65◦. It is suspected that these probes do not
reach the ±70◦ angular span due to three-dimensional effects
induced by the proximity of the probe tip and the specific
adopted Reynolds. The traditional calibration is also restricted
to ±30◦.

According to figure 8, it is possible that the 30◦ probe
may provide an operative angular range about ±85◦; however,
in order to avoid the singularities, a three-zone data reduction
technique would be necessary.

The pressure coefficients and the measurements standard
deviation taken from the 45◦ probe calibration are shown
in figure 13. The standard deviation is an uncertainty
indicator of a single sample in the measurements. It includes
the transducers and measurement system accuracy, the test
rig uncertainty and the aerodynamic characteristics of the
probe for this particular assembly (systematic errors are not
considered). The standard deviation increases with the flow
angle relative to each hole, going approximately from 0.7%
when the hole is facing the flow to 1.2% when the hole is
in the separated region. Although a progressive increment is
observed, no abrupt change is found when the separation is set
off.

This probe geometry has a vortex-shedding phenomenon
with a Strouhal number around 0.2. However, the frequency
response of the probe assembly is much lower, and the
increment in the standard deviation seems to be more related
to the pressure coefficient value rather than to any unsteady
phenomena. At least, with this particular probe and setup,
there are no significant differences between the ±35◦ and the
±70◦ ranges. Obviously, this cannot be the same for fast
response probes.

Figure 13. Pressure coefficients and standard deviation of
calibration measurements with a 45◦ probe (Re = 2 × 104).

Figure 14. Comparison between the traditional and new reduction
method with measurements between ±90◦ with a Re = 3 × 104.

4.2. Data reduction comparison and the Reynolds
number effect

To compare the results obtained using the traditional
calibration and the new data reduction procedure, a set of
measurements have been conducted for a velocity of 54 m s−1

(Re = 3 × 104) with flow angles varying between ±90◦ every
2.5◦. The acquisition settings were maintained from previous
measurements. Figure 14 shows the results obtained with
each technique, compared to the real values of the flow. Inside
the traditional calibration range, both methods give the same
solutions, but with the new procedure, an extended angular
span is covered. Outside the valid ranges of each calibration
method, the results usually provide a wrong flow angle (staying
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Figure 15. Reynolds influence on the flow angle and velocity errors for a 45◦ cylindrical probe using a Re = 2 × 104 calibration.

inside the limits of the angular span). The sharp changes in
the range boundary of the traditional calibration are due to the
mathematical singularities.

To define the influence of the Reynolds number in the
probe calibration, several measurements were acquired from
Re = 4 × 103 to Re = 3.5 × 104. They have been transformed
using the calibration corresponding to Re = 2 × 104. Since
the real probe angle and the velocity magnitude of the flow
in the test rig are known for each measurement, it is possible
to calculate the error (figure 15). For most of the angular
span, the difference in the flow angle lies between ±1◦ and
between ±2% in the velocity magnitude. Lower Reynolds
numbers show significant errors, not only in the extended
range but also in the traditional one (especially for the velocity
magnitude). For the highest Reynolds number (3.5 × 104),
the errors in both angle and velocity values increase suddenly
close to the borders of the angular range. Also, noticeable
differences in the velocity magnitude are found in the central
zone. Complementarily, the standard deviation increases as
the Reynolds number decreases (not shown here). Values for
Re = 4 × 103 are as high as 5% of Pd, maintaining similar
trends to those previously reported in figure 13.

In essence, the analysis of the previous tests shows
that with pneumatic probes for stationary flows, the new
data reduction method attains the same performance as the
traditional one, providing a wider angular range.

4.3. Dynamic measurements with a fast response probe

Additional measurements, now with a dynamic probe, are
reported below. Since only averaged values are compared with
hot wire measurements, this section constitutes an application
example rather than a validation. This dynamic probe, with
a geometry similar to the pneumatic one, has three miniature
pressure sensors placed axially inside the probe, at 6 mm from
the holes openings. The construction angle is 60◦ (it was
built during the initial stages of the investigation). The Kulite
CCQ-093 pressure sensors have 2.4 mm diameter and 9.5 mm
length, with a differential pressure range of 0.35 bar, accuracy
of ±0.1% and a natural frequency of 150 kHz.

The probe has been calibrated in the same facility as the
pneumatic probes. The vortex shedding phenomena has been
overcome with a higher sampling frequency (2 kHz), larger
acquiring sequences (up to 5000 points) and an averaging
process for every angular position. In this case, a remarkable

Figure 16. Instantaneous flow angle in a low-speed axial fan.
Comparison between data reduction methods.

increase is found in the standard deviation when a hole is
in the separated flow region. However, the mean values of
the pressure coefficient were found to be very close to those
obtained with the pneumatic probe.

Some measurements have been conducted with the
dynamic probe in a low-speed axial fan with inlet guide vanes.
This stator-rotor configuration is composed of 13 fixed vanes
and a 9-blade rotor running at 2400 rpm, with hub and tip
diameters of 380 and 820 mm, respectively (more details can
be found in [26]). The probe, placed 30 mm downstream
of the rotor blades, was employed to obtain several spanwise
measurements, with an acquisition frequency of 36 kHz and
10 000 samples per channel (the blade passing frequency BPF
is 360 Hz).

Figure 16 shows the flow angle from an instantaneous
measurement in the hub region (10% span), transformed with
both traditional and new data reduction methods. These
extreme angular oscillations are only observed near the hub and
the tip regions. The flow angle in the central part of the span
usually stays inside the traditional range. The instantaneous
signals were ensemble-averaged to obtain the blade-to-blade
distributions, as shown in figure 17(a). Measurements near the
hub (10% span), tip (90% span) and midspan are compared
with the equivalent measurements taken with dual hot wire
anemometry (DHW). Figure 17(b) shows the power spectra of
the instantaneous measurement at midspan for the central and
one lateral hole of the probe.
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Figure 17. (a) Ensemble-averaged distributions in a low-speed axial fan (comparison with DHW data); (b) power spectra of the
instantaneous signal at midspan. TR = 1/BPF.

The midspan measurement exhibits an unsteadiness about
5 kHz for the central hole and 7 kHz for the lateral hole,
clearly seen in figure 17(b). This is linked to the frequency
response of the line-cavity system connecting the pressure
tap with the sensor (a one-dimensional analytical estimation
[27] shows a resonance frequency around 6 kHz and 9 kHz,
respectively). In this application, this phenomenon can be
filtered without significant information loss. In contrast, the
increment in the noise level registered at low frequencies
in the lateral holes is not so easy to eliminate, although
it can be notably segregated by means of the ensemble-
averaging operator. This noise has been related to the lateral
holes measurements in the separated flow region, it does not
seem directly linked to the probe vortex-shedding frequency
(1100 Hz at midspan). The high unsteadiness of the flow
near the hub and the tip makes both mentioned phenomena
disappear, with the spectral content of the instantaneous
pressure probe measurement being practically the same as
the DHW probe (although the averaged results are noisier).

An additional consideration for fast response probes is
that the extended range is partially achieved with one of
the holes in the separated flow region. With slow response
probes this is not generally a major inconvenient, but with fast
response probes it could become a severe limitation because
the lateral holes measuring in the separated flow region usually
present unsuitable performances. As the separation begins
around 82◦, for a probe built with a construction angle of
45◦ the maximum angular range avoiding the separated flow
region is limited to ±37◦, and it can be covered with the
traditional calibration. With smaller construction angles,
wider separated-free angular ranges can be achieved, although
if it is smaller than 25◦, the uncertainty transmission increases
severely. Thus, the optimal construction angle for fast
response probes is around 30◦, which provides an extended
range of about ±50◦ with no holes measuring in separated
regions.

Also, though this exceeds the aim of the paper, other THP
probe geometries, as trapezoidal or cobra-type probes, may
have better characteristics with respect to the separation zone
and take better advantage of the extended range.

5. Conclusions

A mathematical analysis of the equation system that describes
the behaviour of the pressure distributions in the holes of
THP probes has been carried out. The analysis, based on
a theoretical cylindrical probe, has provided the conditions
limiting the attainable angular range of the probes:
singularities and double points in the equations of the data
reduction method.

A direct procedure for data reduction has been proposed
to improve the operative angular range of THP probes. For
that purpose, several zones along the angular range have been
discriminated, using the pressure values measured in the holes.
Then, a different reducing equation is applied for each zone,
ensuring that no singularities arise.

The influence of the probe construction angle over the
operative angular range has also been analysed. For cylindrical
probes, it has been established that, with a construction angle
between 10◦ and 70◦, it is possible to obtain operative angular
ranges of about ±70◦ when using the proposed data reduction.
This span is two times broader than the one usually achieved.

In addition, the influence of the resolution methodology
on the uncertainty of the results has been studied. It was
concluded that the uncertainty transmission is independent of
the mathematical procedure employed for the data reduction.
The effect of the construction angle on the uncertainty was
also considered, pointing out that angular distances between
the holes from 30◦ to 60◦ present the lowest uncertainty levels.

Using a low response cylindrical probe, the new data
reduction technique has been contrasted with the traditional
calibration over the same experimental data. The comparison
shows that both methods obtain identical results inside the
traditional angular range, but with the advantage of an
extended span (from ±65◦ to ±80◦) for the new procedure.
Fast response probes should avoid measurements with a hole
in the separated flow region of the probe. For cylindrical
probes with construction angles higher than 45◦, this restriction
makes the extended angular range of the new proposal only
marginally better than the traditional one. As the uncertainty
substantially increases for construction angles smaller than
25◦, the optimal construction angle for fast response probes is
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around 30◦, providing an angular range of ±50◦ with the new
data reduction method.
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