Improving Local Search for the Fuzzy Job Shop
using a Lower Bound

Jorge Puente!, Camino R. Velal!,
Alejandro Herndndez-Arauzo®, and Inés Gonzélez-Rodriguez?

1AL Centre and Department of Computer Science,
University of Oviedo, (Spain) {puente, alex, crvela}@uniovi.es,
http://www.aic.uniovi.es/Tc
2 Department of Mathematics, Statistics and Computing,
University of Cantabria, (Spain) ines.gonzalezQunican.es

Abstract. We consider the fuzzy job shop problem, where uncertain
durations are modelled as fuzzy numbers and the objective is to minimise
the expected makespan. A recent local search method from the literature
has proved to be very competitive when used in combination with a
genetic algorithm, but at the expense of a high computational cost. Our
aim is to improve its efficiency with an alternative rescheduling algorithm
and a makespan lower bound to prune non-improving neighbours. The
experimental results illustrate the success of our proposals in reducing
both CPU time and number of evaluated neighbours.

1 Introduction

Scheduling forms an important body of research since the late fifties, with mul-
tiple applications in industry, finance and science [1]. Traditionally, it has been
treated as a deterministic problem that assumes precise knowledge of all data.
However, modelling real-world problems often involves processing uncertainty,
for instance in activity durations. In the literature we find different proposals
for dealing with ill-known durations [2]. Perhaps the best-known approach is
to treat them as stochastic variables. An alternative is to use fuzzy numbers or,
more generally, fuzzy intervals in the setting of possibility theory, which is said to
provide a natural framework, simpler and less data-demanding than probability
theory, for handling incomplete knowledge about scheduling data (c.f. [3],[4]).

The complexity of scheduling problems such as job shop means that practical
approaches to solving them usually involve heuristic strategies [5]. Extending
these strategies to problems with fuzzy durations in general requires a significant
reformulation of both the problem and solving methods. Proposals from the
literature include a neural approach [6], genetic algorithms [7],[8],[9], simulated
annealing [10] and genetic algorithms hybridised with local search [11],[12].

In the following, we consider a job shop problem with task durations given as
triangular fuzzy numbers. Based on a definition of criticality and neighbourhood
structure from [12], a new rescheduling algorithm is given and a lower bound for
the makespan is defined and used to increase the efficiency of the local search.
The potential of the proposals is illustrated by the experimental results.

2 Job Shop Scheduling with Uncertain Durations

The job shop scheduling problem, also denoted JSP, consists in scheduling a set
of jobs {Ji,...,J,} on a set of physical resources or machines {My,..., M,,},
subject to a set of constraints. There are precedence constraints, so each job J;,
i=1,...,n, consists of m tasks {0;1, ..., 0, } to be sequentially scheduled. Also,
there are capacity constraints, whereby each task 6;; requires the uninterrupted
and exclusive use of one of the machines for its whole processing time. A feasible
schedule is an allocation of starting times for each task such that all constraints
hold. The objective is to find a schedule which is optimal according to some
criterion, most commonly that the makespan is minimal.

2.1 Uncertain Durations

In real-life applications, it is often the case that the exact time it takes to process
a task is not known in advance, and only some uncertain knowledge is available.
Such knowledge can be modelled using a triangular fuzzy number or TEN, given
by an interval [n!, n3] of possible values and a modal value n? in it. For a TFN N,
denoted N = (n',n? n?), the membership function takes the following triangular
shape:

1
;27_’%1 :nt <z< n?
)
pn(r) =4 52 n?<a<n? (1)
0 cx<ntorn® <z

In the job shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. These are obtained by extending the corresponding
operations on real numbers using the FEaxtension Principle. However, comput-
ing the resulting expression is cumbersome, if not intractable. For the sake
of simplicity and tractability of numerical calculations, we follow [10] and ap-
proximate the results of these operations, evaluating the operation only on the
three defining points of each TFN. It turns out that for any pair of TFNs M
and N, the approximated sum M + N =~ (m! + n',m? + n2, m? + n?) coin-
cides with the actual sum of TFNs; this may not be the case for the max-
imum max(M, N) ~ (max(m',n'), max(m? n?), max(m?3,n?)), although they
have identical support and modal value.

The membership function of a fuzzy number can be interpreted as a possibil-
ity distribution on the real numbers. This allows to define its expected value [13],
given for a TEN N by E[N] = 1(n' + 2n* 4+ n?). It coincides with the neutral
scalar substitute of a fuzzy interval and the centre of gravity of its mean value [3].
It induces a total ordering <pg in the set of fuzzy numbers [10], where for any
two fuzzy numbers M, N M <g N if and ouly if E[M] < E[N].

2.2 Fuzzy Job Shop Scheduling

A job shop problem instance may be represented by a directed graph G
(V,AU D).V contains one node x = m(i — 1) + j per task 6;;, 1 <i<mn, 1

IN

J < 'm, plus two additional nodes 0 (or start) and nm+ 1 (or end), representing
dummy tasks with null processing times. Arcs in A, called conjunctive arcs,
represent precedence constraints (including arcs from node start to the first
task of each job and arcs form the last task of each job to node end). Arcs in
D, called disjunctive arcs, represent capacity constraints; D = UjL;D;, where
D; corresponds to machine M; and includes two arcs (z,y) and (y,x) for each
pair z,y of tasks requiring that machine. Each arc (z,y) is weighted with the
processing time p, of the task at the source node (a TFN in our case). A feasible
task processing order o is represented by a solution graph, an acyclic subgraph of
G,G(0) = (V, AUR(0)), where R(0) = U;=1..mRi(0), R;(c) being a hamiltonian
selection of D;. Using forward propagation in G(o), it is possible to obtain the
starting and completion times for all tasks and, therefore, the schedule and the
makespan Cy,q.(0).

The schedule will be fuzzy in the sense that the starting and completion times
of all tasks and the makespan are TFNs, interpreted as possibility distributions
on the values that the times may take. However, the task processing ordering o
that determines the schedule is crisp; there is no uncertainty regarding the order
in which tasks are to be processed.

Given that the makespan is a TFN and neither the maximum nor its approx-
imation define a total ordering in the set of TFNs, it is necessary to reformulate
what is understood by “minimising the makespan”. In a similar approach to
stochastic scheduling, it is possible to use the concept of expected value for a
fuzzy quantity and the total ordering it provides, so the objective is to minimise
the expected makespan F[C),q.(0)], a crisp objective function. Durations are
kept fuzzy, which contributes to the resulting schedule’s robustness [14].

Another concept that needs some reformulation in the fuzzy case is that of
criticality, an issue far from being trivial. In [10], an arc (z,y) in the solution
graph is taken to be critical if and only if the completion time of x and the
starting time of y coincide in any of their components. In [12], it is argued
that this definition yields some counterintuitive examples and a more restrictive
notion is proposed. From the solution graph G(o), three parallel solution graphs
Gi(0), i = 1,2,3, are derived with identical structure to G(o), but where the
cost of arc (z,y) € AU R(o) in G'(0) is p., the i-th component of p,. Each
parallel solution graph G%(c) is a disjunctive graph with crisp arc weights, so
in each of them a critical path is the longest path from node start to node end.
For the fuzzy solution graph G(o), a path will be considered to be critical if and
only if it is critical in some G%(c). Nodes and arcs in a critical path are termed
critical and a critical path is naturally decomposed into critical blocks, these
being maximal subsequences of tasks requiring the same machine.

3 Improved Local Search

Part of the interest of critical paths stems from the fact that they may be
used to define neighbourhood structures for local search. Roughly speaking, a
typical local search schema starts from a given processing order, calculates its

neighbourhood and then neighbours are evaluated in the search of an improving
solution. In simple hill-climbing, evaluation stops as soon as a first improving
neighbour is found, which will then replace the original solution. Local search
starts again from that improving neighbour, so the procedure finishes when no
neighbour satisfies the acceptation criterion.

3.1 Previous Approaches

Clearly, a central element in any local search procedure is the definition of neigh-
bourhood. For the crisp job shop, a well-known neighbourhood, which relies on
the concepts of critical path and critical block, is that proposed in [15], extended
to the fuzzy case in [12] using the given definition of criticality:

Definition 1. Given a task processing order @ and an arc v = (x,y) € R(w), let
T(v) denote the processing order obtained from m after an exchange in the order
of tasks in arc v. Then, the neighbourhood structure obtained from w is given
by H(m) = {m) : v € R(r) is critical}.

It can be proved that if 7 is a feasible task processing order, then all ele-
ments in its neighbourhood H () are feasible. This feasibility property limits
the search to the subspace of feasible task orders and avoids feasibility checks
for the neighbours, hence reducing computational load and avoiding the loss of
feasible solutions usually encountered for feasibility checking procedures.

The proposal to extend the neighbourhood structure proposed in Van Laarhoven
et al. [15] to the fuzzy case originally stems from [10], but using the earlier defini-
tion of critical arc for fuzzy durations. Let this neighbourhood be denoted by H’.
The set of critical arcs, according to the definition based on parallel graphs, is a
strict subset of the critical arcs according to [10]. Thus the neighbourhood H is
strictly included in H'. Tt can be shown that those neighbours from H' — H can
never improve the makespan. Indeed, this is a consequence of the fact that, for a
feasible processing order , if o = 7(,) where v is not critical (in the sense of H)
in G(m), then Vi, C7 ..(7) < C},..(0) and hence E[Craz(7)] < E[Crraz(0)].

Neighbourhood structures have been used in different metaheuristics to solve
the fuzzy job shop. In [10], neighbourhood H' is used in a simulated annealing al-
gorithm. The same neighbourhood is used in [11] for a memetic algorithm (MA)
hybridising a local search procedure (LS) with a genetic algorithm (GA) using
permutations with repetition as chromosomes. Combining LS and GAs was an
approach already successful for fuzzy flow shop [16]; the results in [11] show a
clear synergy between the GA and the LS, with the hybrid method also com-
paring favourably with the simulated annealing from [10] and a GA from [7].
The same memetic algorithm is used in [12], but here the local search proce-
dure uses the neighbourhood based on parallel graphs, H. The experimental
results reported in [12] show that this new memetic algorithm performs better
than state-of-the-art algorithms. Despite satisfactory, the results also suggest
that the algorithm has reached its full potential and, importantly, most of the
computational time it requires corresponds to the local search. In order to ob-
tain better metaheuristics for the fuzzy job shop, it is necessary to improve the

N
Svy Sy,

Fig. 1. Situation before (7) and after (o) the reversal of a critical arc (z,y).

neighbourhood structure and reduce the computational cost of the local search.
Additionally, the parallel graph framework causes neighbourhood structures in
the fuzzy case to usually contain considerably more individuals than in the clas-
sical setting, with the consequent increase in computational cost. This further
justifies the need of a greater effort to improve efficiency.

In the following, we propose improve the local search efficiency in two ways.
A first idea is to change the scheduling method in the local search algorithm,
evaluating neighbours in a more efficient manner. A second idea is to actually
avoid the evaluation of certain neighbours by means of makespan lower bounds.

3.2 Scheduling Neighbours

The well-known concepts of head and tail of a task are easily extended to the
fuzzy framework. For a solution graph G(m) and a task z, let Py, and Sv,
denote the predecessor and successor nodes of = on the machine sequence (in
R(m)) and let PJ, and S.J, denote the predecessor and successor nodes of = on
the job sequence (in A). The head of task z is the starting time of z, a TFN
given by r, = max{rp;, +ppJ,, Py, +DpPu, }, and the tail of task x is the time
lag between the moment when z is finished until the completion time of all tasks,
a TFN given by ¢, = max{qsj, +ps.J,,dsv, + Psv, }-

Clearly, the makespan coincides with the head of the last task and the tail
of the first task: Caz = Tnm+1 = qo- Other basic properties that hold for each
parallel graph G(r) are the following: r’ is the length of the longest path from
node 0 to node x; ¢, + p’, is the length of the longest path from node to node
nm + 1; and i + p® + ¢’ is the length of the longest path from node 0 to node
nm + 1 through node z: it is a lower bound for C! , (7), being equal if node
belongs to a critical path in G*(r).

As explained above, for a task processing order 7 and a critical arc (z,y) in
G(m), the reversal of that arc produces a new feasible processing order o = 7,)
with solution graph G(o). This situation is illustrated in Figure 1. The schedule
after the move may be calculated as for any solution, using forward propagation
from 0 onwards in the graph G(c). This has been the method used in [12].
Alternatively, the evaluation of neighbouring solutions may be done very quickly
(in time O(N)), as shown in [17] for the classical JSP.

Let 7 and ¢ denote the heads and tails in G(7) (before the move) and let
r’ and ¢’ denote the heads and tails in G(o) (after the move). For every task
a previous to x in 7, r,, = r, and for every task b posterior to y in 7, ¢, = q.
The heads and tails for = and y after the move (see Figure 1) are given by the
following:

/ !/ /
ry, =max{rp;, +pps,,TPv, + PPv,}; T, =max{rp;, +pps,, T, + Dy}

max{qss, + PsJ,,qp + Do}

¢ = max{qss, +PsJ,, qsv, +DPsv,} Q=
Therefore, we need only re-calculate the heads of tasks from x onwards and the
tails of tasks previous to y in the graph G(o). We propose to incorporate this
quick way of evaluating neighbours in H to the local search algorithm, an idea
which, albeit simple, may prove a considerable reduction in computational load.

3.3 Makespan Lower Bound

At each iteration of the local search, only those neighbours with improving
makespan are of interest. Hence, another way of reducing computational cost
is to foresee, by means of a makespan lower bound, that certain neighbours are
certainly not improving, thus avoiding unnecessary calculations. A well-known
and inexpensive lower bound for the makespan in the crisp case was proposed
by Taillard in [17]. In the following, we generalise this bound to the fuzzy case.

For a processing order 7 and tasks x and y, let Pr(x V y) denote the set of
all paths in the solution graph G(7) containing z or y, Py (z A y) denote the set
of all paths in G(7) containing both = and y and let P;(—x) denote de set of all
paths in G(7) not containing x. Also, for a given set of paths P, let D[P] denote
the TFN such that D?[P] is the length of the longest path from P in the parallel
graph G, i =1,2,3.

Proposition 1. Let 0 = m(,), where v = (z,y) is an arc in G(w). Then, the
makespan for the new solution is given by:

Cmax(0) = max{D[F, (x V y)], D[Pr(-2)]} (2)

Proof. For every i = 1,2,3, C¢, . (o) = max{D'[P,(z V y)], D'[P,(—z A —y)]}.
Since the only arcs that change between G(7) and G(o) are (Pv,(n),x), (x,y),
(y, Svy(m)), those paths not containing « nor y are the same in both graphs G(m)
and G(o), so C¢, .. (0) = max{D'[P,(z V y)], D[P (—z A —y)]}.

Now, for every path in G(m) containing y but not containing z, either it
starts in y or it contains the arc (PJy,y). In both cases, the subpath to y is
identical in both G(m) and G(o). If the path does not contain Sv,, it is still a
path in G(o) and if it does contain the arc (y, Sv,), then substituting (y, Svy)
by (y,z), (z,Sv,) we obtain a longer path in G (o). Therefore, D[P (—z Ay)] <

D[P, (z V y)] and we may write:

Crnax(0) = max{ D[Py (x V)], D' [Pr (=2 A =), D'[Pr(-z A y)]}
= max{D'[Py(z V y)], D'[Pr(-2)]} 0

The previous proposition shows that Cy,..(0) can be calculated as the max-
imum of two elements and suggests an easy-to-compute lower bound:

Corollary 1. Let ¢(m,z,y) and LBr be two TFNs defined by:

0 if (z,y) is critical in G*(7),
Ci

max

=123 (3)

c(m,xz,y) = {

LBp = max{c(m,2,Y), 7, + Pz + @y 1y + Dy + qy} (4)

(m) otherwise.

Then, LBt < C¢... (o) for all i and hence LBr <g Cpaz(0), thus providing a

lower bound for the makespan Cpaz(0).

maz(a) § DZ[PG‘(:E\/
y)] = (max{r, + p. + ¢,, 7, + py + ¢, })". Suppose now that the reversed arc
(z,y) is critical in G*() but is not critical in G7(o). If none of the arcs that
change after a move is contained in a critical path of G7(7), then that path, with
length C3, ... (), remains unchanged in G7 (). If it contains arc (P, (), z) then
the resulting path in G(o) is longer. Analogously, if the critical arc in G’(r)
contains (y, Sv,(m)), then the resulting path in G(o) is longer. Therefore, in
every component j where (z,y) is not critical there is always a path in G7(o)
with length greater or equal than CJ, . (7). O

Proof. Using heads and tails, by the propoposition above, C?

The lower bound LBr may be used in the acceptance criterion of the LS to
decide whether a neighbour ¢ is chosen or not without any loss in makespan qual-
ity: if E[Cpax(m)] < E[LBF], we may discard o as a non-improving neighbour
without evaluating it, since E[LBr] < E[Cpaz(0)].

4 Experimental Results

We now consider 12 benchmark problems for job shop: the well-known FT10
and FT20, and the set of 10 problems identified in [18] as hard to solve for clas-
sical JSP: La21, La24, La25, La27, La29, La38, La40, ABZ7, ABZ8, and ABZ9.
Ten fuzzy versions of each benchmark are generated following [10] and [12], so
task durations become symmetric TFNs where the modal value is the original
duration, ensuring that the optimal solution to the crisp problem provides a
lower bound for the fuzzified version. In total, we consider 120 fuzzy job shop
instances, 10 for each of the 12 crisp benchmark problems.

The goal of this section is to evaluate empirically the contribution of our pro-
posals to improving local search efficiency. We consider the memetic algorithm
presented in [12], denoted GVPVO0S in the following, which improved previous
approaches from the literature in terms of makespan optimisation. GVPV08
combines a genetic algorithm with a simple hill-climbing local search procedure
based on the neighbourhood structure H, with high computational load for the
local search. We shall use GVPV08 as a baseline algorithm and introduce the
different improvements proposed herein in the local search module, to evaluate
their contribution towards improving efficiency.

Table 1. Rescheduling algorithm: CPU time of MA vs. GVPV08

Problem‘ Size ‘GVPVOS MA ‘ red% ‘

FT10 | 10 x 10 801.2 588.2 | 26.59%
FT20 20 x 5 1693.9 682.1 | 59.73%
La2l 1769.4 1072.8 | 39.37%
La24 15%x10 | 1562.4 950.1 | 39.19%
La25 1722.8 993.7 | 42.32%
La27 A137.8 2242.8 | 45.80%
La29 2010 | 3936.0 2071.7 | 47.37%
La38 3037,6 2556.7 | 15.83%
Lad0 15x15 | 39904 2652.2 | 17.64%
ABZ7 73961 5294.7 | 28.41%
ABZ8 | 20x 15| 8098.5 5780.9 | 28.62%
ABZ9 7308.0 5652.1 | 22.66%

The first experiment consists in incorporating the new rescheduling algorithm
to GVPVO0S, obtaining a new hybrid algorithm denoted MA, which is run with
the same parameters as GVPV08 (population size 100 and 200 generations).
Notice that the schedules will be the same with both methods (it is only the way
of calculating them that changes), so the final solution is identical in terms of
makespan. Table 1 shows the average across each family of ten fuzzy instances of
the total CPU time (in seconds) taken by 30 runs of GVPV08 and MA. It shows
a clear reduction in time for MA, ranging from a minimum (15.83%-17.64%) for
the square problems of size 15 x 15 and a maximum (59.73%) obtained for FT20
of size 20 x 5; for identical number of jobs, the greater the number of resources,
the greater the reduction. In any case, the rescheduling based on heads and tails
is always more efficient than the original one, with an average reduction in CPU
time of 34.5%,

Having ascertained the net increase in efficiency with the new rescheduling al-
gorithm, we proceed to analyse the contribution of the lower bound. We consider
a variation of the most efficient algorithm MA, denoted MA(LBF), which incor-
porates the lower bound LBy to avoid unnecessary evaluations. Again, changes
w.r.t. GVPV08 do not concern makespan values and the parameters used for
GVPVO08 guaranteed convergence, so there is no point in comparisons based on
makespan values nor in prolonging computation time in an attempt to improve
the makespan of the final solution. The interest is instead in evaluating the con-
tribution of the proposals to reducing the number of evaluated neighbours and
the CPU time required by local search.

Table 2 shows the average across the ten fuzzy instances of each family of
problems of the total number of evaluated neighbours and CPU time (in sec-
onds) for 30 runs of both MA(LBF) and MA (notice that the latter evaluates
the same neighbours than GVPV08). The average reduction for MA(LBF) w.r.t.
MA and GVPVS is 87.09%, with a standard deviation of 6.25%; the minimum
(84.81%, 84.98%) is obtained for square problems of size 15 x 15 and the maxi-

Table 2. Comparison of number of evaluated neighbours and CPU time (in seconds).

No. Neighbours CPU time
Problem
MA MA(LBF) red.% | MA MA(LBF) red.%
FT10 2.83E4+07 3.49E406 87.67 588.2 183.1 68.87
FT20 6.78E4+07 5.11E406 92.47 682.1 257.2 62.29
La21 4.46E+07 5.61E406 87.41 1072.8 331.4 69.11
La24 3.87TE4+07 5.37TE406 86.13 950.1 315.1 66.84
La25 4.28E4+07 5.68E4-06 86.73 993.7 328.9 66.90
La27 8.37TE4+07 9.55E406 88.59 2242.8 593.2 73.55
La29 7.85E407 8.74E+06 88.87 2071.7 562.5 72.85
La38 5.16E4+07 7.74E406 84.98 2556.7 570.9 77.67
Lad0 5.42E4+07 8.22E406 84.81 2652.2 595.7 77.54
ABZ7 9.74E+07 1.36E+407 85.99 5294.7 1053.9 80.10
ABZ8 1.08E408 1.53E+07 85.91 5780.9 1138.5 80.31
ABZ9 9.656E4+07 1.40E+407 85.50 5652.1 1081.9 80.86

mum (92.47%) is obtained for FT20 of size 20 x 5. As above, for identical number
of jobs, the greater the number of resources, the greater the reduction. It is re-
markable that the number of evaluated neighbours using the lower bound is
practically reduced in an order of magnitude. CPU time is also considerably
reduced, 73.07% in average, although this rate is not linear in neighbour reduc-
tion. The reason is the extra cost in MA(LBF) of marking those components
where the arc is critical. For small-size problems in the first rows, the cost of
labelling arcs means a CPU time reduction which is in average 15% smaller than
the reduction in number of neighbours (with the exception of FT20, where the
labelling proves most expensive). As the problem size increases (and we descend
in Table 2) the computational cost becomes less significant, with a loss in CPU
time reduction w.r.t. the neighbours reduction of less than 7.5% in average. This
suggests that the advantage of using the lower bound is greater as the problem
size and difficulty increase. Notice that the labelling process could also be used
in order to incorporate neighbour-ordering heuristics to the local search.

5 Conclusions

We have considered a job shop problem with uncertain durations modelled as
TFNs and have proposed two changes in a local search method from the liter-
ature to improve its efficiency. We have first proposed a different algorithm to
reschedule neighbours and then a lower bound for neighbours’ makespan which
allows to prune the local search and avoids unnecessary calculations of makespan.
The results show that the proposals greatly increase the efficiency of the local
search, with considerable reductions in the number of evaluated neighbours and
CPU times, without affecting the makespan of the final solution. This allows for
future extensions of the criticality model and therein-based search methods to
more general and expressive fuzzy representations.

Acknowledgements This work supported by MEC-FEDER Grants TIN2007-
67466-C02-01 and MTM2007-62799.

References

1.

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Pinedo, M.L.: Scheduling. Theory, Algorithms, and Systems. Third edn. Springer
(2008)

Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165 (2005) 289-306
Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible con-
straints vs. coping with incomplete knowledge. European Journal of Operational
Research 147 (2003) 231-252

Stowinski, R., Hapke, M., eds.: Scheduling Under Fuzziness. Vol. 37 of Studies in
Fuzziness and Soft Computing. Physica-Verlag (2000)

Brucker, P., Knust, S.: Complex Scheduling. Springer (2006)
Tavakkoli-Moghaddam, R., Safei, N., Kah, M.: Accessing feasible space in a gener-
alized job shop scheduling problem with the fuzzy processing times: a fuzzy-neural
approach. Journal of the Operational Research Society 59 (2008) 431-442
Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop schedul-
ing with fuzzy processing time and fuzzy duedate through genetic algorithms.
European Journal of Operational Research 120 (2000) 393-407

Petrovic, S., Fayad, S., Petrovic, D.: Sensitivity analysis of a fuzzy multiobjective
scheduling problem. International Journal of Production Research 46(12) (2007)
3327-3344

Gonzéalez Rodriguez, 1., Puente, J., Vela, C.R., Varela, R.: Semantics of sched-
ules for the fuzzy job shop problem. IEEE Transactions on Systems, Man and
Cybernetics, Part A 38(3) (2008) 655-666

Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach.
IEEE Transactions of Fuzzy Systems 7 (1997) 557-569

Gonzélez Rodriguez, 1., Vela, C.R., Puente, J.: A memetic approach to fuzzy job
shop based on expectation model. In: Proc. of IEEE International Conference on
Fuzzy Systems, FUZZ-IEEE2007, London, IEEE (2007) 692-697

Gonzélez Rodriguez, 1., Vela, C.R., Puente, J., Varela, R.: A new local search
for the job shop problem with uncertain durations. In: Proc. of the Eighteenth
International Conference on Automated Planning and Scheduling (ICAPS-2008),
Sidney, AAAI Press (2008) 124-131

Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value
models. IEEE Transactions on Fuzzy Systems 10 (2002) 445-450

Gonzéalez Rodriguez, 1., Puente, J., Varela, R., Vela, C.R.: A study of schedule
robustness for job shop with uncertainty. In: Proc. of IBERAMIA 2008. Vol. 5290
of LNAI, Germany, Springer (2008) 31-41

Van Laarhoven, P., Aarts, E., Lenstra, K.: Job shop scheduling by simulated
annealing. Operations Research 40 (1992) 113-125

Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics—Part C: Applications and Reviews 67(3) (1998) 392-403

Taillard, E.D.: Parallel taboo search techniques for the job shop scheduling prob-
lem. ORSA Journal on Computing 6(2) (1994) 108-117

Applegate, D., Cook, W.: A computational study of the job-shop scheduling prob-
lem. ORSA Journal of Computing 3 (1991) 149-156

